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Abstract. Understanding spatial and temporal variation in plant traits is needed to accurately 
predict how communities and ecosystems will respond to global change. The National Ecological 
Observatory Network’s (NEON’s) Airborne Observation Platform (AOP) provides hyperspectral 
images and associated data products at numerous field sites at 1 m spatial resolution, potentially 
allowing high-resolution trait mapping. We tested the accuracy of readily available data products of 
NEON’s AOP, such as Leaf Area Index (LAI), Total Biomass, Ecosystem Structure (Canopy height 
model [CHM]), and Canopy Nitrogen, by comparing them to spatially extensive field measurements 
from a mesic tallgrass prairie. Correlations with AOP data products exhibited generally weak or no 
relationships with corresponding field measurements. The strongest relationships were between AOP 
LAI and ground-measured LAI (r = 0.32) and AOP Total Biomass and ground-measured biomass (r 
= 0.23). We also examined how well the full reflectance spectra (380–2,500 nm), as opposed to 
derived products, could predict vegetation traits using partial least-squares regression (PLSR) 
models. Among all the eight traits examined, only Nitrogen had a validation R2of more than 0.25. 
For all vegetation traits, validation R2 ranged from 0.08 to 0.29 and the range of the root mean square 
error of prediction (RMSEP) was 14–64%. Our results suggest that currently available AOPderived 
data products should not be used without extensive ground-based validation. Relationships using the 
full reflectance spectra may be more promising, although careful consideration of field and AOP data 
mismatches in space and/or time, biases in field-based measurements or AOP algorithms, and model 
uncertainty are needed. Finally, grassland sites may be especially challenging for airborne 
spectroscopy because of their high species diversity within a small area, mixed functional types of 
plant communities, and heterogeneous mosaics of disturbance and resource availability. Remote 
sensing observations are one of the most promising approaches to understanding ecological patterns 
across space and time. But the opportunity to engage a diverse community of NEON data users will 
depend on establishing rigorous links with in-situ field measurements across a diversity of sites. 

Key words: airborne spectroscopy; foliar traits; functional traits; hyperspectral remote sensing; Konza Prairie; 
tallgrass prairie. 



Article e03590; page 2 STEPHANIE PAU ET AL. Ecology, Vol. xx, No. xx 

INTRODUCTION 

The response of ecological communities to present and 
future climate change, altered biogeochemical cycling, and 
the loss of biodiversity will depend strongly on species 
composition and their functional traits 

(Suding et al. 2008). Typically, functional trait data are 
collected in experimental conditions (e.g., greenhouses) or 
field surveys on a few key focal species selected to represent 
an ecosystem. Quantification of spatial and temporal 
variation in functional traits across and within communities 
is lacking, mainly because field sampling to collect species’ 

trait data in a spatially robust context is 
time-consuming and labor-intensive process (Schimel et al. 
2013, Asner et al. 2015, Jetz et al. 2016). So, the ability to 
parameterize terrestrial ecosystems in Earth 

System Models, and therefore to predict how plant 
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communities and ecosystems will change in the future, is 
limited. To address this problem, ecologists must tackle the 
understanding of plant trait variation and ecosystem 
processes across a broad range of spatial and temporal scales 
and environmental gradients (Levin 1992, McGill 2010, 
Asner et al. 2015, Jetz et al. 2016). 

A common goal in environmental sciences is to improve 
the landscape coverage and precision of ecological pattern 
and ecosystem function measurements. Small-plot studies 
typically require large investments of time, and interpolation 
is required to make landscape inference. Imaging 
spectroscopy (i.e., “hyperspectral” images recording many 
narrow spectral bands) can provide spatially continuous 
measurements that are directly observed and not interpolated, 
but their fidelity to plot-scale characterizations is often 
ambiguous. Therefore, a question whose answer underpins 
the broad application of remotely sensed data is: Do similar 
patterns and inferences of ecosystem properties emerge 
between ground measurements and remotely sensed proxies 
across diverse landscapes? 

