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Abstract— Multipath and off-axis scattering are two of
the primary mechanisms for ultrasound image degrada-
tion. To address their impact, we have proposed Aperture
Domain Model Image REconstruction (ADMIRE). This algo-
rithm utilizes a model-based approach in order to identify
and suppress sources of acoustic clutter. The ability of
ADMIRE to suppress clutter and improve image quality
has been demonstrated in previous works, but its use for
real-time imaging has been infeasible due to its signifi-
cant computational requirements. However, in recent years,
the use of graphics processing units (GPUs) for general-
purpose computing has enabled the significantacceleration
of compute-intensive algorithms. This is because many
modern GPUs have thousands of computational cores that
can be utilized to perform massively parallel processing.
Therefore, in this work, we have developed a GPU-based
implementation of ADMIRE. The implementation on a single
GPU provides a speedup of two orders of magnitude when
compared to a serial CPU implementation, and additional
speedup is achieved when the computations are distributed
across two GPUs. In addition, we demonstrate the feasibility
of the GPU implementation to be used for real-time imaging
by interfacing it with a Verasonics Vantage 128 ultrasound
research system. Moreover, we show that other beamform-
ing techniques, such as delay-and-sum (DAS) and short-lag
spatial coherence (SLSC), can be computed and simultane-
ously displayed with ADMIRE. The frame rate depends upon
various parameters, and this is exhibited in the multiple
imaging cases that are presented. An open-source code
repository containing CPU and GPU implementations of
ADMIRE is also provided.

Index Terms— Graphics processing unit (GPU) comput-
ing, real-time imaging, ultrasound.
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I. INTRODUCTION

ONE of the fundamental advantages of using ultrasound
as a medical imaging modality is its ability to provide

real-time imaging capabilities. Due to this, delay-and-sum
(DAS) beamforming is the primary ultrasound beamforming
method that is used today. This method is simple in that it
consists of only two steps. The first step is to time-delay
the ultrasound channel data in order to adjust for path length
differences between the transducer elements and the returning
acoustic wavefronts, and the second step is to coherently sum
the received signals across the aperture. The simplicity of the
pipeline has led to real-time implementations of the method
being deployed on clinical scanners. Although DAS is widely
used and has been implemented in real time, it still has impor-
tant disadvantages. One of the most important disadvantages
is that it is less effective than advanced beamforming methods
when it comes to addressing mechanisms such as multipath
and off-axis scattering, which produce acoustic clutter that
degrades image quality [1].

To address these mechanisms, we previously proposed
Aperture Domain Model Image REconstruction (ADMIRE)
[2]–[4]. The basis of this method is that it uses a model-
based approach to fit the aperture domain data and reconstruct
decluttered channel data. ADMIRE is able to achieve signifi-
cant improvements in ultrasound image quality by suppressing
acoustic clutter while still preserving fundamental B-mode
image characteristics, but one primary barrier has prevented
it from achieving clinical translation. This barrier is the high
computational complexity of the algorithm, which has made it
infeasible to implement it in real time on a CPU. Essentially,
the ability of ADMIRE to provide image quality improvements
is overshadowed by the inability of these improvements to be
realized in real time, which means that it effectively cannot
be used for its ultimate goal of improving diagnostic ultra-
sound examinations. However, by using graphics processing
units (GPUs), the computational speed can be dramatically
improved in order to overcome this barrier and allow for
potential widespread adoption. This is because GPUs are
designed for massively parallel processing, and the entire
ADMIRE pipeline can be executed in parallel. Moreover,
unlike field-programmable gate arrays (FPGAs), a traditional
software programming approach can be used with GPUs rather
than a hardware approach, which typically allows for reduced
development time and costs. This also allows for potential
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future algorithmic modifications to be easily made in software
rather than having to modify and perform verification of a
hardware design. In addition, another benefit of using GPUs
is that a better price efficiency can be achieved when compared
to FPGAs in terms of the monetary cost per GFLOP of
computational performance [5].

Real-time GPU implementations of other compute-intensive
beamforming algorithms have already been developed. For
example, short-lag spatial coherence (SLSC) beamforming
involves calculating the spatial coherence of backscattered
echoes, and it assumes that mechanisms of image degradation
contribute to signal incoherence [6]. This method requires
a large number of computations to be performed due to
the fact that for a given pixel, the coherence across the
aperture must be calculated. Despite this, these computations
can be performed in parallel in order to achieve significant
speedup. Therefore, Hyun et al. [7]–[9] developed a GPU
implementation of this technique that was able to achieve
real-time imaging. Minimum variance beamforming is another
technique that is compute-intensive. This technique improves
image quality by applying an adaptive weighting scheme to
the received data in order to position side lobes in directions
where there is a low amount of received energy, but obtaining
these adaptive weights requires the computation of covariance
matrices and their inverses [10], [11]. However, like the coher-
ence computations for SLSC, these computations can also be
performed in parallel. Due to this, real-time GPU implemen-
tations of this technique have been developed [12], [13].

Aside from the aforementioned examples, GPUs have also
been used in additional ultrasound applications, such as
plane-wave compounding and synthetic aperture imaging [14],
displacement estimation [15], volumetric image reconstruc-
tion [16], clutter filtering [17], and speckle reduction [18].
This is significant due to the fact that it highlights a movement
toward the adoption of GPU-based processing in the field
of ultrasound. Furthermore, the number of applications that
utilize GPUs will likely increase at an even faster rate as tools
such as open-source GPU processing frameworks [19], [20]
continue to be made available. Therefore, GPU computing
can be utilized as a powerful tool for ultrasound, and in this
work, we have leveraged this tool to develop a GPU-based
implementation of ADMIRE. By developing this implemen-
tation, we have demonstrated that the computational run-time
burden of ADMIRE can be overcome in order to make clinical
translation feasible.

II. METHODS

A. Overview of ADMIRE

ADMIRE utilizes a model-based approach in order to recon-
struct decluttered channel data. In particular, the short-time
Fourier transform (STFT) of the time-delayed ultrasound chan-
nel data is calculated, and the aperture domain data for several
frequencies within each STFT window is fit using models. The
model matrix for each frequency consists of a grid of scattering
locations that can contribute to the observed aperture domain
signal, and each predictor represents the received aperture
signal for a wavefront, localized in time and frequency, that
is returning from one scattering location. A linear regression

model with elastic-net regularization is used to determine
the contributions of these scattering locations. The benefit of
using elastic-net regularization is that it provides a weighting
between L1-regularization and L2-regularization, which results
in variable selection and coefficient shrinkage being performed
while still allowing for groups of correlated predictors to be
present in a model [21]. Once the model fits are performed,
the decluttered signal can then be reconstructed by only
utilizing the locations that do not contribute to multipath or
off-axis scattering. The decluttered channel data is obtained
by taking the inverse short-time Fourier transform (ISTFT).
An overview of ADMIRE is provided in Fig. 1.

Regarding computational time, the model fitting and recon-
struction stage of the pipeline is the primary bottleneck
because it typically requires thousands of individual model
fits to be performed. To reduce the computing time required
for these fits, a computationally efficient implementation of
ADMIRE was previously developed [22]. This implementation
utilizes fourth-order blind identification independent compo-
nent analysis (FOBI-ICA) [23], [24] in order to reduce the
model matrix size for each fit while still preserving image
quality [22]. Without ICA, the size of each model matrix X
is X ∈ C

M×P, where M is the number of aperture elements
and P is the number of model predictors. With ICA, the size
is X ∈ CM×2M, which is much smaller due to the fact
that M < P. A typical value for M might be 128 while a
typical value for P might range from 10 000 to 1 000 000.
The second dimension of the matrix is 2M because ICA is
applied individually to the group of predictors that are within
the desired signal region of interest (ROI) and the group of
predictors that are not within the ROI. These two matrices
are then concatenated together, and the real and imaginary
components are tiled as shown below such that the matrix
size is X ∈ R2M×4M

X =
[ �{XROI} �{XOuter} −�{XROI} −�{XOuter}
�{XROI} �{XOuter} �{XROI} �{XOuter}

]
.

