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ABSTRACT

As computational resources become more efficient and data sizes

grow, data movement is fast becoming the dominant cost in com-

puting. Processing-in-Memory is emerging as a key technique for

reducing costly data movement, by enabling computation to be

executed on compute resources embedded in the memory modules

themselves.

This paper presents the Processing-in-Memory (PIM) model, for

the design and analysis of parallel algorithms on systems providing

processing-in-memory modules. The PIM model focuses on keys

aspects of such systems, while abstracting the rest. Namely, the

model combines (i) a CPU-side consisting of parallel cores with fast

access to a small shared memory of size𝑀 words (as in traditional

parallel computing), (ii) a PIM-side consisting of 𝑃 PIM modules,

each with a core and a local memory of size Θ(𝑛/𝑃) words for an
input of size 𝑛 (as in traditional distributed computing), and (iii)

a network between the two sides. The model combines standard

parallel complexity metrics for both shared memory (work and

depth) and distributed memory (local work, communication time)

computing. A key algorithmic challenge is to achieve load balance

among the PIMmodules in both their communication and their local

work, while minimizing the communication time. We demonstrate

how to overcome this challenge for an ordered search structure,

presenting a parallel PIM-skiplist data structure that efficiently

supports a wide range of batch-parallel queries and updates.

CCS CONCEPTS

• Theory of computation→ Parallel computing models; Dis-

tributed computing models; Sorting and searching; Predecessor

queries; • Hardware→ Emerging architectures.
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1 INTRODUCTION

As computational resources become more efficient and data sizes

grow, data movement is fast becoming the dominant cost in com-

puting. Processing-in-memory [21] (a.k.a., near-data-processing) is

emerging as a key technique for reducing costly data movement,

by enabling computation to be executed on CPU resources embed-

ded in the memory modules themselves. Instead of a traditional

memory hierarchy where data must be moved to the CPU cores

to be computed on, processing-in-memory enables compute to be

pushed to the memory, thereby saving data movement.

Although various forms of processing-in-memory have been

proposed and studied going back to at least 1970 [29], it is only

now gaining widespread attention as an emerging key technology

(see [21] for a survey with hundreds of recent references). Although

there are many technologies proposed for enabling processing-

in-memory, whether it be via design, integration, packaging, and

combinations thereof, a particularly promising approach is the use

of 3D die-stacked memory cubes. In such emerging memory cubes,

memory layers are stacked on top of a processing layer in one

tightly-integrated package, enabling a simple compute core to have

low-latency, high-bandwidth memory access to the entire cube of

memory.

While there has been considerable work on the systems/architec-

ture/technology side of processing-in-memory [21], there has been

very little work on the theory side. Fundamental open problems

include: What is a good model of computation for processing-in-

memory? How is algorithm design different? What are the funda-

mental limitations of using processing-in-memory? Can we provide

theoretical justification for why processing-in-memory is a good

idea?

In this paper, we take a first step towards answering some of these

questions. We define the first model of computation for emerging

processing-in-memory systems, which seeks to capture both the

advantages and limitations of such systems. (See §2.2 for related

work.) Our Processing-in-Memory (PIM) model (Fig. 1) combines (i)

a CPU side consisting of parallel cores with fast access to a small

shared memory of size𝑀 words (as in traditional shared-memory

parallel computing), (ii) a PIM side consisting of 𝑃 PIMmodules, each

https://doi.org/10.1145/3409964.3461816
https://doi.org/10.1145/3409964.3461816


with a core and a local memory of size Θ(𝑛/𝑃) words for an input

of size 𝑛 (as in traditional distributed-memory computing), and (iii)

a network between the two sides. The model combines standard

parallel complexity metrics for both shared memory (work and

depth) and distributed memory (local work and communication

time) computing.

Although many models for shared memory and many models

for distributed memory have been proposed, it is the combination

of the two in a single model that makes the PIM model novel and

interesting for algorithm design. Effective use of the PIM side re-

quires “PIM-balance”, namely, balanced work and communication

across all the PIM modules, even though each compute task is being

offloaded to the local memory holding the needed data. One could

apply standard approaches of randomly mapping shared memory

to distributed memory (e.g., [32]) and then treat the entire model

as a shared-memory model, but then all memory accesses would

be non-local, defeating the goal of using processing-in-memory in

order to minimize data movement. Conversely, one could ignore the

shared memory and treat the entire model as a distributed-memory

model, but our results show benefits from using the shared memory

(e.g., for sorting up to𝑀 numbers without incurring any network

communication, or for avoiding PIM load imbalance in balls-in-bins

settings with small balls-to-bins ratios).

As a case study of parallel algorithm design on such a model, we

consider the challenge of efficiently maintaining a skip list [23, 25]

under adversary-controlled batch-parallel queries and updates.

The two main contributions of the paper are:

• We define the PIM model, the first model of parallel compu-

tation capturing the salient aspects of emerging processing-

in-memory systems.

• We design and analyze a PIM-friendly skip-list data struc-

ture, which efficiently supports awide range of batch-parallel

updates, point queries, and range queries, under adversary-

controlled batches. A key feature of our algorithms is that

(nearly) all the performance metrics, including network com-

munication, are independent of the number of keys 𝑛 in the

data structure and also independent of any query/update

skew (that arises, e.g., when a large number of distinct suc-

cessor queries all target the same successor node).

2 MODEL

2.1 The Processing-in-Memory Model

Our goal is to define a model of parallel computation that focuses

on the key aspects of systems with processing-in-memory modules,

while abstracting away the rest. In particular, our model has only

two parameters,𝑀 and 𝑃 , and instead, we use separate metrics for

aspects that have system-dependent costs (e.g., computation on

traditional CPU cores vs. computation on PIM modules vs. com-

munication). A key aspect we model is that processing-in-memory

is fast because there is processing (a core) embedded with each

memory module, and each memory module is small enough that

the latency for the core to access its local memory is low and the

throughput is high (significantly lower/higher than accessing the

same memory from one of the traditional CPU cores—this is the

savings driving the push to processing-in-memory). As such, PIM

divides the system’s “main memory” into a collection of “core +

CPU
side Shared Memory

𝑀 words

PIM
side

… Local Memory
Θ Τ𝑛 𝑃 words

core

P PIM Modules

Local Memory
Θ Τ𝑛 𝑃 words

core

Network

cores

Figure 1: The PIM Model

local memory” modules, akin to traditional distributed memory

models. Unlike distributed memory models, however, there is also

the “traditional” part of the system comprised of multiple cores

sharing a fast last-level cache. Thus, our PIM model combines a

shared-memory model (for a small amount of shared memory) with

a distributed-memory model. And indeed, it is the combination

of both that makes the PIM model both novel and interesting for

algorithm design.

As illustrated in Fig. 1, the Processing-in-Memory (PIM)model

combines aCPU side consisting of parallel cores (calledCPU cores)
with fast access to a small shared memory of size𝑀 words (as in

traditional shared-memory parallel computing), a PIM side consist-
ing of 𝑃 PIM modules, each with a core (called a PIM core) and a

local memory of size Θ(𝑛/𝑃) words (as in traditional distributed-

memory computing), and a network between the two sides. Each

CPU or PIM core executes unit-work instructions from a random

access machine (RAM) instruction set augmented, on the CPU side,

with an atomic test-and-set primitive (for synchronization among

the asynchronous CPU cores). In general, specific algorithms may

use stronger synchronization primitives (e.g., compare-and-swap),

where noted (but none of the algorithms in this paper require more

than a test-and-set).

