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Multidimensional Clutter Filtering of Aperture
Domain Data for Improved Blood

Flow Sensitivity
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Abstract— Singular value decomposition (SVD) is a valu-
able factorization technique used in clutter rejection filtering
for power Doppler imaging. Conventionally, SVD is applied
to a Casorati matrix of radio frequency data, which enables
filtering based on spatial or temporal characteristics. In this
article, we propose a clutter filtering method that uses a
higher order SVD (HOSVD) applied to a tensor of aperture
data, e.g., delayed channel data. We discuss temporal,
spatial, and aperture domain features that can be lever-
aged in filtering and demonstrate that this multidimensional
approach improves sensitivity toward blood flow. Further,
we show that HOSVD remains more robust to short ensem-
ble lengths than conventional SVD filtering. Validation of
this technique is shown using Field II simulations and in
vivo data.

Index Terms— Blood flow, clutter rejection, higher order
SVD (HOSVD), power Doppler (PD), singular value decom-
position (SVD).

I. INTRODUCTION

POWER Doppler (PD) imaging is a preferred ultrasonic
technique for visualization of low-velocity blood flow.

When coupled with plane wave synthetic focusing (PWSF),
Doppler data can be accumulated at high frame rates with
improved sensitivity toward microvasculature [1], [2]. This has
enabled visualization of low-velocity blood flow without con-
trast enhancement, which is clinically valuable for functional
and therapeutic assessment [2], [3].

However, the sensitivity of PD imaging is inherently
tied to the signal-to-clutter ratio (SCR) and the filter
rejection band [2]. These constraints particularly impede
microvasculature imaging, as low-velocity blood echoes are
often close to the noise floor [4], [5] and can exhibit similar
slow-time characteristics to tissue [4], [5]. For noncontrast
PD, these challenges have been primarily addressed through
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novel beamforming [6]–[9], clutter rejection [10]–[16], and
postprocessing strategies [5], [17].

Clutter rejection filtering is used to suppress undesirable
noise and “clutter” signals, which arise from reverberation,
OFF-axis scattering, and nonstationary tissue echoes [16], [18].
Historically, clutter rejection algorithms have used infinite
impulse response, finite impulse response, and regression
filters, which have been extensively studied and optimized
[19]–[22]. These filters are effective when the blood and
clutter signals reside in orthogonal Fourier or polynomial basis
vectors; however, this assumption can be violated in imaging
conditions with patient and sonographer motion as well as
in conditions with strong electronic white noise [16], [18].
Frequently, clutter rejection filters are coupled with motion
correction techniques to reduce the mean frequency and band-
width of the clutter signal [20], [23].

More recently, singular value decomposition (SVD) filters
have emerged as a robust alternative to conventional filters.
The motivation for using SVD filters is twofold. First, SVD
filtering is inherently adaptive, as the SVD basis set is defined
by the covariance characteristics of the data. In addition, SVD
filters can operate on 1-D (temporal) or 2-D (spatial and
temporal) data, which expands the feature space for signal
classification. As a result, SVD filtering can achieve superior
performance over conventional methods [11], [14]–[16].

However, SVD filter utility suffers when blood, clutter, and
noise are not distributed over orthogonal bases. Complex tissue
motions and factorization rank limitations can cause signal
overlap, which imposes a trade-off between clutter rejection
and preservation of the blood signal [5], [12]. Accordingly,
SVD filtering improves with longer ensemble sizes [14], [15],
but this is not feasible on clinical scanners which rely on short
ensemble lengths (typically <50 frames) to achieve reasonable
real-time Doppler frame rates [24], [25].

Higher order SVD (HOSVD) filtering has been proposed
to improve the SCR while preserving sensitivity toward
microvasculature. The application of HOSVD was first pro-
posed by Kim et al. [26], [27] who demonstrated efficacy
in filtering a 3-D tensor of multirate radio frequency data.
This method has been termed multirate because it employs
two temporal dimensions, namely, the pulse dimension, which
is sampled on the slow time interval at the pulse repetition
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frequency (PRF), and the Doppler frame dimension, which
constitutes a set of pulses. Expanding the dimensionality of
the data expands the feature space, which enables better
separability of the blood signal.

To date, research on clutter rejection filtering has been lim-
ited to temporal and spatial extents. However, advancements
in PD beamforming have primarily focused on leveraging
features of delayed channel data and subaperture data
[10]–[16]. With the exception of limited research [28], [29],
these features have remained broadly unstudied for clutter
filtering.

