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soigneusement choisies en fonction du champ électrique homogénéisé, de même 
qu’un renforcement élastostrictif, que nous explicitons dans le régime dilué.
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1. Introduction

Ever since the discovery of the piezoelectric behavior of several types of minerals — including quartz, 
tourmaline, and Rochelle salt — by Pierre and Jacques Curie in the 1880s [8,9], deformable dielectrics have 
been an object of uninterrupted interest in fields ranging from materials science to mathematics. This has 
been reinforced since the turn of the millennium when soft organic dielectrics were “re-discovered” as a class 
of materials with high technological potential.

In contrast to the odd coupling between mechanical and electric field, a characteristic of the hard 
deformable dielectrics investigated by the Curie brothers, soft organic dielectrics typically exhibit even 
electromechanical coupling. From a mathematical point of view, this means that the governing equations 
involved exhibit nonlinearity, even in the simplest asymptotic setting of small deformations. Furthermore, 
space charges varying at the length scale of the microstructure may assert their presence, as is the case, for 
example, in porous polymer electrets [4,20] and polymer nano-particulate composites [21,32]. This translates 
into equations that contain a rapidly oscillating source term and leads to anomalous behaviors [15,26].

Our goal in this study is to investigate the homogenization of elasto-dielectrics with even electrome-
chanical coupling that contain space charges that vary at the length scale of their microstructure; a formal 
analysis of that problem was presented in [23]. In addition to ignoring dissipative effects, we restrict atten-
tion to materials with periodic (or with adequate random) microstructure, quasi-static electromechanical 
loading conditions, and further focus on the asymptotic setting of small deformations and moderate electric 
fields. The derivation of the relevant local governing equations goes as follows.

Consider an elastic dielectric that occupies a bounded domain Ω ⊂ RN with boundary ∂Ω in its unde-
formed, stress-free, and polarization-free ground state. Material points are identified by their initial position 
vector x in Ω relative to some fixed point. Upon application of mechanical loads and electric fields, the 
position vector x of a material point moves to a new position v(x) = x + u(x), where u denotes the dis-
placement field. The associated deformation gradient is denoted by F (x) = I + ∇u(x). In the absence of 
magnetic fields, free currents, and body forces, and with no time dependence (see, e.g., [10]), Maxwell’s and 
the momentum balance equations require that

⎧⎨
⎩

divD = Q, curl E = 0, x ∈ RN

div S = 0, SF T = FST , x ∈ Ω,

where D(x), E(x), S(x) stand for the Lagrangian electric displacement field, the Lagrangian electric field, 
and the “total” first Piola-Kirchhoff stress tensor, while Q(x) stands for the density (per unit undeformed 
volume) of space charges. Further,

D(x) = −∂W

∂E
(x, F (x), E(x)) and S(x) = ∂W

∂F
(x, F (x), E(x)),

where the “total” free energy W (x, F, E) is an objective function of the deformation gradient tensor F and 
an even and objective function of the electric field E, namely, W (x, F, E) = W (x, QF, E) = W (x, F, −E) for 
all Q ∈ SO(N) and arbitrary F and E. The objectivity of W implies that the balance of angular momentum 
SF T = FST is automatically satisfied. Faraday’s law curl E = 0 can also be satisfied automatically by the 
introduction of an electric potential ϕ(x) such that E(x) = −∇ϕ(x). Thus, only Gauss’s law div D = Q

and the balance of linear momentum div S = 0 remain.
Now, setting H := F − I, a Taylor expansion of W about the ground state F = I, E = 0 yields

W (x, F, E) = −1
E · ε(x)E + 1

H · L(x)H + H · (M(x)(E ⊗ E)) − E ⊗ E · (T (x)(E ⊗ E)) + . . . ,
2 2
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Fig. 1. (a) The elastic dielectric composite. (b) The unit cell with the space-charge density.

where ε(x) := −∂2W (x, I, 0)/∂E2 is the permittivity tensor, L(x) := ∂2W (x, I, 0)/∂F 2 is the elasticity ten-
sor, M(x) := 1/2∂3W (x, I, 0)/∂F∂E2 is the electrostriction tensor, and T (x) := −1/24 ∂4W (x, I, 0)/∂E4

is the permittivity tensor of second order. It follows that the constitutive relations that describe the elec-
tromechanical response of the elastic dielectric specialize to

D(x) = ε(x)E(x) + H(x) · M(x)E(x) + T (x)(E(x) ⊗ E(x) ⊗ E(x)) + . . .

S(x) = L(x)H(x) + M(x)(E(x) ⊗ E(x)) + . . .

Taking the magnitude of the deformation measure H to be of order ζ, with 0 < ζ << 1, it follows in turn 
that the electric field E must be of order ζ1/2 if the elastic dielectric is to display electromechanical coupling 
around its ground state. To leading order, we then get

D(x) = ε(x)E(x) and S(x) = L(x)H(x) + M(x)(E(x) ⊗ E(x)).

This is the so-called scaling of small deformations and moderate electric fields; within this scaling, by the 
same token, the space charge density Q must be of order ζ1/2.

Note that objectivity also implies that L(x) and M(x) are truly symmetric mappings from MN
sym into 

itself. In particular this will imply that, for any H, L(x)H = L(x)(H+HT

2 ) (see for example (4.1)). Through-
out, we chose to di-symmetrize the symmetrized gradients for notational convenience.

We now detail the governing equations for the problem under investigation in this work. Assuming 
periodicity of the microstructure, the permittivity, elasticity, and electrostriction tensors (ε(y), L(y), M(y), 
respectively) that characterize the local elastic dielectric response of the material are defined on a unit cell 
(or, more precisely, on a unit torus T ) and they are periodically rescaled by a small parameter δ to reflect 
the size of the microstructure. The resulting tensors are respectively denoted by εδ(x), Lδ(x), M δ(x).

Moreover, the material is assumed to contain a distribution of periodically distributed space charges with 
density g(y) such that

ˆ

T

g(y) dy = 0 (1.1)

so as to preserve local charge neutrality, rescaled in a manner similar to that of the microstructure and 
modulated by a slowly varying macroscopic charge f(x). These space charges can be passive or active. In 
the case of passive charges, the slowly varying macroscopic charge f(x) is fixed from the outset. Physically, 
this corresponds to materials wherein space charges are “glued” to material points and remain so regardless 
of the applied mechanical loads and electric fields. This is the case, for instance, of porous polymer electrets 
for which the space charges are fixed at the walls of the pores. In the case of active charges, the slowly 
varying macroscopic charge f(x) is identified as the resulting macroscopic field for the electric potential and 
hence depends on the applied electric field. Physically, this corresponds to materials wherein space charge 
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are locally mobile. This is the case, for instance, of polymer nano-particulate composites for which the 
space charges are locally mobile around the interfaces between the polymer and the nano-particles. Fig. 1
illustrates a schematic of the material and of its periodic microstructure and space charge content.

