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Abstract. Understanding spatial and temporal variation in plant traits is needed to accurately
predict how communities and ecosystems will respond to global change. The National Ecological
Observatory Network’s (NEON’s) Airborne Observation Platform (AOP) provides hyperspectral
images and associated data products at numerous field sites at 1 m spatial resolution, potentially
allowing high-resolution trait mapping. We tested the accuracy of readily available data products of
NEON’s AOP, such as Leaf Area Index (LAI), Total Biomass, Ecosystem Structure (Canopy height
model [CHM]), and Canopy Nitrogen, by comparing them to spatially extensive field measurements
from a mesic tallgrass prairie. Correlations with AOP data products exhibited generally weak or no
relationships with corresponding field measurements. The strongest relationships were between AOP
LAI and ground-measured LAI (r = 0.32) and AOP Total Biomass and ground-measured biomass (r
= 0.23). We also examined how well the full reflectance spectra (380-2,500 nm), as opposed to
derived products, could predict vegetation traits using partial least-squares regression (PLSR)
models. Among all the eight traits examined, only Nitrogen had a validation R?of more than 0.25.
For all vegetation traits, validation R?ranged from 0.08 to 0.29 and the range of the root mean square
error of prediction (RMSEP) was 14-64%. Our results suggest that currently available AOPderived
data products should not be used without extensive ground-based validation. Relationships using the
full reflectance spectra may be more promising, although careful consideration of field and AOP data
mismatches in space and/or time, biases in field-based measurements or AOP algorithms, and model
uncertainty are needed. Finally, grassland sites may be especially challenging for airborne
spectroscopy because of their high species diversity within a small area, mixed functional types of
plant communities, and heterogeneous mosaics of disturbance and resource availability. Remote
sensing observations are one of the most promising approaches to understanding ecological patterns
across space and time. But the opportunity to engage a diverse community of NEON data users will
depend on establishing rigorous links with in-situ field measurements across a diversity of sites.

Key words: airborne spectroscopy; foliar traits; functional traits; hyperspectral remote sensing; Konza Prairie;
tallgrass prairie.
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INTRODUCTION

The response of ecological communities to present and
future climate change, altered biogeochemical cycling, and
the loss of biodiversity will depend strongly on species
composition and their functional traits
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(Suding et al. 2008). Typically, functional trait data are
collected in experimental conditions (e.g., greenhouses) or
field surveys on a few key focal species selected to represent
an ecosystem. Quantification of spatial and temporal
variation in functional traits across and within communities
is lacking, mainly because field sampling to collect species’
trait data in a spatially robust context is

time-consuming and labor-intensive process (Schimel et al.
2013, Asner et al. 2015, Jetz et al. 2016). So, the ability to
parameterize terrestrial ecosystems in Earth

System Models, and therefore to predict how plant
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communities and ecosystems will change in the future, is
limited. To address this problem, ecologists must tackle the
understanding of plant trait variation and ecosystem
processes across a broad range of spatial and temporal scales
and environmental gradients (Levin 1992, McGill 2010,
Asner et al. 2015, Jetz et al. 2016).

A common goal in environmental sciences is to improve
the landscape coverage and precision of ecological pattern
and ecosystem function measurements. Small-plot studies
typically require large investments of time, and interpolation
is required to make landscape inference. Imaging
spectroscopy (i.e., “hyperspectral” images recording many
narrow spectral bands) can provide spatially continuous
measurements that are directly observed and not interpolated,
but their fidelity to plot-scale characterizations is often
ambiguous. Therefore, a question whose answer underpins
the broad application of remotely sensed data is: Do similar
patterns and inferences of ecosystem properties emerge
between ground measurements and remotely sensed proxies
across diverse landscapes?

