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Training Deep Network Ultrasound Beamformers
With Unlabeled In Vivo Data

Jaime Tierney , Adam Luchies , Christopher Khan , Graduate Student Member, IEEE,
Jennifer Baker , Daniel Brown, Brett Byram , Member, IEEE, and Matthew Berger

Abstract— Conventional delay-and-sum (DAS) beam-
forming is highly efficient but also suffers from various
sources of image degradation. Several adaptive beamform-
ers have been proposed to address this problem, includ-
ing more recently proposed deep learning methods. With
deep learning, adaptive beamforming is typically framed
as a regression problem, where clean ground-truth physi-
cal information is used for training. Because it is difficult
to know ground truth information in vivo, training data
are usually simulated. However, deep networks trained on
simulations can produce suboptimal in vivo image quality
because of a domain shift between simulated and in vivo
data. In this work, we propose a novel domain adaptation
(DA) scheme to correct for domain shift by incorporating
unlabeled in vivo data during training. Unlike classification
tasks for which both input domains map to the same target
domain, a challenge in our regression-based beamform-
ing scenario is that domain shift exists in both the input
and target data. To solve this problem, we leverage cycle-
consistent generative adversarial networks to map between
simulated and in vivo data in both the input and ground
truth target domains. Additionally, to account for separate
as well as shared features between simulations and in vivo
data, we use augmented feature mapping to train domain-
specific beamformers. Using various types of training data,
we explore the limitations and underlying functionality of
the proposed DA approach. Additionally, we compare our
proposed approach to several other adaptive beamformers.
Using the DA DNN beamformer, consistent in vivo image
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quality improvementsare achievedcompared to established
techniques.

Index Terms— Ultrasound, beamforming, domain adapta-
tion, GANs, deep learning.

I. INTRODUCTION

ULTRASONIC image formation is accomplished by a
process called beamforming. Conventional delay-and-

sum (DAS) beamforming is highly efficient but often produces
suboptimal ultrasound B-mode image quality, limiting clini-
cal utility. Many sources of image degradation contribute to
this problem, including off-axis scattering and reverberation
clutter [1].

Several advanced beamforming methods have been pro-
posed to account and correct for image degradation to improve
image quality. In contrast to applying fixed delays and weights
to received channel data, as is done with conventional DAS,
advanced beamforming approaches aim to adaptively enhance
signals of interest and suppress sources of image degradation.
Among these adaptive approaches are adaptive apodization
schemes [2], [3], coherence-based techniques [4], [5], as well
as model-based methods [6]–[9]. Although effective, most of
these techniques require extensive computational power and/or
are limited by user-defined tuning parameters, both of which
prevent widespread clinical adoption.

In an effort to perform advanced beamforming more effi-
ciently, several deep learning beamforming approaches have
been recently proposed. Deep neural networks (DNNs) are a
class of machine learning models that are trained to predict
a target output by learning a sequence of nonlinear trans-
formations applied to a given input. These transformations
are learned during a training process which uses some vari-
ation of gradient descent to minimize the error between the
transformed input and desired target data. Although several
parameters are evaluated and adjusted during training, once
trained, DNNs are intended to be user-independent and highly
efficient. They have also been shown to be universal approxi-
mators of any continuous function [10]. Therefore, DNNs are
very applicable in the context of learning efficient nonlinear
regression-based adaptive ultrasound beamformers.

Generally, deep network beamforming techniques can be
grouped into three classes. The first class involves train-
ing a network to beamform some form of sub-sampled
channel data to produce a fully sampled output [11]–[17].
The second involves training a network to mimic an advanced
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beamformer [18], [19]. Lastly, the third class involves training
a network to perform advanced beamforming using physi-
cal ground truth information during training [20]–[26]. The
first and second classes, although effective, include meth-
ods that are hypothetically limited to the fully sampled
DAS or advanced beamforming target, while the third includes
techniques that could theoretically surpass DAS or advanced
beamformer performance.

Although theoretically promising, one of the primary chal-
lenges of the third class is obtaining realistic training data. The
overall goal of these deep network beamforming approaches
is to improve clinically relevant in vivo image quality. How-
ever, it is arguably impossible to know in vivo ground truth
information. Therefore, previous efforts have mainly depended
on simulations to generate labeled ground truth training
data [20], [24], [25]. In addition to known ground truth
information, simulations can also be used to produce an
unlimited amount of training data. Although generalization to
in vivo data has been accomplished with simulation-trained
networks [20], [24], [25], a shift can still exist between simu-
lated and in vivo domains, ultimately limiting performance of
deep network beamforming.

To solve this domain shift problem, we propose a novel
domain adaptation scheme that leverages unlabeled in vivo
data to train an in vivo beamformer. To do this, we use
cycle-consistent generative adversarial networks (CycleGANs)
to learn maps between unpaired simulated and in vivo data
distributions [27]. Other groups have considered GANs for
the purposes of ultrasound beamforming [23], [28]. How-
ever, to the best of our knowledge, GANs have never been
used to train deep network beamformers with real in vivo
data. Moreover, we expand upon previously proposed domain
adaptation schemes by accounting for domain shift in both
the noisy inputs and clean outputs. To be clear, in this
work, we refer to four different domains: (1) labeled source
domain (i.e., simulated input), (2) unlabeled source domain
(i.e., in vivo input), (3) labeled target domain (i.e., sim-
ulated ground truth), and (4) unlabeled target domain
(i.e., in vivo ground truth). Although irrelevant for classi-
fication tasks for which both source domains map to the
same target domain [29], in our scenario, a domain shift
will still exist between clean simulated target data and clean
in vivo target data. To account for this, we compose CycleGAN
maps with domain-specific regressors to effectively learn deep
in vivo beamformers.

In this work, compared to our previous preliminary
work [30], [31], we perform new, more extensive experiments
to better understand the limitations and functionality of the
technique. Specifically, in our previous work, we demon-
strated initial feasibility using simulated anechoic cysts and
in vivo liver data from a single healthy subject. In this work,
we leverage different types of simulated training data in both
the labeled and unlabeled domains, including anechoic and
hypoechoic cysts with and without reverberation. The goal of
these controlled simulation experiments is to provide a deeper
understanding of the different types of domain shift that exist
and that can be learned with our proposed approach. Addition-
ally, we report new results on speckle point target phantoms

and more clinically variable in vivo liver data, including data
acquired on both patients with healthy and diseased livers.
We compare our approach to conventional DAS, DNNs trained
using simulated data only, as well as established coherence,
minimum variance, and model-based advanced beamforming
techniques.

II. METHODS

A. Theory
Our overall goal is to simultaneously learn regressors for

beamforming as well as maps that allow us to transform
simulated channel data, (xs, ys) ∈ S, into corresponding
in vivo data, (xt , yt ) ∈ T , and vice versa, where x and
y refer to input and ground truth target data, respectively.
Our main objective is to learn a function Ft : R

d → R
d

that beamforms in vivo data. This is challenging because
the in vivo ground truth target, yt , is unknown. Therefore,
we aim to approximate (xt , yt ) pairs that can be used to
train Ft .

