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ABSTRACT
Energy harvesting systems have shown their unique benefit of
ultra-long operation time without maintenance and are expected
to be more prevalent in the era of Internet of Things. However,
due to the batteryless nature, they suffer unpredictable frequent
power outages. They thus require a lightweight mechanism for
crash consistency since saving/restoring checkpoints across the
outages can limit forward progress by consuming hard-won energy.
For the reason, energy harvesting systems have been designed with
a non-volatile memory (NVM) only. The use of a volatile data cache
has been assumed to be not viable or at least challenging due to the
difficulty to ensure cacheline persistence.

In this paper, we propose ReplayCache, a software-only crash
consistency scheme that enables commodity energy harvesting sys-
tems to exploit a volatile data cache. ReplayCache does not have to
ensure the persistence of dirty cachelines or record their logs at run
time. Instead, ReplayCache recovery runtime re-executes the poten-
tially unpersisted stores in the wake of power failure to restore the
consistent NVM state, from which interrupted program can safely
resume. To support store replay during recovery, ReplayCache par-
titions program into a series of regions in a way that store operand
registers remain intact within each region, and checkpoints all reg-
isters just before power failure using the crash consistency mech-
anism of the commodity systems. For performance, ReplayCache
enables region-level persistence that allows the stores in a region
to be asynchronously persisted until the region ends, exploiting
ILP. The evaluation with 23 benchmark applications show that
compared to the baseline with no caches, ReplayCache can achieve
about 10.72x and 8.5x-8.9x speedup (on geometric mean) for the
scenarios without and with power outages, respectively.
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1 INTRODUCTION
Energy harvesting systems [65] have been deployed in a wide
range of application domains, such as Internet of Things (IoT) de-
vices [5, 17, 26, 79], wearables [8, 13, 36, 51, 52], stream and river
surveillance [27, 71], health and wellness monitors [6, 7, 16, 61], etc.
Energy harvesting systems are well-suited to these domains with
the superb property of ultra-long operation time without mainte-
nance by collecting energy from variant ambient sources such as
solar, thermal, piezoelectric, and radio-frequency radiation.

However, due to the batteryless nature, energy harvesting sys-
tems suffer unpredictable frequent power failure and thus require
some form of crash consistency which must be lightweight; other-
wise checkpointing/restoring consistent program states across the
failure can limit forward progress by consuming hard-won energy.
Thus, existing systems [3, 11, 12, 21, 22, 50, 70] have been designed
with byte-addressable non-volatile memory (NVM), where data
are immediately persisted and thus recoverable at the cost of long
latency. While volatile write-back caches can hide the store latency
and improve performance with a load hit exploiting data locality,
they have been assumed to be not viable or at least challenging in
energy harvesting systems.

The crux of the problem is that volatile write-back cache states
are not preserved across a power outage. This may lead to an incon-
sistent NVM state, and therefore the power-interrupted program
may fail to resume correctly. That is why existing energy harvest-
ing systems do not use volatile data caches; prior work [50] uses a
read-only NVM-based instruction cache where a crash consistency
(without stores) is not an issue. Unfortunately, it is a challenging
problem to ensure correct data cache persistence in a lightweight
manner to maintain forward progress. For example, software log-
ging causes serious performance degradation (100-300% slowdown)
since each regular store is preceded by the log store, cacheline flush,
and store fence [23, 24, 31, 40, 66, 73, 75].

One possible hardware solution is to use a volatile write-through
cache. It allows energy harvesting systems to benefit from load hits
and to ensure crash consistency by enforcing that the completion
of a store instruction guarantees the persistence of the data in
NVM. However, write-through cache comes with a performance
penalty on each store as conventional cache-free energy harvesting
processors. Since they use a simple in-order core without any form
of speculation, they cannot hide the data persistence latency.

Alternatively, one can design a persistent write-back data cache,
e.g., non-volatile cache (NVCache) [1, 25, 55, 56, 62, 74, 77] and
non-volatile SRAM cache (NVSRAMCache) [9, 20, 38, 39, 53, 68, 69].
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However, both cache designs have their own problems. Due to
the NVM-based design, NVCaches incur high latency and power
consumption for each access. NVSRAMCaches embed NVM to
backup an SRAM-based cache, and checkpoint/restore the entire
SRAM to/from the NVM backup across power failure, leading to
consume high energy. While NVSRAMCaches may be as fast as a
volatile SRAM cache without power failure, it is hard to maintain
the performance with frequent failure—i.e., the norm of energy
harvesting—unless they use a lower-power yet fast non-volatile
technology which has not been commercialized yet.

With that in mind, we propose ReplayCache, a software-only
scheme that enables commodity energy harvesting systems to ex-
ploit a volatile write-back data cache for performance, yet ensures
lightweight crash consistency of the NVM state for correctness.
ReplayCache does not ensure the persistence of dirty cachelines or
record their logs at run time: i.e., no write amplification. Instead,
ReplayCache re-executes the potentially unpersisted stores in the
wake of power failure to restore the consistent NVM state from
which interrupted program can safely resume.

To support the store replay, ReplayCache partitions program into
a series of regions so that the operand registers of store instructions
are intact (i.e., not overwritten by the other following instructions)
in each region. We refer to this process store-register-preserving
region formation. Then, at run time, ReplayCache checkpoints all
registers just before power failure to secure the store operand reg-
isters. We note that the just-in-time register checkpointing is al-
ready available in energy harvesting systems: e.g., QuickRecall[22],
Hibernus[3], and NVP[50]. During recovery, these checkpointed
registers are used to re-execute the stores along the same program
path as the one before a power failure; for the store replay, a re-
covery code block is generated for each region, i.e., ReplayCache
directs program control to the recovery code in the wake of the
power failure. After that, ReplayCache can safely resume from the
interrupted program point with the checkpointed registers and the
recovered consistent NVM.

Experiments with 23 applications from Mibench [19] and Media-
bench [35] benchmarks show that compared to the baseline with no
caches, ReplayCache can make them 10.72x and 8.5x-8.9x faster (on
geometric mean) for the scenarios without and with power outages,
respectively. This paper makes the following contribution:
• ReplayCache is the first to enable volatile caches for commod-
ity energy harvesting systems; its software-only design allows
them to use traditional SRAM cache as is with crash consistency
guarantee

• ReplayCache proposes a new resumption scheme that recovers
consistent NVM states across power failure by re-executing po-
tentially unpersisted stores before the failure during the recovery,
without write amplification.

