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1. Introduction

Ever since the discovery of the piezoelectric behavior of several types of minerals — including quartz,
tourmaline, and Rochelle salt — by Pierre and Jacques Curie in the 1880s [8,9], deformable dielectrics have
been an object of uninterrupted interest in fields ranging from materials science to mathematics. This has
been reinforced since the turn of the millennium when soft organic dielectrics were “re-discovered” as a class
of materials with high technological potential.

In contrast to the odd coupling between mechanical and electric field, a characteristic of the hard
deformable dielectrics investigated by the Curie brothers, soft organic dielectrics typically exhibit even
electromechanical coupling. From a mathematical point of view, this means that the governing equations
involved exhibit nonlinearity, even in the simplest asymptotic setting of small deformations. Furthermore,
space charges varying at the length scale of the microstructure may assert their presence, as is the case, for
example, in porous polymer electrets [4,20] and polymer nano-particulate composites [21,32]. This translates
into equations that contain a rapidly oscillating source term and leads to anomalous behaviors [15,26].

Our goal in this study is to investigate the homogenization of elasto-dielectrics with even electrome-
chanical coupling that contain space charges that vary at the length scale of their microstructure; a formal
analysis of that problem was presented in [23]. In addition to ignoring dissipative effects, we restrict atten-
tion to materials with periodic (or with adequate random) microstructure, quasi-static electromechanical
loading conditions, and further focus on the asymptotic setting of small deformations and moderate electric
fields. The derivation of the relevant local governing equations goes as follows.

Consider an elastic dielectric that occupies a bounded domain 2 C RY with boundary 99 in its unde-
formed, stress-free, and polarization-free ground state. Material points are identified by their initial position
vector z in 2 relative to some fixed point. Upon application of mechanical loads and electric fields, the
position vector x of a material point moves to a new position v(z) = = + u(z), where u denotes the dis-
placement field. The associated deformation gradient is denoted by F(x) = I + Vu(z). In the absence of
magnetic fields, free currents, and body forces, and with no time dependence (see, e.g., [10]), Maxwell’s and
the momentum balance equations require that

divD =Q, cwrl E =0, z € RN

divS =0, SFT = FST, 2 € Q,

where D(z), E(z), S(x) stand for the Lagrangian electric displacement field, the Lagrangian electric field,
and the “total” first Piola-Kirchhoff stress tensor, while Q(x) stands for the density (per unit undeformed
volume) of space charges. Further,

D(z) = f%(az,F(m),E(x)) and S(x) = %—I;/(x,F(x),E(a:)),

where the “total” free energy Wz, F, E) is an objective function of the deformation gradient tensor F' and
an even and objective function of the electric field E, namely, W (x, F, E) = W (z,QF, E) = W(x, F, —E) for
all @ € SO(N) and arbitrary F and E. The objectivity of W implies that the balance of angular momentum
SFT = FST is automatically satisfied. Faraday’s law curl E = 0 can also be satisfied automatically by the
introduction of an electric potential ¢(z) such that E(xz) = —Vp(z). Thus, only Gauss’s law divD = Q
and the balance of linear momentum div.S = 0 remain.

Now, setting H := ' — I, a Taylor expansion of W about the ground state F' = I, E = 0 yields

W(x, F,E) = —%E-s(m)E—i— %H~L(:c)H+H- (M) (E®E)) —EQE - (T@)(EQE) +...,
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Fig. 1. (a) The elastic dielectric composite. (b) The unit cell with the space-charge density.

where e(x) := —0?W (x,1,0)/0E? is the permittivity tensor, L(x) := 0*W (x, 1,0)/0F? is the elasticity ten-
sor, M(z) := 1/203W (x,1,0)/0FOE? is the electrostriction tensor, and T (z) := —1/24 0*W (z,I,0)/0E*
is the permittivity tensor of second order. It follows that the constitutive relations that describe the elec-
tromechanical response of the elastic dielectric specialize to

D(z) = e(2)E(x) + H(x) - M(2)E(z) + T (2)(E(z) @ E(x) © E(x)) + ...
S(r) = L(x)H(z) + M(2)(E(r) @ E(x)) + ...

Taking the magnitude of the deformation measure H to be of order ¢, with 0 < { << 1, it follows in turn
that the electric field E must be of order (/2 if the elastic dielectric is to display electromechanical coupling
around its ground state. To leading order, we then get

D(z) = e(x)E(x) and S(z) = L(x)H(z) + M(z)(E(z) ® E(x)).

This is the so-called scaling of small deformations and moderate electric fields; within this scaling, by the

same token, the space charge density @ must be of order (/2.

N
sym

itself. In particular this will imply that, for any H, L(x)H = L(x)(}“'THT) (see for example (4.1)). Through-
out, we chose to di-symmetrize the symmetrized gradients for notational convenience.

Note that objectivity also implies that L(xz) and M (x) are truly symmetric mappings from Mg, into

We now detail the governing equations for the problem under investigation in this work. Assuming
periodicity of the microstructure, the permittivity, elasticity, and electrostriction tensors (e(y), L(y), M (y),
respectively) that characterize the local elastic dielectric response of the material are defined on a unit cell
(or, more precisely, on a unit torus 7) and they are periodically rescaled by a small parameter § to reflect
the size of the microstructure. The resulting tensors are respectively denoted by £°(z), L°(z), M?(x).

Moreover, the material is assumed to contain a distribution of periodically distributed space charges with
density g(y) such that

/g(y) dy =0 (1.1)

g

so as to preserve local charge neutrality, rescaled in a manner similar to that of the microstructure and
modulated by a slowly varying macroscopic charge f(z). These space charges can be passive or active. In
the case of passive charges, the slowly varying macroscopic charge f(z) is fixed from the outset. Physically,
this corresponds to materials wherein space charges are “glued” to material points and remain so regardless
of the applied mechanical loads and electric fields. This is the case, for instance, of porous polymer electrets
for which the space charges are fixed at the walls of the pores. In the case of active charges, the slowly
varying macroscopic charge f(z) is identified as the resulting macroscopic field for the electric potential and
hence depends on the applied electric field. Physically, this corresponds to materials wherein space charge
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are locally mobile. This is the case, for instance, of polymer nano-particulate composites for which the
space charges are locally mobile around the interfaces between the polymer and the nano-particles. Fig. 1
illustrates a schematic of the material and of its periodic microstructure and space charge content.
The relevant governing equations are
dived Vel = %g‘;f 19)
1.2
div [L°Vu® + M°(Ve® @ V)] =0

for the electric potential 0 and the displacement field u°. For simplicity, the boundary conditions are taken
to be of Dirichlet type, that is,

W =®, u’=0 ondQ.

Note that imposing Dirichlet boundary conditions on the electric potential amounts to considering Gauss’
law inside the domain €, and not in RY, a situation which corresponds to electrodes being placed along
the entire boundary of 2.

Remark 1.1. The heuristic justification of the presence of the term 1/§ in front of the space charges g° f
is as follows. Because of charge neutrality (see (1.1)), multiplication of the source term by ¢¢ with ¢ > —1
would result in a homogenized dielectric equation without any source term, that is an equation of the form

dive"Vyp =0 in Q,

where " is the homogenized permittivity tensor defined later in (2.9). Thus, the lowest é-order at which
microscopically distributed charges will impact the homogenized dielectric equation is §~1. Of course, one
can always add lower order source terms as emphasized in Remark 3.4 below, but, their impact will disappear
in the effective behavior unless charge neutrality is forsaken for those terms. q

The first objective of this work is to determine the purely dielectric macroscopic behavior of the material
for an arbitrary but fixed (i.e., passive) distribution of space charges in the limit when the period § of the
microstructure goes to 0. This will be achieved in Section 2.

