The Processing-in-Memory Model

Hongbo Kang Phillip B. Gibbons Guy E. Blelloch
khb20@mails.tsinghua.edu.cn gibbons@cs.cmu.edu guyb@cs.cmu.edu
Tsinghua University Carnegie Mellon University Carnegie Mellon University
China United States United States
Laxman Dhulipala Yan Gu Charles McGuffey
laxman@mit.edu ygu@cs.ucr.edu cmcguffe@cs.cmu.edu
MIT CSAIL UC Riverside Carnegie Mellon University
United States United States United States

ABSTRACT

As computational resources become more efficient and data sizes
grow, data movement is fast becoming the dominant cost in com-
puting. Processing-in-Memory is emerging as a key technique for
reducing costly data movement, by enabling computation to be
executed on compute resources embedded in the memory modules
themselves.

This paper presents the Processing-in-Memory (PIM) model, for
the design and analysis of parallel algorithms on systems providing
processing-in-memory modules. The PIM model focuses on keys
aspects of such systems, while abstracting the rest. Namely, the
model combines (i) a CPU-side consisting of parallel cores with fast
access to a small shared memory of size M words (as in traditional
parallel computing), (ii) a PIM-side consisting of P PIM modules,
each with a core and a local memory of size ®(n/P) words for an
input of size n (as in traditional distributed computing), and (iii)
a network between the two sides. The model combines standard
parallel complexity metrics for both shared memory (work and
depth) and distributed memory (local work, communication time)
computing. A key algorithmic challenge is to achieve load balance
among the PIM modules in both their communication and their local
work, while minimizing the communication time. We demonstrate
how to overcome this challenge for an ordered search structure,
presenting a parallel PIM-skiplist data structure that efficiently
supports a wide range of batch-parallel queries and updates.

CCS CONCEPTS

« Theory of computation — Parallel computing models; Dis-
tributed computing models; Sorting and searching; Predecessor
queries; « Hardware — Emerging architectures.

KEYWORDS

processing-in-memory; models of parallel computation; skip list;
batch-parallel data structures

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SPAA 21, July 6-8, 2021, Virtual Event, USA

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8070-6/21/07.

https://doi.org/10.1145/3409964.3461816

ACM Reference Format:

Hongbo Kang, Phillip B. Gibbons, Guy E. Blelloch, Laxman Dhulipala, Yan
Gu, and Charles McGuffey. 2021. The Processing-in-Memory Model. In
Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA °21), July 6-8, 2021, Virtual Event, USA. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3409964.3461816

1 INTRODUCTION

As computational resources become more efficient and data sizes
grow, data movement is fast becoming the dominant cost in com-
puting. Processing-in-memory [21] (a.k.a., near-data-processing) is
emerging as a key technique for reducing costly data movement,
by enabling computation to be executed on CPU resources embed-
ded in the memory modules themselves. Instead of a traditional
memory hierarchy where data must be moved to the CPU cores
to be computed on, processing-in-memory enables compute to be
pushed to the memory, thereby saving data movement.

Although various forms of processing-in-memory have been
proposed and studied going back to at least 1970 [29], it is only
now gaining widespread attention as an emerging key technology
(see [21] for a survey with hundreds of recent references). Although
there are many technologies proposed for enabling processing-
in-memory, whether it be via design, integration, packaging, and
combinations thereof, a particularly promising approach is the use
of 3D die-stacked memory cubes. In such emerging memory cubes,
memory layers are stacked on top of a processing layer in one
tightly-integrated package, enabling a simple compute core to have
low-latency, high-bandwidth memory access to the entire cube of
memory.

While there has been considerable work on the systems/architec-
ture/technology side of processing-in-memory [21], there has been
very little work on the theory side. Fundamental open problems
include: What is a good model of computation for processing-in-
memory? How is algorithm design different? What are the funda-
mental limitations of using processing-in-memory? Can we provide
theoretical justification for why processing-in-memory is a good
idea?

In this paper, we take a first step towards answering some of these
questions. We define the first model of computation for emerging
processing-in-memory systems, which seeks to capture both the
advantages and limitations of such systems. (See §2.2 for related
work.) Our Processing-in-Memory (PIM) model (Fig. 1) combines (i)
a CPU side consisting of parallel cores with fast access to a small
shared memory of size M words (as in traditional shared-memory
parallel computing), (ii) a PIM side consisting of P PIM modules, each

https://doi.org/10.1145/3409964.3461816
https://doi.org/10.1145/3409964.3461816

with a core and a local memory of size ®(n/P) words for an input
of size n (as in traditional distributed-memory computing), and (iii)
a network between the two sides. The model combines standard
parallel complexity metrics for both shared memory (work and
depth) and distributed memory (local work and communication
time) computing.

Although many models for shared memory and many models
for distributed memory have been proposed, it is the combination
of the two in a single model that makes the PIM model novel and
interesting for algorithm design. Effective use of the PIM side re-
quires “PIM-balance”, namely, balanced work and communication
across all the PIM modules, even though each compute task is being
offloaded to the local memory holding the needed data. One could
apply standard approaches of randomly mapping shared memory
to distributed memory (e.g., [32]) and then treat the entire model
as a shared-memory model, but then all memory accesses would
be non-local, defeating the goal of using processing-in-memory in
order to minimize data movement. Conversely, one could ignore the
shared memory and treat the entire model as a distributed-memory
model, but our results show benefits from using the shared memory
(e.g., for sorting up to M numbers without incurring any network
communication, or for avoiding PIM load imbalance in balls-in-bins
settings with small balls-to-bins ratios).

As a case study of parallel algorithm design on such a model, we
consider the challenge of efficiently maintaining a skip list [23, 25]
under adversary-controlled batch-parallel queries and updates.

The two main contributions of the paper are:

o We define the PIM model, the first model of parallel compu-
tation capturing the salient aspects of emerging processing-
in-memory systems.

e We design and analyze a PIM-friendly skip-list data struc-
ture, which efficiently supports a wide range of batch-parallel
updates, point queries, and range queries, under adversary-
controlled batches. A key feature of our algorithms is that
(nearly) all the performance metrics, including network com-
munication, are independent of the number of keys n in the
data structure and also independent of any query/update
skew (that arises, e.g., when a large number of distinct suc-
cessor queries all target the same successor node).

2 MODEL
2.1 The Processing-in-Memory Model

Our goal is to define a model of parallel computation that focuses
on the key aspects of systems with processing-in-memory modules,
while abstracting away the rest. In particular, our model has only
two parameters, M and P, and instead, we use separate metrics for
aspects that have system-dependent costs (e.g., computation on
traditional CPU cores vs. computation on PIM modules vs. com-
munication). A key aspect we model is that processing-in-memory
is fast because there is processing (a core) embedded with each
memory module, and each memory module is small enough that
the latency for the core to access its local memory is low and the
throughput is high (significantly lower/higher than accessing the
same memory from one of the traditional CPU cores—this is the
savings driving the push to processing-in-memory). As such, PIM
divides the system’s “main memory” into a collection of “core +

cores
CPU
side Shared Memory
M words
Network

Local Memory
PIM O(n/P)words | ¢ee
side

Local Memory
®(n/P) words

core core

Figure 1: The PIM Model

local memory” modules, akin to traditional distributed memory
models. Unlike distributed memory models, however, there is also
the “traditional” part of the system comprised of multiple cores
sharing a fast last-level cache. Thus, our PIM model combines a
shared-memory model (for a small amount of shared memory) with
a distributed-memory model. And indeed, it is the combination
of both that makes the PIM model both novel and interesting for
algorithm design.