• ReplayCache achieves the high performance despite its software-
only design; its performance is comparable to an ideal NVSRAM-
Cache for realistic power failure traces.

2 BACKGROUND AND MOTIVATION
This section discusses the architectures of existing energy harvest-
ing systems (section 2.1), the potential crash consistency problem
of using a volatile write-back data cache as is (section 2.2) and the
limitations of existing cache solutions (section 2.3).

2.1 Architecture of Energy Harvesting Systems
Energy harvesting systems derive energy from external sources (e.g.,
solar, thermal, ambient electromagnetic radiation) and mostly store
it in a tiny capacitor for small IoT devices such as wearables. Due to
the nature of unreliable power supply, energy harvesting systems
should be able to save (checkpoint) the current state upon power
failure, and restore the program state and seamlessly resume the
execution when the power comes backs as if nothing had happened.
A power interruption in energy harvesting systems is a frequent,
normal event, unlike in high performance computing context. It
is thus crucial to design systems for whole system persistence
(WSP) [30, 59] so that they efficiently save/restore the program
state and make a progress no matter where power failure happens.

The above requirements motivate existing energy harvesting
systems to adopt NVM as main memory. However, the registers in
a processor still remain volatile for performance reasons. Broadly
speaking, existing mechanisms to checkpoint/restore registers can
be classified into two groups.

Figure 1(a) shows the architecture of Non-Volatile Processor
(NVP) [49], representing the first group that checkpoints and re-
stores registers in place with some additional hardware support [34,
49, 70]. NVP is equipped with an energy harvester, a voltage mon-
itor, and capacitors (not shown). When the monitor detects im-
pending power failure, i.e., the voltage is about to drop below a
certain threshold, it signals the processor to checkpoint all the
registers (so-called just-in-time checkpointing) into their neigh-
boring non-volatile flip-flops (NVFF) [37, 58, 60, 64]. When power
is secured enough across the failure, the processor restores the
register states from the NVFF and resumes the execution from the
power-interruption point. As both register and memory states on
the resumption point are guaranteed to be the same as the states
before a power failure, there is no crash consistency problem. A
downside of NVP is the use of additional hardware NVFF.

Figure 1(b) illustrate the architecture of QuickRecall [22], repre-
senting the second group that checkpoints/restores the registers
to/from the NVM. Similar to NVP (and others), QuickRecall also
implements just-in-time (JIT) register checkpointing with a voltage
monitor and a capacitor (not shown). When the monitor detects
upcoming power failure, it triggers an interrupt whose handler
checkpoints all the registers into the NVM. When the power comes
back, the recovery runtime reads the checkpointed states from
the NVM in order to restore the registers. As in NVP, QuickRecall
(and others [2, 3] in this group) has no crash consistency issue. A
drawback of QuickRecall is that it should secure a lot more energy
than NVP to atomically checkpoint all registers in NVM before
impending power failure.

2.2 Crash Inconsistency of Write-back Caches
Adding a cache to energy harvesting systems has a high potential
to improve their performance (with load hits) and allow them to
make more progress for a given energy harvested. However, a naive
integration of volatile write-back data cache with existing energy
harvesting systems (e.g., NVP, QuickRecall) for performance, may
lead to a crash consistency problem, as depicted in Figure 1(c).

Suppose the NVMhas thememory stateX = 0 andY = 0 initially.
And suppose a program has a power outage after executing two
storesW (X ) = 1 andW (Y ) = 1. Before the outage, the cache had the
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Figure 1: The architectures of existing energy harvesting systems

NVFF
Regs

NVFF
Regs

original
program

region-
partitioned

Compiler

asynchronous write-back
exploiting ILP

power
failure

NVM
X=0

ckpt

potentially
inconsistent

NVM
X=1     re-execute 

stores W(X)=1
in recovery code

recovered
consistent

restore

power
back onW(X)=1 W(Y)=1

region
boundary

(a) (b) (c)
W(X)=1

resumerecovery

1

2

3

other instructionsstores
clwb instructions memory fence

Figure 2: An overview of ReplayCache.

updated state X = 1 and Y = 1, but the NVM may not, depending
on whether the cache lines holding X and/or Y are evicted or not,
which is varying according to cache replacement policy and thus
unpredictable. Since the volatile cache state disappears upon a
power loss, i.e., any unpersisted dirty cacheline is completely lost,
the system may restart from an inconsistent state (e.g., X = 1 and
Y = 0) failing to resume or producing wrong output later.

2.3 Limitations of Existing Cache Solutions
There are four possible solutions to address the crash consistency
problem. The first approach is to use a write-through cache. Fig-
ure 1(d) illustrates a case in which NVP is configured with a volatile
write-through cache (a traditional SRAM-based one). The write-
through policy ensures data consistency as the completion of a
store instruction ensures the data persistence to NVM. However,
the downside is a long store latency (as in the case without a cache);
more precisely, for a write miss, the critical path is lengthened due
to the write-allocation policy. Since most of the energy harvest-
ing systems are designed with a simple in-order processor, it is
impossible hide the store latency.

As shown in Figure 1(e), the second approach is to equip the
processor with the NVSRAMCache that embeds NVM (e.g., ReRAM)
to traditional SRAM cache for its backup and restoration [10, 33, 57,
76]. As with NVP, NVSRAMCache also relies on a voltage monitor
for just-in-time checkpointing of the SRAM cache. When power is
about to be cut, NVSRAMCache triggers a copy from SRAM to NVM
for all the cachelines. Along with their restoration, the entire cache
backup makes NVSRAMCache consume high energy across power
failure. Moreover, NVSRAMCache significantly postpones the boot-
ing time due to the high amount of energy that must be secured for
failure-atomic cache checkpointing. Although researchers attempt
to improve the backup latency [38, 69], their NVSRAMCaches are
more of a forward-looking technology in an ideal form—since none
of current non-volatile materials can provide comparable latency
to SRAM [12].