The second objective is to demonstrate that dielectric enhancement can always be achieved for the purely
dielectric macroscopic behavior when adequate active space charges are introduced. To do that we need to
identify f(x) with the resulting macroscopic field for the electric potential. We demonstrate that for a two-
phase inclusion type microstructure, it is always possible to produce enhancement. Further, in the case of
dilute inclusions, we propose an argument inspired by the Clausius-Mossotti formula that yields an explicit
value for that enhancement and for “manufacturable” charges. This is the object of Section 5 which we have
placed at the end of this paper.

Finally, we determine the homogenized equations for the coupled elastic-dielectric behavior of the ma-
terial. This is the object of Section 4. Doing so necessitates better convergence properties on the dielectric
micro-macro analysis than those provided by Section 2. To do so we combine large-scale regularity due
to homogenization with local regularity properties that hold for two-phase microstructures with smooth
inclusions. The technical details are the object of Section 3. In the last part of Section 5, we also investigate
the elastic enhancement for the dilute case already alluded to above.

Although the results and their proofs are written in the case of periodic media, they can all be extended

to random media (with suitable mixing conditions), as we quickly argue in the appendix.

N
sym

Notationwise, we denote by MY the space of N x N-matrices, by M the subspace of symmetric

N x N-matrices, by Id the N x N identity matrix, and by - the Euclidean inner product between vectors in
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R¥ or the Froébenius inner product between elements of Mg,m, that is e- €/ = tr ee’ with e, e’ € Mi\{,m We
will denote by B,(x) the open ball of center x and radius r.

We will sometimes identify the torus and its subsets with the unit cube ¥ = Iy, n[0,1) C RN
and the corresponding subsets (denoted with the corresponding roman character) through the canonical
identification i between .7 and {z +Y : z € ZNV} = R¥. Also we will adopt the following convention for
a function ¢ defined on .7. We will say that ¢ € H(.7) if, and only z = ( o is such that z € HL_(RY);
note that z is Y-periodic. Further, if ¢ € L>(7;MY,,), we will write diveV( for div{(c 0i)Vz} and
denote by ¢° the periodic HL -function z(x/§) which we will also write as ¢(z/d). Similarly, we will denote
by [»(V)¢(y) dy the integral [,.(V)z(y) dy. Also, for any set S, we will denote by xs the characteristic
function of that set.

The rest of the notation is standard.
2. Classical homogenization of the dielectrics

In this section, we consider the dielectric part of our problem and propose to pass to the limit as the
period goes to 0. As already noted, structural assumptions such as periodicity (a random distribution with
good enough mixing properties would do as well), while essential in the next section, are not necessary
assumptions when handling the scalar dielectric equation; see Remark 2.3 below.

So, on ©, a bounded Lipschitz domain of RY, we consider the equation

{div€5Vg06 = 39(%)f(x) (2.1)

©® = ¢ on IN

with f € Wh>(Q), g € L*(.7) and [, 9(y) dy = 0, ¢ € Hz(0Q) and 5(z) = (%) where e(y) €
L(T ;MY ) with v[€]? < e(y)€ - € < BI€]? for some 0 < v < B < o0.

sym

We define 9 to be the unique solution in H'(.7) of

{ Aip(y) = 9(y)
(2.2)
fy 1/)(2/) dy =0
and note that, by elliptic regularity, 1 € H?(.7). We set
r(y) = Vi), (@) = V5, (2.3)
so that (2.1) reads as
{ div(e?V® — fr0) = -7 . Vf
(2.4)
©® = ¢ on ON.

From (2.4) and Poincaré’s inequality, we immediately obtain that
¢% is bounded in H*(Q) independently of &
and, upon setting
¢ ="V’ — 10,

that
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¢° is bounded in L*(Q;RY) independently of 6.

Thus, up to a subsequence (not relabeled), we conclude that

©® — ¢ weakly in H'(Q) 2.5
2.5
¢® — q weakly in L2(;RY).
Of course,
divg =0 (2.6)

. s L2(R™) . o
since 70 7 '=" " f_ Vi(y) dy = 0. It remains to identify ¢.
To that effect, consider the periodic corrector w; defined as follows. Set w; to be the unique solution in
HYT) to

diveV(wj +y;) =0
{ T (2.7)
[ w; dy=0.
Then
wj = Wy + Yj-
Set
5 X
wj (x) := (5wj(3) +x; (2.8)

and note that Vw?(z) = (Vw)(%§). Then, on the one hand, the div-curl Lemma [30] (or integration by parts)
implies that, for any ¢ € C°(Q),

/Cq‘soVw;? dx—>/§q'é'j dx:/cqj dy.
Q Q T

On the other hand define, according to classical elliptic homogenization [5, Chapter 1], the symmetric

constant matrix " as

che; .= fa(y)ij dy. (2.9)
T

Since € is symmetric, another application of the div-curl Lemma yields
/Cq5 : Vw? dr = /CV905 -55Vw? dr — /CfT(S . Vw? dr — /CV(p-ahé’j dr — /Cfaj dz,
Q Q Q Q Q

with

aj = ][T(y) -Vw;(y) dy = ][va) (€ + Vw;(y)) dy = — ][g(y)% (y) dy. (2.10)
T T

g

Hence,
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with a € RY given through (2.10).
A classical result of H-convergence is that

vIE[2 < ehe- ¢ < BIEP

Thus, in view of (2.6), we conclude that ¢ is the unique H'(Q)-solution of

dive"Vp=a-Vf
(2.12)

@ = ¢ on 0L,
so that the entire sequence (%, %) converges to (i, q) weakly in H'(Q) x L?(Q;RN).

We now strive to improve the weak convergence results with the help of correctors. To that effect we
introduce 6§ € H'(.7) to be the unique solution to

div(eVl — 7) = 0 (or still diveVl = g)

(2.13)
[ 0(y) dy = 0.
We set
oi=eV0—T,
and
0% (z) := 59(%) 0% (z) == o(%), (2.14)

so that 0% = 9V#° — 79 and note that, by symmetry of ¢ and (2.7), since 7 has zero average over .7 and
in view of (2.10),

o] = bj = ][6(y)W(y) “Vy; dy = —][VG(y) -e(y)Vw;(y) dy
T T

_ f (eW)VOW) — 7(3)) - Ve (y) dy — f 7(y) - Vooy(y) dy

g

T
=— ][T(y) -Vw;(y) dy = — fr(y) -Vw,(y) dy = —a;, weakly in LQ(Q;RN). (2.15)
T T

We now follow a classical computation; see e.g. [6, section 4]. Take ® in C°(;RY), ¢,n in C°(Q) and
compute

/77255 Vel — Y Vwid, -V ¢ |- (Ve = Y Vui®; -V (| dr =

pa j=1,.,N j=1,..,N

/n2 (2V® —70f) — Z Vi ®; — ¢ (°V0°—1°) b+ [V’ — Z Vwi®; — Vo (| dx

P j=1,.,N j=1,.,N
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+ [0 (W— > Vuj®; - v c) da

a j=1,..,N
:/?72 ¢ = > eVt~ |+ (- | Ve = Y Vuld; — Ve (| da.
Q j=1,..,.N j=1,..,N