This reduced model significantly decreases ADMIRE’s com-
putational time, but real-time imaging is still infeasible with
the CPU implementation.

B. Overview of GPU-Based Processing Pipeline

In order to assist others in creating novel GPU imple-
mentations of ultrasound beamforming algorithms, we include
significant details about our processing pipeline, and we have
made our code available in an open-source code repository.
To develop the GPU implementation of ADMIRE, the C
programming language was utilized along with NVIDIA’s
(NVIDIA Corporation, Santa Clara, CA, USA) Compute
Unified Device Architecture (CUDA) parallel programming
platform. The MATLAB (The MathWorks, Inc., Natick, MA,
USA) programming language was also utilized in order to
allow the C/CUDA code to be called within MATLAB through
a MEX-interface. The basis of this framework is that data
is transferred from host memory to the GPU’s memory,
where CUDA kernels are called for parallel processing. The
processed data is then transferred back to host memory. The
entire processing pipeline is shown in Fig. 2. The following
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Fig. 1. Overview of ADMIRE. (A) Obtain the time-delayed channel data and calculate the STFT along the depth dimension for each channel.
(B) Obtain the corresponding model matrix for each set of aperture domain frequency data that will be reconstructed in each STFT window in each
beam, fit each model matrix to its corresponding set of aperture domain frequency data (sizes of red points correspond to how much each scattering
location contributes to the aperture domain frequency data), and reconstruct each set of aperture domain frequency data by only using the predictors
that correspond to scattering locations that are within an ROI. (C) Calculate the ISTFT of the reconstructed aperture domain frequency data in order
to obtain the decluttered channel data. Note that the scattering locations are not restricted to the depth range of the STFT window. The grid of
scattering locations illustrated in (B) corresponds to the first STFT window. For STFT windows that correspond to deeper depths, the scattering
locations can also be located in shallower depths because these locations can contribute to off-axis scattering and multipath scattering that affect
the aperture domain frequency data for the STFT window. Essentially, as the depths become deeper for subsequent STFT windows, the depth range
for possible scattering locations also increases.

Fig. 2. Diagram of the processing pipeline for the GPU implementation of
ADMIRE. Peach colored boxes represent stages that are only performed
once. Yellow colored boxes represent stages that are performed for every
image frame.

sections further describe the stages of this pipeline in greater
detail.

C. Data Transfer and Time-Delaying Channel Data

In this pipeline, the undelayed ultrasound channel data and
various imaging and processing parameters are transferred to
the GPU. Once on the GPU, the channel data is transferred
to a cudaArray that is then bound to texture memory. This
type of GPU memory is used to time-delay the channel data
because fast linear interpolation can be performed in hardware.
The delays that are used for this process are precomputed on

a CPU and then transferred to the GPU. To apply the delays,
a CUDA kernel is used. In terms of the grid and block structure
of the kernel, a 2-D grid structure and a 1-D block structure are
utilized, where each block in the grid corresponds to an image
pixel position and each thread within a single block obtains the
time-delayed channel data value for a single aperture element.
Note that if it is desired, the delays that are used in the delay
kernel can also be directly computed on the GPU using a
separate CUDA kernel.

D. Short-Time Fourier Transform

After the channel data is delayed, the STFT is calculated
using a 0% window overlap. A window overlap of 0% is used
due to the fact that using a smaller window overlap requires
less GPU VRAM memory to store the STFT data, and it
improves the computational efficiency of ADMIRE. Moreover,
it has previously been shown that performing ADMIRE with
a reduced window overlap does not result in noticeable quali-
tative image degradation [22]. To calculate the STFT, a kernel
is utilized to first perform zero-padding of the data in order
to be able to interpolate additional frequency bins within
each window. A 3-D grid structure and a 2-D block structure
are utilized by this kernel. The windows for each beam are
handled in subgroups. Each block handles zero-padding for
the same column in every subgroup window for one beam,
where each column corresponds to a specific aperture element.
Therefore, the total number of blocks is equal to the number of
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columns per window times the number of window subgroups
per beam times the number of beams. Within a single block,
the number of threads is equal to the number of windows
per subgroup times the zero-padded STFT length. Each thread
handles obtaining the data value for one entry of one window
column. The threads that do not store zeros corresponding to
zero-padding also multiply their obtained values by windowing
coefficients that are transferred to the GPU. In this case,
a rectangular window that keeps all of the samples is used.
Note that the last window subgroup for each beam may
contain fewer windows than the other window subgroups.
Therefore, some CUDA warps corresponding to certain blocks
can have a number of threads that are not actually performing
computational operations. For similar reasons, some of the
other CUDA kernels in the processing pipeline can also have
blocks where some of their corresponding CUDA warps have
a number of idle threads.

Once the data for each STFT window has been arranged,
the NVIDIA cufft library is utilized to perform 1-D Fourier
transforms along the columns of the windows. After doing this,
each window contains the aperture domain data for multiple
frequencies, and the completion of this step corresponds to
the completion of Fig. 1(A). In ADMIRE, a subset of the
frequencies corresponding to the pulse bandwidth are typically
fit. Therefore, a kernel is utilized to obtain the data for only the
frequencies that are selected for model-based reconstruction.
For example, if the frequencies that are to be fit correspond
to rows 3–5 in each STFT window, then this kernel will
obtain those rows of aperture domain frequency data for every
window in each beam. A 3-D grid structure is utilized along
with a 1-D block structure, where each block handles obtaining
one row of data in one STFT window for a single beam and
each thread obtains the real and imaginary components for its
corresponding position in the row. Therefore, the total number
of blocks is equal to the number of selected frequencies per
STFT window times the number of STFT windows per beam
times the number of beams, and the number of threads per
block is equal to the number of columns per STFT window.
In addition, when these rows of data are obtained and stored,
their real and imaginary components are separated such that
all of the real components for a row are stored first followed
by all of the imaginary components. This separation of the real
and imaginary components is specifically done for the model
fitting and reconstruction stage that follows.

E. Model Fitting and Reconstruction

To prepare for model fitting and reconstruction, another
kernel is utilized. One purpose of this kernel is to account
for aperture growth if it is applied. In the previous step, rows
of aperture domain frequency data were selected from the
STFT windows. Therefore, in this step, binary masks that are
precomputed on the CPU and transferred to the GPU are used,
where each mask determines which aperture element samples
to remove for a given row of aperture domain frequency data.
For example, suppose three rows of aperture domain frequency
data are selected from a given STFT window. When working

with channel data, the depth that a set of aperture samples
corresponds to is used in the aperture growth computation in
order to determine how many aperture elements to remove to
obtain a given F-number. In this case, the center depth that the
STFT window corresponds to is used in the aperture growth
computation. This means that each row of aperture domain
frequency data from the same STFT window will have an
identical binary mask. After applying the masks, the result is
that the length of the rows of aperture domain frequency data
from different STFT windows will vary depending on how
many samples have been removed.

Following this, the same kernel is used to divide each row
of aperture domain frequency data by its standard deviation
[(1/N) formula], where N is two times the number of aperture
elements that are left after aperture growth is applied (factor
of two accounts for the real and imaginary components being
separated). In addition, the λ parameter that is used when
performing linear regression with elastic-net regularization is
calculated for each row of aperture data. This is calculated as
cλ((yT y)/N)1/2, where cλ is a scaling factor that is typically
set to 0.0189 and y is one set of aperture data before being
standardized. To account for the standardization, each λ value
is also divided by its respective aperture data set standard
deviation. Once these steps are complete, Fig. 1(B) can be
performed. In terms of the structure of the kernel, a 1-D
grid structure and a 1-D block structure are utilized, where
each block contains 32 threads. Each thread performs the
aforementioned operations for one row of aperture domain
frequency data, and as many blocks are used as are required to
perform the operations for all of the selected rows of aperture
domain frequency data across all of the STFT windows and
beams. Note that subsequent references to y refer to one set
of aperture domain frequency data after standardization.