The relevant governing equations are

{
div εδ∇ϕδ = 1

δ gδf

div
[
Lδ∇uδ + M δ(∇ϕδ ⊗ ∇ϕδ)

]
= 0

(1.2)

for the electric potential ϕδ and the displacement field uδ. For simplicity, the boundary conditions are taken 
to be of Dirichlet type, that is,

ϕδ = Φ, uδ = 0 on ∂Ω.

Note that imposing Dirichlet boundary conditions on the electric potential amounts to considering Gauss’ 
law inside the domain Ω, and not in RN , a situation which corresponds to electrodes being placed along 
the entire boundary of Ω.

Remark 1.1. The heuristic justification of the presence of the term 1/δ in front of the space charges gδf

is as follows. Because of charge neutrality (see (1.1)), multiplication of the source term by δq with q > −1
would result in a homogenized dielectric equation without any source term, that is an equation of the form

div εh∇ϕ = 0 in Ω,

where εh is the homogenized permittivity tensor defined later in (2.9). Thus, the lowest δ-order at which 
microscopically distributed charges will impact the homogenized dielectric equation is δ−1. Of course, one 
can always add lower order source terms as emphasized in Remark 3.4 below, but, their impact will disappear 
in the effective behavior unless charge neutrality is forsaken for those terms. ¶

The first objective of this work is to determine the purely dielectric macroscopic behavior of the material 
for an arbitrary but fixed (i.e., passive) distribution of space charges in the limit when the period δ of the 
microstructure goes to 0. This will be achieved in Section 2.

The second objective is to demonstrate that dielectric enhancement can always be achieved for the purely 
dielectric macroscopic behavior when adequate active space charges are introduced. To do that we need to 
identify f(x) with the resulting macroscopic field for the electric potential. We demonstrate that for a two-
phase inclusion type microstructure, it is always possible to produce enhancement. Further, in the case of 
dilute inclusions, we propose an argument inspired by the Clausius-Mossotti formula that yields an explicit 
value for that enhancement and for “manufacturable” charges. This is the object of Section 5 which we have 
placed at the end of this paper.

Finally, we determine the homogenized equations for the coupled elastic-dielectric behavior of the ma-
terial. This is the object of Section 4. Doing so necessitates better convergence properties on the dielectric 
micro-macro analysis than those provided by Section 2. To do so we combine large-scale regularity due 
to homogenization with local regularity properties that hold for two-phase microstructures with smooth 
inclusions. The technical details are the object of Section 3. In the last part of Section 5, we also investigate 
the elastic enhancement for the dilute case already alluded to above.

Although the results and their proofs are written in the case of periodic media, they can all be extended 
to random media (with suitable mixing conditions), as we quickly argue in the appendix.

Notationwise, we denote by MN the space of N × N -matrices, by MN
sym the subspace of symmetric 

N × N -matrices, by Id the N × N identity matrix, and by · the Euclidean inner product between vectors in 
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RN or the Fröbenius inner product between elements of MN
sym, that is e · e′ = tr ee′ with e, e′ ∈ MN

sym. We 
will denote by Br(x) the open ball of center x and radius r.

We will sometimes identify the torus and its subsets with the unit cube Y = Πi=1,...,N [0, 1) ⊂ RN

and the corresponding subsets (denoted with the corresponding roman character) through the canonical 
identification i between T and {z + Y : z ∈ ZN } = RN . Also we will adopt the following convention for 
a function ζ defined on T . We will say that ζ ∈ H1(T ) if, and only z = ζ ◦ i is such that z ∈ H1

loc(RN ); 
note that z is Y -periodic. Further, if ε ∈ L∞(T ; MN

sym), we will write div ε∇ζ for div {(ε ◦ i)∇z} and 
denote by ζδ the periodic H1

loc-function z(x/δ) which we will also write as ζ(x/δ). Similarly, we will denote 
by 

´
T (∇)ζ(y) dy the integral 

´
Y

(∇)z(y) dy. Also, for any set S, we will denote by χS the characteristic 
function of that set.

The rest of the notation is standard.

2. Classical homogenization of the dielectrics

In this section, we consider the dielectric part of our problem and propose to pass to the limit as the 
period goes to 0. As already noted, structural assumptions such as periodicity (a random distribution with 
good enough mixing properties would do as well), while essential in the next section, are not necessary 
assumptions when handling the scalar dielectric equation; see Remark 2.3 below.

So, on Ω, a bounded Lipschitz domain of RN , we consider the equation

{
div εδ∇ϕδ = 1

δ g(x
δ )f(x)

ϕδ = φ on ∂Ω
(2.1)

with f ∈ W 1,∞(Ω), g ∈ L2(T ) and 
´

T g(y) dy = 0, φ ∈ H
1
2 (∂Ω) and εδ(x) := ε(x

δ ) where ε(y) ∈
L∞(T ; MN

sym) with γ|ξ|2 ≤ ε(y)ξ · ξ ≤ β|ξ|2 for some 0 < γ < β < ∞.
We define ψ to be the unique solution in H1(T ) of

{
	ψ(y) = g(y)´

T ψ(y) dy = 0
(2.2)

and note that, by elliptic regularity, ψ ∈ H2(T ). We set

τ(y) := ∇ψ(y), τ δ(x) := ∇ψ(x

δ
), (2.3)

so that (2.1) reads as

{
div(εδ∇ϕδ − fτ δ) = −τ δ · ∇f

ϕδ = φ on ∂Ω.
(2.4)

From (2.4) and Poincaré’s inequality, we immediately obtain that

ϕδ is bounded in H1(Ω) independently of δ

and, upon setting

qδ := εδ∇ϕδ − fτ δ,

that
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qδ is bounded in L2(Ω;RN ) independently of δ.

Thus, up to a subsequence (not relabeled), we conclude that

{
ϕδ ⇀ ϕ weakly in H1(Ω)

qδ ⇀ q weakly in L2(Ω;RN ).
(2.5)

Of course,

div q = 0 (2.6)

since τ δ L2(Ω;Rn)
⇀

ffl
T ∇ψ(y) dy = 0. It remains to identify q.

To that effect, consider the periodic corrector wj defined as follows. Set ωj to be the unique solution in 
H1(T ) to

{
div ε∇(ωj + yj) = 0´

T ωj dy = 0.
(2.7)

Then

wj := ωj + yj .

Set

wδ
j (x) := δωj(x

δ
) + xj (2.8)

and note that ∇wδ
j (x) = (∇w)(x

δ ). Then, on the one hand, the div-curl Lemma [30] (or integration by parts) 
implies that, for any ζ ∈ C∞

c (Ω),
ˆ

Ω

ζqδ · ∇wδ
j dx −→

ˆ

Ω

ζq · �ej dx =
ˆ

T

ζqj dy.