As illustrated in Fig. 1, the Processing-in-Memory (PIM) model
combines a CPU side consisting of parallel cores (called CPU cores)
with fast access to a small shared memory of size M words (as in
traditional shared-memory parallel computing), a PIM side consist-
ing of P PIM modules, each with a core (called a PIM core) and a
local memory of size ©(n/P) words (as in traditional distributed-
memory computing), and a network between the two sides. Each
CPU or PIM core executes unit-work instructions from a random
access machine (RAM) instruction set augmented, on the CPU side,
with an atomic test-and-set primitive (for synchronization among
the asynchronous CPU cores). In general, specific algorithms may
use stronger synchronization primitives (e.g., compare-and-swap),
where noted (but none of the algorithms in this paper require more
than a test-and-set).

A CPU core offloads work to a PIM core using a TaskSend
instruction, which specifies a PIM-core ID and a task (function ID
and arguments) to execute on that PIM core. The network is used
to route such tasks to the designated PIM core, where the task is
queued up and the PIM core is awakened if it is asleep. Each PIM
core repeatedly invokes an iterator that removes a task from its
queue and then executes the task. If the queue is empty, the PIM
core goes to sleep. Tasks specify a shared-memory address to write
back the task’s return value on completion of the task. All tasks
must return either a value or an acknowledgment of completion.
We will sometimes say a PIM module A offloads a task to another
PIM module B—this is done by A returning a value to the shared
memory, which in turn causes the offload from the CPU side to B.

The PIM model combines standard complexity metrics for both
shared (work and depth) and distributed (local work, communica-
tion time) computing. On the CPU side, we account for the CPU
work (total work summed over all the CPU cores) and CPU depth
(sum of the work on the critical path on the CPU side), ak.a. CPU
span. On the PIM side, we account for the PIM time, which is the
maximum local work on any one PIM core. Communication costs
are measured in terms of IO time, as follows. The network operates

in bulk-synchronous rounds [32], where a set of parallel messages,
each with a constant number of words, is sent between the CPU
side and the PIM side, followed by a barrier synchronization. As in
the BSP model [32], we define the notion of an h-relation, but in
the PIM model, h is the maximum number of messages to/from any
one PIM module (i.e., ignoring the CPU side). Let hy, ..., h, be the
h’s for a computation with r bulk-synchronous rounds. Then the
IO time is defined to be >.7_; h;. The cost of the r synchronization
barriers is r log P.!

We assume that M = O(n/P) and M = Q(P - polylog(P)). The
algorithms we present in this paper have the further restriction that
M is independent of n and at most ©(P log? P). M is assumed to be
small because, as discussed above, our shared memory is intended
to model the fast last-level cache on the CPU side, while the PIM
modules comprise the “main memory” of the system.

Discussion. To simplify the model, the number of cores on the
CPU side is not specified. Because we analyze the CPU side using
work-depth analysis and we assume a work-stealing scheduler [10],
there is no need to pre-specify the number of cores on that side.
For any specified number of CPU cores P’, the time on the CPU
side for an algorithm with W CPU work and D CPU depth would
be O(W /P’ + D) expected time [3, 10]. There is no penalty for the
stealer to execute a task instead of a stealee, because both have the
same fast access to the CPU side shared memory.? As a result of
not pre-specifying, the PIM model can be used to model systems
with more or fewer CPU cores than PIM cores, and with CPU cores
that are more powerful than PIM cores.

Communicating an h-relation over the network is charged as h
IO time, but it is not charged as CPU work/depth or PIM time. This
is for simplicity, and one could always determine what that cost
would be, if desired, by simply adding h - P to the CPU work and h
to the PIM time. For the algorithms we present in this paper, doing
so would not asymptotically increase the CPU work or PIM time.

We allow CPU cores to perform concurrent reads and writes
to the shared memory. A variant of the model could account for
write-contention to shared memory locations, by assuming k cores
writing to a memory location incurs time k—the so-called “queue-
write” model [15]. We leave such analysis to future work.

In summary, to analyze an algorithm for the PIM model, one
needs to give the CPU work and depth, the PIM time, and the IO
time. Other metrics of interest are the number of bulk-synchronous
rounds (for algorithms where the synchronization cost dominates
the IO time) and the minimum CPU memory size needed for the
algorithm.

Algorithm design. The model targets “in-memory, not in-cache”
algorithms, in which the space needed for the entire computa-
tion is at most O(n) words but much larger than M words. The
input starts evenly divided among the PIM modules. Outputs of
size > M are stored in the PIM modules as well. For algorithms
that involve maintaining a data structure under queries and up-
dates, the queries/updates are assumed to arrive on the CPU side
and query results are returned to the CPU side. As is common

!In this paper, we do not explicitly discuss synchronization cost, except in the one
case (Theorem 5.1) where it dominates the IO time.

2For models that provide a private cache for each CPU core, there is a slight cost to
warm up the stealer’s private cache [2].

for parallel algorithm design, we assume the batch-parallel set-
ting [1, 8, 13, 24, 30, 31, 33], in which queries or updates arrive
as a set that can be executed in parallel, called a batch. We con-
sider adversary-controlled queries/updates, where the adversary
determines the sequence of batches and the queries or updates
within each batch, subject to the following constraints: (i) all the
queries/updates within a batch are the same operation type (e.g., all
inserts), (ii) there is a minimum batch size, typically P - polylog(P),
and (iii) the queries/updates cannot depend on the outcome of
random choices made by the algorithm (and hence, e.g., cannot
depend on the outcome of a randomized mapping of data structure
components to PIM modules).

Many of our bounds hold with high probability (whp) in P: A

bound is O(f(P)) whp if, for all « > 1, the bound is O(« - f(P))
with probability at least 1 — 1/P%.
PIM-balance. A key algorithmic challenge is to achieve load bal-
ance among the PIM modules in both their communication and
their local work, while minimizing the IO time. As noted above, the
CPU side can achieve load balance via work-stealing because the
stealer has the same fast access to the shared memory as the stealee.
But on the PIM side, work-stealing is impractical because tasks are
tied to a specific local memory (the whole point of processing-in-
memory), and hence fast local accesses by the stealee would be
replaced by slow non-local accesses by the stealer.

We say an algorithm is PIM-balanced if it takes O(W /P) PIM
time and O(I/P) IO time, where W is the sum of the work by the
PIM cores and I is the total number of messages sent between the
CPU side and the PIM side. The challenge in achieving PIM-balance
is that both PIM time and IO time (specifically the h for each h-
relation) are based on the maximum across the PIM modules (not
the average).

Thus, special care is needed to achieve PIM-balance. Algorithms
must avoid offloading to PIM modules in an unbalanced way. Be-
cause computation is moved to where data reside, data access must
be balanced across PIM modules. But as noted in §1, while ran-
domly mapping data addresses to PIM modules would help balance
data access, it would defeat the purpose of processing-in-memory
because all data accesses would be non-local. Thus, more selective
randomization is needed. Note as well that offloading P tasks to P
PIM modules randomly would not be PIM-balanced, because some
PIM module would receive ©(log P/loglog P) tasks whp [6], imply-
ing ©(log P/loglog P) IO time whp. We will use the following two
balls-in-bins lemmas.

LEMMA 2.1 ([26]). Placing T = Q(PlogP) balls into P bins ran-
domly yields ©(T/P) balls in each bin whp.

LEmMA 2.2 ([22, 27]). Placing weighted balls with total weight
W = Y, w; and weight limit W /(P log P) into P bins randomly yields
O(W /P) weight in each bin whp.

The cited references for Lemma 2.2 provide a proof for O(W/P)
weight in expectation. A proof for whp appears in the Appendix.

2.2 Related Work

One approach to designing algorithms for PIM systems would be
to use known hashing-based emulations of shared memory (e.g.,
a PRAM) on a distributed memory model (e.g., the BSP model).