In this article, we present a novel filtering methodology that
uses a HOSVD applied to a 3-D tensor of aperture data, with
spatial, slow-time, and channel dimensions. To demonstrate
feasibility of the approach, these methods are applied to
simulated and in vivo liver data.

II. THEORY

A. Equations

For clarity, we adopt the following mathematical notation.

1) Scalars are written using standard letters (a, b, N , M).
2) Vectors are written using bold lowercase letters (a, b).
3) 2-D matrices are written as bold uppercase letters

(A, B).
4) 3-D matrices (tensors) are written as bold scripts (A,B).

Within mathematical descriptions, Greek lowercase symbols
indicate scalars and uppercase indicate symbols indicate matri-
ces. Scalar elements are denoted using subscripts, e.g., the
(i, j)-element of A is ai j and the (i, j, k)-element of B is bi jk.

B. Doppler Data

In conventional PD processing, filtering is applied to beam-
formed radio frequency data, which is composed of Z axial
samples, X lateral samples, and N slow-time frames. To per-
form SVD, the beamformed data is often reshaped into Caso-
rati form, combining the axial and lateral spatial dimensions
to yield the 2-D matrix X ∈ CM×N , where M

def= X Z [14].
We propose using the HOSVD to filter aperture data.

“Aperture data” refers to the delayed channel data after syn-
thetic transmit focusing, prior to the beam sum. This data is
composed of Z axial samples, X lateral samples, N slow-time
frames, and K channels. Combining the spatial samples in a
Casorati form, the aperture data is represented as a 3-D matrix,
X ∈ CM×N×K .

C. Singular Value Decomposition

Conventionally, the SVD of the beamformed data matrix
X ∈ CM×N is given by

X = U SV � (1)

where unitary matrices U ∈ CM×M and V ∈ CN×N contain the
spatial and temporal singular vectors, respectively. The matrix,
S ∈ RM×N , contains the corresponding singular values along
the diagonal.

Fig. 1. Computation of the mode-2 eigenvalues from the HOSVD core
tensor, G (top). Mode-n unfoldings of the data tensor, X, used to compute
eigenvectors (bottom).

D. Higher Order Singular Value Decomposition

The HOSVD is a generalization of the SVD and a special
case of the Tucker decomposition [30]. The HOSVD of the
3-D aperture data tensor X ∈ CM×N×K is given by

X = G ×1 U ×2 V ×3 W (2)

where ×n indicates the mode-n product [30]. The mode-n
product, G ×n U , is equivalent to the multiplication of the
matrix and the mode-n unfolding of the tensor, e.g., UG(n).
The unfolded matrix, denoted by the subscript X(n), is the
2-D matrix representation of the data formed by fixing one
dimension and combining the other dimensions, as depicted
in Fig. 1 [31].

As shown in Fig. 2, HOSVD yields a core tensor, G ∈
CM×N×K and three unitary matrices, namely, the spatial sin-
gular vectors, U ∈ CM×M , the temporal singular vectors,
V ∈ CN×N , and the channel singular vectors, W ∈ CK×K .
In practice, the singular vector matrices are computed from
the mode-n unfoldings of X. The unfolded matrix is used
to produce a covariance matrix, R, from which the singular
vector matrix is obtained through eigen decomposition

RM = X(1)X
T
(1) = U�MUT (3)

RN = X(2)X
T
(2) = V�NV T (4)

RK = X(3)X
T
(3) = W�K WT. (5)

The set of mode-n singular values, λ(n), are computed as the
Frobenius norms of the core tensor, G. This can be written as
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Fig. 2. HOSVD of the data tensor, X, yields the core tensor G and three eigenvector matrices corresponding to temporal, spatial, and aperture
dimensions.

Fig. 3. Features used for HOSVD cutoff selection (green marker) include temporal singular vector mean frequency, temporal singular value
magnitude, aperture singular vector phase deviation, and spatial singular vector amplitude characteristics (left to right).

follows:

λ(1)
m =

N�
n=1

K�
k=1

|gm,n,k |2 (6)

λ(2)
n =

M�
m=1

K�
k=1

|gm,n,k |2 (7)

λ
(3)
k =

M�
m=1

N�
n=1

|gm,n,k |2. (8)

III. FILTER DESIGN

HOSVD and SVD filtering involve a similar process char-
acterized by (1) decomposition of the Doppler data, (2)
classification of the dominant signal type contained in each
orthogonal component, and (3) rejection of the components
corresponding to clutter and noise. We define the HOSVD
filter rejection band using four cutoffs, {ct1, ct2, ca, and cs},
obtained using the following classification scheme. The fea-
tures used to determine the cutoffs are shown in Fig. 3.