Previously, deep network beamforming efforts aimed to
learn Ft from labeled simulated data (xs, ys), where xs is a
time delayed aperture domain signal with clutter and ys is
the known ground truth aperture domain signal without clut-
ter [20]. However, Ft trained with simulations can result in
domain mismatch when applied to in vivo inputs because the
distributions of xs and xt differ. We hypothesize that this
domain mismatch is due in part to in vivo physics not being
completely captured in the assumptions made when modeling
our simulations. However, even if the simulations precisely
capture the physics of wave propagation, we still do not
know the exact contributions and distributions of true signal,
clutter and noise in vivo. Therefore, we start by addressing
domain shift in the inputs. To do this, we learn a function
GS→T that maps a simulated input, xs , to a corresponding
in vivo input, xt . Generative adversarial networks (GANs) [32],
specifically for image translation tasks [33], are a commonly
used tool for learning maps between different data domains.
However, these methods assume labeled data, which is not
true in our case because simulated and in vivo data do not
have corresponding labels. For unlabeled data, Zhu et al. [27]
proposed the CycleGAN approach which aims to learn maps
from S to T , GS→T , and from T to S, GT →S , while
enforcing cycle-consistency between maps. More concretely,
for GS→T we formulate the adversarial loss as follows from
Zhu et al. [27]:

LG S→T (GS→T , DT ) = Ext ∼XT [log DT (xt )]
+ Exs∼X S [1 − log DT (GS→T (xs))],

(1)

where X S and XT are the simulated and in vivo data dis-
tributions, respectively, and DT is a discriminator trained
to distinguish real in vivo data from in vivo data generated
by GS→T . A similar adversarial loss, LGT →S , can be formu-
lated for GT →S , which includes a separate discriminator, DS ,
tasked with distinguishing real simulated data from simulated
data generated by GT →S . To enforce similarity between real
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Fig. 1. Schematic of the proposed domain adaptation scheme for training an in vivo beamformer, Ft. In vivo input and target data generation are
indicated by the green and orange arrows, respectively. The left diagram summarizes previous efforts for which target domain adaptation was not
considered [29]. In comparison, the middle and right schematics summarize the data used to compute LFT1 and LFT2 , respectively, for the proposed
DA approach. The examples in this f gure depict fully reconstructed images, but our networks operate on aperture domain signals (i.e., pixel-level
channel data).

and generated data, a cycle-consistency regularization is also
incorporated [27] as follows,

Lcyc(GS→T , GT →S) = Exs∼X S [||GT →S(GS→T (xs))−xs||1]
+ Ext∼XT [||GS→T (GT →S(xt ))−xt ||1].

(2)

These discriminators and maps can be jointly optimized
with Ft , for which paired in vivo data are generated via
(GS→T (xs), ys). This is at the core of the cycle-consistent
adversarial domain adaptation (CyCADA) method [29] and
is summarized in Fig. 1(left). CyCADA was proposed for
recognition problems, e.g. classification and semantic segmen-
tation, for which both source domains map to the same target
domain. However, this is problematic for our scenario because
domain shift still exists between ys and yt . Therefore, training
on (GS→T (xs), ys) necessitates Ft to simultaneously resolve
domain gap and beamform.

In contrast to CyCADA [29], we instead want Ft to focus
only on beamforming. To accomplish this, we leverage our
domain maps, GS→T and GT →S , in both the input and target
domains. To do this, we assume that input domain shift is
equivalent to target domain shift. We also introduce a learned
function Fs for beamforming simulated data. Incorporating all
of this, we arrive at the following in vivo beamforming losses:

L FS = Exs∼X S [||Fs(xs) − ys ||l ] (3)

L FT 1 = Exs∼X S [||Ft (GS→T (xs)) − GS→T (ys)||l ], (4)

L FT 2 = Ext∼XT [||Ft (xt ) − GS→T (Fs(GT →S(xt )))||l]. (5)

where l indicates the norm used from Table II. These loss
functions ensure that Ft can beamform real in vivo data (L FT 2 )
as well as in vivo data generated from simulated data (L FT 1 ).
The middle and right panels of Fig. 1 summarize these loss
functions. Example fully reconstructed simulated anechoic
cyst and in vivo images are used for illustrative purposes in
Fig. 1. However, our networks operate on aperture domain sig-
nals (i.e., pixel-level channel data), as exemplified in Fig. 2A
and as described in more detail in Section II-B.

Our full loss is formulated as follows:

L = λG AN (λs LG S→T + λt LGT →S + λc Lcyc)︸ ︷︷ ︸
GAN

+ λREG(λFS L FS + λFT (L FT 1 + L FT 2))︸ ︷︷ ︸
Regressor

, (6)

where discriminators, generators, and regressors are simulta-
neously optimized for. Overall GAN and regressor weights,
λG AN and λREG , were set to 1 unless otherwise spec-
ified. Individual GAN-related weights were set based on
Hoffman et al. [29] (i.e., λs = 2, λt = 1,λc = 10), while
the individual regressor weights were empirically chosen to
be λFS = 1 and λFT = 0.5 such that equal weight is given
to the simulated and in vivo loss terms (i.e., λFS = 2λFT ).
Discriminators were also regularized using the method of
Mescheder et al. [34].

In addition to accounting for target domain shift, we also
train domain-specific beamformers to ensure that the simula-
tion and in vivo regressors use separate, as well as shared,
features from the two domains. To do this, we learn a single
regressor F : R

d × R
d × R

d → R
d using the augmented

feature mapping method of Daumé [35], such that Fs(xs) =
F(xs, xs, 0) and Ft (xt) = F(xt , 0, xt ). The first argument
captures shared features, while the second and third argu-
ments capture features specific to simulated and in vivo data,
respectively.

B. Data
Our networks work by performing a regression on time-

delayed channel data to adaptively beamform each received
spatial location. To generate real and imaginary signal compo-
nents, a Hilbert transform was applied to all received channel
data prior to network processing. Simulated cyst data as well
as in vivo liver data were used to generate training and test
data, as described in more detail below. Additional test data
were generated from physical point target speckle phantoms.

1) Simulated Training Data: Several different simulated train-
ing data sets were generated for the experiments in this work
and are summarized in Table I. In our preliminary work,

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on January 07,2022 at 03:36:46 UTC from IEEE Xplore.  Restrictions apply. 



TIERNEY et al.: TRAINING DEEP NETWORK ULTRASOUND BEAMFORMERS WITH UNLABELED IN VIVO DATA 161

Fig. 2. (A) Example simulated and in vivo aperture domain signals (i.e., pixel-level channel data), xs and xt, respectively, are shown on the
left. The f rst two rows demonstrate example GAN mappings, GS−>T and GT−>S, applied to the aperture domain signals. The bottom two rows
demonstrate the learned regressors, FS and FT, on the aperture domain signals, as compared to the labeled simulated and in vivo signals shown
on the right, ys and yt, respectively, for which yt is unknown. The channel dimension indicates 10 depths of 65 element channel signals for which
the real and imaginary components are stacked (i.e., 10 × 65 × 2 reshaped to 1300 × 1). The vertical dashed lines demarcate each 65-element
channel signal at a single depth. Real and imaginary components are indicated by the orange and teal lines, respectively. (B) To provide further
insight about the GAN mappings, 10-sample Fourier transforms through depth for each channel are displayed for the original, xs and xt, and GAN-
reconstructed, GT−>S(GS−>T(xs)) and GS−>T(GT−>S(xt)), simulated and in vivo signals, respectively. (C) Power spectra of the Fourier transforms
through depth averaged across channels are displayed for the original (solid), xs and xt, and GAN-reconstructed (dashed), GT−>S(GS−>T(xs)) and
GS−>T(GT−>S(xt)), simulated and in vivo signals, respectively.

TABLE I
TRAINING DATA SUMMARY

we used simple anechoic cysts as our labeled domain and
in vivo data as our unlabeled domain [30]. We therefore
refer to this configuration as our baseline training data set.
Echogenicity and the exact sources and amount of image
degradation in vivo are unknown and cannot be controlled for.
Instead, we use various combinations of simulated data in both
the unlabeled and labeled domains to better understand what
the domain adaptation scheme is learning. Here, we describe
how we generated the simulated training data. The specific
groupings of these data are described in Table I and referenced
when describing specific experiments in Section II-C.

For all simulated training data, Field II [36] was used to sim-
ulate channel data of 12 10mm diameter cyst realizations cen-
tered at the transmit focus and 12 reverberation realizations.
All simulations were focused at 60mm using a 4.1667MHz
center frequency, 16.667MHz sampling frequency, 1540m/s
sound speed, 47 transmit elements (F/# = 3), and 65 active
receive element channels with a pitch of 424.6μm. These
parameters were used to mimic a Verasonics C5-2 probe
sequence used for acquiring the in vivo data. For each cyst
realization, channel data were simulated separately for the cyst
and background scatterers (12 scatterers per resolution cell)

to allow for custom scaling. The pseudononlinear approach
proposed by Byram and Shu [37] was used for simulating
the reverberation realizations, which used 5 scatterers per
resolution cell.

