PMEM-Spec: Persistent Memory Speculation
(Strict Persistency Can Trump Relaxed Persistency)

Jungi Jeong
jungijeong@purdue.edu
Purdue University, USA

ABSTRACT

Persistency models define the persist-order that controls the order
in which stores update persistent memory (PM). As with memory
consistency, the relaxed persistency models provide better perfor-
mance than the strict ones by relaxing the ordering constraints. To
support such relaxed persistency models, previous studies resort
to APIs for annotating the persist-order in program and hardware
implementations for enforcing the programmer-specified order.
However, these approaches to supporting relaxed persistency im-
pose costly burdens on both architects and programmers.

In light of this, the goal of this study is to demonstrate that the
strict persistency model can outperform the relaxed models with
significantly less hardware complexity and programming difficulty.
To achieve that, this paper presents PMEM-Spec that speculatively
allows any PM accesses without stalling or buffering, detecting their
ordering violation (e.g., misspeculation for PM loads and stores).
PMEM-Spec treats misspeculation as power failure and thus lever-
ages failure-atomic transactions to recover from misspeculation by
aborting and restarting them purposely. Since the ordering viola-
tion rarely occurs, PMEM-Spec can accelerate persistent memory
accesses without significant misspeculation penalty. Experimental
results show that PMEM-Spec outperforms two epoch-based persis-
tency models with Intel X86 ISA and the state-of-the-art hardware
support by 27.2% and 10.6%, respectively.

CCS CONCEPTS

+ Hardware — Memory and dense storage; - Computer sys-
tems organization — Parallel architectures.

KEYWORDS
Persistency Model, Strict Persistency, HW/SW Codesign

ACM Reference Format:

Jungi Jeong and Changhee Jung. 2021. PMEM-Spec: Persistent Memory
Speculation (Strict Persistency Can Trump Relaxed Persistency). In Proceed-
ings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS °21), April 19-23,
2021, Virtual, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/
10.1145/3445814.3446698

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPLOS 21, April 19-23, 2021, Virtual, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8317-2/21/04...$15.00
https://doi.org/10.1145/3445814.3446698

517

Changhee Jung
chjung@purdue.edu
Purdue University, USA

1 INTRODUCTION

Although persistent memory (PM) technology has advanced re-
cently, e.g., Intel/Micron 3D XPoint [2], it still imposes high over-
heads to realize recoverable data structures in the current archi-
tecture. They must carefully deal with data being persisted in PM
for the recovery to rebuild the consistent states across failure on
which all volatile data in caches and DRAM disappear. For this
purpose, recoverable data structures necessitate controlling the or-
der in which data is written to PM. However, modern architecture
allows reordering of data writebacks to maximize the throughput,
and enforcing any specific order—e.g., with cache-flush and store-
fence—thus leads to significant performance degradation.

Recent works propose persistency models that define the persist-
order which controls the order of writes to PM [8, 11, 16, 17, 24, 28,
30, 36, 39]. Combined with failure-atomicity support in software [3,
8,10, 15, 19, 20, 29, 31, 32, 34, 45] and hardware [6, 13, 18, 22, 23, 26,
38, 42], these models enable a part of program, which is delineated
by a failure-atomic transaction, to be recoverable with all the data
persisted therein all or nothing. In general, the relaxed persistency
models are more performant than the strict one since they increase
PM write concurrency by relaxing the ordering constraints.

After all, the higher performance comes at the costs of program
annotation and hardware complexities [17, 30, 36]. To exploit in-
herent parallelism in program, programmers must reason about
the persist-order and insert new instructions such as fence/barrier
to where they should be. Then, hardware modifications follow to
enforce the persist-order specified in program, e.g., prior research
proposals employ a special buffer alongside the L1 cache to govern
the persist-order as shown in Figure 1. Such extensions require
intrusive modifications on the existing cache hierarchy as well as
the cache-coherence mechanism.

To a large extent, the current PM research trend recalls the ad-
vent of relaxed consistency models such as TSO for addressing SC’s
poor performance and scalability. For example, TSO relaxes the
ordering constraints of SC and requires programmers to insert syn-
chronization operations such as mutexes correspondingly for pro-
gram correctness. Likewise, previous studies of relaxed persistency
models place additional burdens on programmers and architects
to achieve higher system throughput. Unfortunately, the hardware
cannot improve throughput (higher PM write concurrency) unless
programmers properly insert the ordering primitives into program,
which often requires understanding the subtle concept of the un-
derlying relaxed persistent models.

This reminiscence motivates us to rethink how hardware should
support the memory persistency models. With that in mind, we pro-
pose PMEM-Spec, a hardware-software codesign scheme that can
minimize (1) hardware modifications while leaving the CPU caches
unmodified and (2) ordering annotation in program as with the

https://doi.org/10.1145/3445814.3446698
https://doi.org/10.1145/3445814.3446698
https://doi.org/10.1145/3445814.3446698

ASPLOS 21, April 19-23, 2021, Virtual, USA

strict persistency model, while (3) delivering higher performance
even compared to the relaxed models. In a sense, PMEM-Spec en-
ables a lightweight yet performant strict persistency model leaving
the program almost as-is. The key idea of PMEM-Spec is to allow
any PM accesses speculatively without stalling and later correct
if they violated the ordering constraints. Given that the ordering
violation (e.g., misspeculation) is rare, we dare to challenge the
presumption that the relaxed models outperform the strict ones.
The empirical results demonstrate that PMEM-Spec achieves signif-
icantly higher performance than the epoch-based relaxed models.

To guarantee the persist-order with minimal hardware changes,
PMEMS-Spec proposes to separate load/store-paths to PM. PM loads
go to the regular-path (e.g., through CPU caches) while PM stores
through the persist-path that bypasses the cache hierarchy, as shown
in Figure 1d. The persist-path directly connects the store queue to
the PM controller and leaves CPU caches unmodified. PMEM-Spec
sends PM data being stored to both the CPU caches and the persist-
path simultaneously when they leave the store queue after their
commit. The store requests sent through the persist-path arrive at
the PM controller in their commit order—simplifying intra-thread
persist-order and rendering strict persistency. In contrast, the LLC
data are silently dropped on eviction without being written to PM.

However, PMEM-Spec’s separate data-paths can cause the or-
dering violation—e.g., speculation can be misspeculation in case
of data-race in different data-paths. In particular, PMEM-Spec iden-
tifies two possible PM misspeculations that can arise for loads and
stores. First, PM load misspeculation causes incorrectly fetching the
stale value in PM while the new value is pending in the persist-path.
This violation can occur when a load arrives at the PM controller
earlier than stores—executed earlier than the load—to the same
memory address. Second, PM store misspeculation can happen
when stores from different threads access the same address through
different persist-paths, resulting in a missing update if they persist
out of order. The store execution order (e.g., the coherence order)
can differ from the actual persist-order made to PM if inter-thread
dependency exists. In such a case, PMEM-Spec encounters PM store
misspeculation that violates the inter-thread persist-order.

Ideally, misspeculation can be detected when stores overwrite
recently-fetched (for load misspeculation) or recently-modified (for
store misspeculation) blocks by checking the previous fetch or per-
sist was benign. However, the question is how many following
stores PMEM-Spec should monitor for overwriting. Our key obser-
vation is that misspeculation happens with a data-race between
different data-paths. Therefore, speculation always will be identi-
fied as correct or incorrect within a short interval, which we call the
speculation window.

Based on this observation, PMEM-Spec presents HW/SW code-
sign that detects misspeculation in hardware and delegates mis-
speculation recovery to software. To detect PM load misspeculation,
PMEMS-Spec leverages the fact that PM load misspeculation never
occurs when the data is in CPU caches. That is, PMEM-Spec moni-
tors recently evicted blocks from LLC whether they are overwritten
by stores within the speculation window. Furthermore, PMEM-Spec
exploits a happens-before order established by synchronization
primitives in data-race free programs to detect PM store misspec-
ulation. To convey the happens-before order to the hardware, the

518

Jungi Jeong and Changhee Jung

PMEM-Spec compiler annotates a critical section to assign the spec-
ulation ID to each thread that enters therein without programmers’
effort. That way, PMEM-Spec can identify PM store misspeculation
when it receives data with a lower speculation ID than the previous
ones for a given cache block aligned address—e.g., this violates the
inter-thread persist-order.

Finally, PMEM-Spec takes advantage of failure-atomic software
to correct misspeculation by treating it as a virtual power failure [3,
8, 10, 15, 19, 20, 29, 31, 32, 34, 45]. Upon detecting misspeculation
during program execution, PMEM-Spec immediately interrupts the
operating system (OS). The OS then relays misspeculation detected
to the failure-atomic runtime that aborts the current failure-atomic
sections (FASEs) or transactions and executes the failure-recovery
protocol. Once the recovery completes (as defined in failure-atomic
runtime), the interrupted FASEs or transactions restart from the
beginning instead of re-executing the whole program. It turns out
that misspeculation is rare, and thus PMEM-Spec can accelerate PM
accesses without a hassle. Experimental results show that PMEM-
Spec outperforms the epoch-based persistency models with Intel
X86 ISA and HOPS [36], the state-of-the-art implementation of the
epoch-based model support by 27.2% and 10.6%, respectively.