On the other hand define, according to classical elliptic homogenization [5, Chapter 1], the symmetric 
constant matrix εh as

εh�ej :=
 

T

ε(y)∇wj dy. (2.9)

Since ε is symmetric, another application of the div-curl Lemma yields
ˆ

Ω

ζqδ · ∇wδ
j dx =

ˆ

Ω

ζ∇ϕδ · εδ∇wδ
j dx −

ˆ

Ω

ζfτ δ · ∇wδ
j dx −→

ˆ

Ω

ζ∇ϕ · εh�ej dx −
ˆ

Ω

ζfaj dx,

with

aj :=
 

T

τ(y) · ∇wj(y) dy =
 

T

∇ψ(y) · (�ej + ∇ωj(y)) dy = −
 

T

g(y)ωj(y) dy. (2.10)

Hence,
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q = εh∇ϕ − af (2.11)

with a ∈ RN given through (2.10).
A classical result of H-convergence is that

γ|ξ|2 ≤ εhξ · ξ ≤ β|ξ|2.

Thus, in view of (2.6), we conclude that ϕ is the unique H1(Ω)-solution of

{
div εh∇ϕ = a · ∇f

ϕ = φ on ∂Ω,
(2.12)

so that the entire sequence (ϕδ, qδ) converges to (ϕ, q) weakly in H1(Ω) × L2(Ω; RN ).
We now strive to improve the weak convergence results with the help of correctors. To that effect we 

introduce θ ∈ H1(T ) to be the unique solution to

⎧⎨
⎩

div(ε∇θ − τ) = 0 (or still div ε∇θ = g)
´

T θ(y) dy = 0.
(2.13)

We set

σ := ε∇θ − τ,

and

θδ(x) := δθ(x

δ
) σδ(x) := σ(x

δ
), (2.14)

so that σδ = εδ∇θδ − τ δ and note that, by symmetry of ε and (2.7), since τ has zero average over T and 
in view of (2.10),

σδ
j ⇀ bj :=

 

T

ε(y)∇θ(y) · ∇yj dy = −
 

T

∇θ(y) · ε(y)∇ωj(y) dy

= −
 

T

(ε(y)∇θ(y) − τ(y)) · ∇ωj(y) dy −
 

T

τ(y) · ∇ωj(y) dy

= −
 

T

τ(y) · ∇ωj(y) dy = −
 

T

τ(y) · ∇wj(y) dy = −aj , weakly in L2(Ω;RN ). (2.15)

We now follow a classical computation; see e.g. [6, section 4]. Take Φ in C∞
c (Ω; RN ), ζ, η in C∞

c (Ω) and 
compute

ˆ

Ω

η2εδ

⎛
⎝∇ϕδ −

∑
j=1,..,N

∇wδ
j Φj − ∇θδ ζ

⎞
⎠ ·

⎛
⎝∇ϕδ −

∑
j=1,..,N

∇wδ
j Φj − ∇θδ ζ

⎞
⎠ dx =

ˆ
η2

⎧⎨
⎩(εδ∇ϕδ − τ δf

)
−
∑

j=1,..,N

εδ∇wδ
j Φj − ζ

(
εδ∇θδ −τ δ

)⎫⎬⎭·

⎛
⎝∇ϕδ −

∑
j=1,..,N

∇wδ
j Φj − ∇θδ ζ

⎞
⎠ dx
Ω
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+
ˆ

Ω

η2(f − ζ)τ δ ·

⎛
⎝∇ϕδ −

∑
j=1,..,N

∇wδ
j Φj − ∇θδ ζ

⎞
⎠ dx

=
ˆ

Ω

η2

⎧⎨
⎩
⎛
⎝qδ −

∑
j=1,..,N

εδ∇wδ
j Φj − ζσδ

⎞
⎠+ (f − ζ)τ δ

⎫⎬
⎭ ·

⎛
⎝∇ϕδ −

∑
j=1,..,N

∇wδ
j Φj − ∇θδ ζ

⎞
⎠ dx.

Multiple applications of the div-curl Lemma, together with (2.11), (2.15), imply that

ˆ

Ω

η2

⎛
⎝qδ −

∑
j=1,..,N

εδ∇wδ
j Φj − ζσδ

⎞
⎠ ·

⎛
⎝∇ϕδ −

∑
j=1,..,N

∇wδ
j Φj − ∇θδ ζ

⎞
⎠ dx

δ−→

ˆ

Ω

η2(q − εhΦ + ζa) · (∇ϕ − Φ) dx =
ˆ

Ω

η2(εh(∇ϕ − Φ) + a(ζ − f)) · (∇ϕ − Φ) dx. (2.16)

Further,

τ δ · ∇ϕδ = (τ δ − εδ∇θδ) · ∇ϕδ + (εδ∇ϕδ − fτ δ) · ∇θδ + fτ δ · ∇θδ = −σδ · ∇ϕδ + qδ · ∇θδ + fτ δ · ∇θδ,

so that, setting

κ :=
 

T

τ(y) · ∇θ(y) dy, (2.17)

the div-curl Lemma implies, in view of (2.15), that

τ δ · ∇ϕδ ⇀ (a · ∇ϕ + κf), weakly* in Mb(Ω). (2.18)

Remark 2.1. Note for later use that, upon multiplication of the first equation in (2.13) by θ and integration 
over T , we get κ =

ffl
T ε(y)∇θ(y) · ∇θ(y) dy > 0. ¶

Hence, since f is in particular continuous,

ˆ

Ω

η2(f − ζ)τ δ ·

⎛
⎝∇ϕδ −

∑
j=1,..,N

∇wδ
j Φj − ∇θδ ζ

⎞
⎠ dx

δ−→

ˆ

Ω

η2(f − ζ)(a · ∇ϕ + κf − a · Φ − κζ) dx =
ˆ

Ω

η2(f − ζ)(a · (∇ϕ − Φ) + κ(f − ζ)) dx. (2.19)

Summing the contributions (2.16) and (2.19), we finally obtain

lim
δ

ˆ

Ω

η2εδ

⎛
⎝∇ϕδ −

∑
j=1,..,N

∇wδ
j Φj − ∇θδ ζ

⎞
⎠ ·

⎛
⎝∇ϕδ −

∑
j=1,..,N

∇wδ
j Φj − ∇θδ ζ

⎞
⎠ dx

=
ˆ

Ω

η2 {(εh(∇ϕ − Φ) + a(ζ − f)) · (∇ϕ − Φ) + (f − ζ)(a · (∇ϕ − Φ) + κ(f − ζ))
}

dx

=
ˆ

Ω

η2(εh(∇ϕ − Φ) · (∇ϕ − Φ) + κ(f − ζ)(f − ζ)) dx.
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From this and the coercivity of ε(y) we conclude that, for some C > 0,

γ lim sup
δ

ˆ

Ω

η2

⎛
⎝∇ϕδ −

∑
j=1,..,N

∇wδ
j Φj − ∇θδ ζ

⎞
⎠ ·

⎛
⎝∇ϕδ −

∑
j=1,..,N

∇wδ
j Φj − ∇θδ ζ

⎞
⎠ dx

≤ C{‖∇ϕ − Φ‖2
L2(Ω;RN ) + ‖f − ζ‖2

L2(Ω)}. (2.20)

Now, assuming that
⎧⎪⎨
⎪⎩

∂Ω ∈ C2,α, 0 < α < 1
φ ∈ C2,α(∂Ω)(or, specifically, φ is the restriction to ∂Ω of φ ∈ C2,α(Ω))
f ∈ C1,α(Ω)

(2.21)

Schauder elliptic regularity applied to (2.12) yields that ϕ ∈ C2,α(Ω). Then, for any λ > 0 we can find Φ, ζ
such that

‖∇ϕ − Φ‖C0(Ω) + ‖f − ζ‖C0(Ω) ≤ λ

so that, because ∇wδ
j , ∇θδ are bounded in L2(Ω) independently of δ, (2.20) together with the arbitrariness 

of η implies that

∇ϕδ −
∑

j=1,..,N

∇wδ
j

∂ϕ

∂xj
− ∇θδf −→ 0, strongly in L2

loc(Ω;RN ).