The third approach is NVCache [20, 54] that leverages a pure
non-volatile technology as the cache material; see Figure 1(f). Since
NVCache usually uses a slight faster NVM technology for the cache
than the non-volatile main memory, the NVCache accesses are a lot
slower—consuming more energy—than those of traditional SRAM
cache. Thus, NVCache-equipped energy harvesting systems only
occasionally outperform cache-free systemswhen there is very high
locality. In sum, the second and third approaches—Figures 1(e) and
(f)—are to make a cache itself persistent surviving power failure,
but they suffer from their own problems.

Finally, data loggings are another approach to crash consistency
in the presence of a volatile cache. However, they dramatically
increase execution time (or power consumption if implemented in
hardware), prohibiting their use in energy harvesting systems. For
example, iDO [40] and Mnemosyne [73] incur 100-300% slowdown,
prohibiting their use in an energy harvesting system. Furthermore,
since they only supports crash consistency for a few transactions
or failure-atomic sections, additional overheads should be paid for
whole system persistence (WSP) [30, 59]. Similarly, existing WSP
schemes for cache-free harvesting systems such as Alpaca [29] and
Ratchet [72] also cause unacceptable slowdown (60% - 500%). Since
they assume no cache, their overheads would be even worse for
cache-enabled systems due to the additional cacheline flush and
fence overhead.

3 OVERVIEW OF REPLAYCACHE
The goal of ReplayCache is to guarantee crash consistency (i.e., an
ability to restart from a consistent state) of energy harvesting sys-
tems in the presence of a volatile write-back data cache, allowing
them to make the most of data locality and to achieve more progress
given an energy budget. ReplayCache employs software-only de-
sign that provides (A) program region partitioning, (B) region-level
persistence, (C) register checkpointing before a power outage, and
(D) recovering a consistent NVM state.
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3.1 Program Region Partitioning
As shown in Figure 2(a), ReplayCache compiler partitions entire
program input to a series of regions. Each region ensures that the
operand registers (e.g., address, value) of a store therein are not
overwritten by any other succeeding instructions in that region.

3.2 Region-level Persistence
ReplayCache asynchronously writes back the stored value to the
NVM, and overlaps thewrite-back operations with the executions of
other following instructions, effectively exploiting instruction-level
parallelism (ILP).

Unlike a traditional write-back cache, ReplayCache ensures that
all the stores in a region are persisted (written back to the NVM)
before the region ends; this paper calls this region-level persistence
guarantee in which the persistence latency of in-region stores can
be naturally hidden by ILP; Figure 2(b) illustrates the window of
potential ILP gain, and the unpersisted state of each store. This
region-level persistence assures that at the moment of a power
outage, all the stores in the preceding program regions have already
been persisted, and only the stores in the interrupted region could
not potentially be unpersisted.

The processor stalls if there exists an outstanding unpersisted
store at the end of a region, until it becomes persisted to the NVM.
ReplayCache compiler dedicates a single register (e.g., r12) to be
acted as region register to track the most recent region boundary
information for recovery. That is, the register is updated with a
program counter at each region boundary.

3.3 Register Checkpointing
Across a power outage, ReplayCache saves register states just be-
fore the outage and restores them in the wake of the outage us-
ing the voltage monitor based JIT checkpointing mechanism (sec-
tion 2.1) in commodity energy harvesting systems. For instance,
NVP and QuickRecall can both checkpoint register states before
the power off and to restore them after the power on as discussed
in section 2.1. In Figure 2(c), step 1 illustrates that ReplayCache
checkpoints the registers when power is about to be cut off.

3.4 Power Failure Recovery
The recovery protocol works as follows. Upon a power outage, the
interrupted region’s stores before the outage may or may not be
persisted, e.g.,W (X ) = 1 in Figure 2(c) unpersisted till the outage—
while all preceding regions’ stores are guaranteed to be persisted
and thus consistent (due to the region-level persistence). In thewake
of the outage, ReplayCache jumps to the recovery code block of the
interrupted region to replay all the stores left behind the outage.
The recovery code block re-executes such unpersisted stores using
the checkpointed register values in either NVFF (NVP) or NVM
(QuickRecall). This is shown as a step 2 of Figure 2(c). Finally, the
recovery code sets off a restoration signal to restore all registers
(including PC) from NVFF or NVM, and then resumes the program
from the outage point with the restored register and the recovered
NVM states as in step 3 of Figure 2(c). In this way, ReplayCache
allows energy harvesting systems to seamlessly leverage a data
cache without amplifying NVM stores.

Figure 3 depicts how ReplayCache works for existing energy
harvesting systems, i.e., NVP and QuickRecall, using the afore-
mentioned recovery protocol. The takeaway is that ReplayCache
enables the commodity systems to leverage write-back volatile data
caches as is with help of the region-level persistence and the re-
covery code based recovery. The details of recovery code block
generation is presented in Section 5.

4 REPLAYCACHE COMPILER
This section describes how ReplayCache compiler realizes the store-
register-preserving region formation. The compiler’s role is 3-fold:
(1) region formation (2) CLWB insertion after each store, and (3)
recovery code generation whose discussion is deferred to Section 5.

For region formation, the compiler partitions program into a
series of small regions so that in each region, no operand registers
of a store instruction are overwritten by the following instructions.
That way store registers remain intact from the execution of their
region all the way to the power failure recovery time on which
ReplayCache replays the same stores in case theywere not persisted
before the failure. We refer to this property as store integrity.

Figure 4 shows a high-level workflow of ReplayCache compiler
which introduces 3 additional phases (shaded in the figure) to the
standard backend compilation passes. This region formation is
performed in a whole-program manner to cover the entire program
stores, i.e., every single program point belongs to one of the regions.

At first glance, forming regions appears to be as simple as count-
ing the store registers while traversing the control flow graph (CFG)
and placing boundaries before the count exceeds the number of
(physical) registers in the processor (e.g., 16 for NVP and Quick-
Recall). However, it turns out that two problems below make the
region formation challenging.

Problem1.CircularDependence: Intuitively, the store-register-
preserving region formation can be realized with two phases: (1)
region partitioning that counts stores to place a region boundary,
i.e., store fence instruction, in program and then (2) register preser-
vation that extends the live interval of store operands to the end
of each region for their exclusive register use. Thus, the register
preservation depends on the region partitioning. However, since the
partitioning counts the stores to determine where to place a region
boundary, it also depends on the register preservation—forming
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a circular dependence; the live interval extension of the register
preservation increases the register pressure, i.e., the number of
necessary registers. Due to the register file size limitation, some
registers could be spilled (written) to stack through stores. We call
them stack-spill stores.