In summary, this paper makes the following contributions:

e We show how an efficient architecture/OS/compiler inter-
action achieves a high-performance strict persistency at a
low hardware cost with minimal program change. For the
first time, we demonstrate that the strict persistency (PMEM-
Spec) can outperform the relaxed persistency (HOPS)

o We devise the decoupled persist-path that bypasses the cache
hierarchy and directly connects the CPU store queue to the
PM controller. The separate persist-path simplifies the intra-
thread persist-order by sending stores in order, leaving the
caches and their coherence unmodified.

o We classify how load and store misspeculations happen and
devise detection schemes leveraging the speculation window.
Misspeculation turns out to be rare, and thus delegating
the misspeculation handling to software does not impose
significant slowdown.

2 BACKGROUND
2.1 Persistency Models

The failure-atomicity ensures to recover data structures in persis-
tent memory after a power outage, which requires to control the
order of stores to persistent memory. However, modern hardware
features complicate the recoverability since they buffer stores and
reorder flushes to the underlying memory system. For instance,
write-back caches lazily flush dirty cache lines to memory without
preserving the order specified by the program.

Persistency models define the order of stores to persistent mem-
ory and allow programmers to control the persist-order in the
program [11, 17, 24, 30, 36, 39, 43]. The persistency models span
from the strict and relaxed models, which determine concurrency
of the persist operations [39]. For example, in the strict persistency
model or synchronous ordering, the volatile memory order equals
the persistent memory operations. This model is intuitive and eas-
ing the burden on the programmer. However, it costs performance
degradation to ensure failure-atomicity by limiting concurrency.

PMEM-Spec: Persistent Memory Speculation (Strict Persistency Can Trump Relaxed Persistency)

Core

11D [110-5 B persist-autter

. FrontEnd
Persist-Buffer

| § PMstores ‘ Last-level Cache

¢ PMIoad5¢ H
[oramcn | [emcu ‘i

BackEnd
Persist-Buffer

‘ Last-level Cache

[
DRAM
Iuads/s(cre5¢
[oramce | [eman [
| | Write-Buffer

DRAM
loads/stores

B PM | [oram | PM |

[Strict Persistency]
(a) DPO [30]

[Epoch Persistency]
(b) HOPS [36]

‘ 1 PM stores

ASPLOS 21, April 19-23, 2021, Virtual, USA

Persist Queue

. Strand Buffer

‘ Last-level Cache |
DRAM

PM
loads/stores loads/stores

oramctl | [Pmcal | ‘

L1D-$ HEY
 load-intent
i [stores

‘ Last-level Cache i

|
oramcrl | [emcal |

Speculation
Buffer

DRAM
loads/stores

4

Cow] o] Cown] [m |

[Strand Persistency]
(c) StrandWeaver [17]

[Strict Persistency]
(d) PMEM-Spec

Figure 1: Comparing implementations of architecture support for persistency models. Shaded components indicate new hard-

ware structures.

On the other hand, relaxed persistency models break the tie be-
tween volatile and persistent memory orders. For example, epoch
persistency models divide stores into epochs specified by barriers
and allow reordering in it [11, 24, 36, 43]. The persist-barrier strictly
orders stores in different epochs. These models deliver higher per-
formance than strict models by allowing out of order persists in
an epoch, increasing concurrency. Furthermore, strand persistency
creates a strand—each strand clears previous persist dependencies
and appears in the persist-order as a new thread. The strand persis-
tency model flushes multiple strands (e.g., epochs) simultaneously
if they do not have a dependency on each other, extracting more
concurrency within the program [17, 39].

2.2 Hardware Support for Persistency Models

Previous proposals allow programmers to define the desired persist-
order so that the hardware can enforce it [17, 30, 36]. Programmers
need to annotate program with the custom instructions based on the
persistency model they assume. On top of programmers’ annotation,
the hardware mechanisms enforce the desired ordering defined by
the persistency model.

For example, HOPS introduces ofence and dfence instructions
that replace SFENCE of Intel X86 [36] while StrandWeaver adds new
instructions that manipulate strands, such as New/JoinStrand and
persist-barrier [17]. As shown in Figure 1, although each design
presents different persistency models, all of them place a buffer
alongside the L1 cache, i.e., persist- [30, 36] or strand-buffer [17], to
govern the intra-thread persist-order. They either drop dirty cache
lines evicted from LLC [30, 36] or explicitly write-back them before
eviction [17]. Also, they monitor the cache-coherence messages
to identify inter-thread dependency. The loss of exclusive permis-
sion in the L1 cache creates inter-thread dependency between the
requester and the responder of coherence messages. Hardware is
responsible for enforcing inter-thread dependency when flushing
the persist or strand buffers.

3 MOTIVATION

3.1 Intrusive Hardware Extensions

Prior solutions require intrusive modifications on the existing cache
hierarchy to enforce the intra- and inter-thread persist-order. First,

519

they place a buffer next to the L1 cache to keep dirty cache blocks
before flushing them to PM. This buffer governs the intra-thread
persist-order. Moreover, they monitor the coherence messages in
the L1 cache to identify inter-thread ordering dependency. However,
the challenge arises when L1 caches evict dirty cache blocks to the
shared cache before flushing to PM. In this case, they cannot track
the dependency only with L1 cache coherence messages, which
might violate the inter-thread persist-order.

Although previous work proposed novel solutions, they come
at the costs of hardware complexity. For example, DPO extended
the cache-coherence protocol to include the persist-buffers [30].
Hence, this extension guarantees that the L1-cache eviction does not
cause missing inter-thread dependency tracking since the persist-
buffers hold the cache lines. Similarly, HOPS employed the sticky-M
state [36], initially introduced in Log-TM [35], which enabled to
track the ownership of the cache lines even after evicted to the
shared cache. Therefore, DPO and HOPS allow the dirty L1-cache
block eviction before being flushed from the persist-buffers but
need to incorporate the cache coherence mechanism to enforce the
inter-thread dependency.

On the other hand, StrandWeaver postpones the eviction from
the L1 cache until the corresponding block in the strand-buffer
flushes to PM [17]. For example, if a to-be-evicted block is found in
the strand-buffer, the L1 cache deallocates the dirty block and moves
it into the writeback buffer. The writeback buffer releases it after the
corresponding block in the strand-buffer is flushed. Furthermore,
if StrandWeaver receives an exclusive request to a dirty block in
the L1 cache, it delays the response until the strand-buffer flushes
it to PM. Lastly, StrandWeaver employs the persist queue to handle
persist-order-related instructions and reduce store queue overflow,
which stalls the CPU.

These extensions presented in previous proposals increase hard-
ware complexity in not only the cache hierarchy but the core. In-
stead, this paper proposes non-intrusive hardware changes introduc-
ing a minor extension to the store queue and not modifying the cache
hierarchy.

ASPLOS 21, April 19-23, 2021, Virtual, USA

mutex-lock or tx-begin

log1 log1 join-strand log1
log2 log2 log1 log2
CLwB ofence CLWB log1
SFENCE persist-barrier datal
datal datal data2
datal data2 new-strand spec-barrier
data2 dfence
CLWB log2
SFENCE CLWB log2
persist-barrier
data2
join-strand
mutex-unlock or tx-end
(@) ;lnlt)ell}é%’ (b) HOPS (c) StrandWeaver (d) PMEM-Spec

Figure 2: Programming models in different persistency mod-
els.

3.2 Instrumenting Persist-Order

Figure 2 compares the programming models of different persistency
models. In the relaxed persistency models, programmers must in-
strument program with ordering primitives based on the targeting
model so that the hardware can relax relax ordering constraints.
For example, HOPS places custom barrier instructions, ofence and
dfence, between log and data operations and at the end of failure-
atomic sections [36]. StrandWeaver inserts several instructions for
creating or joining strands [17]. Based on the persist-order speci-
fied in program, hardware can relax the ordering constraints and
exploit higher concurrency, leading to higher throughput than the
strict models. However, this approach has a significant drawback.
Program annotation increases the programming complexity since it
often requires a deep understanding of program semantics to insert
ordering primitives into the desired places. Otherwise, naive instru-
ments may not fully exploit concurrency in programs, resulting in
low hardware utilization.

On the other hand, hardware support for strict persistency does
not add custom instructions to instrument the persist-order but
uses the native primitives in unmodified programs [30]. This model
ensures the persist-order equal to the volatile memory order by
placing cache-flush followed by a store-fence instruction between
every NVM store, which is easily dealt with by a compiler or library.
Therefore, strict persistency always guarantees that NVM writes
happen in-order so that the system can recover from a crash if
combined with atomicity solutions. For example, DPO can run
the epoch-based persistency model with the Intel X86 ISA without
modification. However, this approach may show lower performance
than the relaxed model with custom instructions.

Ideally, hardware support must be transparent to software and
minimize the programming difficulty, which favors strict persis-
tency for its simple programming model. However, if suffers from
low performance due to its strict ordering constraints. To tackle
this presumption, this study presents hardware/software codesign
for strict persistency that outperforms the relaxed models.