A. Temporal Domain Classification

Two cutoffs are defined in the temporal domain. The lower
cutoff is used to reject clutter, which typically exhibits a large
magnitude and low mean Doppler frequency. The upper cutoff
is defined to reject noise, which typically is clustered in the
final singular values.

As shown in Fig. 4, the spectral content of the temporal
singular vectors is nearly symmetric across the positive and
negative frequencies. For each singular vector, the mean
frequency was estimated from the power spectral density
[11], [14]. The lower cutoff, ct1, is chosen to be the point
where the mean singular vector frequency exceeds a specified
cutoff frequency. The cutoff frequency is selected to reject
components that contain the clutter signal. The frequency

Fig. 4. Power spectral density of temporal singular vectors. The black
line indicates the weighted mean frequency.

distribution and quantity of clutter-bearing components are
influenced by imaging conditions such as the presence of
motion and the clutter-to-blood ratio [13].

For noise rejection, the upper cutoff is determined in two
steps, as presented by Song et al. [15]. First, a precutoff
is defined by fitting the Doppler frequencies to a sigmoid
function to find the noise transition point. Second, a linear
fit is applied to the singular values after the precutoff point,
as the singular value magnitude of noise is expected to follow
the Marčenko–Pastur distribution [15], [32]. The upper cutoff,
ct2, is chosen as the point where the singular values deviate
from this line.

B. Aperture Domain Classification

Several aperture domain features have been leveraged by
adaptive beamformers, including coherence [33], [34], fre-
quency [35], and phase disparity [36]. Further, a limited num-
ber of aperture domain SVD studies have demonstrated that
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singular value magnitude [28] and singular vector frequency
[29] can be used for classification.

Here we propose a single cutoff that uses the phase char-
acteristics of the complex singular vectors. As described by
Camacho et al. [36], the phase disparity across the aperture
may be used to discriminate between echoes from the focal
zone and echoes from other locations. Synthetic aperture
focusing achieves uniform focusing over the entire field of
view, such that ON-axis signals are phase aligned, exhibiting
low deviation. In comparison, OFF-axis clutter signals and
additive white noise will produce high measures of deviation.

Specifically, the phase of additive white noise can be
modeled as a uniform distribution between −π and π , with a
standard deviation of (π/

√
3). Therefore, we computed the

standard deviation of the phase for each aperture domain
singular vector. The aperture cutoff, ca, is determined by
finding the point where the standard deviation of the phase
plateaus to (π/

√
3).

In application, a confidence interval for the spatial cut-
off was determined empirically. The standard deviation was
measured from 100 000 realizations of uniformly distributed
random values of length N. The 2.5 and 97.5 percentiles were
used to compute a 95% confidence interval. If the measured
phase exceeded the upper confidence interval bound, the signal
likely crossed the −π to π phase boundary, so auxiliary phases
were computed, as done by Camacho et al. [36]. The aperture
cutoff, ca , was defined as the last point where the measured
phase fell below the lower confidence interval bound.

C. Spatial Domain Classification

In the spatial domain, we leverage the amplitude charac-
teristics of the singular vectors. Singular vectors containing
noise can be modeled as zero-mean complex Gaussian sig-
nals, ∼N(0, σ 2). The amplitude component of these singular
vectors is therefore characterized by the Nakagami distribution
with shape and scale parameters of m = 1 and w = 2σ 2.

The Nakagami shape parameter, m, has been used to char-
acterize envelope statistics of backscattered echoes, as the
Nakagami distribution encompasses pre-Rayleigh (m < 1),
Rayleigh (m = 1), and Rician (m > 1) statistics [37], [38].
The inverse normalized variance estimator (INV) is a common
technique for estimating the Nakagami shape parameter [39],
[40]. The INV estimator is

√
N -consistent and asymptotically

unbiased, defined as

m̂INV =
�
E

�
A2

��2

E
�
A4

� − �
E

�
A2

��2 . (9)

As a result, we can define a stabilizing transform which
converges to a zero-mean Gaussian random variable

s = √
N (m̂INV − m)→N

�
0,σ 2

INV

�
(10)

with an asymptotic variance of

σ 2
INV = 2m(m + 1). (11)

The stabilizing transform parameter, s, is to be computed
for every spatial singular vector. Finally, the spatial cutoff, cs ,
is defined as the point where s falls within ±3σINV. In practice,

a 5-point moving average was first applied to the stabilizing
transform parameter, to reduce spurious outliers.