The National Ecological Observatory Network (NEON) is 
a promising platform for ecologists because it provides an 
unparalleled range of observations across a continental 
extent, with 81 field sites representing 20 unique ecoclimatic 
regions in North America, Hawaiʻi, and Puerto Rico (Kampe 
et al. 2010). Standardized collections of numerous 
measurements will be made at multiple spatial scales for a 30-
yr time period. As part of NEON, the Airborne Observatory 
Platform (AOP) collects spatially contiguous reflectance data 
from their imaging spectrometer and LiDAR measurements 
at repeat intervals (~1–3 yr) for each site at high spatial 
resolution (1 m). These spatially contiguous reflectance data 
potentially help fill a crippling “scale gap” between species’ 

data and other environmental datasets (Jetz et al. 2012, 
Schimel et al. 2013). Reflectance spectra and LiDAR data can 
provide information on plant function, vegetation structure, 
and biodiversity (Ustin et al. 2004, 2009, Cavender-Bares et 
al. 2017). National Ecological Observatory Network also 
produces data products derived from the reflectance spectra 
and LiDAR, such as Total Biomass, Leaf Area Index (LAI), 
Canopy Nitrogen, and Ecosystem Structure. These derived 
data products are more intuitive for many ecologists 
compared to the full reflectance spectra. Derived products 

and normalized vegetation indices can also be compared 
across sites, time periods, and sometimes different sensors 
because errors in absolute measurements are eliminated for 
the different site- and sensor-specific conditions. 

Early research on mapping plant functional traits with 
airborne imaging spectroscopy focused on canopy chemistry 
in forest and Mediterranean ecosystems (e.g., Wessman et al. 
1988, Roberts et al. 1998, Ustin et al. 1998, Ollinger and 
Smith 2005, Asner and Martin 2009, 2011). More recent 
work has demonstrated the ability to predict and map foliar 
traits and composition of species across several biomes 
enabled by NEON AOP (Chadwick et al. 2020, Chlus et al. 
2020, Scholl et al. 2020, Wang et al. 2020). For example, 
Wang et al. (2020) mapped 26 foliar traits with AOP imaging 
spectroscopy data across seven NEON ecoregions with R2 

values ranged between 0.28 and 0.82. Scholl et al. (2020) 
used multiple AOP data products (e.g., Ecosystem Structure 
and Canopy Nitrogen) to classify species composition of 
individual tree crowns in a subalpine coniferous forest. 
Critically, the reliability of AOP data depends on establishing 
rigorous links with in-situ field measurements. 

Given that NEON publishes AOP data in a publicly and 
freely available fashion at 1 m spatial resolution, it is 
imperative that researchers can understand how data were 
produced, and trust that they can use them without the 
requirement of validating data products. Here, we examine 
the relationships between spatially extensive plot-level trait 
measurements and AOP data in a wellstudied North 
American tallgrass prairie, Konza Prairie. First, we 
examine the relationships between groundbased 
measurements and readily available derived products of 
NEON AOP, such as Total Biomass, LAI, Canopy 
Nitrogen, and Ecosystem Structure (Canopy Height Model 
[CHM]), Second, we compare ground measurements with 
the full AOP reflectance spectra. 

METHODS 

Study site 

Konza Prairie Biological Station, part of NEON Domain 
06 (KONZ), is a 3,784 ha tallgrass prairie in northeastern 
Kansas, USA (39°05 N, 96°35 W). The average annual 
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precipitation is 835 mm and the average annual air 
temperature is 13°C. Aboveground tree biomass, 
productivity, and vegetation structure are dominated by a 
few perennial C4 species. There is a highly diverse 
community of C3 grass, forb, and woody species (>600 
species) that co-occur within this grassland, but at low 
abundances relative to C4 grasses (Freeman and Hurlbert 
1985, Towne 2002). Variation in vegetation traits changes 
due to the experimental template of fire and grazing that 
exists at Konza Prairie (Fig. 1). Within scales <2,500 m2, 

vegetation traits are often dominated by C4 grasses in areas 
with frequent burning (<4 yr; Nippert et al. 2011). At our 
scale of inquiry, vegetation traits measured in 1-m2 plots 
should be similar to the surrounding pixels. 