520

Jungi Jeong and Changhee Jung

4 PMEM-SPEC OVERVIEW

4.1 Design Goals

In this paper, we propose PMEM-Spec that pursues the following
design goals:

o PMEM-Spec minimizes the hardware extension. PMEM-Spec
does not modify the cache hierarchy, including the cache-
coherence mechanism, and does not monitor it to track inter-
thread dependency. Instead, PMEM-Spec exploits the sep-
arate data-path for persists, bypassing the cache hierarchy
and directly connecting the store queue to the PM controller.

o PMEM-Spec minimizes the annotation from programmers.
Since PMEM-Spec follows the strict persistency model, it
does not require the persist-order annotation except the
spec-barrier instruction at the end of failure-atomic regions.

o Despite strict persistency, PMEM-Spec maximizes application
performance by allowing any PM accesses as they appear
to the PM controller while not delaying or stalling them in
caches.

4.2

Although CPU caches are critical to compensate for PM access
latency, they complicate to ensure the persist-order since they buffer
and reorder data writebacks to PM. This complication makes it
inevitable to bypass the cache hierarchy to minimize hardware
modifications. Therefore, PMEM-Spec provides a separate store-
path that directly connects the store queue to the PM controller,
as shown in Figure 1(d). PMEM-Spec uses this path to update PM
data, which means that the dirty cache blocks are silently dropped
on their eviction without updating PM. This unique architecture
allows the PM controller of PMEM-Spec to receive PM load and
store with separate paths, regular- (through caches) and persist-
path, respectively.

While the separated data-paths for persists are not new [30,
36], the prior solutions proposed the data-path connecting the
persist-buffers beside the L1 cache to the PM controller (shown
in Figure 1(a) and (b)). On the other hand, PMEM-Spec pushes
data being stored into the persist-path immediately when the store
instruction commits from the store queue. The persist-path does
not buffer data but directly sends them to the PM controller, which
coalesces and buffers the store data.

The persist-path guarantees that the data arrive at the PM con-
troller in the commit-order, rendering the intra-thread persist-order
equal to the volatile memory order. Therefore, PMEM-Spec provides
a strict persistency model, which simplifies the programming model,
as illustrated in Figure 2. On the other hand, the persist-paths in
each core operate independently and do not provide a global or-
dering. Stores in different paths can arrive at the PM controller out
of order, which can lead to violating the inter-thread dependency
(explained in Section 5.2).

PMEM-Spec does not require the ordering annotation by pro-
grammers except the durability barrier, spec-barrier. The spec-
barrier instruction guarantees that previous PM stores arrive at
the persistent domain (e.g., the PM controller). The spec-barrier
is the same as dfence of HOPS [36] and persist-barrier of

Separate Data-Path for Persists

PMEM-Spec: Persistent Memory Speculation (Strict Persistency Can Trump Relaxed Persistency)

—» Regular-Path

- =» Persist-Path

CPU---

Caches========-=

Figure 3: The Stale Read Problem.

StrandWeaver [17] and necessary to build a failure-atomic section
(FASE). Therefore, it is required to place the spec-barrier instruction
at the end of FASEs or transactions to guarantee durability. Further-
more, PMEM-Spec excludes the barrier-instruction between log and
data operations since they persist sequentially via the persist-path.

4.3 Speculative PM Accesses

PMEM-Spec speculates that all PM accesses (both load and store)
obey the correct ordering constraints and, thereby, executes them
as they appear to the PM controller. PMEM-Spec does not inter-
vene in PM accesses within cores and caches. However, due to the
separated persist-path, PMEM-Spec can encounter an ordering vio-
lation (e.g., misspeculation). For PM load, it must read the latest
value generated by the most recent store instruction, i.e., memory
consistency. However, PM load misspeculation can happen when
a load reads a stale value from PM because of a data-race in the
regular- and persist-path (Section 5.1). For PM stores, they must
persist in the program order, i.e., strict persistency. Stores from
different threads can result in store misspeculation due to a data-
race in persist-paths, which violates the inter-thread persist-order
(Section 5.2). In both misspeculation, PMEM-Spec must detect and
recover it for the program’s correctness. Section 5 elaborates on
how PMEM-Spec detects misspeculation.

4.4 Misspeculation Recovery

PMEM-Spec detects misspeculation in hardware but delegates re-
covery to software. To erase the speculated data, i.e., a stale value
for load misspeculation and a missing update for store misspecu-
lation, PMEM-Spec treats misspeculation as virtual power failure
and takes advantage of failure-atomic libraries by aborting and re-
executing current FASEs or transactions to recover [3, 8, 10, 15, 20,
31, 32, 34, 45]. If the hardware detects either load or store misspecu-
lation, it traps the operating system (OS) to notify the occurrence of
the ordering violation. Then, the OS signals the failure-atomic run-
time that handles misspeculation recovery. Note that PMEM-Spec
does not restart the whole program on a misspeculation; it only re-
executes the transactions or FASEs currently executing at the time
of misspeculation encountered. More details about misspeculation
recovery are covered in Section 6.

5 MISSPECULATION DETECTION

5.1 PM Load Misspeculation

5.1.1 Stale Read Problem. The latency difference between the
regular-path (e.g., PM load) and persist-path (e.g., PM store) can
cause the stale read problem. Since there is no ordering guarantee

521

ASPLOS 21, April 19-23, 2021, Virtual, USA

between the two paths, PM loads from the regular-path and PM
stores from the persist-path can appear in the PM controller out
of order. Figure 3 illustrates how the stale read problem occurs.
Suppose that CPU executes a store and load instructions to the
same cache block A. If the store completes (@), and caches evict the
block (@) before the load instruction, the load request goes to the
PM controller to fetch the block since it misses in caches (®). How-
ever, the block brought from PM is stale (@) since (1) PMEM-Spec
silently drops the dirty block A when evicted (8) without updating
persistent memory and (2) the data being stored (@) does not arrive
at the PM controller yet. Even if it is hard to happen, PMEM-Spec
observed PM load misspeculation (Section 8.4).

The prior studies presented solutions to prevent stale reads [30,
36]. DPO includes the persist-buffers in the cache-coherence domain
that guarantees the PM controller always serves with new data if it
is not found in caches. However, PMEM-Spec cannot leverage the
cache-coherence protocol since it bypasses the cache hierarchy to
minimize hardware changes. HOPS employs the hardware bloom
filter in the PM controller —which contains addresses of cache
blocks in the persist-buffers— to check for the stale read problem.
However, this approach requires the bloom filter insertion for every
PM store and checking for every PM load. HOPS postpones PM
read requests if the bloom filter conflicts with the target address or
produces a false positive.

5.1.2 Detecting Load Misspeculation. Instead, PMEM-Spec detects
PM load misspeculation later once it speculatively allows all PM
load accesses without delay. Ideally, a prior load request can be iden-
tified as misspeculation (e.g., the stale read problem) when stores
overwrite the block fetched by the load. For example, in Figure 3,
Ld(A) (®) will be identified as a stale read when St(A) arrives
at the PM controller (®). However, the question is how far stores
PMEM-Spec should monitor for overwriting. The key observation
is that misspeculation happens with a data-race in the data-paths
so that conflicting accesses must be executed simultaneously in an
instruction window. Therefore, speculation always will be considered
as correct or incorrect within a short window.

This observation drives us to devise a simple detection scheme
that monitors recently fetched blocks. PMEM-Spec records ad-
dresses of recently fetched blocks and monitors whether stores
overwrite them for a speculation window. The speculation win-
dow determines when the speculative access will be considered
safe. This window must be long enough to capture the worst-case
persist-path latency. Otherwise, the stale read problem goes un-
detected and can corrupt the programs’ correctness. Section 8.1
explains more details on the speculation window. The speculation
window begins when a load arrives at the PM controller. If a store
is preceding the load in the program order, it must appear to the
PM controller within the speculation window to identify the load
as misspeculation. Otherwise, the load will be considered correct
after the speculation window.

5.1.3 False Misspeculation. However, this monitoring scheme ends
up producing frequent false misspeculation—e.g., determining the
benign loads as stale reads. Figure 4 illustrates how the write-on-
allocation policy causes false misspeculation. Assuming that block
A is not present in caches, a store instruction should fetch block A
from PM. Although this fetching is safe, PMEM-Spec would classify

ASPLOS 21, April 19-23, 2021, Virtual, USA
= Regular-Path = =) Persist-Path Speculation Window

CPU

N
Ll
Safe, but detected
as misspeculation

PMC

Y

{Fetch)- {St(A))

Figure 4: False misspeculation in monitoring fetched block.

Table 1: Description of states in the automata.

States Description
Initial Inltllally, all memory blocks
are in the Initial state.
Evict PMEM-Spec starts monitoring the block
when PMC receives LLC writeback.
The monitored block is fetched by read
Speculated
requests from the regular path.
Misspeculation | The previous read was misspeculation.

Table 2: Description of inputs in the automata.

Inputs Description

WriteBack | LLC writeback from the regular path.
Read PM loads from the regular path.
Persist PM stores from the persist path.
Evict The speculation window expiration.

it as misspeculation when it receives the store data from the persist-
path since the data overwrites the recently fetched block A within
the speculation window. This false misspeculation always happens
for every store instruction that misses in caches, leading to not
acceptable recovery overheads. This limitation necessitates the new
detection scheme that produces no (or rare) false misspeculation.