A CPU core offloads work to a PIM core using a TaskSend
instruction, which specifies a PIM-core ID and a task (function ID

and arguments) to execute on that PIM core. The network is used

to route such tasks to the designated PIM core, where the task is

queued up and the PIM core is awakened if it is asleep. Each PIM

core repeatedly invokes an iterator that removes a task from its

queue and then executes the task. If the queue is empty, the PIM

core goes to sleep. Tasks specify a shared-memory address to write

back the task’s return value on completion of the task. All tasks

must return either a value or an acknowledgment of completion.

We will sometimes say a PIM module 𝐴 offloads a task to another

PIM module 𝐵—this is done by 𝐴 returning a value to the shared

memory, which in turn causes the offload from the CPU side to 𝐵.

The PIM model combines standard complexity metrics for both

shared (work and depth) and distributed (local work, communica-

tion time) computing. On the CPU side, we account for the CPU
work (total work summed over all the CPU cores) and CPU depth
(sum of the work on the critical path on the CPU side), a.k.a. CPU

span. On the PIM side, we account for the PIM time, which is the

maximum local work on any one PIM core. Communication costs

are measured in terms of IO time, as follows. The network operates



in bulk-synchronous rounds [32], where a set of parallel messages,

each with a constant number of words, is sent between the CPU

side and the PIM side, followed by a barrier synchronization. As in

the BSP model [32], we define the notion of an ℎ-relation, but in

the PIM model, ℎ is the maximum number of messages to/from any

one PIM module (i.e., ignoring the CPU side). Let ℎ1, . . . , ℎ𝑟 be the

ℎ’s for a computation with 𝑟 bulk-synchronous rounds. Then the

IO time is defined to be

∑𝑟
𝑖=1 ℎ𝑖 . The cost of the 𝑟 synchronization

barriers is 𝑟 log 𝑃 .1

We assume that 𝑀 = 𝑂 (𝑛/𝑃) and 𝑀 = Ω(𝑃 · polylog(𝑃 )). The
algorithms we present in this paper have the further restriction that

𝑀 is independent of 𝑛 and at most Θ(𝑃 log2 𝑃).𝑀 is assumed to be

small because, as discussed above, our shared memory is intended

to model the fast last-level cache on the CPU side, while the PIM

modules comprise the “main memory” of the system.

Discussion. To simplify the model, the number of cores on the

CPU side is not specified. Because we analyze the CPU side using

work-depth analysis and we assume a work-stealing scheduler [10],

there is no need to pre-specify the number of cores on that side.

For any specified number of CPU cores 𝑃 ′, the time on the CPU

side for an algorithm with𝑊 CPU work and 𝐷 CPU depth would

be 𝑂 (𝑊 /𝑃 ′ + 𝐷) expected time [3, 10]. There is no penalty for the

stealer to execute a task instead of a stealee, because both have the

same fast access to the CPU side shared memory.
2
As a result of

not pre-specifying, the PIM model can be used to model systems

with more or fewer CPU cores than PIM cores, and with CPU cores

that are more powerful than PIM cores.

Communicating an ℎ-relation over the network is charged as ℎ

IO time, but it is not charged as CPU work/depth or PIM time. This

is for simplicity, and one could always determine what that cost

would be, if desired, by simply adding ℎ · 𝑃 to the CPU work and ℎ

to the PIM time. For the algorithms we present in this paper, doing

so would not asymptotically increase the CPU work or PIM time.

We allow CPU cores to perform concurrent reads and writes

to the shared memory. A variant of the model could account for

write-contention to shared memory locations, by assuming 𝑘 cores

writing to a memory location incurs time 𝑘—the so-called “queue-

write” model [15]. We leave such analysis to future work.

In summary, to analyze an algorithm for the PIM model, one

needs to give the CPU work and depth, the PIM time, and the IO

time. Other metrics of interest are the number of bulk-synchronous

rounds (for algorithms where the synchronization cost dominates

the IO time) and the minimum CPU memory size needed for the

algorithm.

Algorithm design. The model targets “in-memory, not in-cache”

algorithms, in which the space needed for the entire computa-

tion is at most 𝑂 (𝑛) words but much larger than 𝑀 words. The

input starts evenly divided among the PIM modules. Outputs of

size > 𝑀 are stored in the PIM modules as well. For algorithms

that involve maintaining a data structure under queries and up-

dates, the queries/updates are assumed to arrive on the CPU side

and query results are returned to the CPU side. As is common

1
In this paper, we do not explicitly discuss synchronization cost, except in the one

case (Theorem 5.1) where it dominates the IO time.

2
For models that provide a private cache for each CPU core, there is a slight cost to

warm up the stealer’s private cache [2].

for parallel algorithm design, we assume the batch-parallel set-

ting [1, 8, 13, 24, 30, 31, 33], in which queries or updates arrive

as a set that can be executed in parallel, called a batch. We con-

sider adversary-controlled queries/updates, where the adversary

determines the sequence of batches and the queries or updates

within each batch, subject to the following constraints: (i) all the

queries/updates within a batch are the same operation type (e.g., all

inserts), (ii) there is a minimum batch size, typically 𝑃 · polylog(𝑃 ),
and (iii) the queries/updates cannot depend on the outcome of

random choices made by the algorithm (and hence, e.g., cannot

depend on the outcome of a randomized mapping of data structure

components to PIM modules).

Many of our bounds hold with high probability (whp) in 𝑃 : A

bound is 𝑂 (𝑓 (𝑃)) whp if, for all 𝛼 ≥ 1, the bound is 𝑂 (𝛼 · 𝑓 (𝑃))
with probability at least 1 − 1/𝑃𝛼 .
PIM-balance. A key algorithmic challenge is to achieve load bal-

ance among the PIM modules in both their communication and

their local work, while minimizing the IO time. As noted above, the

CPU side can achieve load balance via work-stealing because the

stealer has the same fast access to the shared memory as the stealee.

But on the PIM side, work-stealing is impractical because tasks are

tied to a specific local memory (the whole point of processing-in-

memory), and hence fast local accesses by the stealee would be

replaced by slow non-local accesses by the stealer.

We say an algorithm is PIM-balanced if it takes 𝑂 (𝑊 /𝑃) PIM
time and 𝑂 (𝐼/𝑃) IO time, where𝑊 is the sum of the work by the

PIM cores and 𝐼 is the total number of messages sent between the

CPU side and the PIM side. The challenge in achieving PIM-balance

is that both PIM time and IO time (specifically the ℎ for each ℎ-

relation) are based on the maximum across the PIM modules (not

the average).

Thus, special care is needed to achieve PIM-balance. Algorithms

must avoid offloading to PIM modules in an unbalanced way. Be-

cause computation is moved to where data reside, data access must

be balanced across PIM modules. But as noted in §1, while ran-

domly mapping data addresses to PIM modules would help balance

data access, it would defeat the purpose of processing-in-memory

because all data accesses would be non-local. Thus, more selective

randomization is needed. Note as well that offloading 𝑃 tasks to 𝑃

PIM modules randomly would not be PIM-balanced, because some

PIM module would receive Θ(log 𝑃/log log 𝑃) tasks whp [6], imply-

ing Θ(log 𝑃/log log 𝑃) IO time whp. We will use the following two

balls-in-bins lemmas.

Lemma 2.1 ([26]). Placing 𝑇 = Ω(𝑃 log 𝑃) balls into 𝑃 bins ran-

domly yields Θ(𝑇 /𝑃) balls in each bin whp.