Problem 2. Stack-Spill Stores: In addition to regular stores,
ReplayCache also needs to ensure the integrity of stack-spill stores
for correct failure recovery. However, it is hard for the region parti-
tioning to figure out in advance what variables are to be spilled to
stack. That is because stack-spill stores are determined in the later
register allocation pass assigning physical registers. One might try
to perform the region partitioning after the register preservation
to exactly count the number of stores. However, this is not a vi-
able option since the region partitioning depends on the register
preservation in the first place.

ReplayCache Approach to the Problems: To break the cir-
cular dependence between the region partitioning and the register
preservation, ReplayCache first considers a function call boundary
as initial regions and conducts (A) register-pressure aware region
partitioning (the first box of Figure 4) to fine-cut the initial regions
as needed. Our register-pressure tracking algorithm allows the
region partitioning phase not only to estimate the number of stack-
spill stores, breaking the dependence on the register preservation,
but also possibly to form a region with no spill in a best-effort
manner. In case register allocation actually generates stack-spill
stores in the formed region after the (B) register preservation phase,
ReplayCache runs a post-processing (C) stack-store register preser-
vation phase (the fourth box of the figure) that runs through the
register-allocated code to find those stack-spill stores whose regis-
ters are overwritten in their region, and places a region boundary
before the register updates. The rest of this section details the three
phases with referring to them with (A), (B), and (C), respectively.

4.1 Register Pressure Aware Partitioning
ReplayCache initially forms regions at function call boundaries and
the end of conditional branches, and then runs the register-pressure
aware region partitioning algorithm, which aims to achieve two
goals. First, it attempts to maximize the length of a region to provide
ReplayCache with long potential ILP window for its region-level
persistence; see Figure 2 (b). Second, it tries to minimize stack spills
generated by the later register allocation phase.

For this purpose, the partitioning algorithm keeps track of the
register pressure by traversing the control flow graph (CFG) of each
initial region. ReplayCache counts the number of overlapping live
intervals at each program point visited during the CFG traversal.
In particular, if store instructions are encountered, ReplayCache
carries their live intervals along the way beyond the original live
intervals. This serves as a proxy for the actual live interval extension
of the next (B) register preservation phase. When the number of
the overlapping live intervals becomes greater than the number of
physical registers available in the underlying processor, a stack-spill
store might be generated thereafter. Therefore, a region boundary,
i.e., store fence, is placed at that point. That way ReplayCache can

maximize the size of the store-register-preserving region, likely
with no spill.

Figure 5(a) shows an example code where there are variables x ,
y, z and their live intervals; x and y are used as store operands, and
their live intervals overlap in basic block A as shown in the left of
the figure. Suppose there are only 2 physical registers. Figure 5(b)
demonstrates how the register-pressure aware region partitioning
works for the example code. Basically, whenever stores are encoun-
tered, the algorithm carries the live interval of their operands for
the rest of the CFG traversal. For example, when the traversal hits
the store y at the end point of basic block B in the left control path,
the algorithm will start carrying the live interval of y thereafter
(illustrated as a hatched box in the figure); the same action is taken
with the store x in the right path. Thus, when the traversal hits the
point where z’s assignment is found in the join basic block D, the
live intervals of both x and y have been carried to the point. Since
z’s live interval starts there, the algorithm places a region boundary
at that point, which would otherwise end up making the number
of overlapping intervals (3 thereafter) bigger than the number of
physical registers (2).

4.2 Regular Store Register Preservation
Once regions are formed by the register-pressure aware region
partitioning, ReplayCache compiler enters register allocation. Then,
this register preservation phase “preserves” the variables used for
the operands of stores. The goal is to ensure that no other variables
are assigned to those registers that are supposed to be occupied
only by store operands. To achieve this, this phase extends the live
interval of store operand variables from their last use point to the
end of the region to which they belong, along the control path.

For example, as shown in Figure 5(c), the actual live intervals of
x stops at its last use point in basic block C , the resulting interval
is extended to the next region boundary placed in the middle of
the bottom basic block D; similarly, y’s interval is extended to
the same following region boundary. In this way, x and y never
share their physical registers—even after their last use point—with
other variables. In other words, the next register allocation phase
ensures that neither x nor y is assigned to any physical register
used by other variables. Consequently, ReplayCache guarantees
the integrity of the regular stores’ registers.

4.3 Stack-Spill Store Register Preservation
The register allocation might spill some variable to stack and gen-
erate the stack-spill stores. This actually happens since register
allocation performs in a function level (not a region level) and
makes a global decision across all the regions in a function—though
the (A) register-pressure aware region partitioning tries to form
spill-free regions in a best-effort manner. Just in case, this stack-spill
store register preservation phase searches the register-allocated
code of each region for any update on the spill store registers. For
example, in Figure 5(d), a r1 is spilled to the stack in basic block D,
i.e., the stack-spill store of r1 is generated there. However, in the
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three variables towards the second region boundary; and (d) shows the case of redefining the register r1 of spill store in basic
block D after variables are assigned to the physical register.

region, the spill store is followed by the instruction that changes
the r1, i.e., r1 = r1 ≪ 2. Thus, the region cannot guarantee the in-
tegrity of r1 used by the stack-spill store from that moment. To deal
with this problem, this phase places an additional region boundary
right before the register updating instruction to separate it from
the stack-spill store; the resulting boundary is shown near the bot-
tom of basic block D in Figure 5(d). Consequently, ReplayCache
compiler guarantees the integrity of all the store registers in all
regions.
CLWB insertion: Once register allocation ends, after which no
store is generated, the compiler inserts a CLWB instruction right
after each store in regions. Since CLWB instructions reuse the
address operand of the preceding store, they make no side effect
other than the instruction count increase.

5 RECOVERY PROTOCOLS
This section describes (A) how ReplayCache compiler generates
recovery code and (B) the details of recovery procedure, and (C)
finally explains a running example.