Once all of the rows of aperture domain frequency data
have been prepared, each row is fit with its corresponding
model matrix. The purpose of this is to determine how
the different model predictors contribute to a given set of
aperture domain frequency data so that the contributions of the
predictors corresponding to multipath and off-axis scattering
can be removed. As previously stated, linear regression with
elastic-net regularization is utilized to fit each model matrix
to its corresponding set of aperture domain frequency data.
In the CPU implementation of ADMIRE, the model fits
are performed in a serial fashion. However, in the GPU
implementation, thousands of these fits can be performed
simultaneously. This is due to the fact that we have developed a
GPU implementation of cyclic coordinate descent [25], which
is the optimization method that is used to estimate the model
coefficients for each fit by minimizing the objective function
shown in (1). In this case, P is the number of predictors
in the model matrix. Note that we have also developed a C
MEX-file to perform cyclic coordinate descent for the CPU
implementation, but both of the custom implementations of
cyclic coordinate descent were inspired by the glmnet software
package [26]–[28], which is the package that was originally
used to perform the model fits for the CPU implementation
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Fig. 3. Example of the cyclic coordinate descent optimization method.
Each red point represents the objective function value at the end of a
single iteration. The solid red lines represent minimizing the objective
function with respect to one model coefficient at a time.

of ADMIRE.

β̂ = arg min
β

1

2N

N∑
i=1

⎛
⎝ yi −

P∑
j=1

X i jβ j

⎞
⎠

2

+ λ

(
α‖β‖1 + (1− α)‖β‖2

2

2

)
(1)

A single iteration of cyclic coordinate descent requires
minimizing the objective function with respect to one model
coefficient at a time, and the update for a single predictor is
shown in (2), where S is a soft-thresholding function. All of the
coefficients are cycled through, and this is done for multiple
iterations until specified convergence criteria are met. This
process is illustrated in Fig. 3. Note that ŷ( j)

i represents the
value of ŷi leaving predictor j out. The derivation is provided
in the Appendix.

β̂ j ←
S
(

1
N

∑N
i=1 X i j

(
yi − ŷ( j)

i

)
, λα

)
1
N + λ(1− α)

S(z, γ ) =

⎧⎪⎨
⎪⎩

z − γ, if z > 0 and γ < |z|
z + γ, if z < 0 and γ < |z|
0, if γ ≥ |z|

(2)

Cyclic coordinate descent is executed on the GPU by having
each thread perform a fit involving a specific set of aperture
domain frequency data. The kernel that performs the model fits
utilizes a 1-D grid structure and a 1-D block structure, where
each block contains 32 threads. As many blocks are initialized
as are required for handling all of the sets of aperture domain
frequency data across all of the STFT windows and beams.
For example, suppose there are 128 beams, with each beam
containing 300 STFT windows and each STFT window requir-
ing the aperture data for three frequencies to be reconstructed
with model fits. In this case, 115 200 total model fits must be
performed, so each one of these model fits will be assigned to
one thread as shown in Fig. 4. All of the model matrices can
be precomputed and transferred to the GPU only once because
the same models can be reused for different image frames. The
predictors in each model matrix are also normalized such that∑N

i=1 X2
i j = 1 when they are precomputed.

Fig. 4. Example of how each GPU thread performs one model fit using
one set of aperture domain frequency data. In this case, three frequen-
cies are being reconstructed with model fits in each STFT window. For
each set of aperture domain frequency data, the real components are
stored first followed by the imaginary components. M is equal to the
number of aperture elements that are used for the STFT window after
taking aperture growth into account. Due to this, the value of M can vary
across STFT windows. The color of each aperture data block represents
the STFT window that it corresponds to.

Each thread performs cyclic coordinate descent until one
of two convergence criteria is first met. The first convergence
criterion is a limit to the maximum number of iterations of
cyclic coordinate descent. The second convergence criterion
is a tolerance for the maximum weighted sum of squares
of the changes in the fitted values between iterations of
cyclic coordinate descent. Essentially, each time the model
coefficient of a predictor is updated, the weighted sum of
squares of the changes in the fitted values due to the update is
calculated as (1/N)

∑N
i=1(X i j β̂

(k)

j − X i j β̂
(k+1)

j )2, where β̂
(k)

j
is the value of the model coefficient before the update and
β̂

(k+1)

j is the value of the model coefficient after the update.
This term is calculated for all of the model coefficient updates,
and if the maximum across all of the updates is less than
the specified tolerance, the execution of cyclic coordinate
descent is stopped. Note that the observation weights are all
1 in this case. Moreover, due to the fact that the predictors
are normalized, the tolerance criterion can be simplified to
(1/N)(β̂

(k)

j − β̂
(k+1)

j )2. Now, once one of the convergence
criteria is met and the optimization algorithm is stopped,
each thread unstandardizes the model coefficients for its
corresponding fit and then reconstructs its set of decluttered
aperture domain frequency data by only using the predictors
corresponding to a specific ROI as shown in (3). By doing so,
the contributions of the predictors that correspond to off-axis
scattering and multipath scattering are eliminated.

yROI = XROIβ̂ROI (3)

F. GPU Implementation Optimizations

In order to increase the speed of each instance of cyclic
coordinate descent in our GPU implementation, a number
of optimizations are utilized. One optimization is that due
to the fact that each model matrix represents an aperture
domain model, one model matrix can be used for multiple
model fits. For example, the first selected row of aperture
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Fig. 5. (A) Example of an L1 cache memory access pattern where
all of the threads within one warp require data that is located in one
sector of memory, which means that only one memory transaction is
required. In particular, the threads require the same memory address
within the memory sector, which results in a broadcast operation.
(B) Example of an L1 cache memory access pattern where the threads
within one warp require data that is located in memory addresses that
are not contiguous, which means that multiple memory transactions are
required. Each cache line consists of four memory sectors that are each
32 bytes for a total of 128 bytes.

domain frequency data for STFT window 1 for beam 1 uses
the same model matrix as the first selected row of aperture
domain frequency data for STFT window 1 for all of the
other beams. This can be used for optimization because,
as previously stated, the kernel that performs the model fits
assigns one model fit to each thread, where each block contains
32 threads. Due to this, the kernel is set up such that each
thread within the same block performs a model fit for the
same row number and STFT number, but the only factor that
varies between the threads is the beam number. For example,
the first thread block will perform the model fits for the first
selected row of data for STFT window 1 for beams 1–32,
and the second block will perform the model fits for the first
selected row of data for STFT window 1 for beams 33–64.
Depending on the number of fits, hundreds to thousands of
these blocks may be required. However, by having the threads
within a given block use the same model matrix instead of
different model matrices, increased coalesced memory access
is achieved. In other words, the number of memory transac-
tions required to service the threads is reduced, which means
that GPU memory bandwidth is more efficiently utilized and
latency due to memory transactions is reduced. This memory
access pattern is illustrated in Fig. 5(A). A less efficient
memory access pattern that might occur if the threads within
a block accessed different model matrices is also illustrated
in Fig. 5(B).

In addition to this optimization, another optimization is that
an efficient computation scheme is utilized to calculate the
residual, which in this case, does not include the contribution
of the current predictor for which the model coefficient is
being updated. One way of calculating this is by first obtaining
ŷ( j) by doing the matrix multiplication of the model matrix
and the vector of model coefficients, where both exclude
the current predictor. This can then be subtracted from y to
obtain the residual without the current predictor. This method

is inefficient due to the fact that only one model coefficient
corresponding to the current predictor is being updated at a
time in cyclic coordinate descent, so a more efficient method
is to only take into account how the update to this single
model coefficient impacts the residual. For example, for a
given model fit, we initialize all of the model coefficients
to 0. Therefore, at the beginning of the first iteration of cyclic
coordinate descent, the residual is given by y. All of the pre-
dictors are then cycled through. For each predictor, the impact
of its model coefficient is removed from the residual in order
to first calculate the residual without the predictor. Following
this, the correlation between the predictor’s observations and
the residual without the predictor is computed. The coordinate
descent update of the predictor’s model coefficient is then
performed, and the impact of the updated model coefficient
is incorporated into the residual. This process continues until
one of the convergence criteria is met. By using this method
for calculating the residual, performance is improved due to
the fact that the number of computations is reduced, and
the number of memory accesses is also reduced. Pseudocode
for the algorithm is provided below. The C MEX-file that
is used to perform cyclic coordinate descent for the CPU
implementation of ADMIRE also uses this optimization. For
the GPU implementation, this scheme is further improved by
storing the residual vector for each model fit in shared memory,
which has lower memory access latency than global memory.
Shared memory is also used to store the reconstructed aperture
domain frequency data for each model fit when performing (3).
In addition, for the kernel that prepares the data for model
fitting and reconstruction, shared memory is used to store the
sets of aperture domain frequency data during the process of
standardizing them.