The National Ecological Observatory Network (NEON) is
a promising platform for ecologists because it provides an
unparalleled range of observations across a continental
extent, with 81 field sites representing 20 unique ecoclimatic
regions in North America, Hawai‘i, and Puerto Rico (Kampe
et al. 2010). Standardized collections of numerous
measurements will be made at multiple spatial scales for a 30-
yr time period. As part of NEON, the Airborne Observatory
Platform (AOP) collects spatially contiguous reflectance data
from their imaging spectrometer and LiDAR measurements
at repeat intervals (¥1-3 yr) for each site at high spatial
resolution (1 m). These spatially contiguous reflectance data
potentially help fill a crippling “scale gap” between species’
data and other environmental datasets (Jetz et al. 2012,
Schimel et al. 2013). Reflectance spectra and LiDAR data can
provide information on plant function, vegetation structure,
and biodiversity (Ustin et al. 2004, 2009, Cavender-Bares et
al. 2017). National Ecological Observatory Network also
produces data products derived from the reflectance spectra
and LiDAR, such as Total Biomass, Leaf Area Index (LAI),
Canopy Nitrogen, and Ecosystem Structure. These derived
data products are more intuitive for many ecologists
compared to the full reflectance spectra. Derived products

and normalized vegetation indices can also be compared
across sites, time periods, and sometimes different sensors
because errors in absolute measurements are eliminated for
the different site- and sensor-specific conditions.

Early research on mapping plant functional traits with
airborne imaging spectroscopy focused on canopy chemistry
in forest and Mediterranean ecosystems (e.g., Wessman et al.
1988, Roberts et al. 1998, Ustin et al. 1998, Ollinger and
Smith 2005, Asner and Martin 2009, 2011). More recent
work has demonstrated the ability to predict and map foliar
traits and composition of species across several biomes
enabled by NEON AOP (Chadwick et al. 2020, Chlus et al.
2020, Scholl et al. 2020, Wang et al. 2020). For example,
Wang et al. (2020) mapped 26 foliar traits with AOP imaging
spectroscopy data across seven NEON ecoregions with R?
values ranged between 0.28 and 0.82. Scholl et al. (2020)
used multiple AOP data products (e.g., Ecosystem Structure
and Canopy Nitrogen) to classify species composition of
individual tree crowns in a subalpine coniferous forest.
Critically, the reliability of AOP data depends on establishing
rigorous links with in-situ field measurements.

Given that NEON publishes AOP data in a publicly and
freely available fashion at 1 m spatial resolution, it is
imperative that researchers can understand how data were
produced, and trust that they can use them without the
requirement of validating data products. Here, we examine
the relationships between spatially extensive plot-level trait
measurements and AOP data in a wellstudied North
American tallgrass prairie, Konza Prairie. First, we
examine the relationships between groundbased
measurements and readily available derived products of
NEON AOP, such as Total Biomass, LAI, Canopy
Nitrogen, and Ecosystem Structure (Canopy Height Model
[CHM]), Second, we compare ground measurements with
the full AOP reflectance spectra.

METHODS

Study site

Konza Prairie Biological Station, part of NEON Domain
06 (KONZ), is a 3,784 ha tallgrass prairie in northeastern
Kansas, USA (39°05 N, 96°35 W). The average annual
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precipitation is 835 mm and the average annual air
temperature is 13°C. Aboveground tree biomass,
productivity, and vegetation structure are dominated by a
few perennial Cas species. There is a highly diverse
community of Cs grass, forb, and woody species (>600
species) that co-occur within this grassland, but at low
abundances relative to Ca grasses (Freeman and Hurlbert
1985, Towne 2002). Variation in vegetation traits changes
due to the experimental template of fire and grazing that
exists at Konza Prairie (Fig. 1). Within scales <2,500 m?,
vegetation traits are often dominated by C4 grasses in areas
with frequent burning (<4 yr; Nippert et al. 2011). At our
scale of inquiry, vegetation traits measured in 1-m? plots
should be similar to the surrounding pixels.