Lemma 2.2 ([22, 27]). Placing weighted balls with total weight

𝑊 =
∑
𝑤𝑖 and weight limit𝑊 /(𝑃 log 𝑃) into 𝑃 bins randomly yields

𝑂 (𝑊 /𝑃) weight in each bin whp.

The cited references for Lemma 2.2 provide a proof for 𝑂 (𝑊 /𝑃)
weight in expectation. A proof for whp appears in the Appendix.

2.2 Related Work

One approach to designing algorithms for PIM systems would be

to use known hashing-based emulations of shared memory (e.g.,

a PRAM) on a distributed memory model (e.g., the BSP model).



Valiant [32] showed that each step of an exclusive-read exclusive-

write (EREW) PRAMwith 𝑝 log 𝑝 virtual processors can be emulated

on a 𝑝-processor BSP in 𝑂 (log 𝑝) steps whp (assuming the BSP’s

gap parameter 𝑔 is a constant and its 𝐿 parameter is 𝑂 (log 𝑝)), and
that𝑂 (log𝑝) steps of a BSP can be emulated on a 𝑝-node hypercube

in 𝑂 (log 𝑝) steps whp. Integer semi-sorting can be used to extend

the emulation to the concurrent-read concurrent-write (CRCW)

PRAM within the same bounds, although the constants are much

higher [32]. However, these emulations are impractical because all

accessed memory incurs maximal data movement (i.e., across the

network between the CPU cores and the PIM memory), which is

the exact opposite of the goal of having processing-in-memory in

order to minimize data movement. The algorithms in this paper

will make selective use of both hashing and sorting.

Choe et al. [11] studied concurrent data structures on processing-

in-memory systems. They provided an empirical evaluation of PIM-

aware algorithms for linked lists, FIFO queues, and skip lists, and

showed that lightweight modifications to PIM hardware can signifi-

cantly improve performance. They did not define a model of compu-

tation. Also unlike our paper, they studied skip lists for a workload

of uniformly-random keys, and provide a skip list algorithm that

partitions keys by disjoint key ranges. Under uniformly-random

keys, this works well (because in expectation, each PIM module

processes the same number of queries/updates), but it would se-

rialize (i.e., no parallelism) in the more general case we consider

of adversary-controlled query/update keys, whenever all keys fall

within the range hosted by a single PIM-module.

An earlier paper by Liu et al. [19] presented a performance model

for a processing-in-memory system that specified parameters for

(i) the latency of a memory access by a CPU core, (ii) the latency

of a local memory access by a PIM core, and (iii) the latency of a

last-level cache access by a CPU core. The performance model was

used to analyze different algorithms for concurrent data structures,

including a skip list. However, the skip list algorithm partitioned

keys across the PIM modules using disjoint key ranges, as above.

Das et al. [12] proposed amodel for a systemwith both traditional

main memory (DRAM) and high-bandwidth memory (HBM). In

their model, each of 𝑃 CPU cores is connected by its own channel to

a shared HBM of limited size and there is a single channel between

the HBM and an infinite main memory. Das et al. showed how to

automatically manage which data to keep in the HBM and when to

transfer data from HBM to main memory. There was no distributed

memory in their model and only one type of cores. An earlier pa-

per by Bender et al. [5] proposed and studied an external-memory

model with both a small but high-bandwidth memory and a large

but low-bandwidth memory. The bandwidth difference was mod-

eled as retrieving a much larger block in a single external-memory

read or write.

Ziegler et al. [34] analyzed different ways to distribute a tree-

based structure over multiple computers. Besides coarse-grained

partitioning by key ranges, they study coarse-grained partitioning

by hash and fine-grained partitioning that randomly distributes all

nodes. Both partitioning schemes improve performance on skewed

workloads, but partitioning by hash decreases range query perfor-

mance, and fine-grained partitioning decreases performance on

uniform workloads.

3 PIM-BALANCED SKIP LIST

In the remainder of the paper, we present our efficient, PIM-balanced

algorithms for maintaining a skip list [23, 25] under adversary-

controlled batch-parallel queries and updates. Our skip list sup-

ports seven types of point operations and range operations: Get

(key), Update (key, value), Predecessor (key), Successor (key),

Upsert (key, value)
3
, Delete (key), and RangeOperation (LKey,

RKey, Function). Recall from §2.1 that all operations in a batch are

of the same type, there is a minimum batch size, and the adver-

sary’s choice of keys cannot depend on random choices made by

the algorithm.

This section describes the high-level design of our algorithms.

3.1 Overview

Some prior work on ordered data structures in a PIM-equipped or

distributed system used range partitioning [11, 19, 34]. Although

these algorithms may save IO between CPU and PIM modules

under uniform workloads, their structure, even with dynamic data

migration, suffers from PIM-imbalance for skewed or adversarial

workloads that force many operations to occur on a small number

of range partitions. Some other methods are invented to relieve

this, but they bring new problems. Coarse-grain partitioning by

hash has low range queries performance because range queries

must be broadcasted. Fine-grained partitioning causes too much

IO because every key search would access nodes in many different

PIM modules.

Our approach. The key idea of our approach is to combine (i) a

uniform load-balancing scheme for a subset of the keys with (ii) a

scheme that redundantly stores in every PIM node the commonly-

used nodes in the upper levels of the skip list. More formally, we

divide the skip list horizontally into a lower part and an upper part,

and refer to the nodes in the two parts as upper-part nodes and
lower-part nodes. This is shown in Fig. 2, where upper-part nodes

are in white, and the lower part nodes have different color and

texture according to their PIM module. The upper part is replicated

in all PIM modules, and the lower part is distributed randomly to

PIM modules by a hash function on the (keys, level) pairs. (In this

paper, levels are counted bottom up with leaves at level 0). For

an upper-part node, its replicas are stored across all PIM modules

at the same local memory address on each PIM. We refer to the

nodes in the last level of the upper part (second level in Fig. 2) as

upper-part leaves.
To be specific, for a skip list of 𝑛 = Ω(𝑃 log 𝑃) key-value pairs4,

if the height of the lower part is set to ℎ
low

= log 𝑃 , the size of

the upper part will be only 𝑂 (𝑛/𝑃) whp. On the other hand, for a

search path in this skip list, 𝑂 (log𝑛) nodes will fall into the upper

part and only 𝑂 (log 𝑃) nodes will fall into the lower part whp [17].

3.2 Pointer Structure

Next, we present a more detailed description of our data structure.

As in traditional skip lists, each node in our skip list has four point-

ers: left, right, up and down. up pointers to upper-part nodes point

3
Upsert is an operation that inserts the key-value pair if the key does not already exist,

or updates the value if it does.

4
Throughout this paper, we consider a skip list where a level 𝑖 node also appears in

level 𝑖 + 1 with probability 1/2 and all logarithms are base 2.
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Figure 2: The pointer structure of a skip list on a 4-PIM-module system. Nodes on different PIM modules are of different color, and are in white when they

are replicated among all PIM modules. Solid pointers are used in point operations, and are stored in the PIM module of their FROM node. Dashed pointers are

used in range operations, and are stored in the PIM module of their TO node (as indicated by their color). Dashed pointers for −∞ are omitted.

to the PIM-local copy of the upper part, and up or down pointers

to lower-part nodes may point to nodes in different PIM modules.

When we need to access remote addresses, we use the TaskSend
instruction, as follows. A RemoteWrite is performed by sending a

write task, and aRemoteRead is performed by sending the current

task to the remote PIM module to proceed.

To support range queries, we add several additional pointers. For

leaves, we add two additional pointers: local-left and local-right.