The 12 simulated cyst and 12 reverberation realizations were
scaled and combined to generate the various training data sets
described in Table I. For all simulated hypoechoic cyst data
sets, the channel data simulated from the scatterers within the
cyst were scaled to achieve 6 true contrast ratios (CR) between
0 and 50dB relative to the channel data simulated from the
scatterers outside of the cyst. For all simulated reverberation
data sets, reverberation was scaled to achieve 6 signal-to-
clutter ratios (SCR) between −5 and 20dB relative to the
combined (i.e., summed inside and outside channel data) cyst
realization.

For each simulated data set, ground truth target data, ys ,
were generated from the clean (i.e., no reverberation) cyst
realizations prior to combining the channel data for inside and
outside of the cyst as follows,

ys =
{

kC Rxinside, if inside

xoutside, if outside
(7)
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where kC R is the scaling term used to achieve the desired CR.
For anechoic cysts, kC R = 0. Using the aperture domain
signals from these separate channel data sets ensures that the
true contrast ratio is preserved in our ground truth data. Input
data were generated from the fully combined data sets as
follows:

xs = kC Rxinside + xoutside + kSC Rxreverb (8)

where xinside , xoutside, and xreverb represent aperture domain
signals from channel data simulated from scatterers inside
the cyst, outside the cyst, and reverberation, respectively, and
kC R and kSC R represent the scaling terms used to generate the
desired CR and SCR.

Background and cyst regions were identified depending
on whether the aperture signals within a 2λ axial kernel
(i.e., 16 depths) originated from a location outside or inside
of the cyst, respectively. The center 10 depths of the kernel
were used as input and output to the network. Each aperture
domain signal was concatenated through depth in addition to
concatenating real and imaginary components. Example input
and output signals are depicted in Fig. 2A. The number
of background and cyst training examples was made equal
(i.e., the full background was not used for training). A total
of 1,364 paired input/target aperture domain examples were
used from each simulated cyst realization.

2) Simulated Test Data: Two simulated test data sets were
generated: (1) hypoechoic cysts and (2) anechoic cysts with
reverberation. For both test sets, 6 5mm diameter cyst realiza-
tions centered at the transmit focus were simulated using the
same acquisition parameters described in Section II-B.1. For
the hypoechoic test set, for each cyst realization, the channel
data simulated from the scatterers within the cyst were scaled
to achieve 6 true contrast ratios (CR) between 0 and 50dB
relative to the channel data simulated from the scatterers
outside of the cyst. For each CR level, a total of N = 6 hypoe-
choic realizations were used for testing. For the reverberation
test set, 6 additional reverberation realizations were simulated
(i.e., separate from training) and were scaled to achieve
6 signal-to-clutter ratios (SCR) between −5 and 20dB relative
to the combined (i.e., summed inside and outside channel data)
cyst realizations. Each reverberation realization was paired
with a single cyst realization, resulting in N = 6 realizations
per SCR level. For both test sets, white gaussian noise was
added to each test realization to achieve a signal-to-noise ratio
of 50dB. The full field of view of each realization was used
for testing. A sliding window of 1 depth was used to select
10 depth inputs, and overlapping depth outputs were averaged.

3) In Vivo Data: A Verasonics Vantage Ultrasound System
(Verasonics, Inc., Kirkland, WA) and C5-2 curvilinear array
transducer were used to acquire channel data of 22 different
in vivo liver fields of view. Acquisition parameters matched
those used for simulations, as described in Section II-B.1.
Of the 22 data sets, 13 are of diseased livers belonging to
12 patients (one patient was scanned twice) diagnosed with
either hepatocellular carcinoma or neuroendocrine tumors. The
other 9 are from the same 37 year old healthy male. All
included subjects gave informed written consent in accordance
with the local institutional review board.

Of the 22 data sets, 6 (1 healthy and 5 diseased with no
repeat patients) were used for training. Similar to what was
done for the simulations, aperture domain signals originating
from spatial locations within a region around the focus were
extracted. A total of 3,270 unlabeled input examples were used
from each in vivo training data set.

The remaining 16 data sets were split into equally sized
validation and test data sets (i.e., N = 8 for both). The
validation set was used for model selection only. The test set
was used for all in vivo evaluation. The full in vivo field of
view was used for testing. A sliding window of 1 depth was
used to select 10 depth inputs, and overlapping depth outputs
were averaged.

4) Phantom Data: A Verasonics Vantage Ultrasound System
(Verasonics, Inc., Kirkland, WA) and C5-2 curvilinear array
transducer were used to acquire channel data of 4 different
speckle realizations with point targets from a tissue mim-
icking phantom (CIRS Model 040GSE, Norfolk, Virginia).
Acquisition parameters matched those used for simulations,
as described in Section II-B.1.

C. Experiments
1) Methodology Evaluation: To demonstrate the importance

of the novel aspects of our approach, we evaluate the effective-
ness of the DA approach with and without the target domain
adaptation and domain-specific regressors. Specifically, for this
study, 4 different training schemes were evaluated: (1) the
previously proposed CyCADA approach for which target DA
is not accounted for [29], (2) CyCADA expansion with target
DA but without augmented feature mapping, (3) CyCADA
expansion with augmented feature mapping but without tar-
get DA, and (4) the proposed DA DNN beamforming approach
that combines the target DA and augmented feature mapping.
The baseline training data indicated in Table I (i.e., labeled
simulated anechoic cyst and unlabeled in vivo data) were used
to train each DA DNN implementation.

2) Baseline Comparison to Established Beamformers: In our
previous preliminary work [30], we demonstrated that our DA
DNN approach outperformed other established beamformers.
In that work, the DA DNN was trained with in vivo data
acquired from a single subject with a healthy liver. In this
work, we include data from several subjects with varying
liver health. We hypothesize that our DA DNN approach
can translate to more variable in vivo data and produce
similar image quality improvements compared to established
beamformers.

As a direct baseline comparison to the proposed DA DNN
approach, a conventional DNN trained only on simulated
data, but with otherwise similar network parameters, was
also evaluated. Additionally, an established frequency-domain
DNN approach [20] was also evaluated. This method differs
from the conventional DNN approach in that it uses short-
time Fourier transformed (STFT) data and trains separate
networks for individual frequencies. For the data in this work,
3 networks were trained separately for the 3 most prominent
frequencies within a 16 sample axial window (i.e., 2λ) of
channel data. For this approach, model training and selection
were performed as in [20] to highlight a best case scenario.
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For the DA DNN beamformer, the baseline data set indi-
cated in Table I (i.e., labeled simulated anechoic cyst and
unlabeled in vivo data) was used for training, while the
conventional DNN and STFT DNN were trained with labeled
simulated anechoic cysts only. All beamformers were eval-
uated on the in vivo test data (N = 8). Additionally, all
beamformers were tested on the speckle phantom data with
point targets.

In addition to comparing our approach to other deep
learning methods, performance was also evaluated in com-
parison to other established beamformers, including conven-
tional DAS, the generalized coherence factor (GCF) [4],
aperture domain model image reconstruction (ADMIRE) [7],
a robust capon minimum variance (MV) beamformer [2], [38],
and an eigen-based minimum variance (EIBMV) beamformer
[39]. For the GCF approach, as suggested by Li et al. [4],
a cutoff spatial frequency of 3 frequency bins (i.e., M0 = 1)
was used to compute the weighting mask. For the
MV approach, tuning parameters were chosen as suggested in
Synnevag et al. [2]: number of elements used to com-
pute covariance matrix (L) = 32 (i.e., half the number of
elements) and diagonal loading constant = 1

100L . For the
EIBMV approach, tuning parameters were chosen based on
the standard values described in Heidari et al. [40]: temporal
averaging window (K) = 8 samples (i.e., pulse length), number
of elements used to compute covariance matrix (L) = 32
(i.e., half of the number of elements), diagonal loading
constant = 1

100L , and γ = 0.5. The EIBMV approach
was implemented using code available from the Ultrasound
Toolbox [41].