Field measurements and sample processing

During 8 and 14 June 2017, we sampled 200 1-m?plots,
randomly located across Konza Prairie using ArcGIS 10.1.
Plots were selected to span the breadth of topographic
gradients and long-term fire x grazing contrasts that exist
within this location. In the field, some locations were
slightly shifted to avoid heavily wooded or riparian areas,
as well as roads, which delineate different treatments. Leaf
Area Index was measured using a LAI-2000 Plant Canopy

Analyzer (Li-COR, Lincoln,
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Fic. 1.
capture high variability in grazing and fire regimes (right).

NE) within the center of each plot. Maximum canopy height
was measured for both the tallest herbaceous and woody
(when present) species within each plot. Plant species
identity was recorded for all species >10% cover within
each plot. Aboveground biomass was harvested within 0.1-
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m? square clip frames, with one replicate per plot. Biomass
was sorted into grass (live and dead litter), forb, and woody
vegetation. Total biomass was calculated as the sum of
grass, forb, and woody biomass (not including litter).

Biomass samples were dried in an oven at 60°C for 72 h
before weighing to the nearest 0.01 g. Before chemical
analysis, dried plant tissue was ground using a Wiley mill
and Wig-L-Bug ball mill grinder. Samples of homogenized
ground tissue from each of the field plots were measured
for stable Carbon and Nitrogen isotope ratios and elemental
concentrations. Samples were combusted with a CE1110
elemental analyzer (Carlo Erba Instruments, Milan, Italy)
and coupled to a Delta Plus mass spectrometer (Thermo
Electron Corporation, Bremen, Germany) for isotope
analysis using a ConFlo II Universal Interface (Thermo
Electron Corporation, Bremen, Germany) in the Stable
Isotope Mass Spectrometry Laboratory (SIMSL) at Kansas
State University. The isotopic ratio of samples was
calculated using delta notation as: 6 = [(Rsample/Rstandard = 1)
x 1,000], where R is the ratio of the heavy to light isotopes
for the sample and standard, respectively. The within-run
variability for 6'3C (isotopic composition of carbon)
estimated as the SD of working standards, varied between
0.03 and 0.06%o across runs. The within-run variability for
815N
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NEON AOP flightlines with Konza Prairie in white box (left); and locations of 200 ground validation field plots, which

(isotopic composition of nitrogen) varied between 0.07 and
0.11%o across runs.

AOP data

We downloaded NEON’s LiDAR-derived Ecosystem
Structure CHM ( DP3.30015.001; accessed 1 June 2020),
reflectance-derived Canopy Nitrogen (DP3.30018.001;
accessed 1 June 2020), LAI (DP3.30012.001; accessed 1 June
2020), Total Biomass (DP3.30016.001; accessed 1 June
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2020), and the full orthorectified surface reflectance data
(DP3.30006.001; accessed 1 June 2020) for NEON’s 2017
KONZ site collections. The Ecosystem Structure CHM is
derived from LiDAR point cloud data. A continuous surface
representing the height at the top of the canopy (m) is
produced. The Canopy Nitrogen product is based on the
Normalized Difference Nitrogen Index (NDNI) using
reflectance at 1,510 nm (associated with the Nitrogen content
of leaves) and 1,680 nm (associated with foliar biomass) to
estimate the relative amount of Nitrogen in vegetation
(unitless). The LAI product represents the ratio of the surface
area of upper leaf to ground surface area of broadleaf
canopies, and is produced using an algorithm with the Soil
Adjusted Vegetation Index (SAVI) as an input (unitless). The
Total Biomass product (g m=2) is calculated from a functional
relationship using cumulative growing season NDVI from
several temperate and boreal forest sites, as well as latitude
for each site. For full details on each product, see NEON
documentation associated with each product
(https://data.neonscience.org).