We have proved the following

Theorem 2.2. Under assumptions (2.21), ϕδ, unique H1(Ω)-solution to (2.1) is such that

∇ϕδ −
∑

j=1,..,N

∇wδ
j

∂ϕ

∂xj
− ∇θδf −→ 0, strongly in L2

loc(Ω;RN )

with wδ
j defined in (2.8) and θδ defined in (2.14).

Remark 2.3. Provided that we view the dielectric problem as in (2.4) – that is without reference to charges 
gδ, but with an oscillating field τ δ – the obtained results do not rest on periodicity and could be adapted 
to a general homogenization framework like that of H-convergence [31]. ¶

Remark 2.4. If we also assume that

g ∈ C0,α(T ) (2.22)

for some 0 < α < 1, then elliptic regularity applied to (2.2) implies that τ ∈ C1,α(T ; RN ), and thus that, 
in particular, the convergence in (2.18) takes place weakly in L2(Ω). Because of that, we do not need the 
compactly supported smooth test η in all prior computations and the result of Theorem 2.2 becomes

∇ϕδ −
∑

j=1,..,N

∇wδ
j

∂ϕ

∂xj
− ∇θδf −→ 0, strongly in L2(Ω;RN ).

Note that the fact that ϕδ satisfies Dirichlet boundary conditions is essential in evaluating the limit of the 
term 

´
εδ∇ϕδ · ∇ϕδ dx in all previous computations. ¶
Ω
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Remark 2.5. In the case of a two-phase particulate microstructure, that is whenever

ε(y) := χM εM + (1 − χM )εI , with I := T \ M

where M is a measurable subset of T , we can modify the definition of εδ so that no inclusion intersects 
∂Ω. We define

Ωδ :=
⋃

z∈ZN s.t. δ(z+2Y )⊂Ω

δ(z + 2Y ),

note that |Ω \ Ωδ| ≤ Cδ and set

εδ(x) := ε(x

δ
)χΩδ

+ εM χΩ\Ωδ
.

With this definition of εδ, the results of Section 2 still hold true with trivial modifications of the proofs. ¶

Unfortunately, as described in the introduction, this result is not sufficient, when plugged into the equa-
tions of elasticity, to ensure that ∇ϕδ can be replaced by 

∑
j=1,..,N ∇wδ

j
∂ϕ
∂xj

+∇θδf in those, or that one can 
perform any kind of homogenization process on the resulting system. This is why the next Section is devoted 
to an improvement of Theorem 2.2. The framework required for the successful completion of such a task 
will be much more constrained than that in the current Section. In particular, periodicity, which was merely 
convenient so far, will become essential. Equally essential will be the assumption that the microstructure is 
particulate.

3. Improved estimates and correctors result for the dielectrics

This section is devoted to the proof of Theorem 3.2 below which is an improvement on Theorem 2.2, the 
corrector result for the dielectrics. The strong convergence in L2

loc(Ω; RN ) is upgraded there to a convergence 
in Lp(Ω; RN ) for all finite p > 1 in the spirit of seminal results of Avellaneda and Lin [2,3] for smooth periodic 
coefficients, later extended to piecewise smooth coefficients in [24]. In our proof, we carefully distinguish 
between large-scale regularity due to homogenization, for which we refer to [1], and local regularity, for 
which we refer to [25].

Throughout this Section, we assume that ∂Ω ∈ C2,α for some 0 < α < 1. The unit torus T is of the form

⎧⎪⎪⎨
⎪⎪⎩

T = M ∪ I , M closed such that ∂M is C1,β , 0 < β < 1

I = T \ M

i(M ) is a connected subset of RN (a matrix phase).

(3.1)

Further,

ε(y) := χM εM + (1 − χM )εI , with γ|ξ|2 ≤ εM ,I ξ · ξ ≤ γ′|ξ|2. (3.2)

We define εδ as in Remark 2.5.
We also assume that (2.21), (2.22) hold true and also that 0 < α < β

(β+1)N , so as to appeal to [25].
In a first step, we prove δ-independent Lq-estimates on ∇ϕδ for any 1 ≤ q < ∞. This is the object of the 

following

Proposition 3.1. For all 1 ≤ q < ∞, the sequence ∇ϕδ is bounded in Lq(Ω; RN ), uniformly in δ.
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Proof. Step 1. First, we apply the large-scale Calderón-Zygmund estimates of [1, Theorem 7.7] to (2.4)
rewritten as

{
div εδ∇(ϕδ − φ) = div(fτ δ − εδ∇φ + ∇ζδ)

ϕδ − φ = 0 on ∂Ω,
(3.3)

where ζδ is the unique H1
0 (Ω)-solution to

−	ζδ = ∇f · τ δ.

We get that, for all δ > 0 and q ≥ 2, there exists a constant Cq depending on q such that

ˆ

Ω

(  

Bδ(x)

χΩ(z)|∇(ϕδ − φ)|2(z) dz
) q

2
dx ≤ Cq

(
‖∇(ϕδ − φ)‖q

L2(Ω) + ‖fτ δ − εδ∇φ + ∇ζδ‖q
Lq(Ω)

)
.

Note that, since the coefficients are periodic, the random variable involved in [1, Theorem 7.7] is simply 
a constant (and in fact δ) in the present setting.

Now, since ψ is in C1,α(T ; RN ), τ δ given by (2.3) is bounded in Lq(Ω; RN ) uniformly in δ and maximal 
Lq-regularity for the Laplacian implies that ∇ζδ is bounded in W 1,q(Ω; RN ) uniformly in δ.

Since, by Jensen’s inequality,
ˆ

Ω

(  

Bδ(x)

χΩ|∇φ|2 dz
) q

2
dx ≤

ˆ

RN

 

Bδ(x)

χΩ|∇φ|q dzdx =
ˆ

RN

χΩ|∇φ|qdx =
ˆ

Ω

|∇φ|q dx,

the first convergence in (2.5) and the assumed regularity of the functions f and ψ finally yield

ˆ

Ω

⎛
⎜⎝  

Bδ(x)

χΩ(z)|∇ϕδ|2 dz

⎞
⎟⎠

q
2

dx ≤ Cq (3.4)

for some other constant Cq depending on q and on ‖f‖C1,α(Ω), ‖ψ‖C1,α(T ), ‖φ‖C1,α(Ω). Estimate (3.4) enables 
us to control ∇ϕδ on scales larger than δ. In a second step, we will derive an estimate for small scales, that 
is for scales smaller than δ.