D. Clutter Rejection and Power Estimation

Filtering is performed by reducing or zeroing the clutter-
dominant components. Therefore, we define the blood core
tensor, Ĝ, as

ĝm,n,k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, for cs ≤ m ≤ M

0, for ca ≤ n ≤ N

0, for k ≤ ct1 and ≥ ct2

gm,n,k, otherwise

(12)

and filtered data set as

X̂ = Ĝ ×1 U ×2 V ×3 W . (13)

Finally, the beamsum and power estimation are performed,
yielding the PD image, P H O SV D. Fig. 5 depicts an example
of the benefit of multidimensional clutter rejection, showing
that the greatest detection of the ON-axis blood flow signal is
achieved using temporal, spatial, and aperture domain cutoffs.

IV. METHODS

Processing and analysis were performed in MATLAB (ver-
sion R2018b, MathWorks, Natick, MA, USA). Beamforming
was implemented using the UltraSound ToolBox (v2.1) [41].
The TensorLab (v3.0) function mlsvd was used for HOSVD
[42]. All PD images are shown on a dynamic range normalized
to the maximum intensity of the image.

A. Performance Metrics

We compare the HOSVD filter to: (1) a conventional SVD
filter applied to the radio frequency data and (2) a novel
SVD filter applied to the mode-3 unfolding (e.g., frames ×
space ∗ channels) of the aperture data. “Gold standard” PD
images were formed using these methods, denoted P SV D and
P SV D−a, respectively.

The blood flow detection performance was assessed using a
receiver operating characteristic (ROC) curve analysis, similar
to Chee and Yu [43]. ROC curves were generated by plotting
the true positive rate against the false positive rate, measured
over a set of thresholds. The true positive rate was defined as
the fraction of blood pixels that exceeded the threshold value,
and the false positive rate was defined as the fraction of tissue
pixels that exceeded the threshold value. The thresholds were
postfilter Doppler power values, swept between the minimum
and maximum Doppler power in 0.2-dB increments. The area
under the ROC curve (AUC) was used to quantify how well
the blood flow was distinguished from the background.

Further, the image quality was measured in terms of the
contrast, defined as follows:

Contrast = 10 ∗ log10

�
P̄blood

P̄backgroud

�
(14)

and the contrast-to-noise ratio (CNR)

CNR = 10 ∗ log10

�
P̄blood − P̄background

σbackground

�
. (15)
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Fig. 5. Examples of delayed channel data with various levels of clutter rejection filtering. (1) Unfiltered data, (2) temporal filtering only, (3) temporal
and spatial filtering, and (4) temporal, spatial, and aperture filtering (left to right).

Fig. 6. Sample B-mode of simulated vessel phantom shown on a 60-dB
scale.

B. Simulation Design

A simulation study was conducted using Field II [44], [45].
A 2 × 3 cm2 tissue phantom was designed with a 0.4-mm
vessel angled 60◦ relative to the probe. Blood scatterers were
perfused in a parabolic velocity profile, with a peak velocity
of 10 mm/s.

To simulate realistic clutter, bulk motion was applied to the
tissue and blood scatterers. Five independent motion profiles
were obtained by averaging 2-D displacement estimates [46]
from tissue mimicking phantoms. The five tissue phantoms
were composed of a polyvinyl alcohol (PVA)-graphite
mixture [8] and acquired using an L12-4 probe held freely by
a sonographer. The phantom acquisition was performed using
probe parameters similar to the simulation ( f0 = 7.813 MHz
and fs = 31.24 MHz) and the same plane wave acquisition
sequence.

Five independent simulation realizations were generated
using the five motion profiles. For each simulation, the tissue
and blood channel data were simulated separately, and nor-
mally distributed random noise was used to simulate electronic
noise. The data were combined using a −40-dB blood-to-
tissue ratio and a −45-dB noise-to-tissue ratio. Five phantoms
were generated for independent speckle and displacement
realizations. A sample B-mode is shown in Fig. 6.

A linear probe was modeled using the parameters shown
in Table I. Channel data was acquired using an ultrafast
plane wave sequence composed of 13 plane waves evenly
spaced between −2.7◦ and 2.7◦. PWSF was applied to achieve
uniform focusing [1], yielding a net PRF of 700 Hz. PD images
were formed from a 4 × 13 mm2 patch (164 × 64 samples)
of simulated data.