Airborne Observation Platform data were extracted for the
corresponding 1 m pixel over each of the 200 field plots using
coordinate locations recorded in the field with a Trimble
GEOS5s and a Trimble GEO7, both with an accuracy of <1 m.
As the vegetation traits we examined are similar within
~2,500 m=? (Nippert et al. 2011), small shifts in pixel
alignment due to georectification and mosaicing should not
substantially affect relationships between AOP vegetation
products and trait measurements from the field. Nonetheless,
we additionally present results using a circular 10-m buffer
around the location of each plot to average AOP data
(groundbased plot data were not averaged across the buffer).
Moreover, we filtered for pixels with near-infrared (NIR)
reflectance 220% and Normalized Difference Vegetation
Index (NDVI) 20.5 to remove possible shadows or other
contaminants to well-lit vegetation pixels (Baldeck and Asner
2013).

The NEON AOP includes an imaging spectrometer
covering 380-2,500 nm in 426 bands and provides a
reflectance product with a spectral sampling of ~5 nm and a
1 m spatial resolution (Kampe et al. 2010). In 2017, NEON
AOP flew a defined flight box over KONZ on 5 and 9 June.
Flight timing was designed to capture the peak greenness of
the site, determined from a 15-yr analysis of MODIS NDVI
(Moderate Resolution Imaging Spectroradiometer NDVI)
measurements. Images of surface reflectance were generated
by NEON after processing the raw spectrometer
measurements to a calibrated at-sensor radiance by applying
a rigorous orthorectification and atmospheric correction. The
atsensor radiance and orthorectification are determined using
in-house NEON algorithms, while the atmospheric correction
is determined with ATCOR-4 (ReSe Applications LLC, Wil,
Switzerland; see details in
data.neonscience.org/api/v0/documents/NEON.DOC.00128
8vA).
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Analysis

We first examined Pearson correlations between AOP
products and ground-based measurements. Then, we
performed PLSR using the full canopy spectra to assess the
ability of AOP spectral reflectance to predict ground-based
field measurements. Partial least-squares regression 1is
commonly wused to evaluate relationships between
spectroscopic data and functional traits (e.g., Ollinger and
Smith 2005, Dahlin et al. 2013, Serbin et al. 2014). Partial
least-squares regression reduces the large predictor matrix
(i.e., 426 bands of reflectance) to fewer, uncorrelated latent
components. Atmospheric water absorption regions (1,130-
1,445 nm and 1,790- 1,955 nm) were removed due to low
signal-to-noise ratio in these regions. We used the
“plantspec” package (Griffith and Anderson 2019) in the R
computing environment (RCore Team 2020). This package is
a wrapper for the “pls”package (Wehrens and Mevik 2007)
for optimizing and fitting PLSR models. The “SPXY”
method, a modified Kennard-Stone algorithm implemented
in “plantspec”, was used to optimally split the data into
representative subsets. This method considers variation in
both the spectra and response values when subdividing the
data and has been shown to out-perform other methods
(Saptoro et al. 2012, Griffith and Anderson 2019). Seventy-
five percent of the data was used for calibration and 25% of
the data was used for validation. We used “plantspec” to
select an optimal model with the lowest RMSEP after
comparing the raw spectra to three data transformations
(Constant Offset Elimination, Vector Normalization, and a
Min/Max Normalization). The number of latent vectors used
in the optimal model was chosen as the minimum number of
factors that resulted in a predicted residual error sum of
squares (PRESS) from leave-one-out cross-validation, with a
probability less than or equal to 0.75. We report results from
the optimal model with the lowest RMSEP.