3) Loss Function Regularization Evaluation: To evaluate the
effects of varying constraints on the loss function terms
described in Eq. 6 with respect to DA DNN performance,
two experiments were performed. For the first experiment,
the overall regression weight, λREG , was varied between
0.25 and 1.75 spaced by 0.25 while the overall GAN
weight, λG AN , remained fixed at 1. For the second experi-
ment, the overall regression weight, λREG , was varied with
respect to the overall GAN weight, λG AN , such that λREG +
λG AN = 2. The same range of λREG values was used
for both studies. Each experiment involved training 7 addi-
tional DA DNN networks for which we ensured that the
same random initialization was used for each training run.
The hyperparameters indicated in Table II and the baseline
training data indicated in Table I were used when train-
ing each network. These additional DA DNNs were tested
on the in vivo data and compared to the other evaluated
beamformers.

4) Unlabeled Domain Evaluation: We expect in vivo data
to contain both hypoechoic cysts and reverberation clutter.
Therefore, we hypothesize that the DA DNN beamformer can
learn domain shifts between anechoic and hypoechoic data as
well as clean and cluttered data. To test this, we performed
two unlabeled domain experiments. First, we trained a DA
DNN beamformer using labeled simulated anechoic cysts and
unlabeled simulated hypoechoic cysts (unlabeled hypoechoic
data set in Table I). Additionally, we trained a DA DNN beam-
former using labeled simulated anechoic cysts and unlabeled

TABLE II
SELECTED DA DNN AND CONVENTIONAL DNN HYPERPARAMETERS

ARE INDICATED IN BOLD AND ITALICIZED FONT, RESPECTIVELY

simulated anechoic cysts with reverberation (unlabeled reverb
data set in Table I).

The DA DNN beamformers trained with these two dif-
ferent domain combinations were compared to conventional
DNN beamformers trained with only the labeled simulated
anechoic cyst data. Additionally, conventional DNNs were
trained using labeled anechoic and hypoechoic cysts (labeled
hypoechoic data set in Table I) as well as labeled anechoic
cysts with and without reverberation (labeled reverberation
data set in Table I). These conventional DNNs trained on the
labeled hypoechoic and reverberation data serve as a best case
scenario comparison.

Ground truth image quality metrics were computed using
the separately beamformed cyst and background simulations.
As described in section II-B.2, the channel data and full
field of view were used to compute the scaling terms for
achieving the desired CR and SCR values when generating the
test data. Therefore, because beamformed envelope data and
smaller regions of interest (ROIs) were used to compute image
quality metrics, the computed ground truth image quality
metrics are not equivalent to the CR and SCR values reported
in Section II-B.2.

5) Labeled Domain Evaluation: As demonstrated in our pre-
vious work [30], the DA DNN beamformer performs well
when there exists a substantial domain gap between trivial
anechoic cysts and complex in vivo data. To determine how
the performance changes when the domain gap decreases,
we created increasingly complex simulated training data sets to
use as the labeled domain. We hypothesize that as the domain
shift decreases, domain adaptation becomes less necessary.

These varied training data sets are described in Table I.
In addition to the baseline, labeled hypoechoic, and labeled
reverberation data sets, 3 additional combinations of these data
were also evaluated: (1) combo 1 includes labeled hypoechoic
cysts without reverberation and anechoic cysts with reverber-
ation (2) combo 2 includes labeled hypoechoic cysts with
reverberation for which each cyst realization is paired with
a single reverberation realization (i.e., 1:1), and (3) combo 3
includes labeled hypoechoic cysts with reverberation for which
every combination of cyst and reverberation realizations were
accounted for.

For all DA DNN beamformers trained with these varying
labeled simulation domains, the unlabeled in vivo domain
remained the same. The conventional DNN beamformer was
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also evaluated with these different labeled simulation domains.
Furthermore, the DA DNN and conventional DNN beamform-
ers for this study were evaluated in comparison to the other
established beamformers described in Section II-C.2.

D. Performance Metrics
Contrast-to-noise ratio (CNR), contrast ratio (CR), gener-

alized contrast-to-noise ratio (GCNR), and speckle signal-
to-noise ratio (SNRs) were used to evaluate beamformer
performance as follows,

C N R = 20 log10
|μbackground − μlesion |√

σ 2
background + σ 2

lesion

(9)

C R = −20 log10
μlesion

μbackground
(10)

GC N R = 1 −
∫

min{plesion(x), pbackground(x)}dx (11)

SN Rs = μbackground

σ 2
background

(12)

where μ, σ , and p are the mean, standard deviation, and
empirical density function [42] of the uncompressed enve-
lope. Prior to computing image quality metrics, envelope
data were log compressed, histogram-matched to the corre-
sponding DAS data, and then uncompressed back to envelope
data. For the in vivo and speckle phantom data, a full his-
togram matching approach was used. For the simulated data,
an ROI-based partial histogram matching approach was used.
These approaches were chosen and implemented as described
in Bottenus et al. [43]. Images were made for qualitative
comparison by log compressing the histogram-matched enve-
lope data, scan converting, and scaling to a 60dB dynamic
range. For the phantom data, axial and lateral resolution were
measured on the upsampled (x10) log compressed envelope
data as the -6dB width of the main lobe.

E. Network Details
All networks were trained using Pytorch [44]. A rectified

linear unit activation function [45] and Adam optimization [46]
were used. All input signals were normalized to a maximum
absolute value of 1 prior to network processing. Network
weights were initialized using a zero mean Gaussian random

variable with variance equal to
√

2
n , where n is the size of the

previous layer [47], [48]. All DA DNN and conventional DNN
networks were trained to achieve 30,000 training iterations.

DA DNN (including GANs, discriminators, and regressors)
and conventional DNN hyperparameters were selected using
a small grid search. Hyperparameters corresponding to layer
width (e.g. 100-1300), number of hidden layers (e.g. 5-7), and
regression losses (e.g. mean squared error, smooth L1) were
varied. The input and output to all DA DNN and conven-
tional DNN networks was a 1D vector of aperture domain
data, as depicted in Fig. 2A and described in Section II-B.
DA DNN and conventional DNN models were trained using
the largest labeled simulated training data set (i.e., combo
3 data set in Table I). These models were evaluated on the
in vivo validation data withheld from training and testing.

Fig. 3. Log compressed losses for each component of the overall objec-
tive function (Eq. 6) are plotted for each training epoch for the DA DNN
beamformer trained with the baseline training data set. Each network
was trained to achieve 30,000 iterations, which, given N = 16,368 training
examples and a batch size of 561, equates to 1001 epochs.

The model hyperparameters that produced the highest CNR
on the validation in vivo data were used for all DA DNN
and conventional DNN beamformers in this work and are
indicated in Table II. GAN and discriminator networks did
not use dropout but had otherwise identical hyperparameters
to the regressors. Fig. 3 shows the training loss curves for the
DA DNN beamformer trained with the baseline training data
set indicated in Table I.

Both fully connected [20], [26] and convoluti-
onal [23]–[25] architectures have been considered in the
context of ultrasound beamforming, and it was demonstrated
previously that minimal performance differences exist
between the two approaches [49]. To be consistent with the
network approach used for comparison in this work [20] as
well as the known signal coherence patterns of ultrasound
channel data [50], our networks are fully connected across
the aperture. Therefore, all networks, including generators,
discriminators, and regressors, were fully connected. However,
because we apply the same network weights to all depths,
our networks are implicitly convolutional through depth.