5.1 Recovery Code Generation
To recover from power failure, as a software-only design without
hardware support, ReplayCache compiler generates a recovery code
block for each region, which contains all the necessary information
and code for the recovery of the region. A recovery code block
consists of Recovery Code, which is a code to re-execute all stores in
the corresponding region, and two maps—Recovery Map (RM) and
Store Counting Map (CM)—to locate the corresponding recovery
block and the number of stores to be re-executed for recovery. An
RM is a map from a region boundary PC to an address of region
recovery code. A CM is a map from a region boundary PC to a
Store Counting Table (SC table), which is an array of store addresses
and the number of store instructions from the beginning of the
region to this store. With these generated recovery code and maps,
ReplayCache’s recovery protocol figures out where the recovery

code of the interrupted region is and how many stores should be
re-executed in the interrupted region before the failure point.

In particular, to ensure the absence of power failure during the re-
covery process, ReplayCache compiler leverages the EH model [67]
to estimate the worst-case execution energy of the recovery code
block. If the energy is greater than what the underlying capaci-
tor can deliver with it full capacitance1, the compiler splits the
corresponding region into two smaller regions and generate their
recovery code blocks; this process is repeated unless the resulting
code blocks are small enough to complete with the fully charged
capacitor. In this way, ReplayCache guarantees the power-failure-
free recovery. According to experimental results (§6), ReplayCache
regions are not that long; we have not encountered any regions
that must be split during our evaluation of total 23 benchmark
applications.

5.2 Recovery by Re-execution
ReplayCache’s region-level persistence guarantees that all the stores
in preceding regions are persisted. However, stores in the inter-
rupted region before the power outage may or may not be persisted.
ReplayCache recovery protocol relies on two properties: First, upon
power outage, ReplayCache processor checkpoints registers (in-
cluding PC) just-in-time by signaling voltage monitor (NVP) or
runtime (QuickRecall). The register checkpoint is thus available in
either NVFF (NVP) or checkpointing storage in NVM (QuickRecall).
Next, ReplayCache compiler ensures that registers used for store
operands are never overwritten within a region. This implies that
ReplayCache can restore memory status from potential corruption
by re-executing the recovery code generated by the compiler.

When the power comes back, ReplayCache first finds out the
start address of an interrupted region. It loads the checkpointed
region register – a dedicated general-purpose register by compiler as
mentioned in section 3.2 – fromNVFF or checkpointing storage, and

1Energy harvesting systems do not reboot across power failure until the capacitor
is fully charged, which is the case for commodity systems such as NVP, WISP, and
QuickRecall.
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st r1, x
st r2, y

…
st r3, z

Locate the recovery code
Set the store count

st NVFF_r1, x
r12 = r12 - 1
if r12 == 0: goto _exit

st NVFF_r2, y
r12 = r12 - 1
if r12 == 0: goto _exit
…

st NVFF_r3, z
r12 = r12 - 1
if r12 == 0:  goto _exit

_exit: signal NVFF to restore

r1 = &checkpointing storage
r2 = ld [r1 + 4]
st r2, x
r12 = r12 - 1
if r12 == 0: goto _exit
r2 = ld [r1 + 8]
st r2, y
r12 = r12 - 1
if r12 == 0: goto _exit
…
r2 = ld [r1 + 12]
st r2, z
r12 = r12 - 1
if r12 == 0:  goto _exit

_exit: signal runtime to restore

Recovery code of the interrupted region (R1)

NVP QuickRecall

1 region register

2 recovery code, store count (r12)

3    start
normal 
execution

R1

Figure 6: Failure recovery of region R1 when an outage
happens in the middle of basic block A. Upon recovery,
ReplayCache locates a recovery code and counts the num-
ber of stores needed to be re-executed 1 . Then it re-plays
all stores in the recovery block by using checkpointed store
operand registers in NVFF 2 . Finally, it goes back to the fail-
ure point by restoring registers from NVFF and continues
the normal execution 3 .

locates the recovery code and the SC table of the interrupted region
by looking up the RM and CM, respectively. ReplayCache gets the
number of store instructions to be re-executed from the beginning
of the region to the failure PC by performing binary search of the SC
table with the region register as a key. Subsequently, ReplayCache
runtime jumps to the recovery code of the interrupted region with
the re-executing store count in a register. As illustrated in Figure 6,
the recovery code is a series of re-executing the store instruction,
decrementing the store counter, and checking if the counter is zero.
After executing the specified number of store instructions (i.e., the
store counter becomes zero), ReplayCache runtime signals voltage
monitor to restore register files from either NVFF or checkpointing
storage and thus goes back to the failure point because PC now
points to the failure point.

5.3 A Running Example
We illustrate a recovery example in Figure 6. ReplayCache com-
piler ensures that registers that are used for store operand (r1, r2,
and r3) are never updated in region R1. When entering into R1,
ReplayCache sets the region register to the beginning of R1. When
a power outage happens in the region indicated by a red cross, all
registers, including the region register and PC, are checkpointed.
At this point, the stores to memory locations x and y may or may
not be persisted due to the volatile cache.

When the power comes back, ReplayCache first loads the region
register, which points to the beginning of the interrupted region.
Then it locates the corresponding recovery code and the number of
stores to be re-executed from the RM and SC table 1 . ReplayCache
jumps to the recovery code to re-execute the same number of store
instructions in the region before the failure 2 . In the recovery code
examples in Figure 6, r12 is the number of stores to be re-executed
during recovery. In the recovery code, ReplayCache runtime loads
the checkpointed store operand registers (e.g., NVFF_r1 in NVM,

and ld [r1 + 4] in QuickRecall) and re-executes store instructions.
Once ReplayCache runtime re-executes the same number of store
instructions – i.e., all store instructions to the failure PC are re-
executed, the store counter (r12) becomes zero and the runtime
prepares to resume the normal execution (дoto_exit colored in
blue). The runtime signals voltage monitor to restore register files
from NVFF and jumps to failure point 3 . The recovery code are
slight different between NVP and QuickRecall. As shown in the
right, QuickRecall loads the checkpointed registers from the storage
(colored in gray).

6 EVALUATION
6.1 Methodology
6.1.1 Compiler. We implemented all ReplayCache compiler passes
using the LLVM compiler infrastructure [32]. In particular, we im-
plemented our LLVM passes on MIR (Machine IR) level after in-
struction selection to precisely measure the number of live intervals
during the region construction. The all compiler passes consist of
about 1700 LOC excluding comments.