These pointers point to the previous and next leaf in the same PIM

module to form a local leaf list for each PIM module. For each

upper-part leaf on each PIM module, we maintain an additional

pointer called next-leaf, which points from an upper-part leaf to

its successor in the local leaf list. We illustrate these three types of

pointers in Fig. 2 (dashed pointers).

Theorem 3.1. The skip list takes𝑂 (𝑛) words in total, and𝑂 (𝑛/𝑃)
words whp in each PIM module.

Proof. By Lemma 2.1, for 𝑛 = Ω(𝑃 log 𝑃), 𝑂 (𝑛/𝑃) lower-part
nodes are sent to each PIMmodule whp. The upper part has𝑂 (𝑛/𝑃)
nodes whp. As the result, each PIM module holds 𝑂 (𝑛/𝑃) nodes of
constant size whp. □

We introduce three terms for the sake of clarity when discussing

our algorithms. We call nodes on the search path from the root

to a specific node its ancestors. Note that since the upper part is
replicated, there are multiple physical search paths to a node. These

paths share the same lower-part nodes, and their upper nodes are

replicas of the same nodes on different PIM modules. We conceptu-

ally think of these identical search paths as a single (non-redundant)

path, which yields a tree, and we define parent and child based

on this tree.

3.3 Challenge of Imbalanced Node Access

Although we randomly distribute the lower-part nodes among PIM

processors, simply batching operations does not guarantee PIM-

balance. For example, multiple Get (or Update) operations with

the same key can cause contention on the PIM module holding the

key. Deduplication of queries can solve imbalance for these two

operations, but it cannot solve imbalance caused by other important

operations. For example, as noted earlier and analyzed in §4.2, if

the adversary requests the Successor of multiple different keys

with the same successor, then the path to the result will be accessed

multiple times, causing contention. In the extreme, this can serialize

the entire batch of Successor operations.

Note that in these examples, PIM-imbalance is a direct result of

imbalanced node access. Therefore, our approach to PIM-balance

is to avoid imbalanced node access. In the next two sections, we

present detailed algorithms for the individual operations.

4 POINT OPERATIONS

This section presents our algorithms for the six point operations

supported by our skip list. Table 1 summarizes the bounds we

obtain.

4.1 Get(𝑘) and Update(𝑘, 𝑣)
Execution of a single operation. Because the lower-part nodes

are distributed to PIM modules by a random hash function, the Get

(Update can be solved similarly) operation can use this function

as a shortcut to find the PIM module that the target node must

be stored on. By storing an additional hash table locally on each

PIM module to map keys to leaf nodes directly, we can efficiently

process Get (Update) queries.

Specifically, within a PIM module, we use a de-amortized hash

table supporting𝑂 (1) whpwork operations [16]. The table supports
the 𝑂 (𝑛/𝑃) keys that are stored in this PIM node in 𝑂 (1) whp PIM

work per Get, Update, Delete, and Insert operation.

To execute each operation, we send it directly to the PIM module

for the key according to the hash value, and then query for the

key within the PIM’s local hash table, ignoring non-existent keys.

This takes 𝑂 (1) messages and 𝑂 (1) whp PIM work. Note that this

approach works because Get (Update) operations neither use nor

modify the pointer structure.

PIM-balanced batch execution. The batched Get operation is

executed in batches of size 𝑃 log 𝑃 . It first goes through a parallel

semisort [9, 18] on the CPU side to remove duplicate operations.



Operation Batch Size IO time PIM time CPU work/op CPU depth Minimal𝑀 needed

Get / Update 𝑃 log 𝑃 𝑂 (log 𝑃)∗ 𝑂 (log 𝑃)∗ 𝑂 (1)† 𝑂 (log 𝑃)∗ Θ(𝑃 log 𝑃)
Predecessor / Successor 𝑃 log2 𝑃 𝑂 (log3 𝑃)∗ 𝑂 (log2 𝑃 · log𝑛)∗ 𝑂 (log 𝑃)† 𝑂 (log2 𝑃)∗ Θ(𝑃 log2 𝑃)∗

Upsert 𝑃 log2 𝑃 𝑂 (log3 𝑃)∗ 𝑂 (log2 𝑃 · log𝑛)∗ 𝑂 (log 𝑃)† 𝑂 (log2 𝑃)∗ Θ(𝑃 log2 𝑃)∗

Delete 𝑃 log2 𝑃 𝑂 (log2 𝑃)∗ 𝑂 (log2 𝑃)∗ 𝑂 (1)† 𝑂 (log2 𝑃)∗ Θ(𝑃 log2 𝑃)∗

Table 1: Complexity of our batch-parallel point operations on a skip list of 𝑛 keys. CPU work/op is the total CPU work for the batch divided by the batch size.

∗: with high probability (whp) in 𝑃 . †: in expectation. Bounds without superscripts are worst-case bounds.

Then, it sends each query to the target PIM module and finishes

the rest of the computation locally on the PIM module.

Theorem 4.1. Batched Get (Update) operations using a batch size

of 𝑃 log 𝑃 can be executed whp in 𝑂 (log 𝑃) IO time, 𝑂 (log 𝑃) PIM
time, and 𝑂 (log 𝑃) CPU depth. The execution performs 𝑂 (𝑃 log 𝑃)
expected CPU work.

Proof. Semisorting the batch takes 𝑂 (𝑃 log 𝑃) expected CPU

work with 𝑂 (log 𝑃) whp depth [9]. By Lemma 2.1, sending up to

𝑃 log 𝑃 Get operations with different keys to random PIM modules

sends 𝑂 (log 𝑃) operations to each PIM module whp, and hence

takes 𝑂 (log 𝑃) whp IO time. Because each operation takes 𝑂 (1)
whp PIM work, the batch takes 𝑂 (log 𝑃) whp PIM time. □

We note that this algorithm is PIM-balanced because the PIM

time is 𝑂 (log 𝑃) = 𝑂 (𝑊 /𝑃) for𝑊 = 𝑂 (𝑃 log 𝑃) PIM work and

the IO time is 𝑂 (log 𝑃) = 𝑂 (𝐼/𝑃) for 𝐼 = 𝑂 (𝑃 log 𝑃) messages,

as required. Importantly, PIM-balance holds irrespective of the

distribution of these queries.

4.2 Predecessor(𝑘) and Successor(𝑘)
A Predecessor(𝑘) (Successor(𝑘)) query returns a pointer to the

largest (smallest) key in the skip list less than (greater than) or

equal to 𝑘 . For keys that are in the skip list, we can apply a similar

idea as in our Get algorithm to shortcut directly to the PIM node

containing the key. More generally, though, the requested key 𝑘 is

not in the skip list, and the predecessor/successor must be found

using the pointers in the skip list. A naïve idea to handle this case

would be to broadcast the query to all PIMmodules to execute it, but

this would take Θ(𝑃) IO messages and Θ(𝑃 log𝑛) whp PIM work

for each query. In what follows, we focus on Successor queries;

Predecessor queries are symmetric.

Execution of a single operation. For a single operation, we fol-

low the same search approach of an ordinary skip list. First, we

send the Successor operation to a random PIM module, and tra-

verse from the root to the corresponding upper-part leaf. Because

the lower part is distributed on different PIM modules, the current

PIM module may need to send the Successor operation to a lower-

part node by a TaskSend. After repeatedly querying for lower-part

nodes and reaching a leaf, the operation stops, and the leaf is sent

back to the shared memory. Note that accessing each node in the

lower part takes 𝑂 (1) IO messages. Because each search path has

𝑂 (log𝑛) whp nodes in the upper part and 𝑂 (log 𝑃) whp nodes in

the lower part [17], each Successor operation takes 𝑂 (log𝑛) whp
PIM work and 𝑂 (log 𝑃) whp IO messages.
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Figure 3: The pivot search paths in stage 1 of the Successor algorithm.