Multiple applications of the div-curl Lemma, together with (2.11), (2.15), imply that

P j=1,.., j=1,..,N

/?72 (q“ - Y EVule, ca‘s) : (V<p5 - Y vwle; - v’ g) dr -
N

/772( M + (a) - (Vi — ) =/n2 (Vo — @) +alC~ ) (Vo — @) du. (2.16)

Q Q

Further,

0.V = (10 = V%) - V' + (£0V¢ — fr°) - VO + f7° -V = 0 -V’ +¢° - VO + [0V,

so that, setting

K

][T(y) -VO(y) dy, (2.17)

g

the div-curl Lemma implies, in view of (2.15), that

0.V — (a- Vo + kf), weakly* in M,(9). (2.18)

Remark 2.1. Note for later use that, upon multiplication of the first equation in (2.13) by € and integration
over .7, we get k = f,, e(y)VO(y) - VO(y) dy > 0. q

Hence, since f is in particular continuous,

/nQ(f—C)T‘S' (V<p5— > Vwid; - v’ q) dz

5 j=1,.,N
/n2(f —)(a-Vetrf—a-®—re)do = /n2<f —O)a- (Vo — @)+ 5(f — ) do. (2.19)
Q Q

Summing the contributions (2.16) and (2.19), we finally obtain

1i§n/n2s5 (ché - > Vuld; - v g) : (wé - > Ve, - Ve’ 4) da
Q

j=1,..,N j=1,..,N

/77{ (Vo —@)+al¢—f) (Vo — @)+ (f = O)(a- (Vo — @) +K(f —())} da

/772 (Vo —®) - (Vo — @) + w(f — O)(f — ) de

Q
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From this and the coercivity of e(y) we conclude that, for some C' > 0,

ylimésup/n2 Vel — Z Vw?d)j —VO° ||V - Z Vw?fbj — V0 ¢ | dx

Q j=1,..,N j=1,..,N
< C{lIVe — @72 qprmy + I1f = CllZe ()} (2:20)
Now, assuming that

MNeC?* 0<a<l
¢ € C%2(00)(or, specifically, ¢ is the restriction to 9Q of ¢ € C*(Q)) (2.21)
f e chg)

Schauder elliptic regularity applied to (2.12) yields that ¢ € C%%(Q). Then, for any A > 0 we can find @, ¢
such that

IV = @l[comy + If = Cllco <A

so that, because Vw?, V#° are bounded in L?(2) independently of 6, (2.20) together with the arbitrariness
of 7 implies that

0
Vil — E Vw?% —VO°f — 0, strongly in L2 (Q;RY).
j=1,..,N J

We have proved the following

Theorem 2.2. Under assumptions (2.21), ¢°, unique H'(Q)-solution to (2.1) is such that

Vil — Z Vw? 88;0 —VO°f — 0, strongly in L% _(Q;RY)
j=1,..,N J

with w} defined in (2.8) and 0° defined in (2.14).

Remark 2.3. Provided that we view the dielectric problem as in (2.4) — that is without reference to charges
¢°, but with an oscillating field 70 — the obtained results do not rest on periodicity and could be adapted
to a general homogenization framework like that of H-convergence [31]. q

Remark 2.4. If we also assume that
g e () (2.22)

for some 0 < a < 1, then elliptic regularity applied to (2.2) implies that 7 € C1*(.7;R¥), and thus that,
in particular, the convergence in (2.18) takes place weakly in L?(Q2). Because of that, we do not need the
compactly supported smooth test 7 in all prior computations and the result of Theorem 2.2 becomes

V® — Z Vw?% — V8 f —0, strongly in L2(Q;RY).
j=1,..,N J

Note that the fact that ¢° satisfies Dirichlet boundary conditions is essential in evaluating the limit of the
term [, eV’ - V? da in all previous computations. q
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Remark 2.5. In the case of a two-phase particulate microstructure, that is whenever
e(y) == xuwew + (1 — X n)es, with I := T\ A

where .# is a measurable subset of .7, we can modify the definition of €% so that no inclusion intersects
09). We define

Qs = U 0(z +2Y),

note that |2\ Q5| < C6 and set
§ X
e (x) = f(g)XQa +eaXxa\as-
With this definition of €%, the results of Section 2 still hold true with trivial modifications of the proofs. §

Unfortunately, as described in the introduction, this result is not sufficient, when plugged into the equa-
tions of elasticity, to ensure that V¢° can be replaced by ijle Vw?aaT"; + V@ f in those, or that one can
perform any kind of homogenization process on the resulting system. This is why the next Section is devoted
to an improvement of Theorem 2.2. The framework required for the successful completion of such a task
will be much more constrained than that in the current Section. In particular, periodicity, which was merely
convenient so far, will become essential. Equally essential will be the assumption that the microstructure is

particulate.
3. Improved estimates and correctors result for the dielectrics

This section is devoted to the proof of Theorem 3.2 below which is an improvement on Theorem 2.2, the
corrector result for the dielectrics. The strong convergence in L120c(93 RY) is upgraded there to a convergence
in LP(€; RY) for all finite p > 1 in the spirit of seminal results of Avellaneda and Lin [2,3] for smooth periodic
coefficients, later extended to piecewise smooth coefficients in [24]. In our proof, we carefully distinguish
between large-scale regularity due to homogenization, for which we refer to [1], and local regularity, for
which we refer to [25].

Throughout this Section, we assume that 92 € C%® for some 0 < a < 1. The unit torus .7 is of the form

T = U, # closed such that 0.4 is C1P, 0 < B < 1
I =T\ M (3.1)

i(#) is a connected subset of RY (a matrix phase).

Further,

e(y) ==Xt + (1 — xa)er, with € < e g 06 € <)€L (3.2)

We define €° as in Remark 2.5.

We also assume that (2.21), (2.22) hold true and also that 0 < a < ﬁ, so as to appeal to [25].

In a first step, we prove é-independent Li-estimates on V? for any 1 < ¢ < oco. This is the object of the
following

Proposition 3.1. For all 1 < q < oo, the sequence V¢° is bounded in LI(S;RYN), uniformly in 8.
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Proof. Step 1. First, we apply the large-scale Calderén-Zygmund estimates of [1, Theorem 7.7] to (2.4)
rewritten as

{ divedV(g® — ¢) = div(fr° — Vo + V(?)
(3.3)

@ —¢ =0 ondQ,
where ¢° is the unique H{(2)-solution to
—N =Vf-T.

We get that, for all § > 0 and ¢ > 2, there exists a constant C; depending on ¢ such that

[ @V - 0P a:) do< (196 = 0)litag + 157 =796+ VL ).

Q  Bs(a)

Note that, since the coefficients are periodic, the random variable involved in [1, Theorem 7.7] is simply
a constant (and in fact J) in the present setting.

Now, since v is in C1*(7;RY), 7° given by (2.3) is bounded in LI(Q; RY) uniformly in § and maximal
LA-regularity for the Laplacian implies that V(° is bounded in W14(Q; R™V) uniformly in 4.

Since, by Jensen’s inequality,

/( ][ xa|Vol? dz)2dx§ / ][ xa|Ve|? dzdz = /ml%lqu:!m;w de,

Q  Bs(x) RN Bs(z) RN

the first convergence in (2.5) and the assumed regularity of the functions f and ¢ finally yield

q
2

/ ][ xa(2)|[Veo |? dz dx < Cy (3.4)

Q B(;(x)

for some other constant C; depending on g and on || f[|c1.a(qy, [[¥]|c1.a(2), [|@llc1.e () - Estimate (3.4) enables
us to control V¢? on scales larger than 6. In a second step, we will derive an estimate for small scales, that
is for scales smaller than ¢.