6.1.2 Architecture. We evaluate ReplayCache using a gem5 simu-
lator [4] with ARM ISA, modeling a single core in-order processor
with 16 registers, based on the NVPsim [18]; Table 1 summarizes our
NVM write/read latency based on [18, 47, 48, 63]. In particular, we
only modified L1D cache leaving L1I cache as NVM cache as with
the original NVP [49]. Note that ReplayCache works for any energy
harvesting processors that support just-in-time (JIT) register check-
pointing. In addition to NVP, we test ReplayCache on top of Quick-
Recall whose simulation configuration follows that of NVP other
than the JIT checkpointing/restoration parameters. Table 2 shows
the detailed simulation parameters of NVP and QuickRecall. Since
QuickRecall checkpoints registers in NVM, its checkpoint/restore
voltage thresholds are higher than those used by NVP.

6.1.3 Other Cache Designs and the Default Setting. In addition
to ReplayCache, we test 3 alternative cache designs: non-volatile
cache (NVCache), non-volatile SRAM cache (NVSRAM), and volatile
write-through cache (WT-VCache). All 4 cache designs are assumed
to run with NVP unless noted otherwise. Especially for NVSRAM,
we use the same configuration used by NVPsim [18], which is based
on advanced ReRAM technology. That is, it writes 3x faster with 5x
less energy compared to conventional ReRAM based non-volatile
main memory does. Similarly, it reads 2x faster with 24x less energy
compared to the main memory does. Thus, NVSRAM here serves as
the upper bound for performance comparison due to the forward-
looking technology used. As our default setting, we set the size
of all the caches to 8KB, and they are all 2-way set-associative.
For non-volatile main memory, we used Re-RAM by default and
set its size as 16MB by leveraging NVMain [63]. We also perform
sensitivity studies with STT-RAM and PCM using the parameters
in Table 1.

6.1.4 Benchmarks and Power Traces. We use 8 applications in
Mibench [19] and 15 applications in Mediabench [35] benchmark
suites [46]. All the applications are compiled by ReplayCache com-
piler with -O3 optimization level. To evaluate ReplayCache for
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Table 1: The timing parameters (ns) of different NVM tech-
nologies: e.g., tCK stands for clock period.

NVM tCK tBURST tRCD tCL tWTR tWR tXAW
ReRAM (default) 0.94 7.5 18.0 15.0 7.5 150 30
STT-RAM 1.5 6 35 15 12.5 25 50
PCM 1.88 7.5 48.0 15.0 7.5 300 50

Table 2: Simulation configuration.

NVP (default) NVP (NVSRAM) QuickRecall
Vmax/Vmin[70] 3.3/2.8 3.5/2.8 3.5/2.8
Ckpt/Restore[70] 2.9/3.2 3.2/3.4 3.1/3.3
Recovery NVFF+Cache NVFF+Cache VFF+Cache

0 5000 10000 15000 20000 25000 30000

Time (10us)

0

5

10

15

20

V
o
lt

a
g
e
 (

V
)

(a) Power Trace 1 (Home)

0 5000 10000 15000 20000 25000 30000

Time (10us)

0

5

10

15

20

V
o
lt

a
g
e
 (

V
)

(b) Power Trace 2 (Office)

Figure 7: Energy harvesting traces showing voltage input
fluctuations in two different places within about 250∼400ms
from an RF energy harvesting reader [18].

realistic energy harvesting environment with frequent power out-
ages, we use two power traces of the NVPsim which were collected
from real RF energy harvesting systems [18]. Figure 7 describes the
shape of those two power traces; (a) shows the voltage fluctuations
across time in home, and (b) shows those in office. Trace 2 (office)
has more power outages than Trace 1 (home); in every 30 seconds,
Trace 1 and 2 incur ≈20 and ≈400 power outages, respectively.

6.2 Performance Comparison
6.2.1 Performance without Power Outage. Figure 8 shows the per-
formance results of power-failure-free executions. The Y-axis shows
the normalized speedup over the baseline without a cache. Over-
all, ReplayCache improves the performance of all the applications,
achieving 11x speedup on (geometric) average. It turns out that
NVCache is the worst design as expected because of higher latency
(especially stores) then SRAM, but it still improve the performance
due to locality exploitation.

Recall that NVSRAM uses a traditional SRAM cache with an
NVM (advanced ReRAM) backup, and checkpoints/restores the
whole cache state to/from the NVM backup across power failure.
Thus, with no power outage, NVSRAM should perform as an orig-
inal write-back volatile cache. NVSRAM performs the best as ex-
pected achieving 14x speedup compared to the baseline. Here, the
performance gap between NVSRAM and ReplayCache results from
the store write-back latency that our region-level persistence did
not manage to fully hide with ILP. Later in section 6.3, we present
the detailed results on ReplayCache’s ILP efficiency, reflecting the
amount of stalls at the region boundary.

WT-VCache shows some improvement over the baseline without
a cache. The performance benefits mostly come from load hits,
though the write-through policy makes the cost of store the same as

the baseline. ReplayCache outperforms WT-VCache, i.e., achieving
an average speedup of 1.57x, by hiding the latency of stores with
region-level persistence.

6.2.2 Performance with Power Outages. Figures 9 and 10 show the
performance results with power failures, simulated on Power Traces
1 and 2 in Figure 7. The simulation includes different sequences of
power up/down and downtime during charging. Again, the Y-axis
is the normalized speedup over the baseline without a cache.

Although NVCache uses the same NVM technology as main
memory, it can be placed close to a core as cache in that core-to-
NVCache access is faster than core-to-NVM one. NVCache remains
the worst mainly due to a long cache access latency and higher
energy consumption of NVM access wasting hard-won energy.

With power outages, ReplayCache achieves ≈80% performance
of NVSRAM. This is a promising result given that ReplayCache is
a software-only scheme that allows commodity systems to use a
volatile data cache as is with no other additional hardware sup-
port. Note that NVSRAM cache can retain the cache data across a
power outage while ReplayCache cannot since it uses a traditional
SRAM cache that loses all the content upon the outage; due to this
advantage, NVSRAM beats all other cache schemes. In contrast,
when power comes back, ReplayCache has to start with a cold
cache reloading all necessary data from NVM. Nevertheless, the
cache warming-up cost can be amortized by the benefit of cache
hits, unless the program execution is too frequently interrupted by
power failure.