Valiant [32] showed that each step of an exclusive-read exclusive-
write (EREW) PRAM with p log p virtual processors can be emulated
on a p-processor BSP in O(log p) steps whp (assuming the BSP’s
gap parameter g is a constant and its L parameter is O(log p)), and
that O(log p) steps of a BSP can be emulated on a p-node hypercube
in O(log p) steps whp. Integer semi-sorting can be used to extend
the emulation to the concurrent-read concurrent-write (CRCW)
PRAM within the same bounds, although the constants are much
higher [32]. However, these emulations are impractical because all
accessed memory incurs maximal data movement (i.e., across the
network between the CPU cores and the PIM memory), which is
the exact opposite of the goal of having processing-in-memory in
order to minimize data movement. The algorithms in this paper
will make selective use of both hashing and sorting.

Choe et al. [11] studied concurrent data structures on processing-
in-memory systems. They provided an empirical evaluation of PIM-
aware algorithms for linked lists, FIFO queues, and skip lists, and
showed that lightweight modifications to PIM hardware can signifi-
cantly improve performance. They did not define a model of compu-
tation. Also unlike our paper, they studied skip lists for a workload
of uniformly-random keys, and provide a skip list algorithm that
partitions keys by disjoint key ranges. Under uniformly-random
keys, this works well (because in expectation, each PIM module
processes the same number of queries/updates), but it would se-
rialize (i.e., no parallelism) in the more general case we consider
of adversary-controlled query/update keys, whenever all keys fall
within the range hosted by a single PIM-module.

An earlier paper by Liu et al. [19] presented a performance model
for a processing-in-memory system that specified parameters for
(i) the latency of a memory access by a CPU core, (ii) the latency
of a local memory access by a PIM core, and (iii) the latency of a
last-level cache access by a CPU core. The performance model was
used to analyze different algorithms for concurrent data structures,
including a skip list. However, the skip list algorithm partitioned
keys across the PIM modules using disjoint key ranges, as above.

Das et al. [12] proposed a model for a system with both traditional
main memory (DRAM) and high-bandwidth memory (HBM). In
their model, each of P CPU cores is connected by its own channel to
a shared HBM of limited size and there is a single channel between
the HBM and an infinite main memory. Das et al. showed how to
automatically manage which data to keep in the HBM and when to
transfer data from HBM to main memory. There was no distributed
memory in their model and only one type of cores. An earlier pa-
per by Bender et al. [5] proposed and studied an external-memory
model with both a small but high-bandwidth memory and a large
but low-bandwidth memory. The bandwidth difference was mod-
eled as retrieving a much larger block in a single external-memory
read or write.

Ziegler et al. [34] analyzed different ways to distribute a tree-
based structure over multiple computers. Besides coarse-grained
partitioning by key ranges, they study coarse-grained partitioning
by hash and fine-grained partitioning that randomly distributes all
nodes. Both partitioning schemes improve performance on skewed
workloads, but partitioning by hash decreases range query perfor-
mance, and fine-grained partitioning decreases performance on
uniform workloads.

3 PIM-BALANCED SKIP LIST

In the remainder of the paper, we present our efficient, PIM-balanced
algorithms for maintaining a skip list [23, 25] under adversary-
controlled batch-parallel queries and updates. Our skip list sup-
ports seven types of point operations and range operations: GET
(key), UpDATE (key, value), PREDECESSOR (key), SucCEssor (key),
UpserT (key, value), DELETE (key), and RANGEOPERATION (LKey,
RKey, Function). Recall from §2.1 that all operations in a batch are
of the same type, there is a minimum batch size, and the adver-
sary’s choice of keys cannot depend on random choices made by
the algorithm.
This section describes the high-level design of our algorithms.

3.1 Overview

Some prior work on ordered data structures in a PIM-equipped or
distributed system used range partitioning [11, 19, 34]. Although
these algorithms may save IO between CPU and PIM modules
under uniform workloads, their structure, even with dynamic data
migration, suffers from PIM-imbalance for skewed or adversarial
workloads that force many operations to occur on a small number
of range partitions. Some other methods are invented to relieve
this, but they bring new problems. Coarse-grain partitioning by
hash has low range queries performance because range queries
must be broadcasted. Fine-grained partitioning causes too much
10 because every key search would access nodes in many different
PIM modules.

Our approach. The key idea of our approach is to combine (i) a
uniform load-balancing scheme for a subset of the keys with (ii) a
scheme that redundantly stores in every PIM node the commonly-
used nodes in the upper levels of the skip list. More formally, we
divide the skip list horizontally into a lower part and an upper part,
and refer to the nodes in the two parts as upper-part nodes and
lower-part nodes. This is shown in Fig. 2, where upper-part nodes
are in white, and the lower part nodes have different color and
texture according to their PIM module. The upper part is replicated
in all PIM modules, and the lower part is distributed randomly to
PIM modules by a hash function on the (keys, level) pairs. (In this
paper, levels are counted bottom up with leaves at level 0). For
an upper-part node, its replicas are stored across all PIM modules
at the same local memory address on each PIM. We refer to the
nodes in the last level of the upper part (second level in Fig. 2) as
upper-part leaves.

To be specific, for a skip list of n = Q(Plog P) key-value pairs?,
if the height of the lower part is set to hy,,, = logP, the size of
the upper part will be only O(n/P) whp. On the other hand, for a
search path in this skip list, O(log n) nodes will fall into the upper
part and only O(log P) nodes will fall into the lower part whp [17].

3.2 Pointer Structure

Next, we present a more detailed description of our data structure.
As in traditional skip lists, each node in our skip list has four point-
ers: left, right, up and down. up pointers to upper-part nodes point

3Upsert is an operation that inserts the key-value pair if the key does not already exist,
or updates the value if it does.

4Throughout this paper, we consider a skip list where a level i node also appears in
level i + 1 with probability 1/2 and all logarithms are base 2.

-0o 0
<o 0|1« .6 TN 25
o 0|V 2| v 6|V 15| v 20| V 2511\ 33| v

Figure 2: The pointer structure of a skip list on a 4-PIM-module system. Nodes on different PIM modules are of different color, and are in white when they
are replicated among all PIM modules. Solid pointers are used in point operations, and are stored in the PIM module of their FROM node. Dashed pointers are
used in range operations, and are stored in the PIM module of their TO node (as indicated by their color). Dashed pointers for —co are omitted.

to the PIM-local copy of the upper part, and up or down pointers
to lower-part nodes may point to nodes in different PIM modules.
When we need to access remote addresses, we use the TaskSend
instruction, as follows. A RemoteWrite is performed by sending a
write task, and a RemoteRead is performed by sending the current
task to the remote PIM module to proceed.

To support range queries, we add several additional pointers. For
leaves, we add two additional pointers: local-left and local-right.
These pointers point to the previous and next leaf in the same PIM
module to form a local leaf list for each PIM module. For each
upper-part leaf on each PIM module, we maintain an additional
pointer called next-leaf, which points from an upper-part leaf to
its successor in the local leaf list. We illustrate these three types of
pointers in Fig. 2 (dashed pointers).

THEOREM 3.1. The skip list takes O(n) words in total, and O(n/P)
words whp in each PIM module.

ProoF. By Lemma 2.1, for n = Q(Plog P), O(n/P) lower-part
nodes are sent to each PIM module whp. The upper part has O(n/P)
nodes whp. As the result, each PIM module holds O(n/P) nodes of
constant size whp. O

We introduce three terms for the sake of clarity when discussing
our algorithms. We call nodes on the search path from the root
to a specific node its ancestors. Note that since the upper part is
replicated, there are multiple physical search paths to a node. These
paths share the same lower-part nodes, and their upper nodes are
replicas of the same nodes on different PIM modules. We conceptu-
ally think of these identical search paths as a single (non-redundant)
path, which yields a tree, and we define parent and child based
on this tree.