G. Inverse Short-Time Fourier Transform

After all of the selected rows of aperture domain frequency
data have undergone model-based reconstruction, the ISTFT
of the data is calculated. However, prior to this step, one addi-
tional CUDA kernel is utilized. As previously stated, model fits
are only performed for the frequencies that correspond to the
pulse bandwidth. To reduce computational time, the aperture
domain frequency data corresponding to negative frequencies
is not fit. Therefore, this kernel stores the complex conjugate
of the reconstructed aperture domain frequency data for the
selected positive frequencies into the rows that correspond
to their negative frequencies. A 3-D grid structure and a
1-D block structure are utilized for the kernel. The number
of blocks is equal to the number of frequencies per STFT
window that are reconstructed times the number of STFT
windows per beam times the number of beams, and the number
of threads within a single block is equal to the number of
columns per STFT window. Each thread stores the data for
one position in a specific row of reconstructed data, and it
also stores the complex conjugate in the same position for
the corresponding negative frequency row, if there is one. If a
thread’s particular position in the row is eliminated due to
aperture growth in the kernel that prepares the data for model
fitting and reconstruction, then the thread does not store any
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Algorithm 1 Cyclic Coordinate Descent

Initialize β̂ j ← 0 for j ← 1 to P
r ← y, where r is the residual vector
while convergence criteria not met do

for j ← 1 to P do
ρ j ← 0
if β̂ j �= 0 then

for i ← 1 to N do
r i ← r i + X i j β̂ j

ρ j ← ρ j + X i j r i

end for
else

ρ j ← ρ j + X i j r i

end if
β̂ j ← S( 1

N ρ j ,λα)
1
N +λ(1−α)

if β̂ j �= 0 then
for i ← 1 to N do

r i ← r i − X i j β̂ j

end for
end if

end for
end while

data. After the data is stored, Fig. 1(C) can be performed.
Note that the aperture domain frequency data for all other
frequencies besides the aforementioned ones is zeroed out.

The cufft library is used to perform 1-D inverse Fourier
transforms along the columns of the STFT windows for all of
the beams. As previously stated, the window overlap used for
the STFT is 0%, and a rectangular window that keeps all of the
window samples is used. Therefore, performing just the 1-D
inverse Fourier transforms gives the ISTFT of the data in this
case. In addition, due to zero-padding being used for the STFT,
a kernel is used to remove the positions corresponding to zero-
padding after performing the ISTFT. The kernel utilizes a 3-D
grid structure and a 1-D block structure. Each block handles
obtaining a row of data for one window of decluttered channel
data for a given beam, and each thread within a block stores
the data for its corresponding position in the row. Therefore,
the number of blocks is equal to the number of rows per
window that do not correspond to zero-padding times the
number of windows per beam times the number of beams,
and the number of threads is equal to the number of columns
per window.

H. Image Calculation Using Decluttered Channel Data

To obtain the summed RF data from the channel data,
a summing kernel is used. This kernel utilizes a 1-D grid
structure and a 1-D block structure. The number of blocks
is equal to the number of depth samples, and the number
of threads within a block is equal to the number of beams.
Each thread sums the aperture data for its corresponding image
pixel position. Whenever possible, a more optimized summing
kernel that uses principles from an existing parallel reduction
algorithm [29] is utilized. In this implementation, a 2-D grid

structure and a 1-D block structure are used. Each block
corresponds to an image pixel position, and the number of
threads within a block is equal to the number of aperture
elements. The aperture element samples are stored in shared
memory in this version of the kernel.

Once the summed RF data is obtained, the envelope data is
calculated by first taking the Hilbert transform. The process
for taking the Hilbert transform follows the discrete algo-
rithm [30], which is also used by MATLAB. On the GPU, this
involves computing the 1-D Fourier transform of each beam.
A kernel is then used to weight the frequency bins. A 1-D grid
structure and a 1-D block structure are utilized. The number
of blocks is equal to the number of frequency bins for one
beam, and the number of threads within a block is equal to
the number of beams. Each thread weights the frequency bin
for its corresponding beam. Once the data is weighted, the 1-D
inverse Fourier transform of each beam is computed to obtain
IQ data. The magnitude of the IQ data is computed using a
separate kernel that utilizes a 1-D grid structure and a 1-D
block structure, where the number of blocks is equal to the
number of depth samples and the number of threads is equal to
the number of beams. Each thread computes the magnitude of
the IQ data sample for its corresponding image pixel position.

In order to perform envelope normalization and log com-
pression, a kernel is first used to obtain the maximum value
of the envelope data. This kernel uses one block of threads,
where the number of threads is equal to the number of beams.
Each thread finds the maximum envelope data value for its
corresponding beam and stores it into shared memory. Once
this is complete, one thread is utilized to find the global maxi-
mum across all of the beam maximum values. This maximum
value is utilized in a second kernel to normalize the envelope
data. Log compression is applied in this second kernel as
well. The kernel utilizes a 1-D grid structure and a 1-D block
structure, where the number of blocks is equal to the number
of depth samples and the number of threads within each block
is equal to the number of beams. Each thread normalizes and
log-compresses the data value for its corresponding image
pixel position. Once normalization and log compression are
performed, the processed image is transferred back to the
host in order to be displayed. In cases such as when using
a curvilinear probe, scan conversion of the image data is also
performed on the GPU by using a series of GPU kernels before
transferring the processed image. Note that in Fig. 2, image
display is listed under CPU due to the fact that MATLAB
is used to display the processed image. However, MATLAB
ends up sending the image back to the GPU in order to actually
display it.

I. CPU ADMIRE Versus GPU ADMIRE Benchmarks

To compare the GPU and CPU implementations of
ADMIRE, benchmarks were performed utilizing a Field II
[31], [32] cyst simulation data set with added white Gaussian
noise. The power of the noise was scaled to be 0 dB relative to
the power of the channel data. All of the parameters required
for ADMIRE, such as the model matrices and the channel
data time delays, were precomputed. ICA was applied to
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TABLE I
IMAGING/PROCESSING PARAMETERS USED FOR BENCHMARK

reduce the sizes of the model matrices. For running ADMIRE
on a single GPU, an NVIDIA GeForce GTX 1080 Ti GPU
was used, and an NVIDIA GeForce RTX 2080 Ti GPU was
also used to see how the processing time changes depending
on the GPU. Multi-GPU processing using both GPUs was
also performed. For running ADMIRE on multiple GPUs,
the computations were split across the GeForce GTX 1080 Ti
GPU and the GeForce RTX 2080 Ti GPU, with 32 beams
distributed to the 1080 Ti GPU and 96 beams distributed
to the 2080 Ti GPU due to the fact that it is more pow-
erful. To estimate the best distribution of beams, processing
was performed using different distributions, and the one that
resulted in the fastest processing time was utilized to perform
the benchmark. When the beams are distributed across the
two GPUs, the sets of channel data are time-delayed and
reconstructed with ADMIRE separately. The envelope data of
each set is calculated separately as well. However, the two
sets of envelope data are recombined onto one GPU before
the envelope data is normalized and log-compressed. The host
computer used for the benchmarks contained dual Intel (Intel
Corporation, Santa Clara, CA) Xeon Silver 4114 CPUs @
2.20 GHz with 10 cores each. The MATLAB programming
language was used for the CPU implementation of ADMIRE,
and to perform cyclic coordinate descent for this implemen-
tation, a MEX-file written in C was utilized. The number of
computational threads within MATLAB was also set to 1 in
order to perform serial processing.