WT-VCache shows only comparable performance to the expen-
sive NVCache design due to the cost of warming up the volatile
cache across power failure and serializing stores with the write
through policy. However, WT-VCache still outperforms the baseline
with exploiting certain degree of locality. In particular, WT-VCache
outperforms ReplayCache for adpcmencode. That is because the
ReplayCache ended up increasing the instruction count due to a
register spilling in a hot loop along with the stack memory access
cost. On average, WT-VCache performance happens to be almost
same as NVCache design.

Overall, ReplayCache achieves 8.95x (Trace 1) and 8.46x (Trace 2)
average speedups compared to the baseline (no cache), outperform-
ing NVCache andWT-VCache. The reason for the performance gain
over them is two-fold. First, ReplayCache costs less cache power
consumption compared to the NVCache and WT-VCache as shown
in Figure 11. Second, due to the ILP nature, ReplayCache can hide
the most of write-back latency as will be shown Figure 12.

6.2.3 Energy Consumption Breakdown. To figure out the energy
consumption behavior of ReplayCache, we measured howmuch en-
ergy was consumed for each part of the system, i.e., cache, memory,
and core (NVP computation), by using the power model provided
by NVPsim [18]. Figure 11 shows the resulting energy consumption
breakdown, normalized to the same no-cache baseline, using the
Power Trace 2. Overall, ReplayCache turns out to be very effective,
allowing NVP to spend more energy for computation rather than
memory access compared to other schemes. Also, ReplayCache’s
energy consumption is on par with the ideal NVSRAM. As a result,
ReplayCache enables NVP to make a significantly further forward
progress than the no-cache baseline.
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Figure 8: Performance results “without” power outages. We compare ReplayCache with NVCache, NVSRAMCache, and WT-
VCache. Y-axis shows the normalized speedup over the baseline without a cache. The higher, the faster.
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Figure 9: Performance results “with” power outages, simulated with Power Trace 1 in Figure 7(a). We compare ReplayCache
with NVCache, NVSRAMCache, and WT-VCache. Y-axis shows the normalized speedup over the baseline without a cache.
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Figure 10: Performance results “with” power outages, simulated with Trace 2 in Figure 7(b). We compare ReplayCache with
NVCache, NVSRAMCache, and WT-VCache. Y-axis shows the normalized speedup over the baseline without a cache.
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Figure 11: Normalized energy consumption breakdown
(trace 2) compared to the baseline without a cache.

6.3 Instruction Level Parallelism Efficiency
ReplayCache exploits ILP for stores and thus is faster than a volatile
write-through cache. Nevertheless, its ILP can be bounded by region-
level persistence guarantee, e.g., a region end is reached before the
preceding store completes the NVM persistence, in which case
ReplayCache is slower than an ideal write-back cache. With that
in mind, we investigate the amount of ILP that ReplayCache can
exploit, based on the power-failure-free simulation results, to reason
about ReplayCache’s high performance.

adp
cm

dec
adp

cm
enc

g721dec
g721enc
gsm

dec
gsm

enc
jp

egdec
jp

egenc
m

p
eg2dec

m
p

eg2enc
p

egw
itdec

sha
susanc
susane
susans
geom

ean

basicm
ath

dijkstra
ff

t
iff

t
patricia
rijndaeldec
rijndaelenc
typ

eset
geom

ean
all

geom

0 0

20 20

40 40

60 60

80 80

100 100

IL
P

E
ff

.(
%

)

Mediabench Mibench

Figure 12: Instruction-level parallelism efficiency "without"
power failure.

Let N be the total number (dynamic instances) of stores in a
region. Among them,Nno_stall represents the number of stores that
do not stall, and Nstall represents the number of stores that stall
at the region boundary for region-level persistence guarantee. Let
C be the cycles required for a store to be persisted in the NVM (i.e.,
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the write-through NVM store latency; 31 cycles in our evaluation
for default ReRAM); and S(i) be the stall cycles of i’s store in the
region. We then calculate the ILP efficiency at a 0-to-100% scale.
For each store, the worst efficiency 0% is made when the processor
waits for C cycles after the region finishes, and the best efficiency
100% reflects 0 stall cycle. Equation (1) defines the ILP efficiency for
N stores in a region as follows.

ILPef f (%) =
1
N
{

Nno_stall∑
i=1

1 +
Nstall∑
i=1

(1 −
S(i)

C
)} ∗ 100 (1)

Figure 12 shows the ILP efficiency of the tested applications. On
average, ReplayCache achieves 63% ILP across the evaluated appli-
cations, and the ILP efficiency explains why ReplayCache achieves
the performance shown in Figure 8. Again, in our evaluation, the
write-through store latency takes 31 cycles [18], i.e., C = 31. This
implies that ReplayCache can hide about 20 cycles out of the 31
cycles on average.

6.4 Binary Size Analysis
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Figure 13: Binary size increase due to recovery block, meta-
data (RM, CM, SC table), and metadata operations (code).

Figure 13 demonstrates the breakdown of binary size increase
of ReplayCache binaries as a percentage increase compared to the
baseline binary. Overall, ReplayCache incurs only 1.2% binary size
overhead on average. Metadata operations are comprised of roughly
110 instructions, leading to near-zero overhead. Only 2 applications,
e.g., jpeg and typeset, have observable binary size increase be-
cause they have lots of small regions. Note that the binary size
overhead never puts pressure on application’s memory usage at
run time. That is because the metadata is accessed only at boot time
on which ReplayCache’s recovery starts with empty cache—already
wiped out upon the prior failure—without cache pollution.

6.5 Dynamic Instruction Count Analysis
Figure 14 demonstrates that ReplayCache compiler only increases
dynamic instruction count by 2.49% on average compared to the
baseline binary. Note that this is not a critical performance limiting
factor as confirmed in Figure 8-10 where ReplayCache consistently
shows significant speedups.