5.1.4 Eviction-Based Detection. To reduce frequent false misspec-
ulation due to the write-on-allocation fetch, this paper presents
an eviction-based detection scheme. The key idea is to monitor
recently evicted blocks from the LLC instead of fetched blocks. The
rationale behind this approach is that the block should be evicted
before the load. Otherwise, caches will handle the load requests
instead of PM. If load requests do not reach PM, PMEM-Spec never
misspeculates PM loads, and the stale read problem does not occur.

PMEM-Spec uses automata to detect PM load misspeculation,
as shown in Figure 5. PMEM-Spec maintains the automata state
in the cache block granularity. Initially, all blocks in PM are in the
Initial state. Table 1 describes each automata state and its meaning.
Inputs for automata are explained in Table 2. Three inputs—e.g.,
WriteBack, Read, Persist—are requests received by the PM con-
troller from the regular- and persist-paths. The last one, Evict, is
a timer for the speculation window expiration. Note that PMEM-
Spec does not monitor any blocks until the PM controller receives
LLC writeback request (WriteBack), which changes the state from
Initial to Evict.

The pattern that leads to the Misspeculation state is WriteBack(s)
-Read(s)-Persist. Figure 6 illustrates how PMEM-Spec uses this

522

Jungi Jeong and Changhee Jung

Expire

WriteBack

Expire,
Persist

WriteBack

Persist

WriteBack
Read,
Persist

Figure 5: PM load misspeculation detection using automata.

= P Persist-Path

=) Regular-Path Speculation Window

Stale Read
CPU >
PMC -
(a) Detecting True Misspeculation
CPU <{Ld(A)) >
- \—< Cache-hit &
Cache-miss A .S.aie Read
PMC Fetch ! St(A)) 3>
N~ N

(b) Avoiding False Misspeculation

Figure 6: Eviction-based approach detects misspeculation
without false-positives.

pattern to detect misspeculation. In Figure 6a, suppose that the
store instruction updates block A in caches, and the block is evicted.
PMEM-Spec begins monitoring the evicted block when the PM con-
troller receives the dirty block and triggers the speculation window
(the yellow box). The PM controller then observes the fetch and
persist requests sequantially from the regular-path and persist-path
within the speculation window. When the PM controller accepts
the persist request from the persist-path, PMEM-Spec can precisely
identify the previous fetch was stale since the automata observe
the WriteBack-Read-Persist pattern. Note that if store A does not
appear in the speculation window, PMEM-Spec stops monitoring
the block (Expire).

Furthermore, Figure 6b shows that how PMEM-Spec avoids false
misspeculation by the write-on-allocation fetch. The block A is
fetched from PM by the cache-miss of the store instruction. Mean-
while, the load instruction is issued and pending in the MSHR of
caches waiting for the block allocation. Once the cache allocates the
block A, the load instruction accesses the block in caches instead of
persistent memory. In this case, since PMEM-Spec does not observe
the writeback requests, it does not consider thee block A for a po-
tential stale read candidate, e.g., it does not trigger the speculation
window. Therefore, false misspeculation does not happen.

5.2 PM Store Misspeculation

5.2.1 Inter-Thread Persist-Order Violation. The persist-paths in dif-
ferent cores run independently and concurrently. Thus, stores from

PMEM-Spec: Persistent Memory Speculation (Strict Persistency Can Trump Relaxed Persistency)

Thread 1 Thread 2
St(A) -..
Unlock .. Lock
S Ld®
A st(a)

Figure 7: Example of the inter-thread dependency.

different threads can arrive at the PM controller in any arbitrary
order. This implies that on the presence of inter-thread dependency,
ie., WAW (write-after-write) and RAW (read-after-write), PM store
misspeculation may occur unless the dependence order is preserved
during the PM access. For example, stores on the same cache block
in different threads can appear out of order in PM, violating the
inter-thread persist-order. The main reason for that is because the
persist-path bypasses the cache hierarchy, i.e., the coherence-order
and the persist-order can be different.

That is why prior works exploit the cache coherence messages
to identify inter-thread dependency in the cache block [17, 30, 36].
They extended the cache coherence mechanism to track inter-
thread dependency in all cache hierarchy. Unfortunately, this is
not a viable option to pursue a low-cost and non-intrusive design,
which leads PMEM-Spec’s persist-path to bypass the cache hier-
archy. Since PMEM-Spec cannot leverage the coherence traffic, it
must identify the inter-thread ordering violation only with the
stores observed in the PM controller.

5.2.2 Compiler-Assisted Detection. To overcome this challenge,
PMEM-Spec leverages the unique characteristic of data-race free
program. The main observation is that the memory order of con-
flicted accesses (e.g., WAW or RAW inter-thread dependency)
must be explicitly ordered in program by synchronization primi-
tives to be data-race free. For example, when threads have a race
on the same memory address, programmers should protect the
access with locks or semaphores to ensure correctness under the
underlying memory consistency model. We found out that existing
persistent programming models already assume a data-race free
program as their target [8, 20, 21, 32].

In light of this, PMEM-Spec exploits the happens-before order,
which is dynamically established by synchronization primitives at run
time, in order to enforce the inter-thread persist-order. This approach
allows PMEM-Spec to handle the inter-thread dependency without
tracking cache coherence traffic. Figure 7 shows an example of a
happens-before order made between two threads that write to the
same memory address A. Here, the mutex (lock/unlock) establishes
a happens-before order between the threads, thus confirming that
St (A) in thread 1 precedes St (A) of thread 2.

This implies that the speculation ID is atomically incremented by
the threads To convey the happens-before order to the persist-path,
our compiler first identifies such a critical section'and instruments
it with a speculation ID, i.e., a volatile global counter variable that
monotonically increases at the entrance of the critical section. in the
same order they enter critical sections. To realize this, PMEM-Spec
adds a new instruction, spec-assign, that reads the speculation
ID (the current counter value), saves it in a dedicated register, and
increments it. Once a lock is acquired for a thread to enter the

523

ASPLOS 21, April 19-23, 2021, Virtual, USA

Regular-Path Persist-Path

PM Load, WriteBack PM Store:
— : :
v v A4
Persistent Addr | State 5F|>SC Inserted
Memory -
Controller -)
Read-Queue Speculation Buffer ~ Write-Queue

Figure 8: The speculation buffer in the PM controller.

critical section, the compiler-inserted instrumentation code therein
saves the speculation ID in the register using spec-assign. When
PM stores in the critical sections leave the store buffer, the data
being stored is tagged with the speculation ID saved in the register
and pushed to the persist-path. That way, PMEM-Spec can accu-
rately deliver the dynamic store execution order—governed by the
happens-before order of synchronization operations—to the PM
controller.

Note that there is no need to identify store misspeculation outside
critical sections because the data-race free program guarantees the
absence of data-race. Therefore, when a thread exits the critical
section, PMEM-Spec stops tagging PM stores. For this purpose, our
compiler inserts another new instruction spec-revoke, that erases
the speculation ID, at the end of critical section. Likewise, the RAW
dependency between threads can be handled with the PM load
misspeculation detection scheme—e.g., Ld(A) of thread 2 should
appear later than St(A) of thread 1—as explained in Section 5.1.4.

PMEM-Spec saves/restores the special register storing the specu-
lation ID across context switches to virtualize it. If not virtualizing
the speculation ID, a thread is scheduled out inside a critical section
may not tag the speculation ID after the thread is scheduled in.

5.3 Speculation Buffer

PMEM-Spec implements the speculation buffer in the PM controller
to manage speculation. Figure 8 illustrates the architecture of the
speculation buffer. The Address fields store the cache-block aligned
addresses of the evicted blocks. The State fields maintain the au-
tomata state while the Spec-ID fields are used to detect PM store
misspeculation. Lastly, the Inserted fields store the current cycle
when PMEM-Spec begins the speculation window. PMEM-Spec cre-
ates a buffer entry when the PM controller receives LLC writeback
from the regular-path (for PM load misspeculation detection) or
persist requests from the persist-path (for PM store misspeculation
detection) and starts the speculation window. The entries are deallo-
cated after the speculation window expires. Note that PMEM-Spec
does not store data in the speculation buffer

PMEM-Spec can cause the processor to stall when the specula-
tion buffer has no free entries. Then, all cores pause and resume
after the speculation window to make free spaces in the speculation
buffer. Since the buffer entries are short-living and will be removed
after the speculation window, PMEM-Spec does not require a large
speculation buffer and can maintain high performance with a small
number of entries (e.g., four entries in our evaluation).

!For user-defined synchronization operations, PMEM-Spec requires programmer an-
notation since a compiler cannot identify them.

ASPLOS 21, April 19-23, 2021, Virtual, USA

6 MISSPECULATION RECOVERY

6.1 Software Support

This section explains the software support for PMEM-Spec to handle
misspeculation.