III. RESULTS

A. Methodology Evaluation
Incorporating both the target domain adaptation and aug-

mented feature mapping into our final training algorithm were
necessary for realizing the full potential of our proposed DA
DNN beamfomer, as demonstrated in Fig. 4. The example in
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Fig. 4. Example in vivo B-mode images are shown to demonstrate the novel and necessary expansions from the previously proposed CyCADA
scheme [29]. The example here shows a liver tumor sitting above the kidney. The baseline training data (i.e., labeled simulated anechoic cyst and
unlabeled in vivo data) were used for all DA DNNs. The regions of interest used to compute image quality metrics for the displayed example are
shown in red on the DAS B-mode image. All images are histogram matched to the DAS B-mode image and scaled to individual maximums and a
60dB dynamic range.

TABLE III
AVERAGE CNR, CR, AND GCNR (± STANDARD DEVIATION) ACROSS

THE 8 In Vivo TEST EXAMPLES FOR THE DIFFERENT IMPLEMENTATIONS
OF DOMAIN ADAPTATION: BASELINE CYCADA, CYCADA WITH

TARGET DOMAIN ADAPTATION (DA), CYCADA WITH AUGMENTED
FEATURE MAPPING (FM), AND CYCADA WITH BOTH TARGET
DOMAIN ADAPTATION AND AUGMENTED FEATURE MAPPING

Fig. 4 shows a liver tumor sitting above the kidney. Using
the previously proposed CyCADA approach produces overall
worse image quality compared to DAS. Incorporating target
domain adaptation visibly improves image quality compared
to DAS. Incorporating the augmented feature mapping without
target domain adaptation improves image quality compared to
the baseline CyCADA approach but does not improve image
quality compared to DAS. Incorporating both target domain
adaptation and augmented feature mapping produces the most
qualitatively compelling image as well as improvements in
CNR, CR, and GCNR on average across the full in vivo test
set compared to conventional DAS, as indicated in Table III.

B. Baseline Comparison to Established Beamformers
Using the baseline training data (i.e., labeled simulated

anechoic cysts and unlabled in vivo data), DA DNN produced
qualitative and quantitative improvements in image quality
compared to the other evaluated beamformers, as shown in
Fig. 5 and Table IV. The example in the top row of Fig. 5
shows a tumor directly to the left of an anechoic gallbladder.
The example in the bottom row of Fig. 5 shows vessels in
a healthy liver. The conventional DNN beamformer for both
examples produces images with noticeably better contrast than
DAS, but they also have more drop out regions compared
to the other beamformers, resulting in lower CNR. For the

TABLE IV
AVERAGE CNR, CR, AND GCNR (± STANDARD DEVIATION) ACROSS
THE 8 In Vivo TEST EXAMPLES FOR EACH BEAMFORMER EVALUATED.

THE BASELINE TRAINING DATA SET INDICATED IN TABLE I
WAS USED FOR THE DA DNN APPROACH

example in the top row of Fig. 5, apart from preserving the
speckle background, the image made using the DA DNN
beamformer shows the clearest delineation of the tumor bound-
ary in the near field. These overall trends are described quanti-
tatively in Table IV, for which DA DNN produced the highest
average CNR and GCNR overall while still maintaining higher
CR than DAS.

All beamformers resulted in improved speckle SNR com-
pared to DAS when computed on the physical phantom data.
Additionally, all beamformers except for ADMIRE resulted
in improved lateral resolution. Apart from ADMIRE and
EIBMV, all of the beamformers resulted in slightly worse
axial resolution compared to DAS. These results are supported
qualitatively in Fig. 6 and quantitatively in Table V.

C. Loss Function Regularization Evaluation
Fig. 7 demonstrates that the DA DNN approach is generally

robust to varying amounts of regularization on the overall
objective function. When varying just the regressor weights
(left column in Fig. 7), larger weights result in overall better
performance compared to the baseline value of λREG = 1.
However, even with smaller weights (λREG < 1), the DA
DNN still performs well relative to the other beamformers.
When varying the regressor weights with respect to the GAN
weights (right column in Fig. 7), performance begins to
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Fig. 5. Example in vivo B-mode images are shown for each beamformer. The top example shows a liver tumor to the left of the anechoic gallbladder.
The bottom example shows vessels in a healthy liver. The baseline training data (i.e., labeled simulated anechoic cyst and unlabeled in vivo data)
were used to train the DA DNN. The regions of interest used to compute image quality metrics for the displayed example are shown in red on the
DAS B-mode image. All images are histogram matched to the DAS B-mode image and scaled to individual maximums and a 60dB dynamic range.

Fig. 6. Example physical phantom B-mode images are shown for each beamformer. The baseline training data (i.e., labeled simulated anechoic
cyst and unlabeled in vivo data) were used to train the DA DNN. The region of interest used to compute SNRs for the displayed example is shown
in red on the DAS B-mode image. The lateral and axial plots corresponding to the red lines displayed in the DAS image were used to compute
resolution for each case. The red lines are slanted in the DAS image because resolution was computed on the log compressed envelope data prior
to scan conversion. All images are histogram matched to the DAS B-mode image and scaled to individual maximums and a 60dB dynamic range.

TABLE V
AVERAGE SNRs, LATERAL AND AXIAL RESOLUTION (± STANDARD
DEVIATION) ACROSS THE 4 PHANTOM TEST EXAMPLES FOR EACH

BEAMFORMER EVALUATED. THE BASELINE TRAINING DATA SET
INDICATED IN TABLE I WAS USED FOR THE DA DNN APPROACH

degrade when λG AN < 1 and λREG > 1, indicating that
the GAN regularization is more influential than the regu-
larization for the regression. Overall, these results confirm

that DA DNN performance is relatively stable when consider-
ing extra constraints in the loss function.

D. Unlabeled Domain Evaluation
The proposed domain adaptation scheme was able to suc-

cessfully account for domain shift between anechoic and
hypoechoic cysts. As shown on the right of Fig. 8, the DA
DNN beamformer produced an image that has an estimated
contrast ratio of 26.7dB, which, compared to the other beam-
formers, is closest to the true contrast ratio of 26dB. The con-
ventional DNN approach overestimates contrast ratio overall,
which is consistent with what we see in vivo, as demonstrated
in Fig. 5. As hypothesized, the DNN trained with ground truth
hypoechoic cysts performs best across the full contrast ratio
test set (i.e., the pink line stays closest to the true contrast
line overall), but the DA DNN is substantially closer to the
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Fig. 7. Average (± standard error) DA DNN CNR (top), CR (middle), and
GCNR (bottom) as a function of λREG from Eq. 6 is shown in purple in
each plot. The left column shows results for whenλGAN is fi ed at 1 while
the right shows results for when λGAN varies as a function of λREG such
that λGAN = � − λREG. Average values for all other beamformers are
indicated by the dashed horizontal lines in each plot.

true contrast compared to the conventional DNN and DAS
approaches, as shown in the plots on the left of Fig. 8.

The domain adaptation approach is also able to account
for domain shift between anechoic cysts without and with
reverberation that would otherwise cause degraded speckle.
The qualitative example shown on the right of Fig. 9 shows
how the DA DNN approach is able to preserve the speckle
background better than the conventional DNN. This results
in CNR that is closer to the true CNR with the DA DNN
approach for all SCR levels, as seen in the plots on the left of
Fig. 9. The DNN trained with ground truth simulated anechoic
cysts with reverberation provides the best clutter suppression
overall, as expected.