Step 2. In this step, we crucially use the two-phase character of the microstructure, as well as the C14-
regularity of the boundary of each of those phases. Take a point x € Q and consider a cube Q5(x) of
sidelength 46 centered at xz. We blow up equation (2.4) so as to obtain an equation on Q4(0) N, s where
Qg5 .= (2 —{z})/d. To that effect, we set

@5(2) = (gp‘s(aﬁ +dz2) — éz’g),

S

where (]753;’5 is a constant that we will fix later. Then ®° satisfies

{ div, (e(% 4 2)V.®° — f(z + 62)7°(x + 62)) = —67°(x + 62)-V f(x + 02) in Q4(0) Ny s, (35)

P(2) = 2(d(z +62) — @) on A(Qs(0) N Q. 5) NNy 5 := Ty s

Note that, if the set I'; 5 is empty, x is an interior point of 2. In the opposite case, we can assume, upon
changing Q4(0) to Q:(0) for ¢ large enough that the N — 1-dimensional Hausdorff measure of that boundary
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[, s is at least 1. Since 9Q is C*%, d.4 is CY8, and by Remark 2.5, there exists Qlac,é C ;5 with the
following properties: 9, 5 is CY# (uniformly in = and 6), if an inclusion intersects 2}, 5 then it is contained
in Q7 5, and Q(0) N Q5 C Q) 5 C Q3(0) Ny 5. Now, the set () ; contains a number of inclusions bounded
uniformly wrt d: if there are p inclusions in 7, that is if .# has p connected components, then this set
contains at most 3" p inclusions. Since by assumption the boundary of those inclusions is also C#, then, in
the terminology of [25], the C*# modulus K of 2, 5 does not depend on 6,z and [25, Theorem 1.2] applies.
It yields in particular,

1- 1 -
HVZCI)(SHL“(le(O)ﬂQz,é) < Ck (||(I)5 - gdjﬂfﬁ IL“(Q;,J) + ”g(dj(m + 5) - (bx,é)”Clﬂ“(Fz,a) + Cl) > (3'6)

where Cg is a constant that only depends on K, a, 3,7v,7" while C’ is a constant that only depends on
I fllcr.e(qy and [[¢]|c1.a(7). Choosing ¢, 5 := fl“z,a ¢(z + §-), we obtain

1 _
||g(¢($ +0) = dus)llcrom, ) S lollere@),

which we then absorb in the constant C’.
We now apply De Giorgi-Nash-Moser’s theorem [16, Theorems 8.24, 8.27] to (3.5). This yields in turn
the following estimate:

1- 1-
|0 — 5%,6 L, ) < C(|9° — 5%,5”1:2(624(0)091,5) +C"), (3.7)

where C' depends only on v,7" and C” depends only on || fllcr.a (), [¥lcre(z), |9llcr«(o). Inserting (3.7)
into (3.6) yields

1-
IVl L (@1 o () 5) < Ce (||‘I’6 = 5%slli2@uon0. + C'") )

where C, is a constant that only depends on K, «, 8,7,', while C"” is a constant that only depends on

[fllcre@y, I¥llcre sz, [|6llcre@)- )
Since ¢, 5 := me Loz +4), P(z) = 2(d(x + 62) — ¢ss) on Iy 5, and Ty 5] > 1, a variant of Poincaré-

Wirtinger’s inequality allows to upgrade the previous estimate to

IVl L (@1 2 (0)n92.0) < Ci (IV°]|L2(@u0)n2s.5) + C”) - (3.8)
Blowing (3.8) down, we conclude in particular that, for a d > 0 large enough, we have, for all 6 > 0,

sup  [Ved| < OnCly f VAP dy |+ (3.9)

Bs a(z)NQ
o/d QNBs(z)

for a dimensional constant Cy.

Step 3. We combine the estimates obtained in the first two steps as follows.
Remark that, for all z € Q and all small enough §’s, the assumed regularity of Q2 implies the existence
of d > 0 such that |Bs(x) N | > d|Bs(x)|. From (3.4) we then get

q q

[ f wewra| w<at [ £ rawvewr a) aw<ate,

Q \QnBs(z) Q \Bs(z)

N
[N
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In turn, from (3.9), we obtain

q
2

/|V<p6‘q dx < /( sup |v<p6q> dr < QQ(C}M)IJ / ][ |v¢5(y)|2 dy | dx + |00y
Q

B z)NQ
Q s/a(x) Q \QnB;s(x)

Combining the inequalities above, we finally conclude that
[ 191 dz < (e 1 (-t + foley).
Q

This completes the proof of the proposition. 0O
We are now in a position to improve on the convergence result of Theorem 2.2. We obtain the following.

Theorem 3.2. Under assumptions (2.21), (2.22), (3.1), (3.2), ¢°, unique H'(Q)-solution to (2.1) is such
that, for any 1 < ¢ < oo,

Z Vuw —VO°f — 0, strongly in LY(Q,RY)
j=1,.

with w? defined in (2.8) and 0° defined in (2.14).

Proof. First note that the regularity assumptions on the domain, f and ¢ and classical Schauder regularity
imply that ¢, the solution to (2.12), is in C?%(Q). Further, the regularity assumption on g and classical
Schauder regularity imply that 7 € C1®(.7). Then another application of [25, Theorem 1.1], this time on
7 which has no boundary, implies in particular that

V0, Vw,; € L¥(T), (3.10)

hence Vw; as well. We can thus assume that, for any r > 1, the term

Z Vw ?5 + V0° f is bounded in L"(2) independently of 6.
N

Jj=1,..,

Set 8 = 1/(¢ — 1). In view of Remark 2.4 and Proposition 3.1, the uniform bound derived above yields
that, for some constant C' depending on ¢ and all the data,

0
Ve = 3 Vu .8—@—v95f>||m<ms||<w5— > Vwéa—“”—wéf)l\%z(mx

j=1,..,N j=1,..,N
Oy Op s
Ve’ = > Vuw 5a——ve5 iz <CIVE = > Vu 58——V9‘5f)lliz(m—>0-

j=1,.,N j=1,.,N

Hence the result. O

Remark 3.3. We have assumed throughout this Section that the composite is made of two phases. Nothing
would change if we considered n phases instead of 2, provided that we keep the same regularity assumptions.
Theorem 3.2 would still hold true, and Theorem 4.1 below as well. q
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Remark 3.4. All results of Sections 2, 3 remain valid if a source term of the form h’v is added to the right
hand-side of (1.2) with h € L*°(.7) and v € L>(£2). Then, one has to add the term ([, h(y) dy) v to the
right hand-side of the homogenized equation (2.12). All other results remain unchanged. q

4. Homogenization of the elasto-dielectrics

We now address the elasticity part of the problem. Recall that L°(z) := L(%) where L(y) is a measurable,
symmetric linear mapping from M m into itself with the properties that for all e € Msynm vlel? < L(y)e-e <
v'|e|? for a.e. y € 7 and some 0 < 7 <4 < oo. Also M°(z) := M(%) with M(y) a bounded, measurable,
linear mapping from MSym into itself.