6.1.1 OS-Support. It requires OS support to deliver and detect
misspeculation to the failure-atomic runtime. When the PMEM-
Spec hardware detects misspeculation, it stores the physical address,
where the misspeculation occurred, into a designated space reserved
by the OS and generates a special HW interrupt. Since PMEM-Spec
introduces a new HW interrupt, the OS should implement an appro-
priate interrupt handler for misspeculation handling purpose. For
the HW interrupt raised by misspeculation detection, the OS should
relay the interrupt to the failure-atomic runtime. In case there are
multiple processes running failure-atomic solutions, the OS should
be able to identify which process needs misspeculation recovery.
To achieve this, the OS should maintain the mapping between the
physical address—where PMEM-Spec identified misspeculation—
and the process ID—where the failure-atomic program is executing.
The OS can read the physical address stored in the designated space
and find the process ID with this reverse mapping table. As a result,
for a HW interrupt due to misspeculation, the OS can relay the
interrupt to the exact process that requires misspeculation recovery.

6.1.2 Runtime-Support. PMEM-Spec leverages the failure-atomic
runtime to recover from misspeculation. One possible approach is
to restart the whole failure-atomic application; on receiving the
OS signal, the failure-atomic runtime could terminate all threads
and execute the failure-recovery protocol from scratch as if power
failure were encountered. However, recovering the entire process
can be expensive.

Instead of restarting the whole program, PMEM-Spec re-executes
only the interrupted FASEs or transactions to reduce misspeculation
handling overheads. To realize this, PMEM-Spec requires the failure-
atomic runtime to support the following:

o It should provide an abort handler that erases all interme-
diate data (i.e., both volatile and non-volatile) and restarts
an interrupted FASE or transaction from the beginning. The
transaction-based runtime naturally provides such an abort
handler [10, 31, 45], while the locking-based one requires an
extension [3, 8, 15, 20, 32, 34].

o It should register its own process ID in the OS’s interrupt
handler to receives misspeculation detection events.

o It should implement a misspeculation handler that receives
a misspeculation detection signal from the OS. Section 6.2
further details the implementation of this handler.

6.2 Misspeculation Recovery

Although it is sufficient to abort or restart only the thread encoun-
tering misspeculation, PMEM-Spec conservatively rollbacks all the
threads that are currently executing FASEs or transactions at the
moment of misspeculation detection. That is because the hardware
cannot figure out which thread causes the misspeculation. However,
it is still challenging to interrupt and abort the threads simultane-
ously; even if a process receives the misspeculation signal, only one
thread executes the interrupt handler while others do not.

524

Jungi Jeong and Changhee Jung

6.2.1 Lazy Recovery. To overcome this challenge, first, the failure-
atomic runtime should maintain a per-thread variable, the misspec-
ulation flag. A thread clears its own flag when it begins a new FASE
or transaction, while these flags are set to true by a misspeculation
handler on accepting the signal from OS. This handler sets the
misspeculation flag of the threads currently running transactions
to true while not modifying that of those outside transactions.

Second, although the hardware detected misspeculation in the
middle of transactions, the threads should rollback and restart after
completing the current FASEs or transactions. For example, the
transaction-based runtime can check the misspeculation flag at
the commit stage (e.g., validation phase) [10, 31, 45]. Similarly,
the locking-based runtime must check the flag right before the
FASE ends, unlocking the outermost lock [3, 8, 15, 20, 32, 34]. If
the misspeculation flag is true, a thread executes an abort handler
to invalidate all changes in volatile and non-volatile data and re-
executes the current FASE or transaction. Since re-executing clears
the flag, the thread does not abort again.

However, such a lazy recovery scheme might cause the applica-
tion to crash before the FASE or transaction completes. Since the
lazy scheme allows execution possibly with stale data (e.g., load
misspeculation) or missed updates (e.g., store misspeculation), the
application could encounter exceptions such as segmentation fault.
Therefore, the misspeculation handler must catch all exceptions
and selectively ignore them if they have been caused by misspecu-
lation. For example, if the misspeculation flag is set to true, i.e., the
exception was due to misspeculation, PMEM-Spec suppresses the
exception and rollbacks the interrupted thread instead.

6.2.2 Eager Recovery. Alternatively, the failure-atomic runtime
could adopt an eager recovery scheme that stops and restarts all
the threads immediately after receiving misspeculation detection.
To realize this, the failure-atomic runtime should broadcast the OS
signal to all threads within a process. For example, a thread that
accepts the OS signal can send a synthetic interrupt to all other
threads in a process using pthread_kill or similar mechanisms.
Then, other threads that receive the synthetic interrupt abort if
they are currently executing FASEs or transactions and restart the
FASE:s or transactions as defined in the abort handler of the failure-
atomic runtime. Since the eager recovery scheme does not wait until
the FASE or transaction finishes, it could reduce misspeculation
overheads. Extending the failure-atomic runtime with the eager
recovery scheme is left for our future work.

6.3 Recovery Overheads

Since PMEM-Spec does not restart the whole program on misspec-
ulation, i.e., the abort handler only re-executes the interrupted
transactions or FASEs, the recovery overheads are bound to the
execution time of FASEs or transactions to be re-executed. For long
transactions, they could adopt incremental checkpointing [44] and
checkpoint pruning [27, 33] to reduce the recovery overhead. More-
over, the idea of incremental recovery has already been adopted
by [32] that partitions program into small idempotent regions—
achieving 400x faster recovery for some long FASEs. Thus, the
misspeculation overhead is further bound to the re-execution of
the regions that encounter misspeculation.

PMEM-Spec: Persistent Memory Speculation (Strict Persistency Can Trump Relaxed Persistency)

Table 3: Simulator configuration.

2GHz, 8way-Oo0O
192-entry ROB

32-entry Ld/St Queue
32/64KB, 4-way, private

2ns hit latency

(1ns tag/1ns data latency)
16MB, 16-way, shared

20ns hit latency

(10ns tag/10ns data latency)
32/64-entry read/write queue
4-entry speculation buffer
Read = 175ns/Write = 94ns
20ns

Core

L1 I/D Cache

L2 Cache

PM Controller

PM
Persist-Path

7 LIMITATIONS

PMEM-Spec currently cannot support systems with multiple PM
controllers. Since PMEM-Spec detects the ordering violation inside
the PM controller, it cannot detect the ordering violation of stores
that access different PM controllers in the current design. To guar-
antee the correctness with multiple PM controllers, PMEM-Spec
requires an extension to an on-chip network to make it respect the
store order. We leave this extension as our future work.

Besides, compared to prior work that employs persist-buffers in
the cache hierarchy [17, 30, 36], PMEM-Spec could generate more
traffic to the PM controller since all PM stores bypass the caches.
Therefore, in a pathological case such as write-dominant streaming
applications, PMEM-Spec could stall CPUs due to the speculation
buffer overflow. However, we have not observed such bursty writes
in the benchmarks we evaluated.

8 EVALUATION

8.1 Methodology

We implemented and evaluated PMEM-Spec in the full-system sim-
ulation mode of the gem5 simulator [5]. We used the Linux kernel
version 4.8.13 and Ubuntu 16.04. Table 3 summarizes the simulation
configuration. We model the read and write latencies of a PM de-
vice by measuring the actual latency of Intel’s Optane memory [2].
By default, we configure the persist-path latency to 20ns, which
is longer than L1-to-PMC latency (11ns). This latency is reason-
able (and conservative) if we implement the decoupled path from a
core to the memory controller. If the persist-path latency is shorter
than the L1-to-PMC latency, PM load misspeculation never occurs.
We evaluate PMEM-Spec with different persist-path latencies in
Section 8.3. We assume that the persist-paths are connected in
the ring-bus, configuring the speculative period as the number of
cores X the idle persist-path latency, which is 160ns in the main
experiment.

Also, the speculation buffer has 4-entry where each entry re-
quires 16B to store Address (8B), state (2-bit), the speculation ID
(32-bit) and 30-bit for the Inserted field. Therefore, PMEM-Spec
requires a total of 64B of storage overheads for the speculation
buffer. We empirically selected the speculation buffer size. If not
mentioned otherwise, the speculation buffer size is four. Note, the
speculation buffer does not require nonvolatility. Thus, it has more

525

ASPLOS 21, April 19-23, 2021, Virtual, USA

Table 4: Benchmarks used in our evaluation.

Benchmarks Description
Random swaps of array elements [30]

Insert/delete nodes in a queue [30]

Array Swaps

Concurrent Queue

Hashmap Read/update values in a hashmap [30]
Insert/delete entries

RB-Tree in a Red-Black tree [30]
Update location transaction

TATP in TATP [30]

TPCC New order transaction in TPCC [30]

OLTP system that emulates a travel
reservation system in Mnemosyne [45]
In-memory Key-Value store

in Mnemosyne [45]

Vacation [7]

Memcached [14]

room to grow compared to Intel’s Write Pending Queue (WPQ),
which must be drained to PM on power failure. We studied the
impact of the speculation buffer size in Section 8.3.2. We assume
that the PM controller supports ADR [40] and is in the persistent
domain. All stores to PM from the persist-path will be durable once
they appear at the PM controller.