Field measurements and sample processing 

During 8 and 14 June 2017, we sampled 200 1-m2 plots, 
randomly located across Konza Prairie using ArcGIS 10.1. 
Plots were selected to span the breadth of topographic 
gradients and long-term fire × grazing contrasts that exist 
within this location. In the field, some locations were 
slightly shifted to avoid heavily wooded or riparian areas, 
as well as roads, which delineate different treatments. Leaf 
Area Index was measured using a LAI-2000 Plant Canopy 
Analyzer (Li-COR, Lincoln, 

capture high variability in grazing and fire regimes (right). 

NE) within the center of each plot. Maximum canopy height 
was measured for both the tallest herbaceous and woody 
(when present) species within each plot. Plant species 
identity was recorded for all species >10% cover within 
each plot. Aboveground biomass was harvested within 0.1-

m2 square clip frames, with one replicate per plot. Biomass 
was sorted into grass (live and dead litter), forb, and woody 
vegetation. Total biomass was calculated as the sum of 
grass, forb, and woody biomass (not including litter). 

Biomass samples were dried in an oven at 60°C for 72 h 
before weighing to the nearest 0.01 g. Before chemical 
analysis, dried plant tissue was ground using a Wiley mill 
and Wig-L-Bug ball mill grinder. Samples of homogenized 
ground tissue from each of the field plots were measured 
for stable Carbon and Nitrogen isotope ratios and elemental 
concentrations. Samples were combusted with a CE1110 
elemental analyzer (Carlo Erba Instruments, Milan, Italy) 
and coupled to a Delta Plus mass spectrometer (Thermo 
Electron Corporation, Bremen, Germany) for isotope 
analysis using a ConFlo II Universal Interface (Thermo 
Electron Corporation, Bremen, Germany) in the Stable 
Isotope Mass Spectrometry Laboratory (SIMSL) at Kansas 
State University. The isotopic ratio of samples was 
calculated using delta notation as: δ = [(Rsample/Rstandard − 1) 
× 1,000], where R is the ratio of the heavy to light isotopes 
for the sample and standard, respectively. The within-run 
variability for δ13C (isotopic composition of carbon) 
estimated as the SD of working standards, varied between 
0.03 and 0.06‰ across runs. The within-run variability for 
δ15N 

(isotopic composition of nitrogen) varied between 0.07 and 
0.11‰ across runs. 

AOP data 

We downloaded NEON’s LiDAR-derived Ecosystem 
Structure CHM ( DP3.30015.001; accessed 1 June 2020), 
reflectance-derived Canopy Nitrogen (DP3.30018.001; 
accessed 1 June 2020), LAI (DP3.30012.001; accessed 1 June 
2020), Total Biomass (DP3.30016.001; accessed 1 June 

 

 FIG. 1. NEON AOP flightlines with Konza Prairie in white box (left); and locations of 200 ground validation field plots, which 
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2020), and the full orthorectified surface reflectance data 
(DP3.30006.001; accessed 1 June 2020) for NEON’s 2017 
KONZ site collections. The Ecosystem Structure CHM is 
derived from LiDAR point cloud data. A continuous surface 
representing the height at the top of the canopy (m) is 
produced. The Canopy Nitrogen product is based on the 
Normalized Difference Nitrogen Index (NDNI) using 
reflectance at 1,510 nm (associated with the Nitrogen content 
of leaves) and 1,680 nm (associated with foliar biomass) to 
estimate the relative amount of Nitrogen in vegetation 
(unitless). The LAI product represents the ratio of the surface 
area of upper leaf to ground surface area of broadleaf 
canopies, and is produced using an algorithm with the Soil 
Adjusted Vegetation Index (SAVI) as an input (unitless). The 
Total Biomass product (g m−2) is calculated from a functional 
relationship using cumulative growing season NDVI from 
several temperate and boreal forest sites, as well as latitude 
for each site. For full details on each product, see NEON 
documentation associated with each product 
(https://data.neonscience.org). 