C. Simulation Experimental Setup

1) Optimal Performance: To assess the optimal performance
of the filter, a set of PD images were formed by manually
defining the HOSVD cutoffs in a bounded grid search over

TABLE I
FIELD II SIMULATION PARAMETERS

TABLE II
OPTIMAL PERFORMANCE STUDY CUTOFF RANGES

the ranges depicted in Table II. Since the optimal contrast,
CNR and AUC may correspond to unique cutoff choices, each
performance metric was optimized separately. The reference
SVD filters were manually tuned over the ct1 and ct2 ranges.
Ensembles of 50 frames were used.

2) Classifier Performance: Classifier performance was
assessed by comparing the results of the manually tuned study
to PD images formed using the HOSVD cutoffs obtained using
the classifier described in Section III.

The spatial and aperture domain cutoffs were determined
using the theoretical cutoff points, e.g., when the phase devi-
ation plateaued at (π/

√
3) and when the stabilizing transform

parameter plateaued at ±3σ 2
INV. The lower temporal cutoff,

defined as a cutoff frequency, was the only bound that needed
to be parameterized. The temporal cutoff frequency was tuned
between 2 and 100 Hz, in 2-Hz increments. Ensembles of 50
frames were used.

3) Short Ensemble Performance: To assess the value of
using HOSVD filtering for PD imaging using relatively short
ensembles, images were additionally formed using ensembles
of 16 and 25 frames. The same classifier parameterization
was used; however, the temporal cutoff frequency was tuned
between 2 and 200 Hz, in 2-Hz increments. The extended
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Fig. 7. Blood (dashed) and background (solid) regions of interest used for human in vivo performance assessment. PD images formed using a
conventional SVD filter are shown on a 30-dB scale.

Fig. 8. Sample PD images obtained using SVD, SVD-a, and HOSVD. Images correspond to the results from the classifier-generated cutoff study
that produced the highest contrast for a single simulation case.

frequency range was used as shorter ensembles result in
temporal singular vectors with more broadband frequency
content, which increases the mean frequency.

D. In Vivo Study

Efficacy was further demonstrated in vivo using a small
pilot study of liver imaging data acquired from a healthy adult
male subject. Five data sets were obtained in compliance with
Vanderbilt’s Institutional Review Board (IRB) protocol.

Channel data was acquired using a C5-2 probe on a Vera-
sonics research system (Verasonics Inc., Kirkland, WA, USA),
with a sequence composed of nine angled plane wave transmits
evenly spaced from −4◦ to 4◦. The pulse was designed with a
f0 of 4.167 MHz and fs of 16.68 MHz. PWSF was applied,
yielding a net PRF of 600 Hz.

1) Image Quality: PD images were formed using ensem-
bles of 50 frames. Since global processing was used,
depth-dependent effects such as attenuation and gain may
confound accurate estimation of the Nakagami parameters
[37]. To overcome this constraint, the power of each singular
vector amplitude was normalized through depth when com-
puting the stabilizing transform parameter. For each data set,
a single region of 1299 axial samples and 64 lateral samples
was processed. The temporal cutoff frequency was tuned
between 2 and 200 Hz, in 2-Hz increments. Image quality
was measured in terms of contrast and CNR using manually
segmented regions of interest, as shown in Fig. 7. To assess the
sensitivity of each filter toward the temporal cutoff frequency,
the robustness was measured in terms of contrast loss relative
to the highest achievable contrast for each data set. This was
measured as 1−(|Contrast−Contrastmax|)/(Contrastmax), using
the nonlog compressed contrast values.

2) Computational Complexity: The computational cost of
HOSVD filtering is more demanding than conventional SVD
filtering. The HOSVD and SVD-a filters are both applied to
delayed channel data, which inherently increases the memory
demand by the size of the channel count in comparison to

Fig. 9. Depiction of the optimal performance study grid search. CNR
(left) and contrast (right) results shown on a dB scale for P SV D (top),
P SV D−a (middle), and P H OSV D (bottom) as a function of the lower and
upper temporal cutoffs. The HOSVD results depict the highest values
obtained over the spatial and aperture ranges. The highest achieved
image quality for each method is shown in bottom corner.

conventional SVD filtering which is applied to beamformed
radio frequency data.

The computational complexity of SVD is often approxi-
mated as O(mn2) for a matrix with dimensions m > n.
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Fig. 10. Simulation results for the optimal performance study. Contrast and CNR are shown on a dB scale.

Fig. 11. Image quality results for ensembles of 50 (top), 25 (center), and 16 (bottom) using the classifier-generated cutoffs. Contrast (dB), CNR
(dB), and AUC (left to right).