E. Labeled Domain Evaluation
Using more complex, in vivo-like simulations for training

resulted in consistent image quality improvements for the
conventional DNN approach. This conclusion is supported
qualitatively in the top row of Fig. 11 for which the DNN
trained with the labeled combo 3 simulated data produced
the best image compared to the DNNs trained with the other
evaluated labeled data sets. Quantitatively, Fig. 10 shows
how DNN CNR improves consistently as the labeled domain
complexity increases. In contrast, the DA DNN approach

Fig. 8. Average CNR, CR, and GCNR (± standard deviation) computed
on simulated hypoechoic cyts are shown for DAS (black), DNN trained
with labeled simulated anechoic cysts (teal), DNN trained with labeled
hypoechoic cysts (pink), and DA DNN trained with labeled simulated
anechoic cysts and unlabeled hypoechoic cysts (purple). The CNR plot
displays the uncompressed values for better visualization of differences
between curves. Additionally, the CNR and GCNR plots show zoomed
in versions of the curves between 20 and 50dB true CR values. Exam-
ple 5mm diameter simulated anechoic cyst B-mode images are shown on
the right with a true CR of 26dB. Each image is outlined in corresponding
colors from the plots. All images are histogram matched to the DAS
B-mode image and scaled to individual maximums and a 60dB dynamic
range.

produces qualitatively similar images across the different
labeled simulated training data sets, as shown in the bottom
row of Fig. 11. This observation is supported quantitatively
in Fig. 10 for which the DA DNN CNR, CR, and GCNR
remain fairly constant among the different labeled training
data sets. Although the DA DNN approach does not produce
the highest CR overall, it produces consistently higher CR
compared to DAS and also consistently produces the highest
CNR and GCNR across all of the evaluated beamformers.

IV. DISCUSSION

Domain adaptation for ultrasound beamforming required
two main contributions from previous domain adaptation
efforts [29]: (1) accounting for target domain shift and
(2) learning distinct regressors for simulations and in vivo data
using augmented feature mapping. The importance of these
contributions are qualitatively and quantitatively supported in
Fig. 4 and Table III. An important fundamental assumption
of this approach is that the domain shift between simulated
and in vivo data is the same for the inputs and the outputs.
Based on our results, this seems to be a reasonable baseline
assumption. However, unlike the target domain adaptation,
the input domain adaptation needs to account for sources
of clutter, a discrepancy that could potentially invalidate our
assumption.
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Fig. 9. Average CNR, CR, and GCNR (± standard deviation) computed
on simulated anechoic cysts with varied levels of reverberation are
shown for DAS (black), DNN trained with labeled anechoic cysts (teal),
DNN trained with labeled anechoic cysts with reverberation (pink), and
DA DNN trained with labeled simulated anechoic cysts and unlabeled
simulated anechoic cysts with reverberation (purple). The CNR plot
displays the uncompressed values for better visualization of differ-
ences between curves. Example 5mm diameter simulated anechoic cyst
B-mode images are shown on the right for a signal-to-clutter ratio (SCR)
of 0dB. Each image is outlined in corresponding colors from the plots. All
images are histogram matched to the DAS B-mode image and scaled to
individual maximums and a 60dB dynamic range.

In our initial work [30], we developed and tested our DA
DNN approach using data acquired with a linear array and
higher center frequency than that used with the curvilinear
array in this work. Additionally, in our initial work, we used
in vivo data from a single healthy subject for training and
testing, whereas in this work, we include data from multiple
subjects with varying liver health. In other words, the in vivo
data set used in this work is substantially more variable than
that used in our original work. Despite these differences,
we observe similar results and trends with respect to the DA
DNN and how it compares to other established beamformers.
This is noteworthy because it suggests that the technique is
robust and reproducible for different acquisition sequences as
well as different data types. That said, it is worth investigating
further the extent of in vivo data variability, including, for
example, in vivo data acquired with different scanners.

The physical phantom results confirm that the proposed DA
DNN beamformer improves or maintains speckle SNR and
resolution in phantoms for which we know what to expect.
However, because the DA DNN is trained with in vivo data
to account for domain shift between ground truth simulations
and in vivo data, it is optimized to perform best on in vivo
data. Therefore, we do not expect the DA DNN beamformer to
produce substantial improvements on physical phantom data.
We could train with unlabeled physical phantom data instead
of in vivo data to account for domain shift between simulations
and physical phantom data, but this has not been an apparent

issue, as demonstrated in Fig. 6 and Table V for which
both the conventional DNN and STFT DNN also resulted
in improvements in speckle SNR and resolution compared
to DAS. In other words, DNN beamformers trained with
ground truth simulations tend to generalize well to physical
phantom data but not always to the in vivo data that we care
about. We could also train with labeled physical phantom data
instead of (or in addition to) simulated data to account for
domain shift between physical phantoms and in vivo data.
However, given the similar performance on simulations and
phantoms, we think that in addressing the domain gap between
simulations and in vivo data we are also accounting for a
lot of the domain gap potentially observed between physical
phantoms and in vivo data. Additionally, we do not definitively
know ground truth information in physical phantoms. We can
approximate cyst and speckle regions of interest, but these
will not be as precise as simulations. Furthermore, even if
we had accurate regions of interest, we believe the domain
gap between simulations or phantom data and in vivo data is
primarily a result of the presence and unique distributions of
various sources of clutter. Therefore, even if we were able
to accurately synthesize and control for different types of
clutter in our physical phantom data, it is still impossible to
synthesize the exact contributions and combinations of each
type of clutter that are found in vivo. Our approach aims to
solve this problem, which is equally applicable to simulations
and phantom data

By using controlled simulations for the unlabeled domain
studies, the domain shift was known and allowed for better
understanding of what the DA DNN beamformer, including the
regressor and GAN mappings, is actually learning. Although
Fig. 2 demonstrates that the approach can learn to map
between clean simulations and noisy in vivo aperture domain
signals, it is impossible to know exactly what types of noise
are being accounted for and what the ground truth regressed
output should be for the in vivo data. The unlabeled domain
study using controlled simulations provided meaningful insight
to these otherwise unknown questions. Although these studies
were informative, a potential limitation of the reverberation
study is that the labeled simulated anechoic cyst and unla-
beled anechoic cyst with reverberation source domains both
map to the same target domain (i.e., clean anechoic cysts).
It is possible that the original CyCADA approach with aug-
mented feature mapping would perform better in this scenario.
Augmented feature mapping would still be beneficial to dif-
ferentiate between beamforming that requires reverberation
suppression or not. In other words, the augmented feature map-
ping would ensure that the regressor itself was still invariant
to domain shift. In contrast, the original CyCADA approach
aims to address domain shift only in the input domain data
without also accounting for domain shift in the regressor
itself.

The DA DNN approach was robust across varying and
increasingly more in vivo-like labeled simulation domains.
This is noteworthy because it suggests that simple labeled
anechoic cysts are sufficient for training a successful DA DNN
in vivo beamformer. Additionally, this result suggests that the
DA DNN approach is less prone to overfitting to the simulated
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Fig. 10. Median CNR (left), CR (middle) and GCNR (right) across the 8 in vivo test examples for DNN (teal) and DA DNN (purple) trained with
different labeled simulated data sets. The median value for each method is the central mark in each box. The 25th and 75th percentiles are the
bottom and top edges of each box, respectively. The bars extending from each box indicate the minimums and maximums, and outliers are marked
in red. Reference CNR, CR, and GCNR median values are shown as the dashed curves for DAS (black), GCF (orange), ADMIRE (pink), and STFT
DNN (green).

Fig. 11. Example in vivo B-mode images are shown for each labeled simulated training data set evaluated for DNN and DA DNN. The example
here shows vessels in a healthy liver. The regions of interest used to compute image quality metrics for the displayed example are shown in red
on the DAS B-mode image in the bottom row of Fig. 5. All images are histogram matched to the corresponding DAS B-mode image and scaled to
individual maximums and a 60dB dynamic range.

data compared to the conventional DNN approach, which did
not generalize as well to in vivo data when trained with the
least in vivo-like simulations (i.e., simple anechoic cysts).
Moreover, the results of the labeled domain evaluation suggest
that the magnitude of the domain shift (i.e., combo 3 labeled
simulations to unlabeled in vivo being the smallest domain
shift evaluated) does not affect the performance of the DA
DNN. This is also noteworthy because it suggests that our most
complex simulations are potentially still not capturing the full
ultrasound physics that occur in vivo. It is worth investigating
if more sophisticated phase aberration or full wave simulations
decrease the domain shift between simulations and in vivo
data. However, all simulation models make assumptions that
are not always met in vivo, which motivates the persistent
need for domain adaptation when performing in vivo DNN
beamforming.