Airborne Observation Platform data were extracted for the 
corresponding 1 m pixel over each of the 200 field plots using 
coordinate locations recorded in the field with a Trimble 
GEO5s and a Trimble GEO7, both with an accuracy of <1 m. 
As the vegetation traits we examined are similar within 
~2,500 m−2 (Nippert et al. 2011), small shifts in pixel 
alignment due to georectification and mosaicing should not 
substantially affect relationships between AOP vegetation 
products and trait measurements from the field. Nonetheless, 
we additionally present results using a circular 10-m buffer 
around the location of each plot to average AOP data 
(groundbased plot data were not averaged across the buffer). 
Moreover, we filtered for pixels with near-infrared (NIR) 
reflectance ≥20% and Normalized Difference Vegetation 
Index (NDVI) ≥0.5 to remove possible shadows or other 
contaminants to well-lit vegetation pixels (Baldeck and Asner 
2013). 

The NEON AOP includes an imaging spectrometer 
covering 380–2,500 nm in 426 bands and provides a 
reflectance product with a spectral sampling of ~5 nm and a 
1 m spatial resolution (Kampe et al. 2010). In 2017, NEON 
AOP flew a defined flight box over KONZ on 5 and 9 June. 
Flight timing was designed to capture the peak greenness of 
the site, determined from a 15-yr analysis of MODIS NDVI 
(Moderate Resolution Imaging Spectroradiometer NDVI) 
measurements. Images of surface reflectance were generated 
by NEON after processing the raw spectrometer 
measurements to a calibrated at-sensor radiance by applying 
a rigorous orthorectification and atmospheric correction. The 
atsensor radiance and orthorectification are determined using 
in-house NEON algorithms, while the atmospheric correction 
is determined with ATCOR-4 (ReSe Applications LLC, Wil, 
Switzerland; see details in 
data.neonscience.org/api/v0/documents/NEON.DOC.00128
8vA). 

Analysis 

We first examined Pearson correlations between AOP 
products and ground-based measurements. Then, we 
performed PLSR using the full canopy spectra to assess the 
ability of AOP spectral reflectance to predict ground-based 
field measurements. Partial least-squares regression is 
commonly used to evaluate relationships between 
spectroscopic data and functional traits (e.g., Ollinger and 
Smith 2005, Dahlin et al. 2013, Serbin et al. 2014). Partial 
least-squares regression reduces the large predictor matrix 
(i.e., 426 bands of reflectance) to fewer, uncorrelated latent 
components. Atmospheric water absorption regions (1,130–

1,445 nm and 1,790– 1,955 nm) were removed due to low 
signal-to-noise ratio in these regions. We used the 
“plantspec” package (Griffith and Anderson 2019) in the R 
computing environment (RCore Team 2020). This package is 
a wrapper for the “pls”package (Wehrens and Mevik 2007) 
for optimizing and fitting PLSR models. The “SPXY” 

method, a modified Kennard-Stone algorithm implemented 
in “plantspec”, was used to optimally split the data into 
representative subsets. This method considers variation in 
both the spectra and response values when subdividing the 
data and has been shown to out-perform other methods 
(Saptoro et al. 2012, Griffith and Anderson 2019). Seventy-
five percent of the data was used for calibration and 25% of 
the data was used for validation. We used “plantspec” to 
select an optimal model with the lowest RMSEP after 
comparing the raw spectra to three data transformations 
(Constant Offset Elimination, Vector Normalization, and a 
Min/Max Normalization). The number of latent vectors used 
in the optimal model was chosen as the minimum number of 
factors that resulted in a predicted residual error sum of 
squares (PRESS) from leave-one-out cross-validation, with a 
probability less than or equal to 0.75. We report results from 
the optimal model with the lowest RMSEP. 

RESULTS AND DISCUSSION 

Correlations (Pearson’s r) showed generally weak or no 
relationships between AOP products and corresponding 
ground-based measurements (Table 1). Using the 10m 
buffer and the NIR/NDVI filter for AOP data resulted in 
slightly better relationships than the 1 m data and/or no 
filter (Table 1 and Appendix S1: Table S2). The AOP 
Canopy Nitrogen and CHM showed no relationships with 
ground-based Nitrogen or canopy height, respectively (i.e., 
r-value close to 0). The AOP Total Biomass and LAI 
products were better correlated with associated ground-
based measures. Airborne Observation Platform Total 
Biomass, using both the 1 m pixel and the 10-m buffer, was 
significantly correlated with groundbased total biomass (r 
= 0.21 and 0.23, respectively) and grass biomass (r = 0.17 
and 0.23, respectively). Airborne Observation Platform 
LAI, using only the 10-m buffer, was significantly 
correlated with ground-based LAI (r = 0.32). Although, 

https://data.neonscience.org/
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AOP Total Biomass and AOP LAI showed significant 
correlations with ground-based measures, most of the 
variation in vegetation traits was not captured by the 
corresponding AOP product, and there are large 
mismatches in absolute values. 