RESULTS AND DiscussION

Correlations (Pearson’s r) showed generally weak or no
relationships between AOP products and corresponding
ground-based measurements (Table 1). Using the 10m
buffer and the NIR/NDVI filter for AOP data resulted in
slightly better relationships than the 1 m data and/or no
filter (Table 1 and Appendix S1: Table S2). The AOP
Canopy Nitrogen and CHM showed no relationships with
ground-based Nitrogen or canopy height, respectively (i.e.,
r-value close to 0). The AOP Total Biomass and LAI
products were better correlated with associated ground-
based measures. Airborne Observation Platform Total
Biomass, using both the 1 m pixel and the 10-m buffer, was
significantly correlated with groundbased total biomass (r
=0.21 and 0.23, respectively) and grass biomass (r = 0.17
and 0.23, respectively). Airborne Observation Platform
LAI, using only the 10-m buffer, was significantly
correlated with ground-based LAI (r = 0.32). Although,
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TaBLE 1. Pearson correlation matrix of NEON AOP data products using an NIR/NDVI filter and ground-based measurements from 200

plots at Konza Prairie.

AOP
Total

AOP  Bjomass AOP AOP AOP

Total 10m AOP CHM AOP LAI AOP  Nitrogen Canopy Total Grass Forb

Biomass CHM 10 m LAI 10m Nitrogen 10m LAI height  biomass biomass biomass C N 615N
AOP 0.82%**
Total
Biomass
10m
AOP 0.24%**  (.28%**
CHM
AOP 0.26%**  0.35%**  (.92%**
CHM
10 m
AOP LAI 0.83***  0.67*** 0.16* 0.14
AOP 0.72%**  (.88%**  (.31***  (.30%** (.72%**
LAI
10m
AOP 0.73%**  0.64***  0.06 0.05 0.74%%% (.63%**
Nitrogen
AOP 0.56%** 0.73*** (.08 0.02 0.54%*% (. 77*%**  (.83%**
Nitrogen
10m
LAIT 0.19%*  0.29*** -0.10 -0.09 0.12 0.32%**  0.36%**  (0.45%**
Canopy 0.14 0.19** 0.09 0.11 0.04 0.13 0.18* 0.20%*  0.49***
height
Total biomass 0.21***  0.23*** -0.08 -0.09 0.16%  0.24%**  0.22%*  0.26*%** 035 0.21**
Grass biomass 0.17* 0.23*** -0.05 -0.03 0.09 0.21%*%  0.29%**  (.32%** (.38 0.27***  (0.80***
Forb biomass  0.11 0.08 -0.04 -0.10 0.16*  0.12 -0.03 0.07 -0.02 0.49***  -0.09
C -0.05 -0.06 -0.06 -0.05 -0.05 0.00 -0.05 0.10 -0.08 0.06 0.01  0.06
N 0.10 0.07 -0.06 -0.09 0.20** 0.10 -0.06 -0.06 -0.12 -0.02 -0.27 0.29%**  0.42%**
815N 0.19%*  0.19** 0.02 0.01 0.15%* 0.12 0.05 0.00 0.06 0.01 -0.08 0.11 0.07 0.41%**
613C -0.09 0.03 -0.03 0.01 -0.13 0.00 0.08 0.20%*  0.21 0.16*  0.01 0.33 -0.42%** -0.08 =0.35%** -0.18**

Notes: CHM = Ecosystem Structure Canopy Height Model; LAI = leaf area index; NDNI = Normalized Difference Nitrogen Index. Total
biomass is the sum of grass, forb, and woody biomass. P < 0.001 (***), P < 0.01 (**), and P < 0.05 (*). See Appendix S1: Table S2 for

results without an NIR/NDVTI filter for AOP data.

AOP Total Biomass and AOP LAI showed significant
correlations with ground-based measures, most of the
variation in vegetation traits was not captured by the
corresponding AOP product, and there are large
mismatches in absolute values.