The upper part is shaded blue. Black paths are from phase 1 (to 𝑆8) and

phase 2 (to 𝑆4 and 𝑆12), and green paths are from phase 3. Note that 𝑆6 starts

at LCA(𝑆4, 𝑆8) , while 𝑆10 starts at the root—this is because LCA(𝑆4, 𝑆8) is
in the lower part, while LCA(𝑆8, 𝑆12) is not.

PIM-imbalanced batch execution.We first show that just naïvely

distributing the queries in a batch would lead to an imbalanced

workload on different PIM modules. In the naïve search algorithm,

we execute all operations in parallel. In step 0, we send the opera-

tions to random PIM modules and traverse the upper part of the

skip list. Then in each subsequent step, we push each query one

node further in its search path on the lower part. It takes 𝑂 (log 𝑃)
whp steps to finish every query.

However, the adversary can request a batch of 𝑃 log2 𝑃 differ-

ent keys all with the same successor, causing lower-part nodes to

become contention points. In such cases, executing one step can

take up to 𝑃 log2 𝑃 IO time, and the whole process can take up to

𝑃 log3 𝑃 IO time, completely eliminating parallelism.

PIM-balanced batch execution. Instead, to achieve good load

balance, we take special care to avoid contention on nodes. This is

done in two stages: In stage 1, the algorithm picks pivots, computes

the Successor of each pivot, and also stores the lower-part search

paths. Crucially, we ensure that performing the searches for the

pivots can be provably done without contention. Then in stage 2,

we execute all of the sets of operations between pivots, using the

saved lower-part search paths to accelerate these searches.

To be specific, the batched Successor operation is executed in

batches of size 𝑃 log2 𝑃 . The keys in the batch are first sorted on the

CPU side. We pick 𝑃 log 𝑃 pivots to divide the batch into segments

of log 𝑃 operations, and we also pick the operation with the smallest

key and the largest key in the batch as pivots. We then compute

the Successor for each pivot in a parallel divide-and-conquer style

(see Fig. 3 as an example):

(1) In phase 0, a CPU core packs the smallest-key and largest-key

pivots into a mini-batch of size two. It then runs the naïve



search algorithm on the mini-batch. During the execution,

PIM modules send lower-part nodes on the search path for

each operation back to the shared memory.

(2) In phase 1, we execute the operation that is the median pivot

using a start node hint: If two of the paths recorded in phase

0 (paths to the result of the smallest-key and the largest-key)

share no lower-part node, start at the root. If they share a

leaf, directly take the leaf as the result. Otherwise, start from

the lowest common lower-part node of the two paths.

(3) After phase 𝑖 , unexecuted pivots are divided into 2𝑖 segments.

We pack the median pivot of each segment into a mini-batch.

In phase 𝑖 + 1, use the path to the two ends of each segment

to generate the start node hint (as in phase 1), execute the

naïve search algorithm using the hint, and record the path

for the subsequent phases.

After stage 1, we have the lower-part node path for each pivot

operation on the CPU side. In stage 2, we use the recorded search

path for the pivots to generate start node hints (as done in each

phase of stage 1). We then execute all operations using the naïve

search algorithm from the start nodes.

Lemma 4.2. No node will be accessed more than 3 times in each

phase in stage 1.

Proof. We prove the lemma by contradiction. As mentioned in

§3.2, joining all possible search paths gives a directed tree. Suppose

in the 𝑖’th phase, one lower-part node is accessed by 4 pivot opera-

tions with key 𝑖1 ≤ 𝑖2 ≤ 𝑖3 ≤ 𝑖4. Then there must be three opera-

tions with keys 𝑗1 < 𝑗2 < 𝑗3 where 𝑖1 ≤ 𝑗1 ≤ 𝑖2 ≤ 𝑗2 ≤ 𝑖3 ≤ 𝑗3 ≤ 𝑖4
executed before the i’th phase. These 3 search paths cut the tree into

4 non-empty pieces, and each search chain falls into one piece. The

pieces are non-empty because if any piece is empty, we can directly

get the result without accessing any nodes. Note that the search-

path tree is a binary tree, so it’s impossible for 4 non-empty pieces

to share a node, contradicting the assumption that 4 operations

access the same node. □

Theorem 4.3. Batched Successor (Predecessor) operations using

a batch size of 𝑃 log2 𝑃 can be executed whp in 𝑂 (log3 𝑃) IO time,

𝑂 (log2 𝑃 · log𝑛) PIM time, and 𝑂 (log2 𝑃) CPU depth. The execution

performs𝑂 (𝑃 log3 𝑃) expected CPU work, and uses Θ(𝑃 log2 𝑃) whp
shared memory.

Proof. Stage 1 is executed in𝑂 (log 𝑃) phases. In each phase, up

to 𝑃 log 𝑃 pivot operations are batched and executed by the naïve

search algorithm. Recall that the naïve search algorithm is executed

in 𝑂 (log 𝑃) whp steps, because in each step (after step 0) we push

all 𝑂 (𝑃 log 𝑃) operations one step forward. There are 𝑂 (𝑃 log 𝑃)
IO messages in each step. We proved constant contention in these

IOs (Lemma 4.2), so each step takes 𝑂 (log 𝑃) whp IO time.

As for PIM time, each execution of the naïve search algorithm

takes 𝑂 (log 𝑃 · log𝑛) whp PIM time, including 𝑂 (log 𝑃 · log𝑛) in
its step 0, and 𝑂 (log 𝑃) PIM time in each following step. In total it

takes 𝑂 (log2 𝑃 · log𝑛) whp PIM time for 𝑂 (log 𝑃) phases.
On the CPU side, sorting takes 𝑂 (𝑃 log3 𝑃) expected CPU work,

and𝑂 (log 𝑃) whp CPU depth [9]. In each of the following𝑂 (log 𝑃)
phases, the CPU stores and processes paths of length𝑂 (log 𝑃) whp.
Thus, storing 𝑃 log 𝑃 paths take Θ(𝑃 log2 𝑃) memory whp. In each

phase, finding the LCA over 𝑂 (𝑃 log 𝑃) paths takes 𝑂 (𝑃 log2 𝑃)
CPU work with 𝑂 (log 𝑃) depth whp.

In stage 2, the naïve search algorithm takes 𝑂 (log 𝑃) whp steps.

In each step,𝑂 (𝑃 log2 𝑃) nodes are visitedwith𝑂 (log 𝑃) contention,
so by Lemma 2.2, it takes𝑂 (log2 𝑃) IO timewhp. Similarly to stage 1

but applying Lemma 2.2 to its one and only phase, stage 2 takes

𝑂 (log2 𝑃 · log𝑛) whp PIM time. Finally, on the CPU side, stage 2

only starts the naïve search algorithm using the hints from stage 1

and then collects the results at the end.

Summing the bounds for stages 1 and 2 completes the proof. □

4.3 Upsert(𝑘, 𝑣)
The Upsert operation is a combination of Insert and Update.

Namely, if 𝑘 is already in the skip list, we update the value to 𝑣 ;

otherwise, we insert (𝑘, 𝑣) to the skip list. Our Upsert algorithm

first tries to performUpdate (§4.1), falling back to Insert if Update

does not find the key 𝑘 . To insert a key, we need to read and modify

nodes on the path to its predecessor and successor. Note that it is

sufficient to find the predecessor because we can get the successor

using the right pointer in the skip list.