Table 4 lists the benchmarks we used to evaluate PMEM-Spec.
We evaluate PMEM-Spec with a set of microbenchmarks. The Ar-
ray Swaps, Concurrent Queue, Hashmap, and RB-Tree are simi-
lar to those in NV-Heaps [10], DPO [30], and StrandWeaver [17].
TATP [37] benchmark executes the update location transactions,
and TPCC [4] benchmark performs the new order transactions.
These benchmarks provide failure-atomicity via undo-logging. Mi-
crobenchmarks run eight threads, and each thread performs 100K
FASEs with a data size of 64B. Additionally, we study the real appli-
cations, Vacation [7] and Memcached [14]. They also run eight
threads and use the Mnemosyne framework to support failure-
atomicity. The data size of Memcached is 1024B. To measure the
throughput of microbenchmarks, we only measured the multi-
threaded kernel without considering the single-threaded initial-
ization phase. For Vacation and Memcached, we measured the total
execution time.

We compare the following designs in our evaluation:

o Intel X86: This design implements the epoch-based persis-
tency model with CLWB and SFENCE instructions. SFENCE
divides a program into epochs and ensures prior CLWBs
complete before commit. Also, SFENCE orders log and data
operations in this design.

e DPO: This design implements DPO [30] that builds the
buffered strict persistency model. This design shares the
same benchmarks with the Intel X86 design, using CLWB
and SFENCE.

e HOPS: This design implements HOPS [36] that builds the
epoch-based persistency model. HOPS implements ofence
that divides the program into epochs and dfence that en-
sures durability by draining the persist-buffer. The ofence
flushes the persist-buffer asynchronously while the dfence
waits until the persist buffers drain. The ofence orders log
and data writes while dfence ensures previous PM stores
durability.

ASPLOS 21, April 19-23, 2021, Virtual, USA

I IntelX86 (Epoch)

[DPO (Strict)

I HOPS (Epoch)

Jungi Jeong and Changhee Jung

3 PMEM-Spec (Strict)

=

1.00

0.50

0.25

Normalized Throughput

0.00
HashMap

RB-Tree

TATP

Queue

ArraySwap

TPCC

Geomean

Memcached
r90w10

Memcached
r10w90

Memcached
r50w50

Vacation

Figure 9: Performance comparison in the 8-core system.

o PMEM-Spec: This design implements our proposed archi-
tecture, PMEM-Spec. In this design, benchmarks execute no
cache-flush and ordering instructions but spec-barrier at
the end of FASEs or transactions.

8.2

Figure 9 compares the performance of each design in the 8-core sys-
tem. We normalized throughput to the baseline, Inte1X86-Epoch,
and configured the persist-path latency of all DPO, HOPS, and
PMEM-Spec to 20ns.

Performance Comparison

8.2.1 Compared to the Baseline Intel X86. PMEM-Spec outperforms
the Intel X86 epoch-based model, although PMEM-Spec implements
a strict persistency model that does not relax the ordering con-
straints as the epoch-based model does. In IntelX86, SFENCE divides
the program into epochs by ordering log and data operations and
stalls CPUs until prior cache-flushes complete. Furthermore, CLWB
and SFENCE consume the store queue entries, blocking CPUs if
the store queue overflows. On the other hand, PMEM-Spec does
not execute ordering primitives such as CLWB and SFENCE since
the persist-path provides the intra-thread persist-order. As a result,
PMEM-Spec shows a 1.27x speedup over the IntelX86 baseline in
the 8-core system.

PMEMS-Spec and other related work do not show performance
improvement over the baseline for Queue and Hashmap benchmarks.
These benchmarks have short failure-atomic sections, leading to
execute persist-barrier instructions frequently. Since the persist-
path latency is about twice longer than the regular-path, the persist-
barrier overheads are more dominant in PMEM-Spec and HOPS.
However, the persist-barriers in PMEM-Spec (e.g., spec-barrier) and
HOPS (e.g., dfence) do not block volatile memory operations as
SFENCE does. Therefore, PMEM-Spec and other schemes show
comparable throughput even with higher persist-path latency.

On the other hand, PMEM-Spec shows significant performance
improvement on the real applications, such as Vacation and Mem-
cached. These benchmarks have relatively long transactions where
PMEM-Spec can have enough room for speculation. Therefore,
PMEM-Spec outperforms the baseline 33% and more than 40% in
Vacation and Memcached, respectively. Note that PMEM-Spec only
stalls at the end of failure-atomic regions with the spec-barrier in-
struction, while IntelX86 frequently executes SFENCE in the middle
of failure-atomic regions.

526

8.2.2 Compared to Previous Work. DPO even shows lower through-
put than the baseline since it initially targeted the relaxed consis-
tency model of the ARM architecture. Therefore, DPO enforces the
persist-order for not only SFENCE but other barriers inherited in
programs. However, this constraint is not necessary for the TSO
of the Intel X86 architecture. Furthermore, DPO globally serializes
PM stores and allows only a single flush to the persistent memory
controller at once. On the other hand, HOPS proposed the custom
instructions, lightweight ordering primitives such as ofence and
dfence that replace SFENCE in the IntelX86 design. As a result,
HOPS achieves a 15% higher throughput than the baseline.

However, PMEM-Spec also outperforms the prior studies, both
DPO and HOPS. HOPS costs additional cycles to lookup the bloom
filter in the PM controller for every PM load request and delays them
if the bloom filter conflicts. Even if the bloom filter conflicts are
rare, every PM load must seek the bloom filter before accessing PM.
This limitation hinders HOPS from performing well in Mnemosyne
benchmarks, where they have dominant PM loads compared to
microbenchmarks. Furthermore, HOPS incurs an additional cycle
in the bus between the private and shared caches since it needs to
transfer an extra bit (e.g., sticky bit).

On the other hand, PMEM-Spec allows PM accesses without
stalling, achieving higher throughput in microbenchmarks and
Mnemosyne benchmarks. Therefore, although HOPS implements
the epoch-based persistency model, PMEM-Spec delivers a higher
throughput, which provides the strict model. This result demon-
strates that the strict model can outperform the relaxed one with
architecture implementation.

8.3 Sensitivity Study

8.3.1 Number of CPUs. As the number of CPUs in a system in-
creases, the separate data-paths put more pressure on the intercon-
nection network. Figure 10 shows the throughput of all designs,
including PMEM-Spec, in the 16-/32-/64-core systems.

In particular, DPO shows a lower throughput than the baseline
in all benchmarks. DPO burdens another pressure on the cache-
coherence bus since it includes the persist-buffer into the coherence
domain. Therefore, as the number of CPUs increases, DPO would
suffer more slow-down. Although HOPS shows higher throughput
than the baseline in 16-/32-/64-core systems, it suffers performance
overheads in caches and the PM controller. Finally, PMEM-Spec
outperforms the baseline and HOPS by 18.8%/8.2%, 18.2%/8.0%, and
17.1%/10% in the 16-/32-/64-core systems, respectively.

PMEM-Spec: Persistent Memory Speculation (Strict Persistency Can Trump Relaxed Persistency)

ArraySwap Queue

HashMap

ASPLOS 21, April 19-23, 2021, Virtual, USA

RB-Tree TATP

/ﬁ\

Normalized Throughput

—— IntelX86 (Epoch)
—— DPO (Strict)
—— HOPS (Epoch)
—— PMEM-Spec (Strict)

0.9

Normalized Throughput
Normalized Throughput
Normalized Throughput

gy

i

Throughput

0

0.9 0.8

Normalized

3

0.8

©

16 32
Number of threads

64 8 16 32 64

Number of threads

©

TPCC Vacation

16

Number of threads

Memcached
r50w50

32

2
?
©

16 32
Number of threads

2

16 32
Number of threads

Memcached
r10w90

Memcached
r90w10

/<

Normalized Throughput
Normalized Throughput
Normalized Throughput

W

Normalized Throughput

W

Normalized Throughput

5

©

16 32
Number of threads

64 8 16 32
Number of threads

2

16

Number of threads

32

2
?
©

16
Number of threads

M
8
2
®

16 32 6
Number of threads

?

Figure 10: Sensitivity study of different numbers of threads.

0.95

Normalized Throughput

4 8 16

Speculation Buffer Sizes

Figure 11: Sensitivity study of different speculation buffer
sizes in the 8-core system.

BN HOPS (Epoch) I PMEM-Spec (Strict)

i

© &

Normalized Throughput

Figure 12: Sensitivity study of different persist-path laten-
cies.

8.3.2 Speculation Buffer Sizes. Figure 11 shows the average through-
put of benchmarks in the 8-core system when varying the specula-
tion buffer size. If the speculation buffer becomes full, all cores must
pause for the speculation window to wait for the entries to expire
and resume. In particular, the application often experience stalls
due to the speculation buffer full when the speculation buffer size is
one, Such frequent pauses result in 12.8% throughput degradation
compared to the overflow-free case, which is the entry size of 16.
Note that PMEM-Spec can maintain the speculation buffer since 1)
it creates the speculation buffer entry on the dirty block eviction
from the last-level cache, and 2) they are short-living only for the
speculation window. As the size of the speculation buffer increases,
the average throughput also improves. When it comes to the spec-
ulation buffer with 16-entry, we have not observed overflows.

527

8.3.3 Persist-Path Latency. Figure 12 plots the geomean through-
put of all benchmarks when changing the persist-path latency from
20ns to 100ns for HOPS and PMEM-Spec. We fixed the regular-path
latency during the experiments. Since the durability barrier, such as
dfence or spec-barrier, is not frequent, both HOPS and PMEM-Spec
show higher performance than the baseline, even if the persist-path
latency increases to 100ns.