The AOP Biomass product reached a ceiling and never
exceeded 40 g m?, underestimating ground-based biomass
sometimes by more than a factor of 10 (Fig. 2a). The AOP
Biomass product’s reliance on the NDVI may be one reason
that biomass values appear to reach a low upper limit as
NDVI at our plots shows the same pattern (Appendix S1:
Fig. S1). Normalized Difference Vegetation Index does not
continue to increase with high biomass measured in the

field, possibly because of NDVI saturation. Normalized
Difference Vegetation Index is known to saturate in areas
of high biomass and thus is thought to be a poor index of
vegetation structure and function in dense forests, but
reliable in grasslands and other less structurally complex
habitats (Sellers 1985, Gao et al. 2000, Goodin and
Henebry 1997). The AOP Biomass product uses an
algorithm developed for woody biomass in forest
ecosystems. Even for forests, it is known to saturate at
biomass levels greater than 180 g/ m? at high latitudes and
greater than 60 g/m?> at low latitudes
(NEON.DOC.004363vA; Dong et al. 2003). At our
tallgrass prairie site, biomass greatly exceeded 60 g/m?
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Fic. 2. Scatterplots of NEON AOP’s Total biomass (a; slope = 0.01 and intercept = 29.5) and LAI (b; slope = 0.17 and intercept = 1.52)
products using an NIR/NDVT filter and a 10-m circular buffer with corresponding field measurements from 200 plots

with grass biomass averaging 170.9 g/m? within the first

month of the 2017’s growing season. At least 5 core and 2

relocatable NEONSsites are predominately grassy (Colorado

Plains Experimental Range, Konza Prairie, Jornada

Experimental Range, Lyndon B. Johnson National

Grassland, Woodworth, Northern Great Plains Research

Laboratory, and Marvin Klemme Range Research Station),

and many more sites have at least some grass or herbaceous

cover, where AOP products could be explored further. Our
results demonstrate that there is no 1:1 relationship between

AOP products and corresponding ground-based measures;

however, transforming variables may improve

relationships.

The AOP LAI product is also based on a spectral index,
the SAVI, but it did not show a saturating relationship with
our ground measurements (Fig. 2b). Leaf Area Index
products developed from optical remote sensing (vs. radar
or LIDAR) often saturate in dense forest canopies because
the signal is predominately driven by the top of the canopy.
Instead, there is substantial scatter around a positive linear
correlation at our site, where LAI is <6. Therefore, on
average, increases in LAI is captured by the AOP product.
However, at any specific location at the 1 m scale provided,
LAI predicted from AOP observations may be highly
inaccurate.

Airborne Observation Platform products were correlated
with non-corresponding ground-based measures (Table 1).
For example, AOP Total Biomass using the 1 m pixel and 10-
m buffer, was significantly correlated with LAI (r = 0.19 and
0.29, respectively), canopy height (r = 0.16 and 0.19,
respectively), and 8N (r = 0.19 and 0.19, respectively).
Airborne Observation Platform LAI using the 10 m buffer
was significantly correlated with total biomass (r = 0.24) and
grass biomass (r = 0.21). Airborne Observation Platform

Canopy Nitrogen, using both the 1 m pixel and 10-m buffer,
was significantly correlated with ground-based LAI (r = 0.36
and 0.45, respectively), canopy height (r = 0.18 and 0.20,
respectively), total biomass (r = 0.22 and 0.26, respectively),
and grass biomass (r = 0.29 and 0.32, respectively). These
relationships suggest that spectrally derived AOP products,

such as Canopy Nitrogen, are
at Konza Prairie.

largely driven by plant biomass (Homolova et al. 2013,
Knyazikhin et al. 2013).