Execution of a single operation. A single Insert operationworks

as follows:

(1) Decide which levels the inserted nodes will appear (say up

to 𝑙𝑖 ) based on random coin tossing.

(2) Generate and insert new upper-part nodes in the upper part

for all PIM modules.

(3) Distribute the new lower-part nodes randomly to the PIM

modules. Insert these nodes into the local leaf linked list and

the local hash table for the PIM modules that store them.

(4) Generate the up and down pointers for each node. The only

pointer from the highest lower-part node to an upper-part

leaf (replicated among the PIMmodules if it exists) will point

to the local copy of the upper-part leaf.

(5) In each new leaf, record addresses of all lower-part new

nodes in its up chain, and the existence of an upper-part

node as a boolean flag. These are used in Delete.

(6) Run a Predecessor operation to return to the CPU side the

last 𝑙𝑖 nodes on the predecessor path. With this information,

a CPU core can use RemoteWrite to modify left and right

pointers to insert the new node into the horizontal linked

list immediately after the predecessor.

As such, inserting a key takes 𝑂 (log 𝑃) whp IO messages and

𝑂 (log𝑛) whp PIM work because of the Predecessor operation.

In expectation, each Insert generates 𝑂 (1) lower-part nodes and
𝑂 (1/𝑃) upper-part nodes, so it generates 𝑂 (1) expected IO mes-

sages. However, we note that the worst case and high probability

bound can be much worse, because we may need to add up to

𝑂 (log𝑛) upper-part nodes to each of the 𝑃 PIM modules. Next, we

will show that batching helps, enabling the bounds in Table 1.

PIM-balanced batch execution. The main challenge in batch in-

sertions is that an inserted node’s neighbor can be another inserted

node that is processed by another PIM module. Hence, our algo-

rithm needs to identify this case and correctly set up these pointers

(see Fig. 4). This process is an additional step shown in Algorithm 1.

The complete algorithm has the following stages:
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Figure 4: For batch Insert, we insert blue nodes into a skip list starting

with only white nodes, and the key challenge is to build blue pointers.

For batch Delete, we delete blue nodes from a skip list with blue and

white nodes, and the key challenge is to build green pointers from the blue

pointers.

(1) In parallel run steps 1–5 of the single Insert operation for

each key in the batch.

(2) Run the parallel batched Predecessor operation to fetch the

last 𝑙𝑖 nodes on each predecessor path.

(3) Construct the new horizontal pointers using Algorithm 1.

The input of Algorithm 1 is an array𝐴.𝐴[𝑖] [ 𝑗] holds the address
of the 𝑗 ’th new node (numbered from 0) of height 𝑖 (𝑖’th level

bottom-up, numbered from 0) as cur , and pointers to its left node

and right node in the same level as pred and succ, respectively. In

Fig. 4, let addr𝑘,𝑖 denote the address of the node with key 𝑘 in level

𝑖 . Then, e.g., we have 𝐴[0] [1] = (addr7,0, addr0,0, addr25,0), and
𝐴[1] [1] = (addr20,1, addr0,1, addr25,1).

Once 𝐴[𝑖] [ 𝑗] is generated, we can find the new nodes with

matching pred and succ (the blue nodes in Fig. 4, considering each

level separately), and link them accordingly. Details on how to chain

them together are shown in Algorithm 1.

Theorem 4.4. Batched Upsert operations using a batch size of

𝑃 log2 𝑃 can be executed whp in𝑂 (log3 𝑃) IO time,𝑂 (log2 𝑃 · log𝑛)
PIM time, and𝑂 (log2 𝑃) CPU depth. The execution performs𝑂 (𝑃 log3 𝑃)
expected CPU work, and uses Θ(𝑃 log2 𝑃) whp shared memory.

Proof. We first show that stage 1 of Upsert takes 𝑂 (log2 𝑃)
IO time and 𝑂 (log2 𝑃) PIM time whp. For the upper part, for every

log
2 𝑃 Inserts reaching this part, the probability distribution of the

number of new upper-part nodes is a negative binomial distribution

𝑁𝐵(log2 𝑃, 1/2), which is 𝑂 (log2 𝑃) whp. Since 𝑂 (log2 𝑃) Insert
whp reach the upper part, each batch generates 𝑂 (log2 𝑃) new
upper-part nodes whp, which takes whp 𝑂 (log2 𝑃) IO time and

𝑂 (log2 𝑃) PIM time. Lower part nodes are balanced so it takes

𝑂 (log2 𝑃) IO time and 𝑂 (log2 𝑃) PIM time whp. For storing the up

pointers, the total IO is 𝑂 (𝑃 log2 𝑃) whp, and the maximum IO on

a single node is log 𝑃 , so it also finishes in 𝑂 (log2 𝑃) IO time whp.

Now we analyze the cost of Algorithm 1. The PIM side takes

𝑂 (log2 𝑃) IO time because each pointer is modified exactly once,

and there is no internal dependency among them. The work on the

CPU side is asymptotically bounded by the cost of Predecessor,

which is 𝑂 (𝑃 log3 𝑃) expected. With high probability the heights

of new nodes are𝑂 (log 𝑃), so generating nodes is of𝑂 (log 𝑃) CPU
depth. Other additional operations are of 𝑂 (1) height. □

4.4 Delete(𝑘)
Note that we can perform aDelete operation by performing Insert

in reverse. However, since a deleted key must exist in the data

structure, we can obtain an 𝑂 (log 𝑃) speed up by taking shortcuts

to directly access leaves, as in Get and Update operations.

Algorithm 1: Constructing horizontal pointers

Input: An 2D array 𝐴[𝑖] [ 𝑗], and each element is a triple

(cur, pred, succ) indicating the 𝑗 ’th newly generated

node in the 𝑖’th level, and the predecessor and

successor of this node.

1 parallel for 𝑖 ← 0 to log 𝑃 − 1 do
2 parallel for 𝑗 ← 0 to 𝐴[𝑖] .size − 1 do
3 if 𝑗 = 𝐴[𝑖] .size − 1 or

𝐴[𝑖] [ 𝑗] .succ ≠ 𝐴[𝑖] [ 𝑗 + 1] .succ then
/* the right end in a segment */

4 RemoteWrite(𝐴[𝑖] [ 𝑗] .cur .right, 𝐴[𝑖] [ 𝑗] .succ)
5 RemoteWrite(𝐴[𝑖] [ 𝑗] .succ.left, 𝐴[𝑖] [ 𝑗] .cur)
6 else

/* not the right end in a segment */

7 RemoteWrite(𝐴[𝑖] [ 𝑗] .cur .right, 𝐴[𝑖] [ 𝑗 + 1] .cur)
8 RemoteWrite(𝐴[𝑖] [ 𝑗 + 1] .cur .left, 𝐴[𝑖] [ 𝑗] .cur)
9 if 𝑖 = 0 or 𝐴[𝑖] [ 𝑗] .pred ≠ 𝐴[𝑖] [ 𝑗 − 1] .pred then

/* the left end in a segment */

10 RemoteWrite(𝐴[𝑖] [ 𝑗] .pred .right, 𝐴[𝑖] [ 𝑗] .cur)
11 RemoteWrite(𝐴[𝑖] [ 𝑗] .cur .left, 𝐴[𝑖] [ 𝑗] .pred)

Execution of a single operation. A single Delete operation

works in four steps:

(1) The operation is sent to the PIMmodule holding the key, and

the PIM module uses the local hash table to find the node.