The equations are

{ div(LIVu® + MO (Vp® @ V?)) =0 1)
4.1

u® =0 on 0.
We assume that assumptions (2.21), (2.22), (3.1), (3.2) hold true throughout this Section.
In particular, we can apply Proposition 3.1 and we conclude, with the help of Korn’s and Poincaré’s
inequalities, that
u® exists and is bounded in H3(Q;RY) independently of 4.
We can also apply Theorem 3.2 and we immediately obtain that, for any 0 < r < oo,

M®(Ve® @ V') — M° > vw—+ve5f o > vw—+w§f

j=1,...N j=1,...N

N 0, strongly in L"(Q). (4.2)

We will only use the value r = 2 hereafter. Set

Z2@) =M || 3 Vuw ai+v95f ® Z Vw—+va5f . (4.3)
j=1,..,N

Because of convergence (4.2), if @’ is the unique H}-solution to

div(LVa® + Z%) =0
(4.4)
u® =0 on 09,
then
w® — @ 250, strongly in HL(Q;RN). (4.5)

We undertake a homogenization process for the system (4.4). To that effect, we introduce the periodic
corrector W;; defined as follows. Set X;; to be the unique solution in H*(7;RY) to
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Then set
Wij(y) == Xij + yi€j,
and
5 =4 z >
Wj () := Xij(g) + xi€;

and note that VW?(z) = (VIW)(%).
Then an argument near identical to that which led to (2.12) would yield that

@’ —u in H (Q;RY), (4.6)

with u, unique H}(€; RN )-solution to

div(L"Vu+Z) =0
(4.7)
u =0 on 0,
with L defined as
Ly = ][L(y)vwij -V Wen dy (4.8)
7
while Z is defined through
Z:=M"(Vp@ V) +2fN"Vp + P"f? (4.9)
where
Ml o= f (Y (y) © Vun(9)) - VW (y) dy
T
T
- fM )© Vo(y)) - VWi (y) dy.
T

Convergences (4.5) and (4.6) imply the following homogenization result.

Theorem 4.1. Under assumptions (2.21), (2.22), (3.1), (3.2), u’°, unique H(Q;RN)-solution to (4.1), con-
verges weakly in H'(Q;RY) to the unique H} (RN )-solution u to (4.7) with L" defined in (4.8) and Z
defined through (4.9), (4.10).

Remark 4.2. Note that, since Xij = Xy, Mh enjoys the same symmetry properties as M (y), that is Mi};kh =
M ]hlkh = M}, while N} = NI, and Py = PJ;. Of course L" has the usual symmetries of elasticity, that

h h
is Ll]kh L]zkh Lk‘hlj ﬂ

Remark 4.3. We could, in the spirit of the previous Sections, provide a corrector result for u® but will refrain
from doing so because of the notational complexity. q
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Remark 4.4. Our result should be compared to that in [35], which investigates the case g = 0. In such a case
N" = P" = 0 and the corrector results of the previous sections are markedly simpler. Also note that the
results in [35] are derived under the a priori assumption that V¢? is bounded in L*(€2; R") independently
of §; no justification for such an estimate is offered in that work. q

5. The case for active charges
5.1. Setting of the problem

The homogenized dielectric equation obtained in (2.12) can be equivalently rewritten as
div(e"Vp — af) = 0.

Since a is a vector of size IV, one can act on N different directions. This is why, in practice, there should
be several collections of charges, that is that, in lieu of a charge of the form ¢°f, one should envision a
charge of the form szl,m, N gg fp where each pair (g, f,) is endowed with the same properties, namely
/ 7 9p(y) dy = 0, and the necessary regularities of g, and f that were introduced in the previous Subsections.

Provided that those are met, the homogenization results remain unchanged by linearity. In particular the
homogenized dielectric equation becomes

{ div(e"Vp — dp=1.. N apfp) =0
(5.1)

@ = ¢ on 012,

with a, € RY defined as (see (2.10))

(ap); 1= ajp = ][Tp(y) - Vw;(y) dy = ][Wfp(y) (€ + Vw;(y)) dy = — ][gp(y)Wj(y) dy. (5.2)
T

g g

In (5.2), 7, = V4, with ¢, defined as ¢ was in (2.2) upon replacing g by g¢p.
We can thus view a as a N x N-matrix with j, p coefficient a;,. Note that that matrix is not necessarily
symmetric.

Active charges, if they exist, consist in an appropriate choice of f;, so that the homogenized dielectric
displays an enhancement (or degradation) of its permittivity. In other words, one would like to choose
fp = 0p/0x, so that ¢ is the solution to (5.1). Then (5.1) reads as

divé"Vep =0
@ = ¢ on 99 (5.3)
gh .=l —q.

Furthermore, if desiring electric enhancement, and not electric degradation, one should ensure that &” admits
at least one positive eigenvalue with a value greater than those of ”.

In this two-step process, one should first ensure existence of active charges, that is existence of a field ¢
that satisfies (5.3). This amounts to choosing g so that &" is strongly elliptic. To this aim, take

9p Ewp

and note that, provided that (2.21), (3.1), (3.2) hold true, we are indeed in the setting of Section 3 thanks
to (3.10). Then from (5.2)
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Ajp = Apj = *][Wj (y)wp(y) dy,
T

so that, for any £ € RN #£0, — > ip=1...N p&i&p = ][( Z wie(y)&r)? dy > 0 unless w(y) L &, a.e. on
o k=1..N

7, where w(y) is the vector with components wi(y), k¥ = 1,..., N. In that case, taking £/|¢| as first unit
vector we find that wi(y) = 0 on 7 and thus, recalling (2.7) and the canonical identification between .7
and the Y-periodic paving of RY, that,

(e.x —er)vi(y) =0 on OM NIOI

where v is the exterior normal to M. So M is a cylinder with axis parallel to £&. But, in such a case, .#
will not satisfy the last assumption in (3.1). Consequently it will always be so that

a is symmetric negative definite. (5.4)

Upon multiplication of g, = w,, by a large enough factor A independent of p we conclude to the existence of
large enough charges such that " is a symmetric positive definite matrix whose eigenvalues can be arbitrarily
large upon choosing A large enough. Thus, we can always solve (5.3) and obtain a large enhancement.

We have proved the following

Proposition 5.1. Under assumptions (2.21), (3.1), (3.2), (5.4) always holds true if choosing g, to be Aw, for
p=1,...,N and A\ > 0. Then, &" can have arbitrarily large positive eigenvalues with an appropriate choice

of \.

Of course, Proposition 5.1 provides no answer to the more useful question of finding a manufacturable set
of micro-charges such that enhancement can occur. Indeed, Proposition 5.1 relies on the knowledge of the
correctors wy. There are two possible routes if one wishes to take advantage of this observation in practice.
On the one hand, one can resort to numerical simulations of w,,, and use the output to devise a distribution
of charges that will enhance the permittivity. On the other hand, one can resort to asymptotic analysis for
some specific geometries. This is what we will do in the next subsection devoted to the case of periodically
distributed small charged inclusions.