8.4 Misspeculation Rates

Misspeculation rate is crucial in PMEM-Spec. If misspeculation
happens frequently, the recovery overhead will outweigh the per-
formance improvement. In our evaluation, PMEM-Spec never expe-
rienced misspeculation.

Although we have written a synthetic program that causes load
misspeculation, misspeculation is extremely rare in practice. The
following is how the synthetic program generates PM load misspec-
ulation. First, the program updates data in the L1 cache then should
make conflicting loads to the same cache set but different cache
lines to evict the block all the way to PM. Depending on the cache
hierarchy, the program may requires tens of memory accesses. Sec-
ond, the program should load the data from PM instead of caches.
For the PM load to be misspeculation, the program must execute all
following loads before the store data arrives at the PM controller—
e.g., they must be done within the persist-path latency. Indeed, this
code pattern is not realistic. Furthermore, PM load misspeculation
is only observed under an unrealistically long persist-path latency
(e.g., 10x slower). Note that when the persist-path latency is shorter
than the one of regular-path, PM load misspeculation never occurs.

Also, PM store misspeculation that only happens with inter-
thread dependencies is utterly rare. According to the prior study [36],
typical PM applications have almost zero inter-thread dependen-
cies in a 50 micro-second window. Since PMEM-Spec’s speculation
window is orders-of-magnitude shorter than 50 micro-second, we
can expect PM store misspeculation to be extremely rare as well.

9 RELATED WORK

Persistency models: Prior works have proposed persistency mod-
els that define the store orders to persistent memory [1, 11, 39].
Several solutions presented their hardware implementations [12,

ASPLOS 21, April 19-23, 2021, Virtual, USA

17, 24, 30, 36, 41, 43]. DPO [30] implements the relaxed consis-
tency buffered strict persistency (RCBSP). The DPO has a dedicated
persist-path similar to PMEM-Spec and enforces the order specified
by persistent and volatile barriers. However, it allows a single flush
to persistent memory at a time and, thereby, limits concurrency.
Moreover, it introduces the persist buffers alongside the L1 cache
and snoops the cache-coherence traffic to identify the inter-thread
dependency. HOPS [36], Shin et al. [43], and Joshi et al. [24] pre-
sented implementations of the buffered epoch persistency model
with optimization on persist-barriers. Similar to PMEM-Spec, Shin
et al. speculate the execution without stalling on the persist-barrier.
However, Shin et al. do not have a dedicated path for persists.
PMEM-Spec addressed challenges in detecting and handling mis-
speculation. Joshi et al. proposed an efficient implementation of
persist-barriers. However, PMEM-Spec does not stall on the persist-
barrier and guarantees intra-thread ordering with the persist-path.
HOPS incurs an extra latency on every NVM reads by consulting
the bloom filter to check the persist-path conflict. Furthermore,
Dananjaya et al. present the lazy release persistency that designs
the hardware for log-free data (LFD) structures [12].

In particular, StrandWeaver [17] presented the hardware im-
plementation of the strand persistency model, initially proposed
in Pelly et al. [39]. StrandWeaver allows multiple epochs to flush
concurrently if not dependent, requiring programmers to denote
creating and joining strands. The authors demonstrated the ef-
ficiency of StrandWeaver by showing better performance than
HOPS, the state-of-the-art epoch-based persistency model. How-
ever, StrandWeaver extended a core with the persist queue along
with load/store queues and caches with the strand-buffer and co-
herence mechanism that delays a response of exclusive requests.
On the other hand, PMEM-Spec requires much lower hardware
overheads compared to StrandWeaver. PMEM-Spec leaves the CPU
cache unmodified and does not need to insert the persist-order
information in programs, except for indicating the end of failure-
atomic regions. However, this applies to all other prior work as
well.

Recently, Themis [41] presented multi-store-path architecture to
PM that differentiates temporal and non-temporal stores. Themis
uses a non-temporal store path as a fast store-path to PM, while
temporal stores use a slow data-path. Due to paths’ latency dif-
ference, Themis can eliminate almost all persist-barriers, leading
to higher performance of persistent applications. Although the
multi-store-path architecture of Themis is similar to PMEM-Spec’s
separated load/store paths, it has the following differences. First,
Themis assumes multiple store paths with different latencies. On
the other hand, PMEM-Spec proposes separated load/store paths
that potentially have no ordering guarantee in between. More im-
portantly, Themis also requires CPU cache modifications similar to
previous works [17, 30, 36], while PMEM-Spec does not.

Software failure-atomic solutions: PMEM-Spec relies on the
software-based failure-atomic frameworks to handle misspecu-
lation. Numerous previous studies proposed atomic updates in
the software [3, 8-10, 15, 20, 21, 31, 32, 34, 45]. NV-Heaps [10],
Mnemosyne [45], DudeTM [31], and ArchTM [46] provide library
interfaces to build persistent memory data structures with transac-
tions. Furthermore, SoftWrap [15], REWIND [9], Kamino-Tx [34],
NVThreads [20], ATLAS [8], JUSTDO logging [21], and iDO [32]

528

Jungi Jeong and Changhee Jung

support mutex-based failure-atomic regions. PMEM-Spec can take
advantage of these studies with an extension described in Sec-
tion 6.1.

Hardware failure-atomic solutions: Although PMEM-Spec
mainly relies on the software-based failure-atomic solutions, it can
also use the hardware-based frameworks [6, 13, 18, 22, 23, 25, 26,
38, 42]. Most hardware-based proposals assume the locking-based
isolation technique and do not support roll-back [6, 13, 18, 23, 26,
38, 42]. Therefore, PMEM-Spec requires these studies to support
aborting intermediate states and re-executing transactions from the
beginning, as elaborated in Section 6.1. On the other hand, a few
studies have proposed hardware-based durable transactions that
naturally provide aborts and restarts on conflicts [22, 25]. Hence,
these studies show a better bit for PMEM-Spec since they require
minor changes.

10 CONCLUSION

We proposed PMEM-Spec (persistent memory speculation), a novel
hardware/software codesign scheme that achieves lightweight yet
performant persist ordering. PMEM-Spec allows any persistent
memory accesses speculatively without delaying them but detects
ordering violation (e.g., misspeculation) in both load and store in-
structions. Upon detecting misspeculation, PMEM-Spec delegates it
to the software failure-atomicity mechanism to recover from it. Also,
PMEM-Spec leverages the separate FIFO data-path—connected to
CPU’s store queue— for persists, leaving CPU and caches unmod-
ified and providing an intra-thread ordering guarantee without
inserting barriers into program. Given that misspeculation is very
rare, PMEM-Spec solves both performance and programmability
problems of prior work without complicating the hardware.

ACKNOWLEDGEMENTS

We would like to thank our shepherd, Michael Swift, for his invalu-
able feedback. Our thanks also to the anonymous ASPLOS reviewers
for their insightful comments, to Aasheesh Kolli for providing us
with his simulator code, and the members of the CompArch group
for early discussions on the project. This work was supported by
NSF grants 1750503 (CAREER) and 1814430.

REFERENCES

[1] [n.d.]. Intel 64 and IA-32 Architecture Software Developer’s Manual Volume
2A. https://software.intel.com/content/www/us/en/develop/download/intel-64-
and-ia-32-architectures-software-developers-manual-volume- 2a-instruction-
set-reference-a-1.html.

[n.d.]. Intel Optane Persistent Memory. https://www.intel.com/content/www/
us/en/architecture-and-technology/optane-dc-persistent-memory.html.

[n.d.]. PMDK: Persistent Memory Development Kit. https://github.com/pmem/
pmdk.

[n.d.]. TPC Benchmark C. http://www.tpc.org/tpc_documents_current_versions/
pdf/tpc-c_v5.11.0.pdf.

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 Simulator. SSIGARCH Comput. Archit.
News (2011).

Miao Cai, Chance C. Coats, and Jian Huang. 2020. Hoop: Efficient Hardware-
Assisted out-of-Place Update for Non-Volatile Memory.

Chi Cao Minh. 2008. Designing an Effective Hybrid Transactional Memory System.
Ph.D. Dissertation.

Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. 2014. Atlas:
Leveraging Locks for Non-Volatile Memory Consistency. In Proceedings of the

5

https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-software-developers-manual-volume-2a-instruction-set-reference-a-l.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-software-developers-manual-volume-2a-instruction-set-reference-a-l.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-software-developers-manual-volume-2a-instruction-set-reference-a-l.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://github.com/pmem/pmdk
https://github.com/pmem/pmdk
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf

PMEM-Spec: Persistent Memory Speculation (Strict Persistency Can Trump Relaxed Persistency)

[9

=

[10]

[11]

[12

[13

[14]
[15]

(16

(17

[18

[19]

[20]

[21]

[22]

[23]

[24]

[25

[26

[27]

ACM International Conference on Object Oriented Programming Systems Languages
& Applications (OOPSLA).

Andreas Chatzistergiou, Marcelo Cintra, and Stratis D. Viglas. 2015. REWIND:
ReCovery WRite-Ahead System for In-Memory Non-Volatile DAta-Structures.
Proc. VLDB Endow. (2015).

Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta,
Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps: Making Persistent Objects
Fast and Safe with next-Generation, Non-Volatile Memories. In Proceedings of
the International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS).

Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Ben-
jamin Lee, Doug Burger, and Derrick Coetzee. 2009. Better I/O through Byte-
Addressable, Persistent Memory. In Proceedings of the ACM SIGOPS Symposium
on Operating Systems Principles (SOSP).

Mahesh Dananjaya, Vasilis Gavrielatos, Arpit Joshi, and Vijay Nagarajan. 2020.
Lazy Release Persistency. In Proceedings of the International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS).
Kshitij Doshi, Ellis Giles, and Peter Varman. 2016. Atomic persistence for SCM
with a non-intrusive backend controller. In IEEE International Symposium on
High Performance Computer Architecture (HPCA).

Brad Fitzpatrick. 2004. Distributed Caching with Memcached. Linux J. (2004).
Ellis Giles, Kshitij Doshi, and Peter Varman. 2015. SoftWrAP: A lightweight
framework for transactional support of storage class memory. In Symposium on
Mass Storage Systems and Technologies (MSST).

Vaibhav Gogte, Stephan Diestelhorst, William Wang, Satish Narayanasamy, Pe-
ter M. Chen, and Thomas F. Wenisch. 2018. Persistency for Synchronization-Free
Regions. In Proceedings of the ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI).

Vaibhav Gogte, William Wang, Stephan Diestelhorst, Peter M. Chen, Satish
Narayanasamy, and Thomas F. Wenisch. 2020. Relaxed Persist Ordering Us-
ing Strand Persistency. In Proceedings of the ACM/IEEE Annual International
Symposium on Computer Architecture (ISCA).

Siddharth Gupta, Alexandros Daglis, and Babak Falsafi. 2019. Distributed Log-
less Atomic Durability with Persistent Memory. In Proceedings of the Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).

Swapnil Haria, Mark D. Hill, and Michael M. Swift. 2020. MOD: Minimally
Ordered Durable Datastructures for Persistent Memory. In Proceedings of the
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS).

Terry Ching-Hsiang Hsu, Helge Briigner, Indrajit Roy, Kimberly Keeton, and
Patrick Eugster. 2017. NVthreads: Practical Persistence for Multi-Threaded Appli-
cations. In Proceedings of the European Conference on Computer Systems (EuroSys).
Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. 2016. Failure-Atomic Per-
sistent Memory Updates via JUSTDO Logging. In Proceedings of the International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS).

Jungi Jeong, Jaewan Hong, Seungryoul Maeng, Changhee Jung, and Youngjin
Kwon. 2020. Unbounded Hardware Transactional Memory for a Hybrid
DRAM/NVM Memory System. In Proceedings of the Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO).

Jungi Jeong, Chang Hyun Park, Jachyuk Huh, and Seungryoul Maeng. 2018.
Efficient Hardware-Assisted Logging with Asynchronous and Direct-Update
for Persistent Memory. In Proceedings of the Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO).

Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis Viglas. 2015. Efficient
Persist Barriers for Multicores. In Proceedings of the International Symposium on
Microarchitecture (MICRO).

Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis Viglas. 2018. DHTM:
Durable Hardware Transactional Memory. In Proceedings of the ACM/IEEE Annual
International Symposium on Computer Architecture (ISCA).

Arpit Joshi, Vijay Nagarajan, Stratis Viglas, and Marcelo Cintra. 2017. ATOM:
Atomic Durability in Non-volatile Memory through Hardware Logging. In Pro-
ceedings of the IEEE International Symposium on High Performance Computer
Architecture (HPCA).

Hongjune Kim, Jianping Zeng, Qingrui Liu, Mohammad Abdel-Majeed, Jaejin Lee,
and Changhee Jung. 2020. Compiler-directed soft error resilience for lightweight
GPU register file protection. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI).

529

[28

[29

[30

[31

[32

[33

[34

@
2

[36

(37]

[38

@
20,

[40]

[41

[42

[43

[44]

[45

[46]

ASPLOS 21, April 19-23, 2021, Virtual, USA

Aasheesh Kolli, Vaibhav Gogte, Ali Saidi, Stephan Diestelhorst, Peter M. Chen,
Satish Narayanasamy, and Thomas F. Wenisch. 2017. Language-Level Persistency.
In Proceedings of the Annual International Symposium on Computer Architecture
(ISCA).

Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M. Chen, and Thomas F. Wenisch.
2016. High-Performance Transactions for Persistent Memories. In Proceedings of
the International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS).

Aasheesh Kolli, Jeff Rosen, Stephan Diestelhorst, Ali Saidi, Steven Pelley, Sihang

Liu, Peter M. Chen, and Thomas F. Wenisch. 2016. Delegated Persist Ordering. In
Proceeding of the Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO).

Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yongwei Wu, Weimin
Zheng, and Jinglei Ren. 2017. DudeTM: Building Durable Transactions with
Decoupling for Persistent Memory. In Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS).

Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee, Michael L. Scott, Sam H. Noh, and
Changhee Jung. 2018. IDO: Compiler-Directed Failure Atomicity for Nonvolatile
Memory. In Proceedings of the Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO).

Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari. 2016. Compiler-
directed lightweight checkpointing for fine-grained guaranteed soft error recov-
ery. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC).

Amirsaman Memaripour, Anirudh Badam, Amar Phanishayee, Yanqi Zhou, Ram-
natthan Alagappan, Karin Strauss, and Steven Swanson. 2017. Atomic In-Place
Updates for Non-Volatile Main Memories with Kamino-Tx. In Proceedings of the
European Conference on Computer Systems (EuroSys).

Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill, and David A.
Wood. 2006. LogTM: log-based transactional memory. In The International Sym-
posium on High-Performance Computer Architecture (HPCA).

Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M. Swift, Haris Volos, and
Kimberly Keeton. 2017. An Analysis of Persistent Memory Use with WHIS-
PER. In Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS).

Simo Neuvonen, Antoni Wolski, Markku Manner, and Vilho Raatikka.
2011. Telecom Application Transaction Processing Benchmark. http://
tatpbenchmark.sourceforge.net

Matheus A. Ogleari, Ethan L. Miller, and Jishen Zhao. 2018. Steal but No Force:
Efficient Hardware Undo+Redo Logging for Persistent Memory Systems. In
Proceeding of the IEEE International Symposium on High Performance Computer
Architecture (HPCA).

Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. 2014. Memory Persistency.
In Proceeding of the Annual International Symposium on Computer Architecuture
(ISCA).

Andy M Rudoff. [n.d.]. Deprecating the PCOMMIT Instruction.
software.intel.com/blogs/2016/09/12/deprecate-pcommit-instruction.
Sara Mahdizadeh Shahrai, Seyed Armin Vakil Ghahani, and Aasheesh Kolli. 2020.
(Almost) Fence-less Persist Ordering. In Proceedings of the Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO).

Seunghee Shin, Satish Kumar Tirukkovalluri, James Tuck, and Yan Solihin. 2017.
Proteus: A Flexible and Fast Software Supported Hardware Logging Approach
for NVM. In Proceedings of the Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO).

Seunghee Shin, James Tuck, and Yan Solihin. 2017. Hiding the Long Latency
of Persist Barriers Using Speculative Execution. In Proceedings of the Annual
International Symposium on Computer Architecture (ISCA).

Jaswanth Sreeram and Santosh Pande. 2012. Safe Compiler-Driven Transaction
Checkpointing and Recovery. In Proceedings of the ACM International Conference
on Object Oriented Programming Systems Languages and Applications (OOPSLA).
Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011. Mnemosyne: Light-
weight Persistent Memory. In Proceedings of the International Conference on
Architectural Support for Programming Languages and Operating Systems (ASP-
LOS).

Kai Wu, Jie Ren, Ivy Peng, and Dong Li. 2021. ArchTM: Architecture-Aware,
High Performance Transaction for Persistent Memory. In USENIX Conference on
File and Storage Technologies (FAST).

https://

http://tatpbenchmark.sourceforge.net
http://tatpbenchmark.sourceforge.net
https://software.intel.com/blogs/2016/09/12/deprecate-pcommit-instruction
https://software.intel.com/blogs/2016/09/12/deprecate-pcommit-instruction

	Abstract
	1 Introduction
	2 Background
	2.1 Persistency Models
	2.2 Hardware Support for Persistency Models

	3 Motivation
	3.1 Intrusive Hardware Extensions
	3.2 Instrumenting Persist-Order

	4 PMEM-Spec Overview
	4.1 Design Goals
	4.2 Separate Data-Path for Persists
	4.3 Speculative PM Accesses
	4.4 Misspeculation Recovery

	5 Misspeculation Detection
	5.1 PM Load Misspeculation
	5.2 PM Store Misspeculation
	5.3 Speculation Buffer

	6 Misspeculation Recovery
	6.1 Software Support
	6.2 Misspeculation Recovery
	6.3 Recovery Overheads

	7 Limitations
	8 Evaluation
	8.1 Methodology
	8.2 Performance Comparison
	8.3 Sensitivity Study
	8.4 Misspeculation Rates

	9 Related Work
	10 Conclusion
	References