The AOP Biomass product reached a ceiling and never 
exceeded 40 g m2, underestimating ground-based biomass 
sometimes by more than a factor of 10 (Fig. 2a). The AOP 
Biomass product’s reliance on the NDVI may be one reason 
that biomass values appear to reach a low upper limit as 
NDVI at our plots shows the same pattern (Appendix S1: 
Fig. S1). Normalized Difference Vegetation Index does not 
continue to increase with high biomass measured in the 

field, possibly because of NDVI saturation. Normalized 
Difference Vegetation Index is known to saturate in areas 
of high biomass and thus is thought to be a poor index of 
vegetation structure and function in dense forests, but 
reliable in grasslands and other less structurally complex 
habitats (Sellers 1985, Gao et al. 2000, Goodin and 
Henebry 1997). The AOP Biomass product uses an 
algorithm developed for woody biomass in forest 
ecosystems. Even for forests, it is known to saturate at 
biomass levels greater than 180 g/ m2 at high latitudes and 
greater than 60 g/m2 at low latitudes 
(NEON.DOC.004363vA; Dong et al. 2003). At our 
tallgrass prairie site, biomass greatly exceeded 60 g/m2 

TABLE 1. Pearson correlation matrix of NEON AOP data products using an NIR/NDVI filter and ground-based measurements from 200 
plots at Konza Prairie. 

 
AOP 
Total 

Biomass 

AOP 
Total 

Biomass 
10 m AOP 

CHM 

AOP 
CHM 
10 m 

AOP 
LAI 

AOP 
LAI 
10 m 

AOP 
Nitrogen 

AOP 
Nitrogen 

10 m LAI 
Canopy 
height 

Total Grass Forb 
biomass biomass biomass C N δ15N 

AOP 
Total 
Biomass 
10 m 

0.82***                

AOP 
CHM 

0.24*** 0.28***               

AOP 
CHM 
10 m 

0.26*** 0.35*** 0.92***              

AOP LAI 0.83*** 0.67*** 0.16* 0.14             

AOP 
LAI 
10 m 

0.72*** 0.88*** 0.31*** 0.30*** 0.72***            

AOP 
Nitrogen 

0.73*** 0.64*** 0.06 0.05 0.74*** 0.63***           

AOP 
Nitrogen 
10 m 

0.56*** 0.73*** 0.08 0.02 0.54*** 0.77*** 0.83***          

LAI 0.19** 0.29*** −0.10 −0.09 0.12 0.32*** 0.36*** 0.45***         

Canopy 
height 

0.14 0.19** 0.09 0.11 0.04 0.13 0.18* 0.20** 0.49***        

Total biomass 0.21*** 0.23*** −0.08 −0.09 0.16* 0.24*** 0.22** 0.26*** 0.35 0.21**       

Grass biomass 0.17* 0.23*** −0.05 −0.03 0.09 0.21*** 0.29*** 0.32*** 0.38 0.27*** 0.80***      

Forb biomass 0.11 0.08 −0.04 −0.10 0.16* 0.12 −0.03 0.01 0.07 −0.02 0.49*** −0.09     

C −0.05 −0.06 −0.06 −0.05 −0.05 0.00 −0.05 −0.01 0.10 −0.08 0.06 0.01 0.06    

N 0.10 0.07 −0.06 −0.09 0.20** 0.10 −0.06 −0.10 −0.06 −0.12 −0.02 −0.27 0.29*** 0.42***   

δ15N 0.19** 0.19** 0.02 0.01 0.15** 0.12 0.05 0.04 0.00 0.06 0.01 −0.08 0.11 0.07 0.41***  