As a tensor method, the computational complexity of HOSVD
is greater, although truncated methods and efficient approx-
imation methods have been developed. The HOSVD of a
3-D tensor with dimensions [k, m, n] involves three separate
SVDs to obtain the singular vector matrices. We estimate
that HOSVD would therefore be associated with a baseline
computational complexity of roughly [O(mnk2) +O(knm2)+
O(kmn2)]. However, the absolute computational throughput
would depend on various factors, including the processing
system, available memory, and decomposition algorithm.

The time expense of the different decomposition methods
was evaluated using the five in vivo data sets with varied
parameterization. We measured the total serial run time to
perform each decomposition in MATLAB (The Mathworks
Inc., Natick) on a desktop computer running dual Intel Xeon
E5-3643 v4 CPUs at 3.40 GHz with 6 cores each. The
computation time across each run was measured using the
built-in MATLAB tic and toc commands.

For benchmarking, transmit beamforming was applied to
each in vivo data set, yielding a tensor with dimensions
[M × N × K ] corresponding to spatial samples, channels, and
frames. The HOSVD computation time was recorded as the

time to decompose the full tensor. We assessed the time to
perform a standard HOSVD using the function mlsvd. The
SVD-a computation time was recorded as the time to perform
an SVD on the unfolded matrix with dimensions of [M N×K ].
Finally, the conventional SVD computation time was measured
as the time to perform an SVD on the beamformed matrix with
dimensions of [M×K ], obtained by summing over the tensor’s
channel dimension.

To assess the effects of varied parameterization, we demon-
strate the relative effects of: (1) changing the temporal ensem-
ble length between 10 and 50 frames and (2) processing a
spatial sample containing between 100 and 500 depth samples.
For all cases, 128 channels and 64 lateral samples were used.
Plots were formed to depict the effect of varying each para-
meter while holding the other parameter constant at 50 frames
or 500 pixels, respectively.

V. RESULTS AND DISCUSSION

A. Simulation Study

The HOSVD clutter filter demonstrated improved perfor-
mance over the SVD filters in simulation, as depicted in Fig. 8.
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Fig. 12. B-mode, P SV D, P SV D−a, and P H OSV D images depicting peripheral blood flow in a healthy liver. B-mode images are shown on a 60-dB
scale. Filtered images display the highest contrast achieved using each filter (left to right).

Result metrics are reported using the mean ± one standard
deviation over the five simulated phantoms.

1) Optimal Performance: HOSVD outperformed conven-
tional SVD filtering in an ideal setting, as depicted in
Figs. 9 and 10. Using the optimized set of manually tuned
cutoffs for each filter, HOSVD produced a maximum contrast
of 19.99 ± 1.97 dB, compared to SVD (14.48 ± 3.13 dB)
and SVD-a (19.54 ± 2.21 dB). Similarly, HOSVD produced
a higher maximum CNR (22.11 ± 1.72 dB versus 15.59 ±
3.7 dB for SVD and 21.88 ± 1.81 dB for SVD-a).

However, an additional key benefit of HOSVD is that it
is more robust in nonideal conditions than SVD or SVD-a.
Fig. 9 depicts contrast and CNR results across all temporal
cutoffs for a single simulated data set. Similar to the findings
of Mauldin et al. [16], Fig. 9 highlights that errors in threshold

choice for SVD and SVD-a can cause substantial loss in image
quality. The lower temporal cutoff can have the greatest effect
on image quality, as it is a primary means of rejecting ON-axis
clutter and the cutoff is operator-dependent. HOSVD is less
sensitive to the temporal frequency cutoff choice than SVD
and SVD-a, maintaining a broader region of image quality.
This is important for clinical imaging scenarios, where factors
such as accelerative motion can confound cutoff selection [13].

The differences observed between SVD and SVD-a merit
further research but may be explained by several underly-
ing factors. First, we assume that the temporal information
provided by the right singular vectors in SVD and SVD-a
are comparable. However, scatterer translation is observed
differently across the aperture [47], therefore it is reasonable
to hypothesize that temporal information may be encoded
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differently. In addition, the consistency of basis estimation
using sample data matrices is dependent on the ratio between
the number of samples and number of observations [48].
Since the temporal singular vectors of SVD-a are derived
using a factor equal to the number of channels (K ) additional
observations, there may be implicit differences between the
SVD-a and SVD subspaces.