(2) The PIM module marks the leaf and its up chain as "deleted",

using the up chain addresses saved in that leaf. It also re-

moves this node from the local leaf linked list.

(3) PIM modules with marked upper-part nodes will broadcast

the addresses to all PIM nodes to delete all of the replicas.

(4) All marked lower-part nodes are spliced out of the horizontal

linked list by linking left and right nodes.

Because Delete removes nodes from the upper part with proba-

bility 𝑂 (1/𝑃), an upper-part deletion takes 𝑂 (1) IO messages and

𝑂 (1) PIM work in expectation, and thus deleting a key takes 𝑂 (1)
IO messages and 𝑂 (1) PIM work in expectation.

PIM-balanced batch execution. Similarly to batched Insert, the

main challenge in batched Delete is to remove nodes from the

horizontal linked lists in parallel because these nodes can be linked

together (see Fig. 4 for an illustration of the main algorithmic goal).

Our algorithm has two stages:

(1) In parallel run steps 1–3 of the single Delete operation for

each key in the batch.

(2) Use the list-contraction-based algorithm described next to

remove deleted nodes from horizontal linked lists.

In stage 2, we look to splice out the marked nodes from the

horizontal linked lists. Because up to 𝑃 log2 𝑃 consecutive nodes

may need to be deleted from a horizontal linked list, splicing out

all nodes independently in parallel will lead to conflicts. Instead,

we handle this problem using list contraction. However, we cannot

simply apply list contraction algorithms on remote nodes, because

we need Ω(𝑃 log 𝑃) RemoteWrites to random positions for each



bulk-synchronous round in order to guarantee PIM-balance, which

is not possible for some algorithms (e.g., [20]). Also, prior BSP al-

gorithms [14] assume that the size of the list is Ω(𝑃2 log 𝑃), much

larger than our target batch size. Our solution is to create a local

copy of all marked nodes in the shared memory, and apply list con-

traction on the CPU side using an efficient parallel list contraction

algorithm [9, 28], and then directly splice out all marked nodes

remotely in parallel. The steps are as follows:

(1) The CPU side constructs a hash table mapping remote point-

ers to local (shared-memory) pointers. For all marked nodes

received by the CPU side, pointers are stored in the hash

table for the local versions. We instantiate a new local node

if the node does not exist in the hash table, and otherwise

link existing local nodes. Note that for consecutive marked

nodes in a linked list, the first unmarked node on the left and

the right ends will also be copied and stored locally.

(2) Perform parallel randomized list contraction on the CPU

side to splice out marked nodes in local linked lists.

(3) Remotely link the unmarked nodes to splice out marked

nodes.

Theorem 4.5. Batched Delete operations using a batch size of

𝑃 log2 𝑃 can be executed whp in 𝑂 (log2 𝑃) IO time, 𝑂 (log2 𝑃) PIM
time, and 𝑂 (log 𝑃) CPU depth. The execution performs 𝑂 (𝑃 log2 𝑃)
expected CPU work, and uses Θ(𝑃 log2 𝑃) whp shared memory.

Proof. Stage 1 takes𝑂 (log2 𝑃) IO time and𝑂 (log2 𝑃) PIM time

whp for the exact same reason as stage 1 of PIM-balanced batch

Insert. Stage 2 is dominated by the𝑂 (𝑃 log2 𝑃) expected CPUwork

and 𝑂 (log 𝑃) whp depth for list contraction [9]. □

5 RANGE OPERATIONS

In this section, we turn our attention from point operations to

range operations. We consider a general form of range operations,

RangeOperation(LKey, RKey, Func), inwhich for every key-value
pair (𝑘, 𝑣) such that LKey ≤ 𝑘 ≤ RKey, and Func is applied to the

value 𝑣 . If Func returns a value, that value is returned to the CPU

side. For example, a read(𝑣) function executes a simple range query

and a fetch-and-add(𝑣,Δ) function increments a value by Δ and

returns the old value. Let 𝐾 denote the number of key-value pairs

in a query’s range.

For simplicity in the analysis, we assume that the RangeOpera-

tion is a constant-size task (in words) and that Func takes constant

PIM time. More complicated operations can be split into a range

query returning the values, a function applied on the CPU side, and

a range update that writes back the results. Also, note that we can

extend function to allow for associative and commutative reduction

functions such as counting the number of key-value pairs in the

range.

We present two types of execution for range operations: (i) broad-

casting the operation to all the PIM modules or (ii) following the

skip list structure to access all nodes within the specified range.

5.1 Range Operations by Broadcasting

In this first type, the range operation task is broadcast to all the PIM

modules, who execute the range operation locally. Note that the

normal skip-list pointers (the solid pointers in Fig. 2) do not enable

a purely local execution of a range operation. Instead, we use the

local leaf list and next-leaf pointers introduced in Section 3.2 (the

dashed pointers in Fig. 2).

Specifically, each PIM module determines the local successor

of LKey and then follows its local leaf list (of increasing keys) to

access all local key-value pairs in the range (i.e., all pairs with key

≤ RKey), and applying Func to each. To find the local successor,

each PIM module takes three steps:

(1) Search the upper part until reaching the rightmost upper-

part leaf with 𝑘 ≤ LKey.

(2) Take the next-leaf pointer to the local leaf list.

(3) Search through local leaves until find the successor.

The following theorem shows that this algorithm is PIM-balanced.

Theorem 5.1. For 𝐾 = Ω(𝑃 log 𝑃), broadcasting-based range op-
erations can be executed in 𝑂 (1) IO time and 𝑂 (𝐾/𝑃 + log𝑛) whp
PIM time. For range operations that return values, the values can

be returned in 𝑂 (𝐾/𝑃) whp IO time. The algorithm uses 𝑂 (1) bulk-
synchronous rounds.

Proof. Broadcasting the task is an ℎ-relation with ℎ = 1. For

step 1, each search path has 𝑂 (log𝑛) whp nodes in the upper

part [17]. step 2 is constant PIM time. For step 3, a skip list leaf is an

upper-part leaf with probability (1/2)log𝑝 = 1/𝑝 , so whp there are

𝑂 (𝑃 log 𝑃) skip list leaves (i.e., key-value pairs) between every pair

of adjacent upper-part leaves. Thus, by Lemma 2.1, the segment of

a local leaf list between consecutive next-leaf pointers is 𝑂 (log 𝑃)
whp size, and hence the local successor can be found in 𝑂 (log 𝑃)
whp PIM time.

Also by Lemma 2.1, whp all PIM modules will have Θ(𝐾/𝑃) key-
value pairs within the range. Applying Function takes constant PIM

time per pair, for a total of 𝑂 (𝐾/𝑃) whp time. Likewise, a total of

𝑂 (𝐾/𝑃) whp IO time suffices to send any return values back to the

CPU side. □

5.2 Range Operations by Tree Structure

The above type of range operation is wasteful for small ranges, as

it involves all the PIM modules even when only a few contain any

keys in the range. This motivates the second type, which uses the

skip list tree structure instead.

Execution of a single operation. To execute a range operation

by tree structure, we visit all nodes that may have a child in the

range. Similar to the search path for a point operation, these nodes

form a search area. Note that there are 𝑂 (𝐾 + log𝑛) whp ancestors

for a range with 𝐾 key-value pairs, so the search area is of size

𝑂 (𝐾 + log𝑛) whp, of which𝑂 (𝐾 + log 𝑃) whp nodes are in the lower

part.