δ13C −0.09 0.03 −0.03 0.01 −0.13 0.00 0.08 0.20** 0.21 0.16* 0.01 0.33 −0.42*** −0.08 −0.35*** −0.18** 

Notes: CHM = Ecosystem Structure Canopy Height Model; LAI = leaf area index; NDNI = Normalized Difference Nitrogen Index. Total 
biomass is the sum of grass, forb, and woody biomass. P ≤ 0.001 (***), P ≤ 0.01 (**), and P ≤ 0.05 (*). See Appendix S1: Table S2 for 
results without an NIR/NDVI filter for AOP data. 
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with grass biomass averaging 170.9 g/m2 within the first 
month of the 2017’s growing season. At least 5 core and 2 
relocatable NEONsites are predominately grassy (Colorado 
Plains Experimental Range, Konza Prairie, Jornada 
Experimental Range, Lyndon B. Johnson National 
Grassland, Woodworth, Northern Great Plains Research 
Laboratory, and Marvin Klemme Range Research Station), 
and many more sites have at least some grass or herbaceous 
cover, where AOP products could be explored further. Our 
results demonstrate that there is no 1:1 relationship between 
AOP products and corresponding ground-based measures; 
however, transforming variables may improve 
relationships. 

The AOP LAI product is also based on a spectral index, 
the SAVI, but it did not show a saturating relationship with 
our ground measurements (Fig. 2b). Leaf Area Index 
products developed from optical remote sensing (vs. radar 
or LiDAR) often saturate in dense forest canopies because 
the signal is predominately driven by the top of the canopy. 
Instead, there is substantial scatter around a positive linear 
correlation at our site, where LAI is <6. Therefore, on 
average, increases in LAI is captured by the AOP product. 
However, at any specific location at the 1 m scale provided, 
LAI predicted from AOP observations may be highly 
inaccurate. 
Airborne Observation Platform products were correlated 

with non-corresponding ground-based measures (Table 1). 
For example, AOP Total Biomass using the 1 m pixel and 10-
m buffer, was significantly correlated with LAI (r = 0.19 and 
0.29, respectively), canopy height (r = 0.16 and 0.19, 
respectively), and δ15N (r = 0.19 and 0.19, respectively). 
Airborne Observation Platform LAI using the 10 m buffer 
was significantly correlated with total biomass (r = 0.24) and 
grass biomass (r = 0.21). Airborne Observation Platform 

Canopy Nitrogen, using both the 1 m pixel and 10-m buffer, 
was significantly correlated with ground-based LAI (r = 0.36 
and 0.45, respectively), canopy height (r = 0.18 and 0.20, 
respectively), total biomass (r = 0.22 and 0.26, respectively), 
and grass biomass (r = 0.29 and 0.32, respectively). These 
relationships suggest that spectrally derived AOP products, 
such as Canopy Nitrogen, are 
at Konza Prairie. 

largely driven by plant biomass (Homolova et al. 2013,´ 
Knyazikhin et al. 2013). 

Examining the full reflectance spectra in PLS regressions, 
as opposed to correlations with the AOP products, revealed 
more promising relationships for some traits. In general, 
using a 10-m buffer and no NIR/NDVI filter resulted in better 
or similar relationships for most traits; therefore, we focus on 
those results (Table 2). Regardless of the spatial extent or use 
of a filter, R2 never exceeded 0.30 for any trait (see Appendix 
S1: Table S3 for full comparison). The PLS regression 
models for all but one of the eight traits we examined 
explained less than 25% of the measured variation in each 
trait (Table 2; Fig. 3). The model for Nitrogen performed 
moderately well, at least relative to other traits (R2 = 0.29; Fig. 
3f), but worse than typically found using remote sensing to 
estimate plant Nitrogen (Mutanga et al. 2004, Skidmore et al. 
2010, Homolova et al. 2013, Van Cleemput et al.´ 2018). 
Konza contains a complex mosaic of different grazing and 
fire regimes, which is known to affect species composition, 
plant productivity, and vegetation traits across the larger 
landscape (Fig. 1; Briggs and Nellis 1991). Thus, spatial and 
temporal variability in Nitrogen has been previously mapped 
at this site with reasonable success using airborne 
hyperspectral imagery (Goodin et al. 2004, Ling et al. 2014, 