The imaging and processing parameters can be seen in
Table I. Note that Table I shows the number of depth samples
as 2400, but ADMIRE was applied from depth sample 13 to
depth sample 2400. This means that the first 12 depth samples
had only DAS applied to them by default. In regard to numer-
ical precision, for the CPU implementation, the calculations
performed in MATLAB and the calculations performed in
the C MEX-file both used double precision. For the GPU
implementation, the calculations were performed using single
precision because the 1080 Ti and 2080 Ti GPUs have fewer
FP64 units than FP32 units, which means that using double
precision results in reduced computational speed. Moreover,
using double precision requires more memory resources,
which also reduces performance. The processing time was

measured using MATLAB’s built-in timing capabilities and
averaged across 10 runs for the CPU case and 100 runs for
the GPU cases due to the processing times being smaller.
One warmup run was performed before performing the runs
for each benchmark. In addition, contrast ratio values were
calculated using (4), and the relative error between the sets of
normalized envelope data before log compression for the CPU
and GPU implementations was calculated using (5).

CR = −20 log10

(
μlesion

μbackground

)
(4)

Relative Error = 20 log10

(‖EnvCPU − EnvGPU‖2

‖EnvCPU‖2

)
(5)

J. Effect of Imaging and Processing
Parameters on Run Time

To assess the effect of imaging and processing parame-
ters on the processing time for the GPU implementation of
ADMIRE, the same cyst simulation data set from the previous
section was utilized. The example parameters that were varied
were the number of depth samples, the number of elements
per beam (this refers to the transducer elements whose signals
are summed together in order to form one A-line), the number
of beams, the tolerance for cyclic coordinate descent, the cλ

value that is used to calculate the value of λ for elastic-
net regularization, and the α value that is used in elastic-
net regularization. One parameter was varied at a time while
holding the other parameters constant at their values listed in
Table I. For each parameter value case, the GPU processing
time in seconds was measured and averaged across 100 runs.
One warmup run was performed before performing the runs
for each benchmark. The GPU benchmarks were performed
using an NVIDIA GeForce GTX 1080 Ti GPU only, using
an NVIDIA GeForce RTX 2080 Ti GPU only, and using
multi-GPU processing with both of the GPUs. The same host
computer from the previous section was utilized. For multi-
GPU processing, the distribution of beams across the two
GPUs varied depending on the case. The best distribution was
determined for each case using the method that was previously
described, and each benchmark was then performed using the
selected distribution. For all of these cases, ADMIRE was not
applied to the first 12 depth samples, so DAS was applied to
them by default.

In addition, for the cases involving varying the number of
depth samples, the number of elements per beam, and the
number of beams, NVIDIA’s Nsight Systems profiling tool
was used to obtain example processing times for individual
stages of the GPU processing pipeline. This was not done for
the cases involving varying the tolerance for cyclic coordinate
descent, the cλ value, and the α value because these parameters
only impact the CUDA kernel that performs the model fits. For
each parameter value case, the profiler times for one run using
the 2080 Ti GPU were obtained. Note that a given stage may
consist of more than one CUDA kernel as described in the
corresponding sections for the stages.
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K. Verasonics Imaging
To perform imaging with the GPU implementation of

ADMIRE, a Verasonics Vantage 128 ultrasound research
system (Verasonics, Kirkland, WA) was utilized. The host
computer that was used contained dual Intel Xeon E5-2650
v2 CPUs @ 2.60 GHz with 8 cores each. This system also
contained one NVIDIA GeForce RTX 2080 Ti GPU. Verason-
ics sequences were developed in order to collect ultrasound
channel data and process it using the GPU implementation of
ADMIRE. An additional CUDA kernel is called as part of the
GPU processing pipeline in this case in order to reshape the
Verasonics channel data buffer that is transferred to the GPU.
The data type of the samples in this buffer are also converted
from int16 to float within the kernel that performs reshaping.
The data is then processed as previously described. Once
processed, the normalized and log-compressed envelope data
(also scan-converted if required) is returned to the host system
in order to be displayed. Note that in the case of the Field II
data set that was discussed in the previous sections, the data
was already in the correct shape, and it was converted from
double precision to single precision before it was transferred
to the GPU. Therefore, the kernel that performs reshaping and
data type conversion was not required.

The first sequence that was written was for an L7-4 linear
transducer array, and it consisted of performing a walked
aperture scan with focused transmits. The second sequence
that was written was for a C5-2 curvilinear transducer array,
and it also consisted of performing a walked aperture scan with
focused transmits. For both of the sequences, the Verasonics
hardware and software sequencers were synchronized so that
one frame of channel data was collected and processed before
the next frame was acquired. The GPU implementation of
ADMIRE was called as an external processing event in the
Verasonics sequence pipeline. Custom GUI controls were also
added to the Verasonics GUI in order to allow for certain
ADMIRE parameters to be changed during imaging. These
parameters were the tolerance for cyclic coordinate descent,
the maximum number of iterations of cyclic coordinate descent
to perform, the cλ value, and the α value. All of the other
parameters that are required for ADMIRE, such as the model
matrices and channel data time delays, were precomputed.
They were then loaded onto the GPU at the beginning of each
sequence. ICA was applied to reduce the sizes of the model
matrices.

In regard to scanning, the L7-4 sequence was used to
scan the carotid artery of a human subject, and the C5-2
sequence was used to scan abdominal organs, such as the
liver and kidneys, of a human subject. The scans of the
human subject were performed with approval from the Van-
derbilt University Institutional Review Board. The imaging
and processing parameters for each sequence are shown in
Table II. The parameters denoted with (Def.) are the adjustable
ADMIRE parameters, and the listed values are the default
values for when the sequences begin. Note that for the L7-4
sequence, ADMIRE was applied from depth sample 25 to
depth sample 2664, which means that DAS was applied to the
first 24 and last three depth samples by default. In addition,
for the C5-2 sequence, ADMIRE was applied from depth

TABLE II
IMAGING/PROCESSING PARAMETERS FOR

EACH VERASONICS SEQUENCE

sample 7 to depth sample 2154, which means that DAS was
applied to the first six and last three depth samples by default.
To determine the frame rate, the time required to acquire,
process, and display 100 image frames was measured within
MATLAB.

L. Open-Source Code Repository

In order to allow for use of ADMIRE in the community,
an open-source code repository has been created at the follow-
ing link: https://github.com/VU-BEAM-Lab/ADMIRE. This
code repository includes a CPU implementation of ADMIRE
and a GPU implementation for use with one GPU. Exam-
ple Verasonics scripts to perform imaging are also included.
These scripts are for the sequences that are described above.
In addition, the repository includes tutorials that demonstrate
how to use the code.

III. RESULTS

A. CPU ADMIRE Versus GPU ADMIRE Benchmarks

Fig. 6 shows the simulated cyst data set processed with
DAS using different GPU cases, ADMIRE using different
GPU cases, and ADMIRE using a CPU. For DAS, the beam
distribution that was used for the multi-GPU case was that
18 beams were distributed to the 1080 Ti GPU and 110 beams
were distributed to the 2080 Ti GPU. The average processing
times and standard deviations across runs are displayed on
each image, and the contrast ratio values are also shown. The
processing times for DAS include time-delaying the chan-
nel data and computing the normalized and log-compressed
envelope data. The processing times for the GPU and CPU
implementations of ADMIRE include time-delaying the chan-
nel data, reconstructing the channel data using ADMIRE, and
computing the normalized and log-compressed envelope data.
The transfer time for transferring the channel data from host
memory to GPU memory along with the transfer time for
transferring the normalized and log-compressed envelope data
from GPU memory to host memory were included in the DAS
and ADMIRE GPU processing times. The inclusion of these
transfer times is the main reason the processing times are in
the range of 37–42 ms for the DAS GPU cases. For example,
using NVIDIA’s Nsight Systems profiling tool to analyze the
times for individual steps in the processing pipeline, it was
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Fig. 6. Field II cyst simulation data set with added white Gaussian
noise processed with DAS using different GPU cases (left), ADMIRE
using different GPU cases (center), and ADMIRE using a CPU (right).
The power of the noise was scaled to be 0 dB relative to the power
of the channel data. The average run times in seconds (N = 10 for
CPU and N = 100 for GPU) are displayed at the top of the images
along with the standard deviations, and the contrast ratio values in dB
are displayed at the bottom. The cyst and background masks that were
used for calculating the contrast ratio values are displayed as well.