Despite the evident robustness of the DA DNN approach
to varying labeled simulation domains, there are also subtle
differences between the DA DNN results that could indicate
in vivo characteristics. For example, the DA DNN beamformer

trained with labeled simulated anechoic cysts with reverber-
ation produces higher median contrast overall and darker
vessel regions in the example in Fig. 11 compared to the
DA DNN trained with labeled hypoechoic cysts. This result
might suggest that reverberation contributes more to domain
shift between the simulated and in vivo data evaluated in this
work. However, it could also mean that the regions of interest
used to compute quantitative metrics are not all anechoic in a
ground truth sense and therefore the contrast is over estimated
with the labeled reverberation case and more accurate with
the hypoechoic case. It is also worth noting that we did not
incorporate hyperechoic cysts in the simulated training data
which could potentially introduce a bias towards anechoic
and hypoechoic structures. Therefore, although the observed
differences are subtle, they suggest the potential benefit of
combining different types of labeled simulated data to produce
more realistic representations of in vivo data.

All simulated cysts used for training in this work were
generated to be centered about the transmit focus. Previous
work [20] demonstrated that this will cause a limited depth
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of field for the STFT DNN, as seen by the degraded speckle
in the shallow depths of the STFT DNN images in Fig. 5.
This trend was also prevalent for the conventional DNN
approach. However, the DA DNN approach seems to increase
the depth of field compared to the STFT and conventional
DNN approaches, despite also only being trained with aperture
domain examples that originated from within the focal zone.
It possible to improve the depth of field further by including
training examples from a larger spatial range or by training
separate networks for shallow depths.

In addition to the demonstrated image quality improvements
compared to the other evaluated beamformers, once trained,
the DA DNN approach is extremely efficient, especially in
comparison to the non-DNN advanced beamformers. Addi-
tionally, although the proposed DA DNN approach involves
a complex training scheme in terms of the number of models
being trained (2 generators, 2 discriminators, and 1 regressor),
because all of these models are trained simultaneously, only a
single training run is required to train a DA DNN beamformer.
Similarly, a single network is used at test time. This is in
contrast to the STFT DNN beamformer used in this work
which requires 3 separate networks to train and test a single
STFT DNN beamformer (i.e., a separate network for each
frequency). Additionally, because the DA DNN approach
operates on time domain data, no immediate pre- or post-
network processing is required. In contrast, the STFT approach
requires both an STFT and inverse STFT during both training
and testing.

Although our proposed implementation is meant to be
used for ultrasound beamforming in the aperture domain,
we hypothesize that it is also broadly applicable to other
regression-based tasks for which labeled in vivo training data
are lacking but some form of other relevant labeled data
is available. For example, the proposed framework could
be applied to other deep learning beamforming efforts that
similarly use simulations to obtain physical ground truth
training data [24], [25], albeit with different architectures and
overall training objectives. Additionally, it is plausible that
the proposed approach could be used to perform a form of
image processing on DAS images to improve image quality.
Although image processing can improve image quality, remov-
ing sources of image degradation like off-axis scattering and
reverberation is challenging without the channel information,
which is why we focus on beamforming in the present work.
Finally, although these examples are specific to ultrasound,
we believe that the overall framework could also be applied
to other imaging modalities that aim to perform reconstruc-
tion or processing tasks for which obtaining ground truth in
vivo data is challenging or impossible.

V. CONCLUSION

Conventional deep learning adaptive beamforming tech-
niques rely on ground truth training data which is arguably
impossible to obtain in vivo. To solve this problem, we devel-
oped a novel domain adaptation scheme to incorporate unla-
beled in vivo data during training. We show that the proposed
DA DNN beamforming is robust in the presence of several

different types of domain shift. Additionally, we compared
our approach to conventional DNN beamforming and to other
established beamformers, including DAS, GCF, ADMIRE,
MV, and STFT DNNs, and we demonstrated consistent image
quality improvements with the DA DNN beamformer. Notably,
we show that our approach can achieve image quality con-
sistent with or higher than state-of-the-art ADMIRE and
STFT DNN beamforming without the same computational
limitations.

REFERENCES

[1] J. J. Dahl and N. M. Sheth, “Reverberation clutter from subcutaneous
tissue layers: Simulation and in vivo demonstrations,” Ultrasound Med.
Biol., vol. 40, no. 4, pp. 714–726, Apr. 2014.

[2] J.-F. Synnevåg, A. Austeng, and S. Holm, “Adaptive beamforming
applied to medical ultrasound imaging,” IEEE Trans. Ultrason., Fer-
roelectr., Freq. Control, vol. 54, no. 8, pp. 1606–1613, Aug. 2007.

[3] I. K. Holfort, F. Gran, and J. A. Jensen, “Broadband minimum variance
beamforming for ultrasound imaging,” IEEE Trans. Ultrason., Ferro-
electr., Freq. Control, vol. 56, no. 2, pp. 314–325, Feb. 2009.

[4] P.-C. Li and M.-L. Li, “Adaptive imaging using the generalized coher-
ence factor,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 50,
no. 2, pp. 128–141, Feb. 2003.

[5] M. A. Lediju, G. E. Trahey, B. C. Byram, and J. J. Dahl, “Short-
lag spatial coherence of backscattered echoes: Imaging characteristics,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 58, no. 7,
pp. 1377–1388, Jul. 2011.

[6] B. Byram and M. Jakovljevic, “Ultrasonic multipath and beamforming
clutter reduction: A chirp model approach,” IEEE Trans. Ultrason.,
Ferroelectr., Freq. Control, vol. 61, no. 3, pp. 428–440, Mar. 2014.

[7] B. Byram, K. Dei, J. Tierney, and D. Dumont, “A model and regulariza-
tion scheme for ultrasonic beamforming clutter reduction,” IEEE Trans.
Ultrason., Ferroelectr., Freq. Control, vol. 62, no. 11, pp. 1913–1927,
Nov. 2015.

[8] K. Dei and B. C. Byram, “The impact of model-based clutter suppression
on cluttered, aberrated wavefronts,” IEEE Trans. Ultrason., Ferroelectr.,
Freq. Control, vol. 64, no. 10, pp. 1450–1464, Oct. 2017.

[9] K. Dei and B. Byram, “A robust method for ultrasound beamforming in
the presence of off-axis clutter and sound speed variation,” Ultrasonics,
vol. 89, pp. 34–45, Sep. 2018.

[10] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Netw., vol. 2, no. 5,
pp. 359–366, 1989.

[11] D. Perdios, A. Besson, M. Arditi, and J.-P. Thiran, “A deep learning
approach to ultrasound image recovery,” in Proc. IEEE Int. Ultrason.
Symp. (IUS), Sep. 2017, pp. 1–4.

[12] M. Gasse, F. Millioz, E. Roux, D. Garcia, H. Liebgott, and D. Friboulet,
“High-quality plane wave compounding using convolutional neural
networks,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 64,
no. 10, pp. 1637–1639, Oct. 2017.

[13] Y. H. Yoon, S. Khan, J. Huh, and J. C. Ye, “Efficient B-mode ultrasound
image reconstruction from sub-sampled RF data using deep learning,”
IEEE Trans. Med. Imag., vol. 38, no. 2, pp. 325–336, Feb. 2018.

[14] O. Senouf et al., “High frame-rate cardiac ultrasound imaging with
deep learning,” in Proc. Int. Conf. Med. Image Comput. Comput.-Assist.
Intervent. Cham, Switzerland: Springer, 2018, pp. 126–134.