 

FIG. 2. Scatterplots of NEON AOP’s Total biomass (a; slope = 0.01 and intercept = 29.5) and LAI (b; slope = 0.17 and intercept = 1.52) 
products using an NIR/NDVI filter and a 10-m circular buffer with corresponding field measurements from 200 plots 
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2019). In our model, predictions for Nitrogen were biased low 
at the high end of measured values (Fig. 3), either because of 
a saturating relationship with reflectance data and/or 
heteroscedasticity in measured values (i.e., an unequal range 
of values at the high vs. low end of these traits). For LAI, 
using the full spectra resulted in a lower R2 when predicting 
ground-measured LAI than compared to the correlation with 
the AOP LAI product. This suggests that an index-based 
measure (i.e., a ratio of two or more regions of the reflectance 
curve such as the SAVI), which can normalize soil 
background or atmospheric effects (Huete 1988), may be 
more robust as a proxy for LAI at least as a relative measure. 
Our low predictive accuracy for LAI, another trait that tends 
to be well predicted in grasslands using imaging spectroscopy 
(Van Cleemput et al. 2018), may be because of the high LAI 
at this mesic tallgrass prairie site. Predictions of Carbon and 
δ13C were particularly poor, essentially capturing none of the 
variations in ground-based measures. 

While other studies have reported more reliable 
predictions of morphological and biochemical foliar traits 
using AOP data in PLSR models (e.g., Wang et al. 2020, 
Kamoske et al. 2021), we focused on a different suite of 
traits that correspond directly to NEON’s products. 
Additionally, other NEON studies have leveraged greater 
variability in trait values across sites and biomes. For 
example, in Wang et al. (2020), the range of Carbon and 
Nitrogen values across sites was about 6 and 20 times 
larger, respectively, than our measurements at Konza. By 
design, NEON provides data across a network of sites and 
ecoregions allowing comparative macrosystems research; 
however, site comparisons are not the only purpose of 
NEON data. The 1 m spatial resolution AOP data should 
also enable high-resolution mapping for site-specific 
research. Yet, inaccuracies in the field and spectral data 
alignment in space and/or time, biases in trait 
measurements or AOP algorithms, and model uncertainty 
can lead to erroneous mapping of spatial patterns across a 
site. 
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buffer. Solid line = 1:1 relationship. Validation of R2is shown. 

One reason for poor relationships between spectra and 
ground-based measurements is that mosaicked NEON 
products combine different flightlines with variable flight 
conditions (e.g., brightness) (Chadwick et al. 2020). 
Second, other studies that find better statistical 
relationships with plant traits have performed additional 
corrections of the reflectance data. Custom shade masks, 
atmospheric correction and smoothing that accounts for 
local topography and view-angle geometry, and access to 
preliminary data provided by the AOP team to collect field 
measurements in ideal locations could help improve 

relationships with ground-based data (Chadwick et al. 
2020). 

Our results show that ground-validation is necessary 
before using AOP data. Importantly, field data must also be 
collected appropriately to align with airborne observations 
(Chadwick et al. 2020, Schweiger 2020). In general, field 
sampling should aim for representing spatial coverage as 
well as sampling across trait space, which are not mutually 
inclusive. While we prioritized extensive sampling across 
geographic space, we did not always sample the full range 
of trait variability. For some traits such as leaf Nitrogen, 
greater sampling in regions with higher leaf Nitrogen levels 
may have improved statistical relationships. Sampling the 
full range of values for some traits such as leaf biochemical 

TABLE 2. Coefficient of determination (R2) and Root Mean Square Error of Prediction (RMSEP; in units of measurement and as % of mean 
value) from partial least-squares regressions (PLSR) between the AOP reflectance spectra with no NIR/NDVI filter and ground-measured 
traits from 200 plots at Konza Prairie. 