Examining the full reflectance spectra in PLS regressions,
as opposed to correlations with the AOP products, revealed
more promising relationships for some traits. In general,
using a 10-m buffer and no NIR/NDVI filter resulted in better
or similar relationships for most traits; therefore, we focus on
those results (Table 2). Regardless of the spatial extent or use
of a filter, R?never exceeded 0.30 for any trait (see Appendix
S1: Table S3 for full comparison). The PLS regression
models for all but one of the eight traits we examined
explained less than 25% of the measured variation in each
trait (Table 2; Fig. 3). The model for Nitrogen performed
moderately well, at least relative to other traits (R?=0.29; Fig.
3f), but worse than typically found using remote sensing to
estimate plant Nitrogen (Mutanga et al. 2004, Skidmore et al.
2010, Homolova et al. 2013, Van Cleemput et al.” 2018).
Konza contains a complex mosaic of different grazing and
fire regimes, which is known to affect species composition,
plant productivity, and vegetation traits across the larger
landscape (Fig. 1; Briggs and Nellis 1991). Thus, spatial and
temporal variability in Nitrogen has been previously mapped
at this site with reasonable success using airborne
hyperspectral imagery (Goodin et al. 2004, Ling et al. 2014,
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2019). In our model, predictions for Nitrogen were biased low
at the high end of measured values (Fig. 3), either because of
a saturating relationship with reflectance data and/or
heteroscedasticity in measured values (i.e., an unequal range
of values at the high vs. low end of these traits). For LAI,
using the full spectra resulted in a lower R when predicting
ground-measured LAI than compared to the correlation with
the AOP LAI product. This suggests that an index-based
measure (i.e., a ratio of two or more regions of the reflectance
curve such as the SAVI), which can normalize soil
background or atmospheric effects (Huete 1988), may be
more robust as a proxy for LAI at least as a relative measure.
Our low predictive accuracy for LAI, another trait that tends
to be well predicted in grasslands using imaging spectroscopy
(Van Cleemput et al. 2018), may be because of the high LAI
at this mesic tallgrass prairie site. Predictions of Carbon and
813C were particularly poor, essentially capturing none of the
variations in ground-based measures.

While other studies have reported more reliable
predictions of morphological and biochemical foliar traits
using AOP data in PLSR models (e.g., Wang et al. 2020,
Kamoske et al. 2021), we focused on a different suite of
traits that correspond directly to NEON’s products.
Additionally, other NEON studies have leveraged greater
variability in trait values across sites and biomes. For
example, in Wang et al. (2020), the range of Carbon and
Nitrogen values across sites was about 6 and 20 times
larger, respectively, than our measurements at Konza. By
design, NEON provides data across a network of sites and
ecoregions allowing comparative macrosystems research;
however, site comparisons are not the only purpose of
NEON data. The 1 m spatial resolution AOP data should
also enable high-resolution mapping for site-specific
research. Yet, inaccuracies in the field and spectral data
alignment in space and/or time, biases in trait
measurements or AOP algorithms, and model uncertainty
can lead to erroneous mapping of spatial patterns across a
site.
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TasLE 2. Coefficient of determination (R?) and Root Mean Square Error of Prediction (RMSEP; in units of measurement and as % of mean
value) from partial least-squares regressions (PLSR) between the AOP reflectance spectra with no NIR/NDVI filter and ground-measured

traits from 200 plots at Konza Prairie.

Im 10 m buffer
Validation R? RMSEP (%) Validation R? RMSEP (%)
LAI 0.09 1.13 (51.87%) 0.19 1.04 (47.45%)
Total biomass (g m?) 0.13 125.83 (56.33%) 0.11 121.75 (58.45%)
Grass biomass (g m?) 0.00 109.57 (63.88%) 0.12 107.48 (62.69%)
Canopy height (cm) 0.03 15.32 (34.23%) 0.14 13.42 (30.00%)
C (mg/g) -0.01 6.06 (13.87%) 0.02 5.75 (13.18%)
N (mg/g) 0.13 0.36 (31.54%) 0.29 0.34 (29.54%)
55C (%) 0.10 450 (23.57%) 0.08 5.16 (27.03%)
55N (%0) 0.14 139 (52.31%) 0.16 1.54 (58.14%)

Notes: See Appendix S1: Table S3 for PLSR results using NIR/NDVI filter. The value of R?is never greater than 0.30 in models with or

without the NIR/NDVI filter at 1 m or 10 m.
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One reason for poor relationships between spectra and
ground-based measurements is that mosaicked NEON
products combine different flightlines with variable flight
conditions (e.g., brightness) (Chadwick et al. 2020).
Second, other studies that find better statistical
relationships with plant traits have performed additional
corrections of the reflectance data. Custom shade masks,
atmospheric correction and smoothing that accounts for
local topography and view-angle geometry, and access to
preliminary data provided by the AOP team to collect field
measurements in ideal locations could help improve

Predicted vs. measured trait values from PLSRusing AOP reflectance datawith no NIR/NDVI filter and a 10-m circular

relationships with ground-based data (Chadwick et al.
2020).