Step 2. In this step, we crucially use the two-phase character of the microstructure, as well as the C1,β-
regularity of the boundary of each of those phases. Take a point x ∈ Ω and consider a cube Q4δ(x) of 
sidelength 4δ centered at x. We blow up equation (2.4) so as to obtain an equation on Q4(0) ∩ Ωx,δ where 
Ωx,δ := (Ω − {x})/δ. To that effect, we set

Φδ(z) := 1
δ

(
ϕδ(x + δz) − φ̄x,δ

)
,

where φ̄x,δ is a constant that we will fix later. Then Φδ satisfies

{
divz

(
ε( x

δ + z)∇zΦδ −f(x + δz)τ δ(x + δz)
)

= −δτ δ(x + δz)·∇f(x + δz) in Q4(0) ∩ Ωx,δ,

Φδ(z) = 1
δ

(
φ(x + δz) − φ̄x,δ

)
on ∂(Q4(0) ∩ Ωx,δ) ∩ ∂Ωx,δ := Γx,δ.

(3.5)

Note that, if the set Γx,δ is empty, x is an interior point of Ω. In the opposite case, we can assume, upon 
changing Q4(0) to Qt(0) for t large enough that the N −1-dimensional Hausdorff measure of that boundary 
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Γx,δ is at least 1. Since ∂Ω is C2,α, ∂M is C1,β , and by Remark 2.5, there exists Ω′
x,δ ⊂ Ωx,δ with the 

following properties: ∂Ω′
x,δ is C1,β (uniformly in x and δ), if an inclusion intersects Ω′

x,δ then it is contained 
in Ω′

x,δ, and Q(0) ∩ Ωx,δ ⊂ Ω′
x,δ ⊂ Q3(0) ∩ Ωx,δ. Now, the set Ω′

x,δ contains a number of inclusions bounded 
uniformly wrt δ: if there are p inclusions in T , that is if I has p connected components, then this set 
contains at most 3N p inclusions. Since by assumption the boundary of those inclusions is also C1,β, then, in 
the terminology of [25], the C1,β modulus K of Ω′

x,δ does not depend on δ, x and [25, Theorem 1.2] applies. 
It yields in particular,

‖∇zΦδ‖L∞(Q1/2(0)∩Ωx,δ) ≤ CK

(
‖Φδ − 1

δ
φ̄x,δ‖L∞(Ω′

x,δ) + ‖1
δ

(
φ(x + δ·) − φ̄x,δ

)
‖C1,α(Γx,δ) + C ′

)
, (3.6)

where CK is a constant that only depends on K, α, β, γ, γ′ while C ′ is a constant that only depends on 
‖f‖C1,α(Ω) and ‖ψ‖C1,α(T ). Choosing φ̄x,δ :=

ffl
Γx,δ

φ(x + δ·), we obtain

‖1
δ

(
φ(x + δ·) − φ̄x,δ

)
‖C1,α(Γx,δ) � ‖φ‖C1,α(Ω),

which we then absorb in the constant C ′.
We now apply De Giorgi-Nash-Moser’s theorem [16, Theorems 8.24, 8.27] to (3.5). This yields in turn 

the following estimate:

‖Φδ − 1
δ

φ̄x,δ‖L∞(Ω′
x,δ) ≤ C(‖Φδ − 1

δ
φ̄x,δ‖L2(Q4(0)∩Ωx,δ) + C ′′), (3.7)

where C depends only on γ, γ′ and C ′′ depends only on ‖f‖C1,α(Ω), ‖ψ‖C1,α(T ), ‖φ‖C1,α(Ω). Inserting (3.7)
into (3.6) yields

‖∇zΦδ‖L∞(Q1/2(0)∩Ωx,δ) ≤ C ′
K

(
‖Φδ − 1

δ
φ̄x,δ‖L2(Q4(0)∩Ωx,δ) + C ′′′

)
,

where C ′
K is a constant that only depends on K, α, β, γ, γ′, while C ′′′ is a constant that only depends on 

‖f‖C1,α(Ω), ‖ψ‖C1,α(T ), ‖φ‖C1,α(Ω).
Since φ̄x,δ :=

ffl
Γx,δ

φ(x + δ·), Φδ(z) = 1
δ

(
φ(x + δz) − φ̄x,δ

)
on Γx,δ, and |Γx,δ| ≥ 1, a variant of Poincaré-

Wirtinger’s inequality allows to upgrade the previous estimate to

‖∇zΦδ‖L∞(Q1/2(0)∩Ωx,δ) ≤ C ′
K

(
‖∇Φδ‖L2(Q4(0)∩Ωx,δ) + C ′′′) . (3.8)

Blowing (3.8) down, we conclude in particular that, for a d > 0 large enough, we have, for all δ > 0,

sup
Bδ/d(x)∩Ω

|∇ϕδ| ≤ CN C ′
K

⎛
⎜⎜⎝
⎛
⎜⎝  

Ω∩Bδ(x)

|∇ϕδ(y)|2 dy

⎞
⎟⎠

1
2

+ C ′′′

⎞
⎟⎟⎠ (3.9)

for a dimensional constant CN .

Step 3. We combine the estimates obtained in the first two steps as follows.
Remark that, for all x ∈ Ω and all small enough δ’s, the assumed regularity of ∂Ω implies the existence 

of d > 0 such that |Bδ(x) ∩ Ω| ≥ d|Bδ(x)|. From (3.4) we then get

ˆ ⎛
⎜⎝  

|∇ϕδ(y)|2 dy

⎞
⎟⎠

q
2

dx ≤ d− q
2

ˆ ⎛
⎜⎝  

χΩ(y)|∇ϕδ(y)|2 dy

⎞
⎟⎠

q
2

dx ≤ d− q
2 Cq.
Ω Ω∩Bδ(x) Ω Bδ(x)
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In turn, from (3.9), we obtain

ˆ

Ω

|∇ϕδ|q dx ≤
ˆ

Ω

(
sup

Bδ/d(x)∩Ω
|∇ϕδ|q

)
dx ≤ 2q(C ′

K,η)q

⎛
⎜⎜⎝
ˆ

Ω

⎛
⎜⎝  

Ω∩Bδ(x)

|∇ϕδ(y)|2 dy

⎞
⎟⎠

q
2

dx + |Ω|(C ′′′)q

⎞
⎟⎟⎠ .

Combining the inequalities above, we finally conclude that
ˆ

Ω

|∇ϕδ|q dx ≤ 2q(C ′
K,η)q

(
d− q

2 Cq + |Ω|(C ′′′)q
)

.

This completes the proof of the proposition. �
We are now in a position to improve on the convergence result of Theorem 2.2. We obtain the following.

Theorem 3.2. Under assumptions (2.21), (2.22), (3.1), (3.2), ϕδ, unique H1(Ω)-solution to (2.1) is such 
that, for any 1 ≤ q < ∞,

∇ϕδ −
∑

j=1,..,N

∇wδ
j

∂ϕ

∂xj
− ∇θδf −→ 0, strongly in Lq(Ω,RN )

with wδ
j defined in (2.8) and θδ defined in (2.14).