 
 1 m 10 m buffer 
 Validation R2 RMSEP (%) Validation R2 RMSEP (%) 

LAI 0.09 1.13 (51.87%) 0.19 1.04 (47.45%) 
Total biomass (g m2) 0.13 125.83 (56.33%) 0.11 121.75 (58.45%) 
Grass biomass (g m2) 0.00 109.57 (63.88%) 0.12 107.48 (62.69%) 
Canopy height (cm) 0.03 15.32 (34.23%) 0.14 13.42 (30.00%) 
C (mg/g) −0.01 6.06 (13.87%) 0.02 5.75 (13.18%) 
N (mg/g) 0.13 0.36 (31.54%) 0.29 0.34 (29.54%) 
δ13C (‰) 0.10 4.50 (23.57%) 0.08 5.16 (27.03%) 
δ15N (‰) 0.14 1.39 (52.31%) 0.16 1.54 (58.14%) 

Notes: See Appendix S1: Table S3 for PLSR results using NIR/NDVI filter. The value of R2 is never greater than 0.30 in models with or 
without the NIR/NDVI filter at 1 m or 10 m. 

 

 FIG. 3. Predicted vs. measured trait values from PLSRusing AOP reflectance datawith no NIR/NDVI filter and a 10-m circular 
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traits, which may not be easy to estimate in the field, may 
require prior understanding of environmental features that 
contribute to trait changes (Schweiger 2020); although 
these relationships are often why trait mapping is desirable 
in the first place. Moreover, given the high spatial accuracy 
that is required for 1 m resolution airborne spectroscopy 
data, ground-based sampling should include a buffer (e.g., 
3 × 3 pixels), within which the trait of interest is 
representative because of the inevitable pixels shifts in 
mosaicking and georectification, in addition to sensor 
“blurring” when radiance from neighboring pixels 
contribute to the signal of the focal pixel. Inamdar et al. 
(2020) found that only 55.5% of the signal in a pixel 
originated from the materials within the boundaries of that 
pixel. Because of the differences in the spatial scale of 
species turnover and variation in plant functional types at 
different sites, future work could assess multiple spatial 
extents of both field data and AOP data to find the most 
robust relationships. 

CONCLUSION 

Remote sensing observations, NEON’s AOP in particular, 
provide unparalleled spatially contiguous, high spatial 
resolution, and directly observed measurements to assess 
vegetation structure and function. Complete spatial sampling 
provided by remote sensing observations is one of the most 
promising approaches to understanding ecological processes 
across scales, rather than relying on spatial averaging 
(Goodin and Henebry 2002, Denny 2017). The promise of 
mapping functional traits is persuasive because it enables 
ecologists to quantify how communities change over space 
and time in response to global change. However, the 
usefulness of remote sensing observations depends on 
establishing rigorous empirical relationships with field 
measurements. Sitespecific ground validation, in a diversity 
of sites and ecoregions, can help refine algorithms used to 
generate remote sensing products. In general, we found better 
agreement between field-measured vegetation traits and AOP 
data when we used a 10-m circular buffer. However, many 
users of NEON data may assume that the readily available 1 
m data is reliable. Our analysis suggests—at least for one 
well-studied grassland that hosts a core NEON site—that 
currently available “off-theshelf” AOP data products are 
inaccurate and not appropriate for high-resolution mapping of 
vegetation traits without ground-based validation. For many 
of the traits measured here, no relationship exists between 
field measurements at the 1 m scale and AOP data. Grassy 
systems (grasslands and savannas) are understudied 
compared to trees and forests (Veldman et al. 2015, Murphy 
et al. 2016, Nerlekar and Veldman 2020), and grassy sites 
may be unexpectedly challenging for airborne spectroscopy 
(Van Cleemput et al. 2018). Many remote sensing scientists 
and ecologists typically assume grasslands to be structurally 
simple compared to forests. However, high species diversity 
within a small area (e.g., a 1 m2 pixel), mixed functional types 

of plant communities, and mosaics of disturbance and 
resource availability complicate remotely sensed predictions 
for these ecosystems. Collecting corresponding field spectra 
in these diverse systems (leaf- and plot-level spectra) may be 
critical to connecting airborne spectral observations with 
plot-level trait measurements from the field. 
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