determined that the actual time spent performing compute
operations for the DAS cases was within the approximate
range of 3–6 ms. This means that the time taken for memory
operations was the primary performance bottleneck. Note that
memory operations also include transferring the channel data
to a cudaArray, and in the case of ADMIRE, calls to the
cudaMemset command. However, they do not include memory
transactions that take place within CUDA kernels. For the
GPU implementation of ADMIRE, the time for transferring
most of the ADMIRE parameters was not included in the
processing times because in a real-time imaging setting, these
parameters only need to be transferred once at the beginning.
After this, they can be reused for all of the imaging frames
during scanning. The only parameters whose transfer times
were included were the tolerance for cyclic coordinate descent,
the maximum number of iterations of cyclic coordinate descent
to perform, the cλ value, and the α value. This is because these
parameters are the ones that are most likely to be changed
during real-time imaging.

Moreover, for this case, the relative error between the sets
of normalized envelope data before log compression for the
GPU and CPU implementations of ADMIRE is −63.68 dB.
This error is most likely due to a combination of factors
such as architectural differences between the GPU and CPU
potentially causing differences in the results of numerical
calculations, using single precision for the GPU calculations
while using double precision for the CPU calculations, the fact
that parallelizing certain algorithms can result in different
amounts of round-off error when compared to their serial

implementations, and the fact that the interpolation coefficients
are stored in 9-bit fixed point format when performing inter-
polation with texture memory on the GPU. However, this is
acceptable because there are no noticeable qualitative differ-
ences between the image produced by the GPU implementa-
tion and the image produced by the CPU implementation.

Nevertheless, as a test, the channel data for the data set
that was used to create Fig. 6 was time-delayed on the GPU.
This delayed data was then used in the CPU implementation
of ADMIRE in order to take into account texture memory
interpolation on the GPU being coarser. The calculations for
the CPU implementation were also performed using single
precision instead of double precision in order to take into
account numerical precision. When these two factors are taken
into account, the relative error is reduced to −129.16 dB.
Note that for calculating the relative error values, all of the
sets of normalized envelope data were converted to double-
precision if they were not already in this precision in order
to ensure that the same numerical precision was used for the
calculation in (5).

B. Effect of Imaging and Processing
Parameters on Run Time

In regard to the effect of imaging and processing parameters
on the GPU implementation of ADMIRE, Fig. 7 demonstrates
that there is a linear relationship between processing time and
three of the parameters that were studied (number of depth
samples, number of elements per beam, and number of beams).
For example, reducing the number of depth samples by a factor
of 2 results in the processing time also being reduced by a
factor of 2, reducing the number of elements per beam by a
factor of 2 reduces the processing time by a factor of 3.5–4.5,
and reducing the number of beams by a factor of 2 reduces
the processing time by a factor 1.5–2 (factors were rounded
to the nearest 0.5 increments). Now, in contrast to the first
three parameters, the processing time does not appear to have
a linear relationship with the tolerance for cyclic coordinate
descent, the cλ value, and the α value. Fig. 7 shows that the
processing time decreases as each of these parameters are
increased until it eventually levels out.

Understanding the effects of these parameters is important,
and it allows us to estimate performance. For example, as an
additional test, an extra benchmark case was performed using
the multi-GPU implementation with the same data set. The
number of depth samples was set to 1200, the number of
elements per beam was set to 64, the number of beams was
set to 64, the tolerance for cyclic coordinate descent was
set to 0.1, the value for cλ was set to 0.0189, and the α
value was set to 0.9. The determined relationships between the
parameters and the processing time were used to estimate the
processing time for this case. The original data had 2400 depth
samples, 128 elements per beam, 128 beams, a tolerance
of 0.1, a cλ value of 0.0189, and an α value of 0.9. The
reductions in the number of depth samples, the number of
elements per beam, and the number of beams correspond to
processing time reduction factors of 2, 3.5–4.5, and 1.5–2,
respectively. Multiplying these factors together, the processing
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Fig. 7. GPU processing time as a function of (A) the number of depth samples, (B) the number of elements per beam, (C) the number of beams,
(D) the tolerance value for cyclic coordinate descent (displayed using a logarithmic scale), (E) the cλ value that is used to calculate λ for elastic-net
regularization, and (F) the α value that is used in elastic-net regularization. Error bars show the standard deviations (N = 100). When varying one
parameter, the other parameters were held constant at their default values listed in Table I. Note that for the case whereα = 0 in (F), cyclic coordinate
descent was still used to perform the model fits even though an analytic solution does exist when performing linear regression with L2-regularization
only. In addition, for the multi-GPU case where the number of beams is equal to 64 in (C), the beam distribution that resulted in the fastest time was
distributing all of the beams to the 2080 Ti GPU. The color scheme for this figure was selected using [33].

Fig. 8. 2080 Ti GPU processing times for individual stages of the GPU processing pipeline as a function of (A) the number of depth samples,
(B) the number of elements per beam, and (C) the number of beams. When varying one parameter, the other parameters were held constant at
their default values listed in Table I. Each stage has a corresponding subsection in the Methods section, and the CUDA kernels that are performed
for a particular stage are the ones that are listed in its subsection. The color scheme for this figure was selected using [33].

time for the smaller data set should be reduced by a total factor
of 10.5–18. Based off of the timings where the original data
was processed (Figs. 6 and 7), the average processing time
using the multi-GPU implementation ranged from approxi-
mately 0.168–0.173 s. Therefore, the lower bound average
processing time for the smaller data set was estimated to be
0.009 s (0.168 s divided by 18), and the upper bound was
estimated to be 0.016 s (0.173 s divided by 10.5). The actual
processing time was determined by averaging 100 runs, and it
was 0.016 s with a standard deviation of 0.001 s. This means
that the performance model provided an accurate estimate
of the processing time. The beam distribution for this case

was that 2 beams were distributed to the 1080 Ti GPU and
62 beams were distributed to the 2080 Ti GPU.

In addition, Fig. 8 shows that the majority of the processing
time for ADMIRE is spent in the model fitting and reconstruc-
tion stage. In particular, the CUDA kernel that performs the
model fits requires the largest amount of computational time.
Therefore, this kernel was profiled using NVIDIA’s Nsight
Compute profiling tool, which performs a comprehensive
analysis of CUDA kernels in order to identify bottlenecks.
From this analysis, it was determined that the primary bot-
tleneck for the kernel is latency due to memory transactions.
This is due to the fact that each computational thread on the
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Fig. 9. Screen capture during simultaneous DAS (left) and
ADMIRE (right) imaging with the L7-4 probe sequence. The images are of
the carotid artery, and they are displayed with a dynamic range of 60 dB.

Fig. 10. Screen capture during simultaneous DAS (left) and
ADMIRE (right) imaging with the C5-2 probe sequence. The images are
of the liver and one kidney, and they are displayed with a dynamic range
of 60 dB.

Fig. 11. Screen capture during simultaneous DAS (left) and
ADMIRE (right) imaging with the C5-2 probe sequence. The images are
of the liver, and they are displayed with a dynamic range of 60 dB.

GPU performs one model fit using cyclic coordinate descent,
and as shown in the pseudocode for the algorithm, a large
number of memory transactions is required. Essentially, if the
computational threads on the GPU are waiting for memory
transactions to be completed, then they cannot perform compu-
tational operations. Moreover, the number of clock cycles that
these threads wait depends on if the memory being accessed
is in global memory, shared memory, L2 cache memory,
or L1 cache memory.