Our results show that ground-validation is necessary
before using AOP data. Importantly, field data must also be
collected appropriately to align with airborne observations
(Chadwick et al. 2020, Schweiger 2020). In general, field
sampling should aim for representing spatial coverage as
well as sampling across trait space, which are not mutually
inclusive. While we prioritized extensive sampling across
geographic space, we did not always sample the full range
of trait variability. For some traits such as leaf Nitrogen,
greater sampling in regions with higher leaf Nitrogen levels
may have improved statistical relationships. Sampling the
full range of values for some traits such as leaf biochemical



Xxxxx 2021

traits, which may not be easy to estimate in the field, may
require prior understanding of environmental features that
contribute to trait changes (Schweiger 2020); although
these relationships are often why trait mapping is desirable
in the first place. Moreover, given the high spatial accuracy
that is required for 1 m resolution airborne spectroscopy
data, ground-based sampling should include a buffer (e.g.,
3 x 3 pixels), within which the trait of interest is
representative because of the inevitable pixels shifts in
mosaicking and georectification, in addition to sensor
“plurring” when radiance from neighboring pixels
contribute to the signal of the focal pixel. Inamdar et al.
(2020) found that only 55.5% of the signal in a pixel
originated from the materials within the boundaries of that
pixel. Because of the differences in the spatial scale of
species turnover and variation in plant functional types at
different sites, future work could assess multiple spatial
extents of both field data and AOP data to find the most
robust relationships.

CONCLUSION

Remote sensing observations, NEON’s AOP in particular,
provide unparalleled spatially contiguous, high spatial
resolution, and directly observed measurements to assess
vegetation structure and function. Complete spatial sampling
provided by remote sensing observations is one of the most
promising approaches to understanding ecological processes
across scales, rather than relying on spatial averaging
(Goodin and Henebry 2002, Denny 2017). The promise of
mapping functional traits is persuasive because it enables
ecologists to quantify how communities change over space
and time in response to global change. However, the
usefulness of remote sensing observations depends on
establishing rigorous empirical relationships with field
measurements. Sitespecific ground validation, in a diversity
of sites and ecoregions, can help refine algorithms used to
generate remote sensing products. In general, we found better
agreement between field-measured vegetation traits and AOP
data when we used a 10-m circular buffer. However, many
users of NEON data may assume that the readily available 1
m data is reliable. Our analysis suggests—at least for one
well-studied grassland that hosts a core NEON site—that
currently available “off-theshelf” AOP data products are
inaccurate and not appropriate for high-resolution mapping of
vegetation traits without ground-based validation. For many
of the traits measured here, no relationship exists between
field measurements at the 1 m scale and AOP data. Grassy
systems (grasslands and savannas) are understudied
compared to trees and forests (Veldman et al. 2015, Murphy
et al. 2016, Nerlekar and Veldman 2020), and grassy sites
may be unexpectedly challenging for airborne spectroscopy
(Van Cleemput et al. 2018). Many remote sensing scientists
and ecologists typically assume grasslands to be structurally
simple compared to forests. However, high species diversity
within a small area (e.g., a 1 m?pixel), mixed functional types
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of plant communities, and mosaics of disturbance and
resource availability complicate remotely sensed predictions
for these ecosystems. Collecting corresponding field spectra
in these diverse systems (leaf- and plot-level spectra) may be
critical to connecting airborne spectral observations with
plot-level trait measurements from the field.
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