We call this algorithm the naïve range search algorithm. It marks

all the leaves in the range, and if desired, labels them with their

index within the range:

(1) Randomly send the operation to one PIMmodule, then search

from root to leaf (crossing PIMmodule boundaries as needed)

to mark all nodes in the search area.

(2) Compute a prefix sum of the marked nodes, via a leaf-to-root

traversal calculating the number of marked leaves in each

node’s subtree, followed by a root-to-leaf traversal in which

each node tells its children the number of marked nodes



before them. Return the total number of marked nodes to

the CPU side.

The function can now be applied to each marked leaf by the respec-

tive PIM modules, or (value, index) pairs can be sent to the CPU

side and the function applied there. We can use the index to sort

elements to save CPU time if needed.

For a single range operation, the naïve range search algorithm

requires Θ(𝐾 + log 𝑃) IO messages whp to/from random PIM mod-

ules. It also requires Θ(𝐾 + log𝑛) total PIM work whp, of which

Θ(𝐾/𝑃+log𝑛) is at a selected random PIMmodule andΘ(𝐾+log 𝑃)
is at random PIM modules.

PIM-balanced batch execution. To obtain PIM-balance, we batch

𝑃 log2 𝑃 range operations together. The minimum shared memory

size𝑀 needed for this algorithm is Θ(𝑃𝑙𝑜𝑔2𝑃).
Contention caused by batching range operations is similar to that

in batched Successor operations, so we apply a similar technique:

(1) Split the batch ranges into at most 2𝑃 log2 𝑃 disjoint ascend-

ing subrange operations on the CPU side.

(2) Similarly to stage 1 in batched Successor operations: Select

𝑃 log 𝑃 pivot subranges, and do a divide-and-conquer on

pivot operations to get the leftmost and rightmost search

paths (in the lower part) for each pivot subrange.

(3) Similarly to stage 2 in batched Successor operations: Exe-

cute the naïve range search algorithm with the start point

hint. After this stage, each leaf knows its index in the sub-

range, and the CPU side knows the size of each subrange.

(4) We compute the prefix sum of the subrange sizes in ascend-

ing order, and partition the subranges into groups such that

the total subrange size for a group is Θ(𝑃 log2 𝑃) and hence

fits in the shared memory. This may entail splitting up a

single large subrange into parts in order to fit. (Alternatively,

we could apply the algorithm from §5.1 to all large ranges.)

We execute the groups in ascending order, fetching in paral-

lel all the key-value pairs (and indexes, if needed) in a group

to the CPU side, and then executing in parallel each range

operation that overlaps the group. Note that a single range

operation may overlap multiple groups. RemoteWrite is used
to write back any updated values.

The following shows that this algorithm is PIM-balanced.

Theorem 5.2. Tree-structure-based range operations with batch

size 𝑃 log2 𝑃 covering a total of 𝜅 = Ω(𝑃 log 𝑃) key-value pairs can
be executed in 𝑂 (𝜅/𝑃 + log3 𝑃) IO time and 𝑂 ((𝜅/𝑃 + log2 𝑃) log𝑛)
PIM time, both whp.

Proof. The analysis follows from the analysis for Successor,

with the added complexity of actually performing the range part.

For 𝑃 log2 𝑃 operations covering 𝜅 key-value pairs, 𝑂 (𝜅/𝑃) whp
covered keys will reach the upper part. Thus, upper-part search

takes 𝑂 (𝜅 log𝑛/𝑃) whp PIM time. As noted above, each lower-part

search using the naïve range search algorithm over a subrange of

size 𝐾 involves Θ(𝐾 + log 𝑃) work at random PIM modules. Thus,

summed over all 2𝑃 log2 𝑃 subranges, we have𝑂 (𝜅 +𝑃 log3 𝑃) work
at random PIM modules, i.e., 𝑂 (𝜅/𝑃 + log3 𝑃) whp PIM time by

Lemma 2.1. Moreover, each group is Θ(𝑃 log2 𝑃) keys at random
PIM modules, so it is Θ(log2 𝑃) whp PIM time per group, for a

total of 𝑂 (𝜅/𝑃) whp PIM time summed across all Θ(𝜅/(𝑃 log2 𝑃))
groups.

In terms of IO time, the naïve range search algorithm over a

subrange of size 𝐾 involves Θ(𝐾 + log 𝑃) whp IO messages to/from

random PIM modules. Summed over all subranges, we have 𝑂 (𝜅 +
𝑃 log3 𝑃) IO messages to/from random PIM modules, which is

𝑂 (𝜅/𝑃 + log3 𝑃) whp IO time. Moreover, processing each group

is Θ(log2 𝑃) whp IO time per group, for a total of 𝑂 (𝜅/𝑃) whp IO

time.

Adding the Successor PIM time and IO time to these bounds

for the range part yields the theorem. □

6 CONCLUSION

This paper presented the Processing-in-Memory (PIM) model, for

the design and analysis of parallel algorithms on systems providing

processing-in-memory modules. The model combines aspects of

both shared memory and distributed memory computing, making it

an interesting model for algorithm design. We presented an efficient

skip list for the model, supporting a wide range of batch-parallel

operations. The data structure guarantees PIM-balance for any

adversary-controlled batch of operations. Future work includes

designing other algorithms for the PIM model and measuring the

performance of our algorithms on emerging PIM systems.
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A APPENDIX

Proof of Lemma 2.2.Consider a weighted balls-in-bins gamewhere

we throw weighted balls into 𝑃 bins. The total weight is𝑊 , and

the maximum weight of any ball is𝑊 /(𝑃 log 𝑃). Let 𝑆 =𝑊 /𝑃 . We

show that the total weight of any bin is 𝑂 (𝑆) whp. Our proof is
similar to that of Lemma 2.1 from [4].

We first fix a bin 𝑏 and show that the total weight of this bin is

𝑂 (𝑆) whp. For each ball 𝑖 , let 𝑋𝑖 be the random variable that is𝑤𝑖 ,

the weight of ball 𝑖 , if 𝑖 is in bin 𝑏 and 0 otherwise. Let 𝑋 =
∑
𝑖 𝑋𝑖 ,

𝑆 = 𝐸 [𝑋 ], 𝑅 = 𝑊 /(𝑃 log 𝑃), and 𝜎2 =
∑
𝑖 𝐸 [𝑋 2

𝑖
]. By Bernstein’s

inequality [7], for any constant 𝑐 ≥ 1, we have:

P( |𝑋 − 𝐸 [𝑋 ] | ≥ 𝑐𝐸 [𝑋 ]) = exp

(
− 𝑐2𝐸 [𝑋 ]2/2
𝜎2 + 𝑅𝑐𝐸 [𝑋 ]/3

)
= exp

(
− 𝑐2𝑆2/2
𝜎2 + 𝑐𝑅𝑆/3

)
Now 𝜎2 =

∑
𝑖
1

𝑃

(
1 − 1

𝑃

)
𝑤2

𝑖
≤ 1

𝑃
max{𝑤𝑖 }

∑
𝑖 𝑤𝑖 = 𝑅𝑆 . Therefore:

P( |𝑋 − 𝐸 [𝑋 ] | ≥ 𝑐 · (2𝐸 [𝑋 ])) ≤ exp

(
− (2𝑐)

2𝑆2/2
𝑅𝑆 (2𝑐/3 + 1)

)
≤ exp(−𝑐 log 𝑃) ≤ (1/𝑃𝑐 )

as desired. Applying a union bound over all 𝑃 bins completes the

proof. □
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