2) Classifier Performance: The classifier scheme used to
generate the HOSVD filter cutoffs demonstrated robust per-
formance in simulation. The PD images generated using the
classifier-generated cutoffs produced reasonably similar image
quality in comparison to the optimal cutoff case. This result is
quantified via the AUC analysis in Fig. 11, where the HOSVD
classifier cutoff produced a maximal AUC of 0.987 ± 0.009,
in comparison to the optimal cutoff AUC of 0.994 ± 0.004.
In comparison, the maximal P SV D and P SV D−A AUC values
were measured as 0.933 ± 0.044 and 0.979 ± 0.016. HOSVD
produced a maximum contrast of 16.37 ± 2.45 dB, compared
to SVD (12.10 ± 3.34 dB) and SVD-a (14.28 ± 3.24 dB).

3) Short Ensemble Performance: Across ensemble sizes,
HOSVD remained an effective method for clutter rejection.
Fig. 11 shows maximum contrast, CNR, and AUC for
ensemble sizes of 16, 25, and 50 frames, respectively. For
16 frames, P H O SV D produced a maximum contrast of
12.07 ± 2.64 dB, compared to P SV D (8.43 ± 4.74 dB)
and P SV D−a (10.21 ± 2.12 dB). For 25 frames, P H O SV D

produced a maximum contrast of 14.21 ± 3.69 dB, compared
to P SV D (12.21 ± 5.06 dB) and P SV D−a (12.05 ± 3.90 dB).

The HOSVD and SVD-a filters have similar tissue rejec-
tion performance because they leverage the same temporal
singular vectors produced by the unfolded data tensor for
tissue classification, as described in Section III-A. However,
the HOSVD filter additionally leverages spatial and aperture
domain signal suppression, which enables greater rejection
of noise and OFF-axis signals. In addition, aside from rank
limitations, the spatial and aperture domain signal classifica-
tion methods are independent of temporal ensemble length.
This is supported by Fig. 11, which shows that HOSVD filter
consistently yielded contrast gains over the conventional SVD
filter, which demonstrates effective clutter rejection despite
varied ensemble size. Further, the HOSVD filter consistently
yielded a median AUC above 0.85 for varied ensemble lengths
indicating that vessel discrimination remained strong. Overall,
this demonstrates that HOSVD is robust to ensemble size
constraints observed on clinical scanners.

B. In Vivo Study

1) Image Quality Performance: In Vivo: feasibility is demon-
strated in liver data, as shown in Fig. 12, which depicts
the P H O SV D, P SV D, and P SV D−a images. As shown in
Fig. 13, HOSVD produced greater rejection of clutter and
noise, yielding a maximum contrast of 14.15 ± 2.69 dB and
maximum CNR of 19.01 ± 3.03 dB. In comparison, the SVD
filter produced a contrast of 9.92 ± 2.83 dB and CNR of
14.96 ± 3.15 dB, and the SVD-a filter produced a contrast
of 10.49 ± 2.95 dB and CNR of 17.05 ± 3.03 dB. Fig. 14
depicts the effect of overestimation and underestimation of the

Fig. 13. Image quality results for in vivo study. Results are depicted for
PD images formed using SVD, SVD-a, and HOSVD filtering. Metrics for
a nonfiltered PD image shown for reference.

Fig. 14. Effect of overestimation and underestimation of the temporal
frequency cutoff on image contrast, shown in terms of relative change in
comparison to the maximum achievable contrast.

temporal frequency cutoff, which is manually parameterized.
Similar to the findings of Baranger et al. [11], threshold
estimation error results in decreased image quality for all
filters. However, the HOSVD filter retains a higher contrast
at nonoptimal cutoff frequencies in comparison to SVD and
SVD-a.

This pilot study shows that HOSVD filtering can improve
visualization of blood flow in clinical imaging scenarios. The
HOSVD filter improves contrast, which improves assessment
of vasculature through the reduction of clutter and noise.
Abdominal ultrasound imaging is associated with higher rates
of inadequate clinical visualization and limitations due to poor
image quality [49]. Due to improved suppression of noise
and clutter, small vasculature is more readily observed with
HOSVD filtering in comparison to SVD and SVD-a.
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Fig. 15. Computational expense for SVD, SVD-a, and HOSVD with
varied spatial (left) and temporal (right) parameterization.

2) Computational Complexity: One drawback of HOSVD
filtering is its associated computational complexity. As shown
in Fig. 15, the computation time increases at a greater rate with
HOSVD in comparison to SVD. This suggests that block-wise,
downsampling [24], or projecting [50] may greatly improve
HOSVD processing speed. In addition, blockwise process-
ing reduces variation caused by time-gain compensation and
depth-dependent effects, which may improve estimation of
the Nakagami parameters. Further, performing a truncated
HOSVD has been shown to improve computational time
without a reduction in filtering performance [26]. For example,
a sequentially truncated HOSVD [51] could be parameterized
with an adaptive tolerance that is defined using the upper
channel cutoff, spatial cutoff, and channel cutoff.