6.6 Sensitivity Study
6.6.1 Cache Size. Figure 15 shows the normalized execution time
(to the baseline without a cache) of alternative cache schemes with
a different cache size from 512B to 8KB using Power Trace 2. The
results show that ReplayCache matches the performance of NVS-
RAM cache (that is an ideal write-back cache in power-failure-free
scenarios) for small cache size, such as 512B and 1KB.
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Figure 14: Dynamic instruction count increase due to
ReplayCache compiler code generation; lower is better.
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Figure 15: Cache size sensitivity analysis for Trace 2.
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Figure 16: Sensitivity study on different NVMs with trace 2
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NVP QuickRecall
0 0

5 5

10 10

15 15

#
N

or
m

al
iz

ed
sp

ee
du

p

NVCache NVSRAM WT-VCache ReplayCache

Figure 17: Performance overhead comparison with trace 2.

6.6.2 NVM Technology. Different NVM technologies (e.g.,, ReRAM,
PCM, and STT-RAM) have different write/read latency properties
as summarized in Table 1. For ReRAM, PCM, and STT-RAM (as
the main memory), Figure 16 shows the normalized speedup of
alternative cache schemes, compared to their 3 baselines without a
cache. It turns out that ReplayCache consistently achieves signifi-
cant speedups across the NVM technologies (8.4x-8.46x).

6.6.3 NVP versus QuickRecall. To analyze the impact of the un-
derlying just-in-time register checkpointing on ReplayCache’s per-
formance, we tested all four cache schemes on top of QuickRecall
and compared the results with those of NVP. Again, we used the
Power Trace 2 and normalized the speedup over their baselines, i.e.,
NVP/QuickRecall without cache. Figure 17 describes that the per-
formance trend is similar to NVP; however, it is worth noting that
QuickRecall requires higher checkpoint/restoration voltage due
to data backup as shown in Table 2—though it is a less expensive
system than NVP due to the lack of non-volatile flip-flops.
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Figure 18: Breakdown of per-region instructions on average.
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Figure 19: Average distance (the number of instructions) be-
tween region’s last store and the following region boundary.
6.7 ReplayCache Compiler Region Statistics
We study the region statistics, statically calculated from the binary
built by our compiler. Figure 18 presents the average number of
instructions per region. On average, there are 16.4 instructions per
region. We also break them down into two categories: stores and
other instructions. On average, there are 2.18 stores and 14.35 others
per region. This implies that the recovery code blocks are not long
either (smaller than their regions). In fact, we did not encounter
any recovery block that requires the corresponding region to be
split to ensure the absence of power failure during the recovery.

Moreover, Figure 19 shows the average distance (the number of
instructions) between the last store of a region and the following
region boundary, i.e., 4.35 instructions on average. The distance
here reflects ReplayCache’s ILP opportunities.

7 RELATED WORKS
Many prior works [1, 25, 55, 56, 62, 74, 77] have been proposed
to leverage non-volatile caches to speed up the performance and
leverage their zero standby leakage and crash consistency free
properties. However, the cell endurance of NVM techniques ranges
from 105 in flash to 1012 in STT-RAM. Non-volatile caches may
only be able to endure few months for most of real applications [25].
Thus, prior works focus on increasing the lifetime of NVM cells.
Furthermore, NVM has the asymmetric performance property. A
write is considerably slower than a read, compared to the SRAM
counterpart. Both the short lifetime and the long write latency
severely limit the use of NVM as L1 cache in practice.

To use the synergy of NVM and SRAM, many researches [10, 20,
33, 38, 39, 53, 54, 57, 68, 69, 69, 78] proposed to incorporate different
NVM technologies (e.g., STT-RAM, ReRAM, etc.) with SRAM. Many
proposals leverage the NVM part as a just-in-time checkpointing
storage of the traditional SRAM-based cache in case of power fail-
ure. Thus, the NVM speed is the critical aspect for the success of

such SRAM/NVM hybrid design. Although researchers attempt
to improve the NVM backup/restoration latency [38, 69], they as-
sume forward-looking technologies; no current NVM technologies
provide comparable latency to SRAM [12, 30].

The idea of partitioning a program into multiple regions to de-
sign more efficient energy harvesting systems has been explored.
Ratchet [72] proposed to partition program into a series of anti-
dependence-free (i.e., write-after-read dependence free) regions
for idempotent processing as with others [14, 15, 28, 40–43, 45].
Since idempotent regions can be safely re-executed multiple times,
it can recover a power-interrupted region by rolling back to the
beginning in the wake of power failure, provided the inputs value
of the region can survive the power failure. Due to the absence of
the anti-dependence, Ratchet only needs to checkpoint all live-in
registers of the region at its entry point. Unfortunately, such con-
secutive NVM writes are not only expensive but also dangerous
increasing the chance of power failure in the middle of their writes.
To address the issues in Ratchet, Clank [21] proposed hardware-
based idempotent processing. Despite its improved performance,
Clank requires relatively heavy and complex hardware components
such as a fast scratchpad memory for speeding up the writes to
the underlying NVM and an expensive CAM (content-addressed
matching) search based load/store address tables to dynamically
detect anti-dependence. Alternatively, CoSpec [12] proposed power
failure speculation assuming that power failure is not likely to
occur. Thus, it buffers all the application writes in a gated store
buffer [44, 80] in case of misspeculation, i.e., actual power failure.
Also, the CoSpec compiler partitions program into a series of re-
gions so that they never overflow the store buffer. When power
failure occurs in the middle of a region, it is rolled back to the
beginning in the wake of power failure. As with Ratchet, CoSpec
needs to pay the overhead of checkpointing all live-in registers
of every region. Unlike ReplayCache, neither Clank nor CoSpec
supports a volatile data cache. Thus, we suspect that ReplayCache
can significantly outperform them.

8 CONCLUSION
This paper presents ReplayCache, a software-only scheme that en-
ables energy harvesting systems to take advantage of a volatile
data cache efficiently and correctly. To achieve crash consistency
with the volatile data cache, ReplayCache proposes a replay-based
solution that restores the operands of potentially unpersisted stores
from the register checkpoint and then re-executes them to restore
consistent non-volatile memory status. Experimental results show
that compared to the baseline with no cache, ReplayCache sig-
nificantly improves the performance by 8.46x-8.95x speedup on
geometric mean, while ensuring correct resumptions even in the
presence of unpredictable and frequent power outages.
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