3.3 Challenge of Imbalanced Node Access

Although we randomly distribute the lower-part nodes among PIM
processors, simply batching operations does not guarantee PIM-
balance. For example, multiple GET (or UPDATE) operations with
the same key can cause contention on the PIM module holding the
key. Deduplication of queries can solve imbalance for these two

operations, but it cannot solve imbalance caused by other important
operations. For example, as noted earlier and analyzed in §4.2, if
the adversary requests the Successor of multiple different keys
with the same successor, then the path to the result will be accessed
multiple times, causing contention. In the extreme, this can serialize
the entire batch of SucCEssoRr operations.

Note that in these examples, PIM-imbalance is a direct result of
imbalanced node access. Therefore, our approach to PIM-balance
is to avoid imbalanced node access. In the next two sections, we
present detailed algorithms for the individual operations.

4 POINT OPERATIONS

This section presents our algorithms for the six point operations
supported by our skip list. Table 1 summarizes the bounds we
obtain.

4.1 GeTt(k) and UppATE (K, 0)

Execution of a single operation. Because the lower-part nodes
are distributed to PIM modules by a random hash function, the GET
(UPDATE can be solved similarly) operation can use this function
as a shortcut to find the PIM module that the target node must
be stored on. By storing an additional hash table locally on each
PIM module to map keys to leaf nodes directly, we can efficiently
process GET (UPDATE) queries.

Specifically, within a PIM module, we use a de-amortized hash
table supporting O(1) whp work operations [16]. The table supports
the O(n/P) keys that are stored in this PIM node in O(1) whp PIM
work per GET, UPDATE, DELETE, and INSERT operation.

To execute each operation, we send it directly to the PIM module
for the key according to the hash value, and then query for the
key within the PIM’s local hash table, ignoring non-existent keys.
This takes O(1) messages and O(1) whp PIM work. Note that this
approach works because GET (UPDATE) operations neither use nor
modify the pointer structure.

PIM-balanced batch execution. The batched GET operation is
executed in batches of size P log P. It first goes through a parallel
semisort [9, 18] on the CPU side to remove duplicate operations.

Operation Batch Size IO time PIM time CPU work/op CPU depth Minimal M needed
GET / UPDATE PlogP O(log P)* O(log P)* ot O(logP)* O(PlogP)
PREDECESSOR / SuCCESsOR ~ Plog?P O(log® P)* O(log? P - log n)* O(logP) T O(log? P)* O(Plog? P)*
UPSERT Plog?P O(log®P)* O(log?P-logn)* O(logP)" 0O(log? P)* O(Plog? P)*
DELETE Plog?P O(log® P)* O(log? P)* ot O(log? P)* O(Plog? P)*

Table 1: Complexity of our batch-parallel point operations on a skip list of n keys. CPU work/op is the total CPU work for the batch divided by the batch size.
+: with high probability (whp) in P. ¥: in expectation. Bounds without superscripts are worst-case bounds.

Then, it sends each query to the target PIM module and finishes
the rest of the computation locally on the PIM module.

THEOREM 4.1. Batched GET (UPDATE) operations using a batch size
of Plog P can be executed whp in O(log P) IO time, O(log P) PIM
time, and O(log P) CPU depth. The execution performs O(P log P)
expected CPU work.

Proor. Semisorting the batch takes O(Plog P) expected CPU
work with O(log P) whp depth [9]. By Lemma 2.1, sending up to
Plog P GET operations with different keys to random PIM modules
sends O(log P) operations to each PIM module whp, and hence
takes O(log P) whp IO time. Because each operation takes O(1)
whp PIM work, the batch takes O(log P) whp PIM time. O

We note that this algorithm is PIM-balanced because the PIM
time is O(log P) = O(W/P) for W = O(PlogP) PIM work and
the IO time is O(log P) = O(I/P) for I = O(PlogP) messages,
as required. Importantly, PIM-balance holds irrespective of the
distribution of these queries.

4.2 PREDECESSOR(k) and SuccEssoRr(k)

A PreDECESSOR(k) (Successor(k)) query returns a pointer to the
largest (smallest) key in the skip list less than (greater than) or
equal to k. For keys that are in the skip list, we can apply a similar
idea as in our GET algorithm to shortcut directly to the PIM node
containing the key. More generally, though, the requested key k is
not in the skip list, and the predecessor/successor must be found
using the pointers in the skip list. A naive idea to handle this case
would be to broadcast the query to all PIM modules to execute it, but
this would take ©(P) IO messages and ©(P log n) whp PIM work
for each query. In what follows, we focus on SUCCESSOR queries;
PREDECESSOR queries are symmetric.

Execution of a single operation. For a single operation, we fol-
low the same search approach of an ordinary skip list. First, we
send the SUCCESSOR operation to a random PIM module, and tra-
verse from the root to the corresponding upper-part leaf. Because
the lower part is distributed on different PIM modules, the current
PIM module may need to send the SUCCESSOR operation to a lower-
part node by a TaskSend. After repeatedly querying for lower-part
nodes and reaching a leaf, the operation stops, and the leaf is sent
back to the shared memory. Note that accessing each node in the
lower part takes O(1) IO messages. Because each search path has
O(log n) whp nodes in the upper part and O(log P) whp nodes in
the lower part [17], each SUCCESsOR operation takes O(log n) whp
PIM work and O(log P) whp IO messages.

~
~
~
~_
~
~

S2 Sa Se Ss S S Sua

Figure 3: The pivot search paths in stage 1 of the SUCCEssOR algorithm.
The upper part is shaded blue. Black paths are from phase 1 (to Sg) and
phase 2 (to Sy and Sy2), and green paths are from phase 3. Note that S, starts
at LCA(Sy, Sg), while Sy starts at the root—this is because LCA(Sy, Sg) is
in the lower part, while LCA(Ss, S12) is not.

PIM-imbalanced batch execution. We first show that just naively
distributing the queries in a batch would lead to an imbalanced
workload on different PIM modules. In the naive search algorithm,
we execute all operations in parallel. In step 0, we send the opera-
tions to random PIM modules and traverse the upper part of the
skip list. Then in each subsequent step, we push each query one
node further in its search path on the lower part. It takes O(log P)
whp steps to finish every query.

However, the adversary can request a batch of Plog? P differ-
ent keys all with the same successor, causing lower-part nodes to
become contention points. In such cases, executing one step can
take up to Plog? P IO time, and the whole process can take up to
Plog? P IO time, completely eliminating parallelism.

PIM-balanced batch execution. Instead, to achieve good load
balance, we take special care to avoid contention on nodes. This is
done in two stages: In stage 1, the algorithm picks pivots, computes
the Successor of each pivot, and also stores the lower-part search
paths. Crucially, we ensure that performing the searches for the
pivots can be provably done without contention. Then in stage 2,
we execute all of the sets of operations between pivots, using the
saved lower-part search paths to accelerate these searches.

To be specific, the batched SucCESsOR operation is executed in
batches of size P log? P. The keys in the batch are first sorted on the
CPU side. We pick P log P pivots to divide the batch into segments
of log P operations, and we also pick the operation with the smallest
key and the largest key in the batch as pivots. We then compute
the SuccEessor for each pivot in a parallel divide-and-conquer style
(see Fig. 3 as an example):

(1) Inphase 0, a CPU core packs the smallest-key and largest-key
pivots into a mini-batch of size two. It then runs the naive

search algorithm on the mini-batch. During the execution,
PIM modules send lower-part nodes on the search path for
each operation back to the shared memory.