Proof. First note that the regularity assumptions on the domain, f and φ and classical Schauder regularity 
imply that ϕ, the solution to (2.12), is in C2,α(Ω). Further, the regularity assumption on g and classical 
Schauder regularity imply that τ ∈ C1,α(T ). Then another application of [25, Theorem 1.1], this time on 
T which has no boundary, implies in particular that

∇θ, ∇ωj ∈ L∞(T ), (3.10)

hence ∇wj as well. We can thus assume that, for any r ≥ 1, the term

∑
j=1,..,N

∇wδ
j

∂ϕ

∂xj
+ ∇θδf is bounded in Lr(Ω) independently of δ.

Set θ = 1/(q − 1). In view of Remark 2.4 and Proposition 3.1, the uniform bound derived above yields 
that, for some constant C depending on q and all the data,

‖(∇ϕδ −
∑

j=1,..,N

∇wδ
j

∂ϕ

∂xj
− ∇θδf)‖Lq(Ω) ≤ ‖(∇ϕδ −

∑
j=1,..,N

∇wδ
j

∂ϕ

∂xj
− ∇θδf)‖θ

L2(Ω)×

‖(∇ϕδ −
∑

j=1,..,N

∇wδ
j

∂ϕ

∂xj
− ∇θδf)‖1−θ

L2q(Ω) ≤ C‖(∇ϕδ −
∑

j=1,..,N

∇wδ
j

∂ϕ

∂xj
− ∇θδf)‖θ

L2(Ω)
δ−→ 0.

Hence the result. �
Remark 3.3. We have assumed throughout this Section that the composite is made of two phases. Nothing 
would change if we considered n phases instead of 2, provided that we keep the same regularity assumptions. 
Theorem 3.2 would still hold true, and Theorem 4.1 below as well. ¶
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Remark 3.4. All results of Sections 2, 3 remain valid if a source term of the form hδv is added to the right 
hand-side of (1.2) with h ∈ L∞(T ) and v ∈ L∞(Ω). Then, one has to add the term 

(´
T h(y) dy

)
v to the 

right hand-side of the homogenized equation (2.12). All other results remain unchanged. ¶

4. Homogenization of the elasto-dielectrics

We now address the elasticity part of the problem. Recall that Lδ(x) := L( x
δ ) where L(y) is a measurable, 

symmetric linear mapping from MN
sym into itself with the properties that for all e ∈ MN

sym, γ|e|2 ≤ L(y)e ·e ≤
γ′|e|2 for a.e. y ∈ T and some 0 < γ < γ′ < ∞. Also M δ(x) := M(x

δ ) with M(y) a bounded, measurable, 
linear mapping from MN

sym into itself.
The equations are

{
div(Lδ∇uδ + M δ(∇ϕδ ⊗ ∇ϕδ)) = 0

uδ = 0 on ∂Ω.
(4.1)

We assume that assumptions (2.21), (2.22), (3.1), (3.2) hold true throughout this Section.
In particular, we can apply Proposition 3.1 and we conclude, with the help of Korn’s and Poincaré’s 

inequalities, that

uδ exists and is bounded in H1
0 (Ω;RN ) independently of δ.

We can also apply Theorem 3.2 and we immediately obtain that, for any 0 < r < ∞,

M δ(∇ϕδ ⊗ ∇ϕδ) − M δ

⎡
⎣
⎛
⎝ ∑

j=1,..,N

∇wδ
j

∂ϕ

∂xj
+ ∇θδf

⎞
⎠⊗

⎛
⎝ ∑

j=1,..,N

∇wδ
j

∂ϕ

∂xj
+ ∇θδf

⎞
⎠
⎤
⎦

δ−→ 0, strongly in Lr(Ω). (4.2)

We will only use the value r = 2 hereafter. Set

Zδ(x) := M δ

⎡
⎣
⎛
⎝ ∑

j=1,..,N

∇wδ
j

∂ϕ

∂xj
+ ∇θδf

⎞
⎠⊗

⎛
⎝ ∑

j=1,..,N

∇wδ
j

∂ϕ

∂xj
+ ∇θδf

⎞
⎠
⎤
⎦ . (4.3)

Because of convergence (4.2), if ũδ is the unique H1
0 -solution to

{
div(Lδ∇ũδ + Zδ) = 0

uδ = 0 on ∂Ω,
(4.4)

then

uδ − ũδ δ−→ 0, strongly in H1
0 (Ω;RN ). (4.5)

We undertake a homogenization process for the system (4.4). To that effect, we introduce the periodic 
corrector Wij defined as follows. Set Xij to be the unique solution in H1(T ; RN ) to

{
div L∇(Xij + xi�ej) = 0´

X dy = 0.
T ij
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Then set

Wij(y) := Xij + yi�ej ,

and

W δ
j (x) := δXij(x

δ
) + xi�ej

and note that ∇W δ
j (x) = (∇W )(x

δ ).
Then an argument near identical to that which led to (2.12) would yield that

ũδ ⇀ u in H1
0 (Ω;RN ), (4.6)

with u, unique H1
0 (Ω; RN )-solution to

{
div(Lh∇u + Z) = 0

u = 0 on ∂Ω,
(4.7)

with Lh defined as

Lh
ijkh :=

 

T

L(y)∇Wij · ∇Wkh dy (4.8)

while Z is defined through

Z := Mh(∇ϕ ⊗ ∇ϕ) + 2fNh∇ϕ + P hf2 (4.9)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mh
ijkh :=

 

T

M(y)(∇wk(y) ⊗ ∇wh(y)) · ∇Wij(y) dy

Nh
ijk :=

 

T

M(y)(∇wk(y) ⊗ ∇θ(y)) · ∇Wij(y) dy

P h
ij :=

 

T

M(y)(∇θ(y) ⊗ ∇θ(y)) · ∇Wij(y) dy.

(4.10)

Convergences (4.5) and (4.6) imply the following homogenization result.

Theorem 4.1. Under assumptions (2.21), (2.22), (3.1), (3.2), uδ, unique H1
0 (Ω; RN )-solution to (4.1), con-

verges weakly in H1(Ω; RN ) to the unique H1
0 (Ω; RN )-solution u to (4.7) with Lh defined in (4.8) and Z

defined through (4.9), (4.10).

Remark 4.2. Note that, since Xij = Xji, Mh enjoys the same symmetry properties as M(y), that is Mh
ijkh =

Mh
jikh = Mh

ijhk while Nh
ijk = Nh

jik and P h
ij = P h

ji. Of course Lh has the usual symmetries of elasticity, that 
is Lh

ijkh = Lh
jikh = Lh

khij . ¶

Remark 4.3. We could, in the spirit of the previous Sections, provide a corrector result for uδ but will refrain 
from doing so because of the notational complexity. ¶
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Remark 4.4. Our result should be compared to that in [35], which investigates the case g = 0. In such a case 
Nh = P h = 0 and the corrector results of the previous sections are markedly simpler. Also note that the 
results in [35] are derived under the a priori assumption that ∇ϕδ is bounded in L4(Ω; RN ) independently 
of δ; no justification for such an estimate is offered in that work. ¶

5. The case for active charges

5.1. Setting of the problem

The homogenized dielectric equation obtained in (2.12) can be equivalently rewritten as

div(εh∇ϕ − af) = 0.