[15] Z. Zhou, Y. Wang, J. Yu, Y. Guo, W. Guo, and Y. Qi, “High
spatial–temporal resolution reconstruction of plane-wave ultrasound
images with a multichannel multiscale convolutional neural network,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 65, no. 11,
pp. 1983–1996, Nov. 2018.

[16] S. Khan, J. Huh, and J. C. Ye, “Universal deep beamformer for variable
rate ultrasound imaging,” 2019, arXiv:1901.01706. [Online]. Available:
http://arxiv.org/abs/1901.01706

[17] S. Khan, J. Huh, and J. C. Ye, “Adaptive and compressive beamforming
using deep learning for medical ultrasound,” IEEE Trans. Ultrason.,
Ferroelectr., Freq. Control, vol. 67, no. 8, pp. 1558–1572, Aug. 2020.

[18] W. Simson et al., “End-to-end learning-based ultrasound recon-
struction,” 2019, arXiv:1904.04696. [Online]. Available: http://arxiv.
org/abs/1904.04696

[19] B. Luijten et al., “Adaptive ultrasound beamforming using deep
learning,” IEEE Trans. Med. Imag., vol. 39, no. 12, pp. 3967–3978,
Dec. 2020.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on January 07,2022 at 03:36:46 UTC from IEEE Xplore.  Restrictions apply. 



TIERNEY et al.: TRAINING DEEP NETWORK ULTRASOUND BEAMFORMERS WITH UNLABELED IN VIVO DATA 171

[20] A. C. Luchies and B. C. Byram, “Deep neural networks for ultrasound
beamforming,” IEEE Trans. Med. Imag., vol. 37, no. 9, pp. 2010–2021,
Sep. 2018.

[21] A. C. Luchies and B. C. Byram, “Training improvements for ultrasound
beamforming with deep neural networks,” Phys. Med. Biol., vol. 64,
no. 4, Feb. 2019, Art. no. 045018.

[22] A. C. Luchies and B. C. Byram, “Assessing the robustness of
frequency-domain ultrasound beamforming using deep neural networks,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 67, no. 11,
pp. 2321–2335, Nov. 2020.

[23] A. A. Nair, T. D. Tran, A. Reiter, and M. A. L. Bell, “A generative
adversarial neural network for beamforming ultrasound images: Invited
presentation,” in Proc. 53rd Annu. Conf. Inf. Sci. Syst. (CISS), Mar. 2019,
pp. 1–6.

[24] A. A. Nair, K. N. Washington, T. D. Tran, A. Reiter, and M. A. L. Bell,
“Deep learning to obtain simultaneous image and segmentation outputs
from a single input of raw ultrasound channel data,” IEEE Trans.
Ultrason., Ferroelectr., Freq. Control, vol. 67, no. 12, pp. 2493–2509,
Dec. 2020.

[25] D. Hyun, L. L. Brickson, K. T. Looby, and J. J. Dahl, “Beamforming
and speckle reduction using neural networks,” IEEE Trans. Ultrason.,
Ferroelectr., Freq. Control, vol. 66, no. 5, pp. 898–910, May 2019.

[26] R. Zhuang and J. Chen, “Deep learning based minimum variance
beamforming for ultrasound imaging,” in Smart Ultrasound Imaging and
Perinatal, Preterm and Paediatric Image Analysis. Cham, Switzerland:
Springer, 2019, pp. 83–91.

[27] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2223–2232.

[28] O. Huang et al., “MimickNet, mimicking clinical image post-processing
under black-box constraints,” IEEE Trans. Med. Imag., vol. 39, no. 6,
pp. 2277–2286, Jun. 2020.

[29] J. Hoffman et al., “CyCADA: Cycle-consistent adversarial
domain adaptation,” 2017, arXiv:1711.03213. [Online]. Available:
http://arxiv.org/abs/1711.03213

[30] J. Tierney, A. Luchies, C. Khan, B. Byram, and M. Berger, “Domain
adaptation for ultrasound beamforming,” in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Intervent. Cham, Switzerland: Springer, 2020,
pp. 410–420.

[31] J. Tierney, A. Luchies, C. Khan, B. Byram, and M. Berger, “Accounting
for domain shift in neural network ultrasound beamforming,” in Proc.
IEEE Int. Ultrason. Symp. (IUS), Sep. 2020, pp. 1–3.

[32] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Adv. Neural
Inf. Process. Syst., 2014, pp. 2672–2680.

[33] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 1125–1134.

[34] L. Mescheder, A. Geiger, and S. Nowozin, “Which training methods
for GANs do actually converge?” 2018, arXiv:1801.04406. [Online].
Available: http://arxiv.org/abs/1801.04406

[35] T. Tommasi and B. Caputo, “Frustratingly easy NBNN domain adapta-
tion,” in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2013, pp. 897–904.

[36] J. A. Jensen, “Field: A program for simulating ultrasound systems,” in
Proc. 10th Nordicbaltic Conf. Biomed. Imag., vol. 4, 1996, pp. 351–353.

[37] B. Byram and J. Shu, “Pseudononlinear ultrasound simulation approach
for reverberation clutter,” J. Med. Imag., vol. 3, no. 4, 2016,
Art. no. 046005.

[38] J.-F. Synnevåg, A. Austeng, and S. Holm, “Benefits of minimum-
variance beamforming in medical ultrasound imaging,” IEEE Trans.
Ultrason., Ferroelectr., Freq. Control, vol. 56, no. 9, pp. 1868–1879,
Sep. 2009.

[39] B. M. Asl and A. Mahloojifar, “Eigenspace-based minimum variance
beamforming applied to medical ultrasound imaging,” IEEE Trans.
Ultrason., Ferroelectr., Freq. Control, vol. 57, no. 11, pp. 2381–2390,
Nov. 2010.

[40] M. H. Heidari, M. Mozaffarzadeh, R. Manwar, and M. Nasiriavanaki,
“Effects of important parameters variations on computing eigenspace-
based minimum variance weights for ultrasound tissue harmonic imag-
ing,” Photons Plus Ultrasound, Imag. Sens., vol. 10494, Feb. 2018,
Art. no. 104946R.

[41] A. Rodriguez-Molares, O. M. H. Rindal, O. Bernard, H. Liebgott,
A. Austeng, and L. Lovstakken, “The ultrasound toolbox,” in Proc. IEEE
Int. Ultrason. Symp. (IUS), Sep. 2017, pp. 1–4.

[42] A. Rodriguez-Molares et al., “The generalized contrast-to-noise ratio:
A formal definition for lesion detectability,” IEEE Trans. Ultrason.,
Ferroelectr., Freq. Control, vol. 67, no. 4, pp. 745–759, Apr. 2020.

[43] N. Bottenus, B. C. Byram, and D. Hyun, “Histogram matching for visual
ultrasound image comparison,” IEEE Trans. Ultrason., Ferroelectr.,
Freq. Control, vol. 68, no. 5, pp. 1487–1495, May 2021.

[44] A. Paszke et al., “Automatic differentiation in PyTorch,” in Proc. NIPS,
2017, pp. 1–4.

[45] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proc. 14th Int. Conf. Artif. Intell. Statist., 2011,
pp. 315–323.

[46] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” 2014, arXiv:1412.6980. [Online]. Available: http://
arxiv.org/abs/1412.6980

[47] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proc. 13th Int. Conf. Artif. Intell.
Statist., 2010, pp. 249–256.

[48] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rec-
tifiers: Surpassing human-level performance on ImageNet classifica-
tion,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015,
pp. 1026–1034.

[49] Z. Chen, A. Luchies, and B. Byram, “Compact convolutional neural
networks for ultrasound beamforming,” in Proc. IEEE Int. Ultrason.
Symp. (IUS), Oct. 2019, pp. 560–562.

[50] R. Mallart and M. Fink, “The van Cittert–Zernike theorem in pulse echo
measurements,” J. Acoust. Soc. Amer., vol. 90, no. 5, pp. 2718–2727,
1991.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on January 07,2022 at 03:36:46 UTC from IEEE Xplore.  Restrictions apply. 