(2) In phase 1, we execute the operation that is the median pivot
using a start node hint: If two of the paths recorded in phase
0 (paths to the result of the smallest-key and the largest-key)
share no lower-part node, start at the root. If they share a
leaf, directly take the leaf as the result. Otherwise, start from
the lowest common lower-part node of the two paths.

(3) After phase i, unexecuted pivots are divided into 2! segments.
We pack the median pivot of each segment into a mini-batch.
In phase i + 1, use the path to the two ends of each segment
to generate the start node hint (as in phase 1), execute the
naive search algorithm using the hint, and record the path
for the subsequent phases.

After stage 1, we have the lower-part node path for each pivot
operation on the CPU side. In stage 2, we use the recorded search
path for the pivots to generate start node hints (as done in each
phase of stage 1). We then execute all operations using the naive
search algorithm from the start nodes.

LEMMA 4.2. No node will be accessed more than 3 times in each
phase in stage 1.

ProoF. We prove the lemma by contradiction. As mentioned in
§3.2, joining all possible search paths gives a directed tree. Suppose
in the i’th phase, one lower-part node is accessed by 4 pivot opera-
tions with key iy < iy < i3 < ig. Then there must be three opera-
tions with keys j1 < ja2 < jz where i < j; <ip < jo <i3 < j3 <y
executed before the i’th phase. These 3 search paths cut the tree into
4 non-empty pieces, and each search chain falls into one piece. The
pieces are non-empty because if any piece is empty, we can directly
get the result without accessing any nodes. Note that the search-
path tree is a binary tree, so it’s impossible for 4 non-empty pieces
to share a node, contradicting the assumption that 4 operations
access the same node.]

THEOREM 4.3. Batched SUcCEsSOR (PREDECESSOR) operations using
a batch size of Plog? P can be executed whp in O(log® P) IO time,
O(log? P - log n) PIM time, and O(log? P) CPU depth. The execution
performs O(P log® P) expected CPU work, and uses ©(P log? P) whp
shared memory.

PRroOF. Stage 1 is executed in O(log P) phases. In each phase, up
to Plog P pivot operations are batched and executed by the naive
search algorithm. Recall that the naive search algorithm is executed
in O(log P) whp steps, because in each step (after step 0) we push
all O(Plog P) operations one step forward. There are O(P log P)
IO messages in each step. We proved constant contention in these
I0s (Lemma 4.2), so each step takes O(log P) whp IO time.

As for PIM time, each execution of the naive search algorithm
takes O(log P - log n) whp PIM time, including O(log P - log n) in
its step 0, and O(log P) PIM time in each following step. In total it
takes O(log? P - log n) whp PIM time for O(log P) phases.

On the CPU side, sorting takes O(P log® P) expected CPU work,
and O(log P) whp CPU depth [9]. In each of the following O(log P)
phases, the CPU stores and processes paths of length O(log P) whp.
Thus, storing P log P paths take ©(P log? P) memory whp. In each

phase, finding the LCA over O(Plog P) paths takes O(Plog? P)
CPU work with O(log P) depth whp.

In stage 2, the naive search algorithm takes O(log P) whp steps.
In each step, O(P log? P) nodes are visited with O(log P) contention,
so by Lemma 2.2, it takes O(log? P) IO time whp. Similarly to stage 1
but applying Lemma 2.2 to its one and only phase, stage 2 takes
O(log? P - log n) whp PIM time. Finally, on the CPU side, stage 2
only starts the naive search algorithm using the hints from stage 1
and then collects the results at the end.

Summing the bounds for stages 1 and 2 completes the proof. O

4.3 UpserT(k,0)

The UPSERT operation is a combination of INSERT and UPDATE.
Namely, if k is already in the skip list, we update the value to v;
otherwise, we insert (k, v) to the skip list. Our UpPSERT algorithm
first tries to perform UpDATE (§4.1), falling back to INSERT if UPDATE
does not find the key k. To insert a key, we need to read and modify
nodes on the path to its predecessor and successor. Note that it is
sufficient to find the predecessor because we can get the successor
using the right pointer in the skip list.

Execution of a single operation. A single INSERT operation works
as follows:

(1) Decide which levels the inserted nodes will appear (say up
to [;) based on random coin tossing.

(2) Generate and insert new upper-part nodes in the upper part
for all PIM modules.

(3) Distribute the new lower-part nodes randomly to the PIM
modules. Insert these nodes into the local leaf linked list and
the local hash table for the PIM modules that store them.

(4) Generate the up and down pointers for each node. The only
pointer from the highest lower-part node to an upper-part
leaf (replicated among the PIM modules if it exists) will point
to the local copy of the upper-part leaf.

(5) In each new leaf, record addresses of all lower-part new
nodes in its up chain, and the existence of an upper-part
node as a boolean flag. These are used in DELETE.

(6) Run a PREDECESSOR operation to return to the CPU side the
last /; nodes on the predecessor path. With this information,
a CPU core can use RemoteWrite to modify left and right
pointers to insert the new node into the horizontal linked
list immediately after the predecessor.

As such, inserting a key takes O(log P) whp IO messages and
O(logn) whp PIM work because of the PREDECESSOR operation.
In expectation, each INSERT generates O(1) lower-part nodes and
O(1/P) upper-part nodes, so it generates O(1) expected IO mes-
sages. However, we note that the worst case and high probability
bound can be much worse, because we may need to add up to
O(log n) upper-part nodes to each of the P PIM modules. Next, we
will show that batching helps, enabling the bounds in Table 1.

PIM-balanced batch execution. The main challenge in batch in-
sertions is that an inserted node’s neighbor can be another inserted
node that is processed by another PIM module. Hence, our algo-
rithm needs to identify this case and correctly set up these pointers
(see Fig. 4). This process is an additional step shown in Algorithm 1.
The complete algorithm has the following stages:

Figure 4: For batch INSERT, we insert blue nodes into a skip list starting
with only white nodes, and the key challenge is to build blue pointers.
For batch DELETE, we delete blue nodes from a skip list with blue and
white nodes, and the key challenge is to build green pointers from the blue
pointers.

(1) In parallel run steps 1-5 of the single INSERT operation for

each key in the batch.

(2) Run the parallel batched PREDECESSOR operation to fetch the

last I; nodes on each predecessor path.

(3) Construct the new horizontal pointers using Algorithm 1.

The input of Algorithm 1 is an array A. A[i][j] holds the address
of the j'th new node (numbered from 0) of height i (i’th level
bottom-up, numbered from 0) as cur, and pointers to its left node
and right node in the same level as pred and succ, respectively. In
Fig. 4, let addr. ; denote the address of the node with key k in level
i. Then, e.g., we have A[0][1] = (addr7, addro, addrasg), and
A[1][1] = (addrzo,1, addro 1, addras 1).

Once A[i][j] is generated, we can find the new nodes with
matching pred and succ (the blue nodes in Fig. 4, considering each
level separately), and link them accordingly. Details on how to chain
them together are shown in Algorithm 1.

THEOREM 4.4. Batched UPSERT operations using a batch size of
Plog? P can be executed whp in O(log® P) IO time, O(log? P - log n)
PIM time, and O(log? P) CPU depth. The execution performs O(P log> P)
expected CPU work, and uses ©(P log? P) whp shared memory,.

ProoF. We first show that stage 1 of UpserT takes O(log? P)
10 time and O(log? P) PIM time whp. For the upper part, for every
log? P INSERTS reaching this part, the probability distribution of the
number of new upper-part nodes is a negative binomial distribution
NB(log? P, 1/2), which is O(log? P) whp. Since O(log? P) INSERT
whp reach the upper part, each batch generates O(log? P) new
upper-part nodes whp, which takes whp O(log? P) IO time and
O(log? P) PIM time. Lower part nodes are balanced so it takes
O(log? P) 10 time and O(log? P) PIM time whp. For storing the up
pointers, the total I0 is O(P log? P) whp, and the maximum IO on
a single node is log P, so it also finishes in O(log? P) IO time whyp.