C. Verasonics Imaging

In regard to Verasonics imaging, example screen captures
during imaging with each sequence are shown in Figs. 9–11.
As can be seen in these figures, other beamforming techniques

Fig. 12. Screen capture during simultaneous DAS (left), ADMIRE
(center), and SLSC (right) imaging with the L7-4 probe sequence. The
images are of a CIRS quality assurance phantom. The DAS and ADMIRE
images are displayed with a dynamic range of 60 dB, and the SLSC image
is displayed using a range from 0 to 1. Note that the SLSC lag was
updated to 20 during imaging.

Fig. 13. Screen capture during simultaneous DAS (left), ADMIRE
(center), and SLSC (right) imaging with the L7-4 probe sequence. The
images are of the carotid artery. The DAS and ADMIRE images are
displayed with a dynamic range of 60 dB, and the SLSC image is
displayed using a range from 0 to 1.

can be computed with ADMIRE and simultaneously displayed.
For example, the figures show how DAS images can also
be computed on the GPU along with the ADMIRE images.
This is similar to the real-time simultaneous B-mode/spatial
coherence GPU-based beamformer presented in [7]–[9]. More-
over, we also demonstrate the ability to compute more than
two beamforming techniques. Fig. 12 shows an example of
DAS, ADMIRE, and SLSC being computed on the GPU
and simultaneously displayed during imaging. This data was
acquired with the L7-4 probe sequence, and a multi-purpose,
multi-tissue phantom (Model 040GSE, CIRS, Norfolk, VA,
USA) was scanned. Fig. 13 shows an example when using
the L7-4 probe sequence to scan the carotid artery. This case
used the same parameters as the other L7-4 cases, but the only
difference is that it consisted of 1250 depth samples instead
of 2667 depth samples. ADMIRE was applied from depth
sample 25 to depth sample 1248, which means that DAS was
applied to the first 24 and last two depth samples by default.
Additional GUI controls were added to the Verasonics GUI in
order to also change SLSC parameters.
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TABLE III
MULTI-PURPOSE PHANTOM IMAGING TIMING BREAKDOWN

These parameters include the maximum lag between ele-
ments, the axial kernel size, and the spacing between elements
that is used when a downsampled aperture is used for SLSC to
improve its computational efficiency [34]. The default values
for these parameters when the sequence begins are 10, 5,
and 1, respectively. In regard to frame rate, it varies depending
upon many factors that include the imaging and processing
parameters, the number of beamforming techniques that are
simultaneously displayed, and whether scan conversion is
performed. For the cases presented in Figs. 9–12, the frame
rate range was approximately 5–15 frames/s. The case in
Fig. 10 and the case in Fig. 11 were the slowest due to the
fact that scan conversion was performed, and a finely sampled
cartesian grid was used. Therefore, the time for transferring
and displaying the images was greater. For the case presented
in Fig. 13, the frame rate was approximately 23–24 frames/s.
If a parameter such as the number of beams was increased
from 64 beams to a higher number in order to obtain a
larger field of view, for example, then the frame rates for all
of these cases would have been reduced. However, another
parameter can also be changed in order to compensate for
this and maintain a similar frame rate, such as decreasing
the sampling frequency to allow for the depth range of the
scan to be maintained while reducing the number of depth
samples. Essentially, tradeoffs can be made between different
parameters and the frame rate, but it is important to consider
that image quality can also be impacted as a result. Videos of
the cases presented in Figs. 9–13 are provided. To view them,
refer to the supplementary materials for this journal article that
are available at https://doi.org/10.1109/TUFFC.2021.3056334.

In addition, an example timing breakdown obtained using
NVIDIA’s Nsight Systems profiling tool is shown in Table III.
These times are for a multi-purpose, multi-tissue phantom
imaging case similar to the one shown in Fig. 12. The default
ADMIRE and SLSC parameters were used except for the
maximum SLSC lag, which was updated to 20. Note that the
time for Verasonics operations includes all of the time for
the Verasonics sequence that was not spent for image display
and the external processing event that performs GPU-based
processing. Moreover, the time to delay the channel data is
only included in the DAS time because ADMIRE and SLSC
also use the same set of delayed channel data. Therefore,
the DAS time is for going from the undelayed channel data to
the final DAS image before it is transferred back to the host
system in order to be displayed while the ADMIRE and SLSC
times are for going from the delayed channel data to the final
images before being transferred back to the host system in
order to be displayed. The time for the kernel that reshapes
the Verasonics channel data buffer and performs data type

conversion from int16 to float is not included because it was
less than 1 ms. In addition, the time for image display is for
the particular window sizes that are shown in Fig. 12 and its
corresponding video.

IV. DISCUSSION

A. Impact of GPU Acceleration

In prior works, the ability of ADMIRE to improve ultra-
sound image quality has shown great promise [2]–[4], but
its significant processing time requirement has not been able
to be fully addressed even when a computationally efficient
implementation was developed [21]. However, by utilizing
GPU acceleration in this work, we have been able to signifi-
cantly reduce the last remaining gap in performance that has
prevented ADMIRE from achieving clinical translation. With
this implementation, imaging up to several frames per second
is possible. As shown in Fig. 6, when compared to the CPU
implementation of ADMIRE, the GPU implementation for
both of the single GPU cases and the multi-GPU implemen-
tation all provide a speedup of two orders of magnitude.

B. Effect of Imaging and Processing
Parameters on Run Time

In regard to the effect of imaging and processing parameters
on processing time, the number of elements per beam had
a greater impact when compared to the number of depths
and the number of beams. This is most likely because having
fewer elements per beam results in smaller ADMIRE model
matrices and aperture data sets. The effect of this is that fewer
computations have to be performed per model fit. The number
of beams and the number of depths affect the total number
of required model fits but not the number of computations
per model fit. In addition, like the number of elements per
beam, the tolerance for cyclic coordinate descent, the cλ

value, and the α value affect the number of computations
that need to be performed for each model fit. For example,
additional or fewer iterations of cyclic coordinate descent
may be required depending on the tolerance value. Moreover,
increasing cλ increases the amount of regularization, which
shrinks the model coefficients and decreases the degrees of
freedom in the model assuming α is greater than 0. Reducing
the degrees of freedom decreases the number of computations
per model fit, and this is also why increasing α to weight the
L1-regularization term more results in decreased processing
times. Now, besides the effects of these parameters on the
computational aspects of ADMIRE, the number of depths,
the number of elements per beam, and the number of beams
can also affect the time taken for memory operations to occur
as shown in Fig. 8. As previously stated, these operations are
included in the processing times in Fig. 7, so reducing them
also decreases the processing times.

In addition, for varying the number of beams, the processing
time appears to change by a larger amount when the number
of beams changes by a multiple of 32, as shown in Fig. 7.
For example, when going from 128 beams to 112 beams,
the processing time only slightly decreases, but the decrease
is greater when going from 112 beams to 96 beams. This is
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because, as discussed in the Results section, the majority of
the time for ADMIRE is spent in the kernel that performs
the model fits. This kernel uses a block size of 32, where
all of the threads within one block handle performing the fits
for the same row number and STFT window number across
different beams. Due to this, the total number of blocks and
CUDA warps required for the model fits is the same for
the 128 and 112 beam cases. The 112 beam case will just
have some CUDA warps where 16 threads are performing
computational operations and the other 16 threads are idle,
assuming that the particular GPU architecture has a warp
size of 32 threads. This is why the processing time for the
model fitting and reconstruction stage is similar for these two
cases in Fig. 8. However, when there are 96 beams, the next
multiple of 32 is reached, and the total number of required
blocks and CUDA warps decreases. This also applies for going
from 96 beams to 80 beams versus going from 80 beams to
64 beams.