VI. CONCLUSION

Expanding the dimensionality of clutter rejection filters
has substantial opportunity for PD imaging. We demonstrate
that leveraging spatial, temporal, and aperture features can
enable improved rejection of clutter and noise signals. Further,
we show that multidimensional decomposition effectively cap-
tures dynamic imaging environments in relatively few samples,
which is valuable for clinical contexts.

This work validates a semiautomated multidimensional
classifier that operates along spatial, temporal, and aperture
extents. The classifier leverages theoretical principles of signal
phase and amplitude to reject OFF-axis clutter and noise.
These signal features used for classification are likely inter-
changeable over the different dimensions, as we assume that
the noise-bearing components of each dimension are white
Gaussian processes. To reject tissue clutter, a frequency-
based classifier parameterized by a cutoff frequency is also
employed, which is a broadly accepted method within SVD
literature [13]. We note that automated approaches to find the
lower temporal cutoff have also been proposed, such as com-
puting the minima of the singular value curvature radius [11].
Overall, this semiautomated framework reduces the burden of
cutoff parameterization and can improve performance across
varied clinical contexts.

Since the HOSVD filter may be used in place of the SVD
filter, HOSVD filtering may be used in a variety of imag-
ing applications beyond PD imaging. SVD and other blind
source separation filtering techniques have been investigated
for several other blood flow imaging applications, including

color Doppler [13], contrast-enhanced ultrasound [53], and
super resolution imaging [54]. Further, similar blind source
separation methods have been examined for tissue imaging
applications, such as for minimum variance imaging [4], clut-
ter rejection [5], and noise suppression [6]. HOSVD filtering
can also be used concurrently with other postprocessing meth-
ods, including morphological filtering or background noise
removal [5], [54]. The combination of adaptive clutter filtering
and noise suppression algorithms has been shown to yield
remarkable improvements in image quality, and we anticipate
HOSVD filtering would yield a similar combinatorial benefit.

Additionally, HOSVD filtering may be directly amenable
to adaptive beamformers. A number of techniques have been
proposed which require clutter rejection filtering of aperture
or subaperture data, including coherent flow PD (CFPD) [7],
power-preserving coherent flow PD (ppCFPD) [8], short-lag
angular coherence (SLAC) [33], and acoustic subaperture
processing (ASAP) [6]. A drawback of coherence-based adap-
tive beamformers is the presence of “dark region artifacts,”
which manifest due to strong OFF-axis scattering [55]. Since
HOSVD filtering can reject OFF-axis contributions, it may
effectively mitigate dark region artifacts in adaptive beamform-
ing. Adaptive beamformers have been shown to benefit from
synthetic transmit focusing, which aligns with the assumption
of low phase dispersion for the aperture domain classifier.
Techniques that use a fixed transmit focus will exhibit greater
phase dispersion away from the focal point, which may
degrade performance of the phase-based classifier.

Further, we demonstrated the efficacy of HOSVD filtering
for visualization of vasculature in the liver, which suggests
that HOSVD filtering is well suited for deeper clinical imaging
applications. Clinical visualization of low-velocity blood flows
and deep imaging targets are frequently limited by body
habitus [49]. Future work will assess the combinatorial benefits
of using HOSVD filtering with other advanced processing
methods, such as adaptive beamforming or motion correction,
to visualize low-velocity blood flow in liver lesions. A reliable
assessment mechanism of lesion blood flow would improve
therapeutic evaluation and clinical outcomes.

In this work, we demonstrate that HOSVD may be used for
clutter rejection in a scheme in which contiguous blocks of
clutter-dominant components are removed. However, several
studies have demonstrated that various imaging conditions
may incur subspace overlap, in which tissue and blood features
are not separately contained [5], [12], [52]. We anticipate that
further study on the selective rejection of indices within the
core tensor, G, could produce a clutter rejection filter with
even greater efficacy.

Overall, we present a methodology for clutter rejection
filtering using a HOSVD filter. The proposed technique effec-
tively overcomes the subspace separation limitations of SVD
for short ensembles, achieving greater suppression of clutter
and noise without loss of blood flow sensitivity. The novel
classification scheme additionally considers features of aper-
ture domain data which have not previously been studied in
the context of clutter filtering. Demonstration of the proposed
HOSVD filter for in vivo visualization of small vasculature
demonstrates its potential for clinical translation.
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