Now we analyze the cost of Algorithm 1. The PIM side takes
O(log? P) 10 time because each pointer is modified exactly once,
and there is no internal dependency among them. The work on the
CPU side is asymptotically bounded by the cost of PREDECESSOR,
which is O(Plog® P) expected. With high probability the heights
of new nodes are O(log P), so generating nodes is of O(log P) CPU
depth. Other additional operations are of O(1) height. O

4.4 DerETE(k)

Note that we can perform a DELETE operation by performing INSERT
in reverse. However, since a deleted key must exist in the data
structure, we can obtain an O(log P) speed up by taking shortcuts
to directly access leaves, as in GET and UPDATE operations.

Algorithm 1: Constructing horizontal pointers

Input: An 2D array A[i][/], and each element is a triple
(cur, pred, succ) indicating the j’th newly generated
node in the i’th level, and the predecessor and
successor of this node.

1 parallel for i < 0 tologP — 1 do

2 parallel for j < 0 to A[i].size — 1 do
3 if j = A[i].size—1or
Alillj].succ # Ali][j + 1].succ then

/* the right end in a segment */
4 RemoteWrite(A[i][j].cur.right, A[i][j].succ)
5 RemoteWrite(A[i] [j].succ.left, A[i][j].cur)
6 else

/* not the right end in a segment */
7 RemoteWrite(A[i] [j].cur.right, A[i][j + 1].cur)
8 RemoteWrite(A[i][j + 1].cur.left, A[i] [j].cur)
9 if i =0 or A[i][j].pred # A[i][j — 1].pred then

/* the left end in a segment */
10 RemoteWrite(A[i] [j].pred.right, A[i][j].cur)
11 RemoteWrite(A[i] [j].cur.left, A[i][j].pred)

Execution of a single operation. A single DELETE operation
works in four steps:
(1) The operation is sent to the PIM module holding the key, and
the PIM module uses the local hash table to find the node.
(2) The PIM module marks the leaf and its up chain as "deleted",
using the up chain addresses saved in that leaf. It also re-
moves this node from the local leaf linked list.
(3) PIM modules with marked upper-part nodes will broadcast
the addresses to all PIM nodes to delete all of the replicas.
(4) All marked lower-part nodes are spliced out of the horizontal
linked list by linking left and right nodes.

Because DELETE removes nodes from the upper part with proba-
bility O(1/P), an upper-part deletion takes O(1) IO messages and
O(1) PIM work in expectation, and thus deleting a key takes O(1)
I0 messages and O(1) PIM work in expectation.

PIM-balanced batch execution. Similarly to batched INSERT, the
main challenge in batched DELETE is to remove nodes from the
horizontal linked lists in parallel because these nodes can be linked
together (see Fig. 4 for an illustration of the main algorithmic goal).
Our algorithm has two stages:

(1) In parallel run steps 1-3 of the single DELETE operation for
each key in the batch.

(2) Use the list-contraction-based algorithm described next to
remove deleted nodes from horizontal linked lists.

In stage 2, we look to splice out the marked nodes from the
horizontal linked lists. Because up to P log? P consecutive nodes
may need to be deleted from a horizontal linked list, splicing out
all nodes independently in parallel will lead to conflicts. Instead,
we handle this problem using list contraction. However, we cannot
simply apply list contraction algorithms on remote nodes, because
we need Q(Plog P) RemoteWrites to random positions for each

bulk-synchronous round in order to guarantee PIM-balance, which
is not possible for some algorithms (e.g., [20]). Also, prior BSP al-
gorithms [14] assume that the size of the list is Q(P? log P), much
larger than our target batch size. Our solution is to create a local
copy of all marked nodes in the shared memory, and apply list con-
traction on the CPU side using an efficient parallel list contraction
algorithm [9, 28], and then directly splice out all marked nodes
remotely in parallel. The steps are as follows:

(1) The CPU side constructs a hash table mapping remote point-
ers to local (shared-memory) pointers. For all marked nodes
received by the CPU side, pointers are stored in the hash
table for the local versions. We instantiate a new local node
if the node does not exist in the hash table, and otherwise
link existing local nodes. Note that for consecutive marked
nodes in a linked list, the first unmarked node on the left and
the right ends will also be copied and stored locally.

(2) Perform parallel randomized list contraction on the CPU
side to splice out marked nodes in local linked lists.

(3) Remotely link the unmarked nodes to splice out marked
nodes.

THEOREM 4.5. Batched DELETE operations using a batch size of
Plog? P can be executed whp in O(log? P) IO time, O(log® P) PIM
time, and O(log P) CPU depth. The execution performs O(Plog? P)
expected CPU work, and uses ©(P log? P) whp shared memory.

PRrOOF. Stage 1 takes O(log? P) IO time and O(log? P) PIM time
whp for the exact same reason as stage 1 of PIM-balanced batch
INSERT. Stage 2 is dominated by the O(P log? P) expected CPU work
and O(log P) whp depth for list contraction [9]. O

5 RANGE OPERATIONS

In this section, we turn our attention from point operations to
range operations. We consider a general form of range operations,
RANGEOPERATION(LKey, RKey, FuNnc), in which for every key-value
pair (k,v) such that LKey < k < RKey, and FuNc is applied to the
value v. If FUNC returns a value, that value is returned to the CPU
side. For example, a read(v) function executes a simple range query
and a fetch-and-add(v, A) function increments a value by A and
returns the old value. Let K denote the number of key-value pairs
in a query’s range.

For simplicity in the analysis, we assume that the RANGEOPERA-
TION is a constant-size task (in words) and that Func takes constant
PIM time. More complicated operations can be split into a range
query returning the values, a function applied on the CPU side, and
a range update that writes back the results. Also, note that we can
extend function to allow for associative and commutative reduction
functions such as counting the number of key-value pairs in the
range.

We present two types of execution for range operations: (i) broad-
casting the operation to all the PIM modules or (ii) following the
skip list structure to access all nodes within the specified range.

5.1 Range Operations by Broadcasting

In this first type, the range operation task is broadcast to all the PIM
modules, who execute the range operation locally. Note that the
normal skip-list pointers (the solid pointers in Fig. 2) do not enable

a purely local execution of a range operation. Instead, we use the
local leaf list and next-leaf pointers introduced in Section 3.2 (the
dashed pointers in Fig. 2).

Specifically, each PIM module determines the local successor
of LKey and then follows its local leaf list (of increasing keys) to
access all local key-value pairs in the range (i.e., all pairs with key
< RKey), and applying Func to each. To find the local successor,
each PIM module takes three steps:

(1) Search the upper part until reaching the rightmost upper-
part leaf with k < LKey.

(2) Take the next-leaf pointer to the local leaf list.

(3) Search through local leaves until find the successor.

The following theorem shows that this algorithm is PIM-balanced.

THEOREM 5.1. For K = Q(P log P), broadcasting-based range op-
erations can be executed in O(1) IO time and O(K/P + log n) whp
PIM time. For range operations that return values, the values can
be returned in O(K/P) whp IO time. The algorithm uses O(1) bulk-
synchronous rounds.

Proor. Broadcasting the task is an h-relation with h = 1. For
step 1, each search path has O(logn) whp nodes in the upper
part [17]. step 2 is constant PIM time. For step 3, a skip list leaf is an
upper-part leaf with probability (1/2)1°8? = 1/p, so whp there are
O(Plog P) skip list leaves (i.e., key-value pairs) between every pair
of adjacent upper-part leaves. Thus, by Lemma 2.1, the segment of
a local leaf list between consecutive next-leaf pointers is O(log P)
whp size, and hence the local successor can be found in O(log P)
whp PIM time.