5.2. Enhancement for dilute inclusions

The following is inspired by the Clausius-Mossotti formula for dilute spherical inclusions. In this para-
graph, C' denotes a finite constant that may change from line to line but which is independent of A and ¢
(see below). Let B denote the unit ball, and By, the ball of radius 1 + 7 for some fixed n > 0. We shall
confine charges to the intermediate phase Bii, \ B (the coating). We need an additional scale ¢ > 1 to
quantify dilution, and define €4 to be the permittivity tensor associated with the /-periodic extension of the
map defined on ¢[—1, )N by

ee(y) = (1+ (€= 1Dxs(y))ld,

which models a background medium of permittivity 1 perturbed by spherical inclusions of a medium of per-
mittivity & centered on the grid (¢Z)%. In particular, the density of inclusions is £~¢|B|. We correspondingly
set in RV

Eool() := (14 (€= 1)xp(x))ld.
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When £ is very large, Clausius and Mossotti [7,28,29] argued that at first order the spherical inclusions do
not interact with each other. Denote by wy, the ¢-periodic corrector associated with ¢, and direction €, as
in (2.7), and denote by waop, the solution of the “Maxwell” [27, Chapter IX] or “Eshelby” problem [14]

divene V(Woep + xp) =0

(5.5)
|z]|— o0
Woop(T)
Equation (5.5) can be solved explicitly, yielding, for |z| > 1
1-¢ Tp

On the other hand, as proved in [34], wy , is close t0 wsop On By, in the sense that for £ > 1 we have

IV (@eep = wip)llzz(myy,) < CLN. (5.7)
We then take g, as the ¢-periodic extension of the map defined on K[—%, %)N via
glp(y) = WOOP(y)XB1+n\B(y)v
which has vanishing average in view of (5.6). Define the matrix a by
dpj = / woop(y)woog(y) dy? 1 S p7] S Na
Bi4n\B
so that
1—-¢ 2
i=(—c—) 1/N 20N g 1d
“ (5‘—1—N—1> / / =1 v
Bi1y\B
_ n:N=1
—(L)Q wlog(l+m): N=2 % Id (5.8)
“\Er N1 BT ’ '

N-—-1
Bl 4Ny : N>2

where |SV~!| denotes the surface of the unit sphere in dimension N. The combination of (5.6) and (5.7)
5.

together with the Poincaré-Wirtinger inequality allows us to conclude that a, defined as in (5.2) is quanti-
tatively close to —¢~"N @, namely,

|agp; + 0N ay,| :e—N‘ / Woop(Y) (Wooj — wej) dy| + CL2N < Ce=2N,
Bi1y\B

from which we deduce that for all £ > 1 large enough, a, is diagonalizable with negative eigenvalues of order
¢=N. Upon multiplying gs, by the factor /¥ X for some A > 1, one obtains for 52 defined as in (5.3) (and 5?
defined as in (2.9))

el — (el xa)| < eV,
&7 — (5 )

with @ defined in (5.8). Note that here £} is the homogenized permittivity associated with a spherical
inclusion of radius 1 in a cell of side-length ¢, or, equivalently, a spherical inclusion of radius 1/¢ in the unit
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cell Y. Since €7 is of order 1 (uniformly in ), for ¢ large enough (in function of C), all the eigenvalues of £}
are larger than %/\, which yields the claimed enhancement.

Let us give the leading order part of f in the regime A, /¥ > 1. Since @ is a multiple of the identity, the
equation for ¢ takes the form

div(ld + kx)Ve =0
(5.9)
@ = ¢ on 0f)
with [|faelleo < CUTN + A71) so that || f, — 0¢/0zyp| 120) < C(LN + A1) with @ solving
-Ap=0
(5.10)
@ = ¢ on ON.

We conclude this subsection with an investigation of the impact of the dielectric enhancement on the
elastic response of dilute inclusions.

In the statement of Theorem 4.1, which yields the homogenized equation for the displacement field, the
only contribution of the active charges Z;V:l AN gy, are the terms 25:1(2 N /{’?Vg) + P/{’; f3) involving
the tensors Nfg and P)’\’g in the forcing Z; cf. (4.9) and (4.10) (the sum over p follows by linearity). In the
setting of the example of dilute inclusions, these tensors take the form

(N\DYigie = AN ][ My (y)(Vwer(y) @ Ve, (y)) - VWeii(y) dy

‘7 (5.11)
(PIP); = (AN Y2 f M(y) (V2 () © Vs (y)) - VWWess () dy,

LT

where 6y, solves (see (2.13))

diV(engegp) = Gep

fzg eﬁp(y) dy =0.

(5.12)

Let us determine the scalings of these contributions. We claim that N f\Lf is at most of order A\ whereas Pff
is at most of order A\2¢%.
We start with N )}\Lf and recall the following properties on wy and Wy

ngk(y) = e + Vwyi, / |ngk|2 <, VWuj(y) =e; ®ej+ VXgij, / |VXgij|2 <,
LT LT

which follow from energy estimates (note that the bound is uniform with respect to ¢). Likewise, we have
fey |V05p|2 < C. This allows us to split the contribution in (Nf\f)ijk into four parts:

(NP7 50 = AN f M(y)(ex ® Vi (y)) - e ® ¢; dy
LT

Vi f M(y) (Voo () © V4 (9)) - e ® ¢ dy
LT

EBVAS 7[ Mi(y)(ex ® VOu(y)) - VXeij(y) dy
(T
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Ay f Mo (y) (Veors(y) @ V0 (3)) - ¥ X (1) dy.
LT

We treat the second and third terms alike using Cauchy-Schwarz’ inequality to the effect that

gc(/|vegp|2))%(/|vxgl-j|2+|vwk|2)% <C.
LT LT

For the first term we use that V@, integrate to zero on (.7 by periodicity and the specific form M, =
My + (My — My)x s, followed by Cauchy-Schwarz’ inequality, so that

| [ M) e © V0w - e do] = | [ Maler 0 V86, 0) i e; dy
LT B

< c(/|vezp|2) <C.
B

For the fourth term we need to use more information on Vég,. By (3.10) and the analogue of (3.6), (3.9),
we have for all y € {.T

Vol <c+ [ 1vo,P)” <.
7
Hence, using |ab| < 1(a* + b?),

‘ /Me(y)(vwek(y) ® VOu(y)) - VXuij(y) dy‘ < C/ |Vwer|* + |V X0ii]* < C.
s s

We have thus proved that [ NJ?| < CX. The argument to control P}'? is similar and we obtain |P[?| < CA2¢N .

It remains to check that Pff is indeed of order A\2¢N. To this aim, it is enough to replace correctors
by their explicit approximation using the single-inclusion problem on the whole space which we denote by
Xooij and Osp. We then define

Phn o / Moo () (V0o0p(4) © Vb () - VWi () dy
]RN

On the one hand, a direct calculation using explicit formulas (see [36, Section 17.2.1]) shows that PP is of
order 1 and that |(Voep(y) ® VOoop(¥)) - VWeois(y)| < C(1+ |y[)~2Y. On the other hand, by [34], one has

N
IV(Xeij = Xooig)llL2eyy + IV (0ep = Ooop) [ 2(ev) < CL2
so that |P/<lf — A2NPhp| < OX202 | and therefore AN < ||P/<7H < ON2N.

As we did above for ¢ when A,/ > 1, one can identify the leading order contribution @ to the solution
u of (4.7) in the sense that [Ju — A2Vl g1 gy < C(A? + AY), where @ solves
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div(L}Va) = —div P} f2

(5.13)
% = 0 on 09,

where (P});; =: ()\2€N)*1(P)}\7)ij is of order 1, as well as || fp|[z2(q). In particular, ||@||g1(q) is of order 1,
and the above yields enhancement of elastostriction by a factor A2¢N within an error of order A2 + AN
(which is relatively small with respect to A2¢Y by a factor £~V + A71).
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Appendix A. Extension to the random setting

For simplicity, we only consider the dielectric problem (the coupling to elasticity is straightforward once
the needed regularity results are proved) and we place ourselves in a setting similar to the example of
Section 5 with spherical inclusions. Let P = {z,,,n € N} be a stationary ergodic point process on R such
that for all n # m, |, — x| > 2+ § for some deterministic 6 > 0 almost surely (we denote by E[-] the
associated expectation), and .# = U,ep B(x) denote the (random) set of inclusions in R"Y. We then define

erxIld+ (€ —1)ldys.