Since a is a vector of size N , one can act on N different directions. This is why, in practice, there should 
be several collections of charges, that is that, in lieu of a charge of the form gδf , one should envision a 
charge of the form 

∑
p=1,...,N gδ

pfp where each pair (gp, fp) is endowed with the same properties, namely ´
T gp(y) dy = 0, and the necessary regularities of gp and f that were introduced in the previous Subsections.

Provided that those are met, the homogenization results remain unchanged by linearity. In particular the 
homogenized dielectric equation becomes

{
div(εh∇ϕ −

∑
p=1,...,N apfp) = 0

ϕ = φ on ∂Ω,
(5.1)

with ap ∈ RN defined as (see (2.10))

(ap)j := ajp :=
 

T

τp(y) · ∇wj(y) dy =
 

T

∇ψp(y) · (�ej + ∇ωj(y)) dy = −
 

T

gp(y)ωj(y) dy. (5.2)

In (5.2), τp = ∇ψp with ψp defined as ψ was in (2.2) upon replacing g by gp.
We can thus view a as a N × N -matrix with j, p coefficient ajp. Note that that matrix is not necessarily 

symmetric.

Active charges, if they exist, consist in an appropriate choice of fp so that the homogenized dielectric 
displays an enhancement (or degradation) of its permittivity. In other words, one would like to choose 
fp = ∂ϕ/∂xp so that ϕ is the solution to (5.1). Then (5.1) reads as

⎧⎪⎪⎨
⎪⎪⎩

div ε̃h∇ϕ = 0

ϕ = φ on ∂Ω

ε̃h := εh − a.

(5.3)

Furthermore, if desiring electric enhancement, and not electric degradation, one should ensure that ε̃h admits 
at least one positive eigenvalue with a value greater than those of εh.

In this two-step process, one should first ensure existence of active charges, that is existence of a field ϕ
that satisfies (5.3). This amounts to choosing g so that ε̃h is strongly elliptic. To this aim, take

gp ≡ ωp

and note that, provided that (2.21), (3.1), (3.2) hold true, we are indeed in the setting of Section 3 thanks 
to (3.10). Then from (5.2)
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ajp = apj = −
 

T

ωj(y)ωp(y) dy,

so that, for any ξ ∈ RN �= 0, − 
∑

j,p=1,...,N ajpξjξp =
 

T

(
∑

k=1,...,N

ωk(y)ξk)2 dy > 0 unless ω(y) ⊥ ξ, a.e. on 

T , where ω(y) is the vector with components ωk(y), k = 1, ..., N . In that case, taking ξ/|ξ| as first unit 
vector we find that ω1(y) ≡ 0 on T and thus, recalling (2.7) and the canonical identification between T
and the Y -periodic paving of RN , that,

(εM − εI)ν1(y) = 0 on ∂M ∩ ∂I

where ν is the exterior normal to ∂M . So M is a cylinder with axis parallel to ξ. But, in such a case, M
will not satisfy the last assumption in (3.1). Consequently it will always be so that

a is symmetric negative definite. (5.4)

Upon multiplication of gp = ωp by a large enough factor λ independent of p we conclude to the existence of 
large enough charges such that ε̃h is a symmetric positive definite matrix whose eigenvalues can be arbitrarily 
large upon choosing λ large enough. Thus, we can always solve (5.3) and obtain a large enhancement.

We have proved the following

Proposition 5.1. Under assumptions (2.21), (3.1), (3.2), (5.4) always holds true if choosing gp to be λωp for 
p = 1, ..., N and λ > 0. Then, ε̃h can have arbitrarily large positive eigenvalues with an appropriate choice 
of λ.

Of course, Proposition 5.1 provides no answer to the more useful question of finding a manufacturable set 
of micro-charges such that enhancement can occur. Indeed, Proposition 5.1 relies on the knowledge of the 
correctors ωp. There are two possible routes if one wishes to take advantage of this observation in practice. 
On the one hand, one can resort to numerical simulations of ωp, and use the output to devise a distribution 
of charges that will enhance the permittivity. On the other hand, one can resort to asymptotic analysis for 
some specific geometries. This is what we will do in the next subsection devoted to the case of periodically 
distributed small charged inclusions.

5.2. Enhancement for dilute inclusions

The following is inspired by the Clausius-Mossotti formula for dilute spherical inclusions. In this para-
graph, C denotes a finite constant that may change from line to line but which is independent of λ and �
(see below). Let B denote the unit ball, and B1+η the ball of radius 1 + η for some fixed η > 0. We shall 
confine charges to the intermediate phase B1+η \ B (the coating). We need an additional scale � ≥ 1 to 
quantify dilution, and define ε	 to be the permittivity tensor associated with the �-periodic extension of the 
map defined on �[−1

2 , 12 )N by

ε	(y) := (1 + (ε̄ − 1)χB(y))Id,

which models a background medium of permittivity 1 perturbed by spherical inclusions of a medium of per-
mittivity ε̄ centered on the grid (�Z)d. In particular, the density of inclusions is �−d|B|. We correspondingly 
set in RN

ε∞(x) := (1 + (ε̄ − 1)χB(x))Id.
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When � is very large, Clausius and Mossotti [7,28,29] argued that at first order the spherical inclusions do 
not interact with each other. Denote by ω	p the �-periodic corrector associated with ε	 and direction �ep as 
in (2.7), and denote by ω∞p the solution of the “Maxwell” [27, Chapter IX] or “Eshelby” problem [14]

⎧⎨
⎩

div ε∞∇(ω∞p + xp) = 0

ω∞p(x) |x|→∞−→ 0.
(5.5)

Equation (5.5) can be solved explicitly, yielding, for |x| ≥ 1

ω∞p(x) =
( 1 − ε̄

ε̄ + N − 1

) xp

|x|N . (5.6)

On the other hand, as proved in [34], ω	,p is close to ω∞p on B1+η in the sense that for � ≥ 1 we have

‖∇(ω∞p − ω	p)‖L2(B1+η) ≤ C�−N . (5.7)