Also by Lemma 2.1, whp all PIM modules will have ©(K/P) key-
value pairs within the range. Applying Function takes constant PIM
time per pair, for a total of O(K/P) whp time. Likewise, a total of
O(K/P) whp IO time suffices to send any return values back to the
CPU side. O

5.2 Range Operations by Tree Structure

The above type of range operation is wasteful for small ranges, as
it involves all the PIM modules even when only a few contain any
keys in the range. This motivates the second type, which uses the
skip list tree structure instead.

Execution of a single operation. To execute a range operation
by tree structure, we visit all nodes that may have a child in the
range. Similar to the search path for a point operation, these nodes
form a search area. Note that there are O(K + log n) whp ancestors
for a range with K key-value pairs, so the search area is of size
O(K +log n) whp, of which O(K +log P) whp nodes are in the lower
part.

We call this algorithm the naive range search algorithm. It marks
all the leaves in the range, and if desired, labels them with their
index within the range:

(1) Randomly send the operation to one PIM module, then search
from root to leaf (crossing PIM module boundaries as needed)
to mark all nodes in the search area.

(2) Compute a prefix sum of the marked nodes, via a leaf-to-root
traversal calculating the number of marked leaves in each
node’s subtree, followed by a root-to-leaf traversal in which
each node tells its children the number of marked nodes

before them. Return the total number of marked nodes to
the CPU side.

The function can now be applied to each marked leaf by the respec-
tive PIM modules, or (value, index) pairs can be sent to the CPU
side and the function applied there. We can use the index to sort
elements to save CPU time if needed.

For a single range operation, the naive range search algorithm
requires ©(K + log P) IO messages whp to/from random PIM mod-
ules. It also requires ©(K + log n) total PIM work whp, of which
O(K/P+logn) is at a selected random PIM module and ©(K +log P)
is at random PIM modules.

PIM-balanced batch execution. To obtain PIM-balance, we batch
Plog? P range operations together. The minimum shared memory
size M needed for this algorithm is ©(Plog?P).

Contention caused by batching range operations is similar to that
in batched SuccEssor operations, so we apply a similar technique:

(1) Split the batch ranges into at most 2P log? P disjoint ascend-
ing subrange operations on the CPU side.

(2) Similarly to stage 1 in batched SUCCESSOR operations: Select
Plog P pivot subranges, and do a divide-and-conquer on
pivot operations to get the leftmost and rightmost search
paths (in the lower part) for each pivot subrange.

(3) Similarly to stage 2 in batched SuccEssor operations: Exe-
cute the naive range search algorithm with the start point
hint. After this stage, each leaf knows its index in the sub-
range, and the CPU side knows the size of each subrange.

(4) We compute the prefix sum of the subrange sizes in ascend-
ing order, and partition the subranges into groups such that
the total subrange size for a group is ©(P log? P) and hence
fits in the shared memory. This may entail splitting up a
single large subrange into parts in order to fit. (Alternatively,
we could apply the algorithm from §5.1 to all large ranges.)
We execute the groups in ascending order, fetching in paral-
lel all the key-value pairs (and indexes, if needed) in a group
to the CPU side, and then executing in parallel each range
operation that overlaps the group. Note that a single range
operation may overlap multiple groups. RemoteWrite is used
to write back any updated values.

The following shows that this algorithm is PIM-balanced.

THEOREM 5.2. Tree-structure-based range operations with batch
size Plog? P covering a total of k = Q(Plog P) key-value pairs can
be executed in O(x /P +log® P) IO time and O((x /P + log? P) log n)
PIM time, both whp.

ProoF. The analysis follows from the analysis for SUCCESSOR,
with the added complexity of actually performing the range part.
For Plog? P operations covering k key-value pairs, O(k/P) whp
covered keys will reach the upper part. Thus, upper-part search
takes O(x logn/P) whp PIM time. As noted above, each lower-part
search using the naive range search algorithm over a subrange of
size K involves ©(K + log P) work at random PIM modules. Thus,
summed over all 2P log? P subranges, we have O(i+ P log® P) work
at random PIM modules, i.e., O(k/P + log® P) whp PIM time by
Lemma 2.1. Moreover, each group is ©(P log? P) keys at random
PIM modules, so it is ©(log? P) whp PIM time per group, for a

total of O(x/P) whp PIM time summed across all ©(k/(Plog? P))
groups.

In terms of IO time, the naive range search algorithm over a
subrange of size K involves ©(K + log P) whp IO messages to/from
random PIM modules. Summed over all subranges, we have O(x +
Plog® P) 1O messages to/from random PIM modules, which is
O(x/P + log® P) whp IO time. Moreover, processing each group
is ©(log? P) whp 10 time per group, for a total of O(x/P) whp IO
time.

Adding the SuccEessor PIM time and IO time to these bounds
for the range part yields the theorem. O

6 CONCLUSION

This paper presented the Processing-in-Memory (PIM) model, for
the design and analysis of parallel algorithms on systems providing
processing-in-memory modules. The model combines aspects of
both shared memory and distributed memory computing, making it
an interesting model for algorithm design. We presented an efficient
skip list for the model, supporting a wide range of batch-parallel
operations. The data structure guarantees PIM-balance for any
adversary-controlled batch of operations. Future work includes
designing other algorithms for the PIM model and measuring the
performance of our algorithms on emerging PIM systems.

Acknowledgments

This research was supported by NSF grants CCF-1910030, CCF-
1919223, CCF-2028949, and CCF-2103483, VMware University Re-
search Fund Award, the Parallel Data Lab (PDL) Consortium (Al-
ibaba, Amazon, Datrium, Facebook, Google, Hewlett-Packard En-
terprise, Hitachi, IBM, Intel, Microsoft, NetApp, Oracle, Salesforce,
Samsung, Seagate, and TwoSigma), and National Key Research &
Development Program of China (2020YFC1522702).

A APPENDIX

ProoF oF LEMMA 2.2. Consider a weighted balls-in-bins game where
we throw weighted balls into P bins. The total weight is W, and
the maximum weight of any ball is W/(Plog P). Let S = W/P. We
show that the total weight of any bin is O(S) whp. Our proof is
similar to that of Lemma 2.1 from [4].

We first fix a bin b and show that the total weight of this bin is
O(S) whyp. For each ball i, let X; be the random variable that is w;,
the weight of ball 7, if i is in bin b and 0 otherwise. Let X = }; X;,
S = E[X],R = W/(PlogP), and 6% = 3; E[Xl.z]. By Bernstein’s
inequality [7], for any constant ¢ > 1, we have:

cE[X]?/2
P(|X — E[X]| = ¢cE[X]) = exp(= +RcE[X]/3)
3 c2s%/2
- (o+ cRS/3)

Now ¢? = 3; 113 (1 - 1%) wi2 < %max{wi} >.i wi = RS. Therefore:

(2¢)282/2
RS(2¢/3+1))
< exp(—clog P) < (1/P°)

P(IX — E[X]| > ¢ - (2E[X])) < exp (-

as desired. Applying a union bound over all P bins completes the
proof. O

REFERENCES

[1] Umut A. Acar, Daniel Anderson, Guy E. Blelloch, and Laxman
Dhulipala. 2019. Parallel Batch-Dynamic Graph Connectivity.
In ACM Symposium on Parallelism in Algorithms and Architec-
tures (SPAA). 381-392.

(2] Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. 2002.
The Data Locality of Work Stealing. Theoretical Computer
Science 35, 3 (2002), 321-347.