In this appendix, C denotes a constant that may change from line to line, depends on N, §2, &, controlled
norms of ¢ and f, and the law of P, but which is independent of g and ¢ (see below), unless otherwise
explicitly stated (using subscripts).

A.1. Definition of g and ¢

We start with the definition of g and 1, cf. (2.2) in the periodic setting. For conciseness, for all z € RV
we denote by B(z) the ball Byi;/2(x). In particular, by definition, the balls {B(x)}.cp are at distance
at least §/2 from one another. We assume that g : RN — R is a stationary random field supported on
UzepB(z) and satisfying fB(z) g =0 forall z € P and [|g| p~®~) < oo. Under this specific assumption,
there exists a stationary field Vb € L2 (RY) with vanishing expectation E[V1] = 0 and finite second
moment E[|V]?] < oo satisfying almost surely

AY(y) = g(y). (A1)

Let us give the short argument in favor of the well-posedness of (A.1) for completeness. As customary in
the field, we first add a massive regularization of order 7' > 1 and consider the equation on R¥

=r(y) ~ Dr(y) = ~g(y), (42)

which is well-posed in the space H} (RY) = {¢ € HL_(RY)]| sup,cgrn Sy (G + IVC[?) < oo}. The
argument is standard (see e.g. [19, Lemma 2.7]): we first solve the equation on balls Br with homogeneous
(RN).
This bound relies on the Caccioppoli inequality, which we presently work out in our setting. We display

Dirichlet boundary conditions, and pass to the limit R ,* +00 using a uniform a priori bound in H}, .

the argument in the whole space, assuming that all the quantities that appear are finite. The argument is
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the same for the approximations on the balls By (for which all quantities are indeed finite). Let nr : 2 —

exp(—cl|z|/V/T), and test the equation with nZir. This yields after integration by parts and rearranging

the terms

/ ¢T77T+/77%|V¢T|2:*/gﬂ%iﬁT*?/77T1//TV77T'V1/JT~

RN RN RN RN

The second term is standard: since |Vnp| < ﬁ nr, we have for ¢ small enough,

1 1 1 1
‘Z/WleTVnT'VwT‘ < Z/U%|V¢T|2+4/ IVnr 27 < 1/77%|va|2+1/?¢%77%'

RN RN RN RN RN

We then use the specific properties of g to reformulate the first term as

/gnTwT => / (ntr — Yn)

nENB

where the ~v,’s are arbitrary constants (since g has vanishing average on the B(z,)’s). By Poincaré-

Wirtinger’s inequality on the B(x,)’s, we thus have

’/g(y)(ﬁ%ﬂ/T*%) gc( / gz)%( / |V(U%¢T)|2)%

B(zn) B(zn) B(zn)

and we expand the second factor as, using again that |Vnr| < ﬁnT,

2
C
/ IV (n2abr)? < © / nr|Vor? + 03| Vnr*v7 < ( sup 77%) / e Ve + g 07

B(zy,

B(xy) B(xn) B(xy)

By the inequality ab < %(%ag + C?b?) for an appropriate constant C, this yields

1 1
‘ / 9(y)FYr — 1) SCBs(up)n% / 92+Z / Tn%w%+n%|VwT|2-

B(xy) B(zn) B(xr)

Altogether, these estimates combine to the a priori estimate

/ TVh+ /%mm%mwmmmzﬁg%.
Tn

neN

(A.3)

From this, it is now standard to deduce that there exists a unique random field % such that V1) is stationary

and has finite second moment

E[|VY[*]2 < CE[x.(0)]lg] &™),

and 1) solves (A.1) almost surely in the distributional sense, cf. [33].
We conclude with a quick argument in favor of the additional a priori bound

E[[V*¥|"] < E[g%).
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Our starting point is (A.2) which is satisfied almost surely on RY and implies that V2yr € L (RY).

loc
Again, it is enough to prove an a priori estimate on V2¢r and pass to the limit T * +o0. Up to proceeding

at the level of approximations on balls Br, we may assume that all the quantities involved below are finite.
We then test (A.2) with —n2Avyr. Treating the massive term %n%@[}TAwT as above, and using (A.3), this
yields

C
[ eun? < [ @lalisur + Slolieer X s i

RN RN neN 2\Tn

which, using [~ 77]9]|A0T| < 5 [gn 15(9% + (A¢)?) and absorbing the second term in the left-hand side,
implies

20
/n%(AwT)2 < /n%92+7llgl\ioc(w> > sup i
RN RN neN B(zn)

It remains to reformulate the left-hand side to recognize the Hessian. After two integrations by parts, we
have

/ np(Aypr)? = / | V2r|* + 2 Z / nrdinrdbrdibr — 2 ZnTainTai¢TAwTa

which we rewrite, using that |Vnr| < ﬁWT for ¢ small enough, as

c c
[l <0+ D) [+ 4 [ v

RN RN RN

for some C depending only on N and c¢. We have thus proved

C C
/W%\V%TP <1+ f) / nrg” + THQH%DO(RN) > sup 7.
RN RN neN Zien

Taking the expectation and letting T' * 400 yields the claim (A.5).
A.2. Qualitative homogenization of the dielectrics

Once g and 1 are defined as above, the proof of the qualitative homogenization of the dielectrics follows
the proof of Section 2, replacing periodicity by stationarity — the adaptation is standard and left to the
reader (see e.g. [22, Chapter 7] or [33]).

In particular, (2.9) is replaced by €"€; := E[eVw;,], and the formula (2.10) for a takes the form a; :=
E[VY - Vw;].

A.8. Improved integrability in homogenization of the dielectrics

In this paragraph we extend the results of Section 3 to the random setting. Since the results are based on
large-scale regularity for random elliptic operators, we need to make some quantitative mixing assumptions
on the point process P. In particular, a hardcore Poisson point process or the random parking measure will
do, cf. [12,18].

We start with the extension of Proposition 3.1.
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Proposition A.1. For all 2 < q,q' < 0o, the sequence V° satisfies E[||V°| %%/(Q_RN)] < Cq.q'.g, uniformly

in 8. In particular, V¢? is bounded in L1(Q;RYN) along any subsequences of § almost surely.

Proof. Step 1. First, we apply the large-scale Calderén-Zygmund estimates of [1, Theorem 7.7] to (3.3).
In this random setting, the estimate involves a stationary random field 7, > 1 on R, which, in the
examples considered above, satisfies E[exp(&74(0))] < 2 for some finite constant C, cf. [18, Theorem 4] (by
stationarity, this holds for r.(0) replaced by r.(z) for all z € RY). We then obtain for all ¢ > 2, with the
short-hand notation B, s(z) := By, (z)(2)

J (A 296 -oPe) i) do < G196 = Ol + 177 - V6 + V1)
Q B, s(x)

As in the periodic setting, since ¢ is the unique H}(2)-solution to A% = Vf - 79, we have by maximal
regularity for the Laplacian

q
170 =96+ V2 uay < C(Ufllera@ + DI llsaca) + I8llcro)

and we have to control ||7°|| ra()- As opposed to the periodic setting, this is a random quantity. We proceed
in two steps. First, taking the derivative of (A.1) and using deterministic Calderén-Zygmund estimates for
the Laplacian, we have for all R > 1

][|V21/1|qq' < C’q7q/(( ][ |v2¢2)qq//2+][|g|qq'>
Br Bagr Br

so that by taking the limit R  +o0o we obtain by stationarity of these random fields and the ergodic
theorem

E(V2p17] < Coq (BIVZ2#072 + E[g17)).