C. Effect of GPU Hardware on Run Time
In regard to the effect of the type of GPU on processing

time, Figs. 6 and 7 show that when compared to the 1080 Ti
GPU, running ADMIRE on the 2080 Ti GPU is approximately
2.2 times faster. One factor that was not accounted for in
these benchmarks is the fact that in the host system that
contained both a 1080 Ti GPU and a 2080 Ti GPU, the 1080 Ti
GPU card was configured to handle the display in addition
to performing CUDA computations. This could have possibly
resulted in the 1080 Ti GPU processing times being slower
than they would have been if only CUDA computations were
being performed. However, this result is still expected due
to the hardware differences between the GPUs. For example,
as previously stated, the primary performance bottleneck for
the GPU implementation of ADMIRE is latency that is caused
by memory transactions. Due to this, having greater amounts
of low latency memory such as L1 cache memory, L2 cache
memory, and shared memory will allow for improved compu-
tational performance. In the case of the 2080 Ti GPU, it has
double the amount of L2 cache memory when compared to the
1080 Ti GPU. Moreover, the 1080 Ti GPU has 28 streaming
multiprocessors, each with 96 KB of shared memory and
48 KB of L1 cache memory. In contrast, the 2080 Ti GPU
has 68 streaming multiprocessors, each with a 96 KB unified
L1/shared memory cache. Therefore, there is a significantly
larger amount of low latency memory on the 2080 Ti GPU, and
the fact that it has unified L1/shared memory caches instead
of separate ones allows for reduced latency and improved
bandwidth for L1 cache memory. In addition, the 2080 Ti
GPU also has 4352 CUDA cores and a memory bandwidth
of 616 GB/s while the 1080 Ti GPU has 3584 CUDA cores and
a memory bandwidth of 484 GB/s. Having more CUDA cores
means that there are more computational units available to
perform calculations, and having a higher memory bandwidth
helps provide all of these units with data to process.

Now, in regard to the multi-GPU implementation, it is
approximately 2.6 times faster than the 1080 Ti GPU and
approximately 1.2 times faster than the 2080 Ti GPU. This
is important because all of the Verasonics imaging was

performed using a single 2080 Ti GPU. The frame rates ranged
from 5 to 15 frames/s for the cases presented in Figs. 9–12,
and the frame rate was approximately 23–24 frames/s for the
case presented in Fig. 13. All of these cases involved imaging
with more than one beamforming method at a time, but
ADMIRE was the primary computational bottleneck instead of
DAS or SLSC as can be seen in Table III. These frame rates
were adequate for these cases, but higher frame rates might be
desired for cases such as cardiac imaging. Therefore, for cases
like this, the multi-GPU implementation of ADMIRE could
be used to provide higher frame rates, and DAS and SLSC
could also be incorporated into the multi-GPU implementation
for simultaneous imaging like they were incorporated into the
single GPU implementation. For example, if imaging were to
be performed using the multi-GPU implementation with two
2080 Ti GPUs instead of one, then we would expect the frame
rates for all of the presented cases to double. This is due to the
fact that the processing time for ADMIRE decreases linearly,
approximately, as the number of beams also decreases, and
distributing half of the beams to one GPU and the other half
to the other GPU results in the beams per GPU being reduced
by half. Note that in our presented benchmarks, we stated
that a reduction factor of 2 in the number of beams results in
the processing time being reduced by a factor of 1.5–2. The
lower end was for the multi-GPU implementation, and this is
most likely due to the hardware differences between the GPUs,
as discussed above.

V. CONCLUSION

We have developed a GPU implementation of ADMIRE that
is two orders of magnitude faster than the CPU implementa-
tion, and additional speedup is achieved when using multiple
GPUs. Moreover, we have demonstrated the feasibility of
real-time imaging with ADMIRE. We have also shown that
other beamforming techniques such as DAS and SLSC can
be computed on the GPU and simultaneously displayed with
ADMIRE up to several frames per second. Future work
includes making further optimizations to the imaging pipeline.
For example, two optimizations are to use OpenGL in order to
display images on the GPU without having to transfer them
back to the host system first and to implement image scan
conversion using texture memory in order to perform fast
bilinear interpolation. Another optimization is to analyze the
GPU kernels in order to see if memory access efficiency can be
improved further. This includes factors such as increasing coa-
lesced memory access and better utilizing memory resources
such as shared memory.

APPENDIX

DERIVATION OF THE COORDINATE DESCENT

UPDATE FOR LINEAR REGRESSION WITH

ELASTIC-NET REGULARIZATION

β̂ = arg min
β

1

2N

N∑
i=1

⎛
⎝yi −

P∑
j=1

X i jβ j

⎞
⎠

2

+ λ

(
α‖β‖1 + (1− α)‖β‖2

2

2

)
(1)
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Compute the subgradient of the objective function f with
respect to one model coefficient at a time.

∂β j
f = 1

N

N∑
i=1

((
yi −

P∑
k=1

X ikβk

)(−X i j
))

+ λα∂β j
|β j | + λ(1− α)β j (2)

∂β j
f = − 1

N

N∑
i=1

⎛
⎝X i j

⎛
⎝yi −

P∑
k �= j

X ikβk − X i jβ j

⎞
⎠

⎞
⎠

+ λα∂β j
|β j | + λ(1− α)β j (3)

∂β j
f = − 1

N

N∑
i=1

X i j

⎛
⎝ yi −

P∑
k �= j

X ikβk

⎞
⎠+ 1

N

N∑
i=1

X2
i jβ j

+ λα∂β j
|β j | + λ(1− α)β j (4)

For convenience, we can substitute ρ j for
∑N

i=1 X i j(yi −∑P
k �= j X ikβk). Moreover, we can substitute 1 for

∑N
i=1 X2

i j
(1 can be substituted due to predictor normalization).

∂β j
f = − 1

N
ρ j + 1

N
β j + λα∂β j

|β j | + λ(1− α)β j (5)

Set the subgradient equal to 0 in order to find the minimizer.

− 1

N
ρ j + 1

N
β j + λα∂β j

|β j | + λ(1− α)β j = 0 (6)

Find the subgradient given by λα∂β j
|β j |.

λα∂β j
|β j | =

⎧⎪⎨
⎪⎩
−λα, if β j < 0

[−λα, λα], if β j = 0

λα, if β j > 0

Find the minimizer for each case.
Case 1 (β j < 0):

− 1

N
ρ j + 1

N
β j − λα + λ(1− α)β j = 0

− 1

N
ρ j + 1

N
β j − λα + λβ j − λαβ j = 0

1

N
β j + λβ j − λαβ j =

1

N
ρ j + λα

β j = ((1/N)ρ j + λα)/((1/N) + λ(1 − α)) if (1/N)ρ j <
−λα (this is when β j < 0).

Case 2 (β j = 0): In order for β j = 0 to be an optimum,
we need [−(1/N)ρ j−λα,−(1/N)ρ j+λα] to contain 0, which
means that

− 1

N
ρ j − λα ≤ 0 and − 1

N
ρ j + λα ≥ 0

β j = 0 if − λα ≤ 1

N
ρ j ≤ λα.

Case 3 (β j > 0):

− 1

N
ρ j + 1

N
β j + λα + λ(1− α)β j = 0

− 1

N
ρ j + 1

N
β j + λα + λβ j − λαβ j = 0

1

N
β j + λβ j − λαβ j =

1

N
ρ j − λα

β j = ((1/N)ρ j − λα)/((1/N) + λ(1 − α)) if (1/N)ρ j >
λα (this is when β j > 0).

These three cases provide the following coordinate descent
update

β̂ j ←
S
(

1
N ρ j , λα

)
1
N + λ(1− α)

S(z, γ ) =

⎧⎪⎨
⎪⎩

z − γ, if z > 0 and γ < |z|
z + γ, if z < 0 and γ < |z|
0, if γ ≥ |z|.

(7)

We can substitute
∑N

i=1 X i j(yi −
∑P

k �= j X ikβk) back in for
ρ j to obtain

β̂ j ←
S
(

1
N

∑N
i=1 X i j

(
yi −

∑P
k �= j X ikβk

)
, λα

)
1
N + λ(1− α)

. (8)

We can then substitute ŷ( j)
i for

∑P
k �= j X ikβk to obtain the

coordinate descent update in (2) of the Methods section,
which is

β̂ j ←
S
(

1
N

∑N
i=1 X i j

(
yi − ŷ( j)

i

)
, λα

)
1
N + λ(1− α)

S(z, γ ) =

⎧⎪⎨
⎪⎩

z − γ, if z > 0 and γ < |z|
z + γ, if z < 0 and γ < |z|
0, if γ ≥ |z|.

(9)
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