[3] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. 2001.
Thread Scheduling for Multiprogrammed Multiprocessors.
Theory of Computing Systems 34, 2 (2001), 115-144.

[4] Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari,
Jakub Lacki, Vahab Mirrokni, and Warren Schudy. 2019. Mas-
sively Parallel Computation via Remote Memory Access. In
ACM Symposium on Parallelism in Algorithms and Architec-
tures (SPAA). 59-68.

[5] Michael A. Bender, Jonathan W. Berry, Simon D. Hammond,

K. Scott Hemmert, Samuel McCauley, Branden Moore, Ben-

jamin Moseley, Cynthia A. Phillips, David S. Resnick, and Arun

Rodrigues. 2017. Two-level Main Memory Co-design: Multi-

threaded Algorithmic Primitives, Analysis, and Simulation. J.

Parallel Distributed Comput. 102 (2017), 213-228.

Petra Berenbrink, Tom Friedetzky, Zengjian Hu, and Russell

Martin. 2008. On Weighted Balls-into-bins Games. Theoretical

Computer Science 409, 3 (2008), 511-520.

[7] Sergei Bernstein. 1924. On a modification of Chebyshev’s
inequality and of the error formula of Laplace. Ann. Sci. Inst.
Sav. Ukraine, Sect. Math 1, 4 (1924), 38-49.

(8] Guy E. Blelloch, Daniel Ferizovic, and Yihan Sun. 2016. Just
Join for Parallel Ordered Sets. In ACM Symposium on Paral-
lelism in Algorithms and Architectures (SPAA). 253-264.

(9] Guy E. Blelloch, Jeremy T. Fineman, Yan Gu, and Yihan Sun.
2020. Optimal Parallel Algorithms in the Binary-Forking
Model. ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA) (2020), 89-102.

[10] Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling
Multithreaded Computations by Work Stealing. 7 ACM 46, 5
(1999).

[11] Jiwon Choe, Amy Huang, Tali Moreshet, Maurice Herlihy, and
R. Iris Bahar. 2019. Concurrent Data Structures with Near-
Data-Processing: an Architecture-Aware Implementation. In
ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA). 297-308.

[12] Rathish Das, Kunal Agrawal, Michael A. Bender, Jonathan W.
Berry, Benjamin Moseley, and Cynthia A. Phillips. 2020. How
to Manage High-Bandwidth Memory Automatically. In ACM
Symposium on Parallelism in Algorithms and Architectures
(SPAA). 187-199.

[13] Xiaojun Dong, Yan Gu, Yihan Sun, and Yunming Zhang. 2021.
Efficient Stepping Algorithms and Implementations for Paral-
lel Shortest Paths. In ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA).

[14] Alexandros V. Gerbessiotis, Constantinos J. Siniolakis, and
Alexandre Tiskin. 1997. Parallel Priority Queue and List Con-
traction: The BSP Approach. In European Conference on Parallel
Processing (Euro-Par). Springer, 409-416.

(6

—

[15] Phillip B. Gibbons, Yossi Matias, and Vijaya Ramachandran.
1999. The Queue-Read Queue-Write PRAM Model: Accounting
for Contention in Parallel Algorithms. SIAM ¥. on Computing
28, 2 (1999), 3-29.

[16] Michael T. Goodrich, Daniel S. Hirschberg, Michael Mitzen-
macher, and Justin Thaler. 2011. Fully De-amortized Cuckoo
Hashing for Cache-oblivious Dictionaries and Multimaps.
arXiv preprint arXiv:1107.4378 (2011).

[17] Michael T. Goodrich and Roberto Tamassia. 2015. Algorithm
Design and Applications. Wiley Hoboken.

[18] Yan Gu, Julian Shun, Yihan Sun, and Guy E. Blelloch. 2015.
A Top-Down Parallel Semisort. In ACM Symposium on Paral-
lelism in Algorithms and Architectures (SPAA). 24-34.

[19] Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu.
2017. Concurrent Data Structures for Near-memory Com-
puting. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA). 235-245.

[20] GaryL. Miller and John H. Reif. 1985. Parallel Tree Contraction
and Its Application. In IEEE Symposium on Foundations of
Computer Science (FOCS). 478-489.

[21] Onur Mutlu, Saugata Ghose, Juan Gémez-Luna, and Rachata
Ausavarungnirun. 2020. A Modern Primer on Processing in
Memory. CoRR abs/2012.03112 (2020).

[22] Jurg Nievergelt and Edward M. Reingold. 1973. Binary Search
Trees of Bounded Balance. SIAM J. Comput. 2,1 (1973), 33-43.

[23] Thomas Papadakis. 1993. Skip Lists and Probabilistic Analysis
of Algorithms. University of Waterloo Ph. D. Dissertation.

[24] Wolfgang J. Paul, Uzi Vishkin, and Hubert Wagener. 1983.
Parallel Dictionaries in 2-3 Trees. In Intl. Colloq. on Automata,
Languages and Programming (ICALP). 597-609.

[25] William Pugh. 1990. Skip Lists: A Probabilistic Alternative to
Balanced Trees. Commun. ACM 33, 6 (1990), 668—676.

[26] Martin Raab and Angelika Steger. 1998. “Balls into bins”-A
simple and tight analysis. In International Workshop on Ran-
domization and Approximation Techniques in Computer Science.
Springer, 159-170.

[27] Peter Sanders. 1996. On the Competitive Analysis of Ran-
domized Static Load Balancing. In Workshop on Randomized
Parallel Algorithms (RANDOM).

[28] Julian Shun, Yan Gu, Guy E. Blelloch, Jeremy T. Fineman, and
Phillip B. Gibbons. 2015. Sequential Random Permutation,
List Contraction and Tree Contraction are Highly Parallel. In
ACM-SIAM Symposium on Discrete Algorithms (SODA). 431-
448.

[29] Harold S. Stone. 1970. A Logic-in-Memory Computer. IEEE
Trans. Comput. C-19, 1 (1970), 73-78.

[30] Yihan Sun, Daniel Ferizovic, and Guy E. Blelloch. 2018. PAM:
Parallel Augmented Maps. In ACM Symposium on Principles
and Practice of Parallel Programming (PPOPP). 290-304.

[31] Thomas Tseng, Laxman Dhulipala, and Guy E. Blelloch. 2019.
Batch-parallel Euler Tour trees. In SIAM Meeting on Algorithm
Engineering and Experiments (ALENEX). 92-106.

[32] Leslie G. Valiant. 1990. A Bridging Model for Parallel Compu-
tation. Commun. ACM 33, 8 (1990), 103—111.

[33] Yiqiu Wang, Shangdi Yu, Yan Gu, and Julian Shun. 2021. A Par-
allel Batch-Dynamic Data Structure for the Closest Pair Prob-
lem. In ACM Symposium on Computational Geometry (SoCG).

[34] Tobias Ziegler, Sumukha Tumkur Vani, Carsten Binnig, Ro- In ACM SIGMOD International Conference on Management of
drigo Fonseca, and Tim Kraska. 2019. Designing Distributed Data. 741-758.
Tree-based Index Structures for Fast RDMA-capable Networks.

	Abstract
	1 Introduction
	2 Model
	2.1 The Processing-in-Memory Model
	2.2 Related Work

	3 PIM-balanced Skip List
	3.1 Overview
	3.2 Pointer Structure
	3.3 Challenge of Imbalanced Node Access

	4 Point Operations
	4.1 Get (k) and Update (k, v)
	4.2 Predecessor (k) and Successor (k)
	4.3 Upsert (k, v)
	4.4 Delete (k)

	5 Range Operations
	5.1 Range Operations by Broadcasting
	5.2 Range Operations by Tree Structure

	6 Conclusion
	A Appendix
	References