Using (A.5) and Hélder’s inequality in probability, this turns into E[|V2y[1] < €, +E[|g|97]. Combined
with (A.4) and Poincaré’s inequality in form of [|V)| e (py < C(||V2w||qu/(BQ) + HV¢||L2(B)), and using
the ergodic theorem as above, this yields

E(IV|*'[] < Corllgllitmn) (A.6)

that is, the desired control E[||T6||Lq(g | < Cuy Hg||‘£qo; ®~)- As in the periodic setting, we also have
aq
/ ( ][ xa|Vol? dz) “dx < / ][ xo|Vo|?dzdr < C / xa|Vo|ldx = /|V¢|q dz,
Q B, s(z) RN B, 5(x) RN Q
where we used [18, (140)] in form of [p~ fz  ~ [pw. Hence, we have proved that

E[(/( f XQ|V@5|2 dz)g dx)q} <Cyq.9 (A7)

Q B*,é(ﬁ)
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for some finite constant C, o+ depending on ¢,q" and on || f||c1.eq), [|9llcr.e), and ||g||L=. As opposed to
the periodic setting, we have to reformulate this estimate in order to remove the stochastic dependence of
the local averages upon the random field r,. The rest of this step is dedicated to the proof of

’

E[(/( ][ XQ|V905|2 dz)g dw)q] < Cqq'.0.9- (A.8)

Q Bs(x)

As customary in the field, this can be done at the price of some (arbitrarily small) loss of stochastic
integrability (the dependence of the constants in (A.7) and (A.8) with respect to ¢ and ¢’ are different). Since
we are not interested in the precise stochastic integrability in this contribution, we display an elementary
(and suboptimal) proof of this improvement of (A.7). The argument relies on the estimate

/( ][ xal V' dz) " do < C(%—kl)/r*(%)mq 2 ][ Yol V' dz) " e (A.9)

Q  Bs(x) Q B, s(x)

in favor of which we presently argue (note that the averages on the left-hand side are made on balls of fixed
radius §). Following [18], we replace the integral of local averages by a sum on a partition. In particular,
by [18, (139)], there exists a partition of R into a family of cubes Q := {Q}g such that supg e <
Cinfgry, diam (Q) ~ infg 7, and for all functions h > 0 and exponents v > 1 we have fRN (fB*(w) h)”* ~
>0 \Q|(fQ h)Y. Denote by Qs(€2) the smallest subset of Q which contains $Q in the sense that Q C
Ugeg,(@)@- For convenience, we call Q;(x) the cube of radius ¢ centered at x € RY. Then we have by the
discrete 1 — £7 estimate

/( ][ hXQ)PdeSC 3 /( ][ hXQ)de

Q  Bs(a) Qe (WsQ  Qs(a)
gl
<3¢ Z diam(Q)(W_l)N/(][hXQ) dz.
QEQs(Q) 5Q 50

We now distinguish two cases: If supgc o, () diam (Q) < sdiam (€2), then [18, (146)] combined with the
property supg 7.« < Cinfq r, yields

/( ][ h)m)”dx < C/r*(%)(W—l)N( ][ h(z)xa(2) dZ)de)
Q  Bs(z) Q B.s(x)

whereas if supg g, (o) diam (Q) > +diam (), then

§infor,
/( ][ hxgyd:p < o2 Q‘;_'” /r* £y (G-DN ][ h(2)xa(z) dz)'ydm.
Q

Q Bg(w)

Applied to h = |[V¢°[? and v = £ this proves (A.9). We conclude by deriving (A.8) from (A.9). To
that end, we control the infimum of r, on %Q by its average, use several times Holder’s inequality in
probaubility7 the moment bound E[exp(%r*)] < 2, and the triangle inequality in probability in the form
E[( Jo, [R)7]7 < Jo, E[|h|2]7. This yields
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1
ol

]EKQ/( ][ XQ|V<,05|2)%dx>q/}q
<CEKH&][T*(?))QQ/}QE[(!T*(%)"*”( f xalveR) a) ]

B, s(x)
/ 99" 527
scq}q,/E[r*(@Nq (H)( ][ Xl Ve |2 dz) ] dz
Q B, s5(x)

1

ch’q//E{T*@)ZNq/(q2)}$E[( ][ Yol |2 dz)2qq’}4_q'd:C
“ B, s(x)

’ 1

< Cq,qggIE[/ ( ][ xa|Ve°|? dz)2qq dm} o

QB ()

Combined with (A.7), this entails (A.8), which enables us to control V¢° on scales larger than §. In a second
step, we will derive an estimate for small scales, that is for scales smaller than 4.

Step 2. Take a point € Q and consider the cube Qas5(x) of side-length 26 centered at xz. We blow up
equation (2.4) so as to obtain an equation on (2(0).
To that effect, we set ®°(2) := +¢%(2 + 6z), which satisfies

divz(s(g 4+ 2)V. 80 — f(x 4 02)7° (@ + 62)) = —67% (x + 02)-V f(x + 62) in (Q — {})/6 N Q2(0). (A.10)

The only difference with the periodic setting is that 7 is now random. By elliptic regularity for the Laplacian
in (A.1), we have

IV¢llore ey < C(IVYlm s + lgllcoe e )-

Using this bound, the same argument as in the periodic setting allows to conclude that

1
o v = o(( f Ve W dy)” +C + IV6lm (ageron + lgllcon sy ), (A11)
§/d\T

QﬁB(s((E)

where C’ is a constant that only depends on || f||c1.a(q) and [|¢]|c1.a(q).

Step 3. We combine the estimates obtained in the first two steps as in the periodic setting. This yields

’

S{([ o) <l f rrwet )’ )

/

q
+E[( [ 199150070 * Mol macoron) |
Q

’

which, by (A.8), stationarity of V¢ and g and by (A.6), entails E [( I |V<p5\q)q ] < Cyy, as claimed. O
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A.J. Enhancement of the dielectric coefficient

The successful strategy we used in the periodic setting to prove the enhancement of the dielectric coeffi-
cient in the dilute case can be implemented in the random setting considered here, using the same ¢ as in
the periodic setting around the spherical inclusions. The proof raises additional technicalities, which can all
be dealt with as we did above for the other results. The analysis is again inspired by recent results on the
Clausius-Mossotti formula. As opposed to the periodic setting, there are many ways to thin a random point
process and reach the dilute regime. As in the periodic setting, one may use geometric dilation and consider
Py = £P, but one may also attach a Bernoulli variable to each point and discard it if the variable is 0 — this
leads to thinning by random deletion. For general thinning, we refer to the recent work [13] on the Einstein
formula. In the case of geometric dilation, [34] provides tools which extend the results we used above in the
periodic setting (this is however more involved since massive regularization is needed and this generates an
additional error term that can be controlled using results of [17]). Likewise, for random deletion, one can
combine tools introduced in [11] with [17].
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