We then take g	p as the �-periodic extension of the map defined on �[−1
2 , 12 )N via

g	p(y) := ω∞p(y)χB1+η\B(y),

which has vanishing average in view of (5.6). Define the matrix ā by

āpj :=
ˆ

B1+η\B

ω∞p(y)ω∞j(y) dy, 1 ≤ p, j ≤ N,

so that

ā =
( 1 − ε̄

ε̄ + N − 1

)2
1/N

ˆ

B1+η\B

|x|2(1−N) dx Id

=
( 1 − ε̄

ε̄ + N − 1

)2

⎧⎪⎨
⎪⎩

η : N = 1
π log(1 + η) : N = 2

|SN−1|
N (1 − (1 + η)2−N ) : N > 2

⎫⎪⎬
⎪⎭ Id, (5.8)

where |SN−1| denotes the surface of the unit sphere in dimension N . The combination of (5.6) and (5.7)
together with the Poincaré-Wirtinger inequality allows us to conclude that a	 defined as in (5.2) is quanti-
tatively close to −�−N ā, namely,

|a	pj + �−N āpj | = �−N
∣∣∣ ˆ

B1+η\B

ω∞p(y)(ω∞j − ω	j) dy
∣∣∣+ C�−2N ≤ C�−2N ,

from which we deduce that for all � ≥ 1 large enough, a	 is diagonalizable with negative eigenvalues of order 
�−N . Upon multiplying g	p by the factor �Nλ for some λ ≥ 1, one obtains for ε̃h

	 defined as in (5.3) (and εh
	

defined as in (2.9))

∣∣ε̃h
	 − (εh

	 + λā)
∣∣ ≤ C�−N λ,

with ā defined in (5.8). Note that here εh
	 is the homogenized permittivity associated with a spherical 

inclusion of radius 1 in a cell of side-length �, or, equivalently, a spherical inclusion of radius 1/� in the unit 
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cell Y . Since εh
	 is of order 1 (uniformly in �), for � large enough (in function of C), all the eigenvalues of ε̃h

	

are larger than 1
C λ, which yields the claimed enhancement.

Let us give the leading order part of f in the regime λ, �N ≥ 1. Since ā is a multiple of the identity, the 
equation for ϕ takes the form

{
div(Id + κλ	)∇ϕ = 0

ϕ = φ on ∂Ω
(5.9)

with ‖κλ	‖∞ ≤ C(�−N + λ−1) so that ‖fp − ∂ϕ̃/∂xp‖L2(Ω) ≤ C(�−N + λ−1) with ϕ̃ solving

{
−	ϕ̃ = 0

ϕ̃ = φ on ∂Ω.
(5.10)

We conclude this subsection with an investigation of the impact of the dielectric enhancement on the 
elastic response of dilute inclusions.

In the statement of Theorem 4.1, which yields the homogenized equation for the displacement field, the 
only contribution of the active charges 

∑N
p=1 λ�N g	p are the terms 

∑N
p=1(2fpNph

λ	 ∇ϕ + P ph
λ	 f2

p ) involving 

the tensors Nph
λ	 and P ph

λ	 in the forcing Z; cf. (4.9) and (4.10) (the sum over p follows by linearity). In the 
setting of the example of dilute inclusions, these tensors take the form⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
(Nhp

λ	 )ijk := λ�N

 

	T

M	(y)(∇w	k(y) ⊗ ∇θ	p(y)) · ∇W	ij(y) dy

(P hp
λ	 )ij := (λ�N )2

 

	T

M	(y)(∇θp
	 (y) ⊗ ∇θ	p(y)) · ∇W	ij(y) dy,

(5.11)

where θ	p solves (see (2.13))
⎧⎨
⎩

div(ε	∇θ	p) = g	p

´
	T θ	p(y) dy = 0.

(5.12)

Let us determine the scalings of these contributions. We claim that Nhp
λ	 is at most of order λ whereas P hp

λ	

is at most of order λ2�N .
We start with Nhp

λ	 and recall the following properties on w	 and W	

∇w	k(y) = ek + ∇ω	k,

ˆ

	T

|∇ω	k|2 ≤ C, ∇W	ij(y) = ei ⊗ ej + ∇X	ij ,

ˆ

	T

|∇X	ij |2 ≤ C,

which follow from energy estimates (note that the bound is uniform with respect to �). Likewise, we have ´
	T |∇θ	p|2 ≤ C. This allows us to split the contribution in (Nhp

λ	 )ijk into four parts:

(Nhp
λ	 )ijk = λ�N

 

	T

M	(y)(ek ⊗ ∇θ	p(y)) · ei ⊗ ej dy

+λ�N

 

	T

M	(y)(∇ω	k(y) ⊗ ∇θ	p(y)) · ei ⊗ ej dy

+λ�N

 
M	(y)(ek ⊗ ∇θ	p(y)) · ∇X	ij(y) dy
	T
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+λ�N

 

	T

M	(y)(∇ω	k(y) ⊗ ∇θ	p(y)) · ∇X	ij(y) dy.

We treat the second and third terms alike using Cauchy-Schwarz’ inequality to the effect that

∣∣∣ ˆ
	T

M	(y)
(

(∇ω	k(y) ⊗ ∇θ	p(y)) · ei ⊗ ej + (ek ⊗ ∇θ	p(y)) · ∇X	ij(y)
)

dy
∣∣∣

≤ C
( ˆ

	T

|∇θ	p|2)
) 1

2
( ˆ

	T

|∇X	ij |2 + |∇ω	k|2
) 1

2 ≤ C.

For the first term we use that ∇θ	p integrate to zero on �T by periodicity and the specific form M	 =
M1 + (M2 − M1)χB , followed by Cauchy-Schwarz’ inequality, so that

∣∣∣ ˆ
	T

M	(y)(ek ⊗ ∇θ	p(y)) · ei ⊗ ej dy
∣∣∣ =

∣∣∣ ˆ
B

M2(ek ⊗ ∇θ	p(y)) · ei ⊗ ej dy
∣∣∣

≤ C
(ˆ

B

|∇θ	p|2
)

≤ C.

For the fourth term we need to use more information on ∇θ	p. By (3.10) and the analogue of (3.6), (3.9), 
we have for all y ∈ �T

|∇θ	p(y)| ≤ C(1 +
ˆ

	T

|∇θ	p|2
) 1

2 ≤ C.

Hence, using |ab| ≤ 1
2 (a2 + b2),

∣∣∣ ˆ
	T

M	(y)(∇ω	k(y) ⊗ ∇θ	p(y)) · ∇X	ij(y) dy
∣∣∣ ≤ C

ˆ

	T

|∇ω	k|2 + |∇X	ij |2 ≤ C.

We have thus proved that |Nhp
λ	 | ≤ Cλ. The argument to control P hp

λ	 is similar and we obtain |P hp
λ	 | ≤ Cλ2�N .

It remains to check that P hp
λ	 is indeed of order λ2�N . To this aim, it is enough to replace correctors 

by their explicit approximation using the single-inclusion problem on the whole space which we denote by 
X∞ij and θ∞p. We then define

P hp
∞ij :=

ˆ

RN

M∞(y)(∇θ∞p(y) ⊗ ∇θ∞p(y)) · ∇W∞ij(y) dy

On the one hand, a direct calculation using explicit formulas (see [36, Section 17.2.1]) shows that P hp
∞ is of 

order 1 and that |(∇θ∞p(y) ⊗ ∇θ∞p(y)) · ∇W∞ij(y)| ≤ C(1 + |y|)−2N . On the other hand, by [34], one has

‖∇(X	ij − X∞ij)‖L2(	Y ) + ‖∇(θ	p − θ∞p)‖L2(	Y ) ≤ C�− N
2

so that |P hp
λ	 − λ2�N P hp

∞ | ≤ Cλ2�
N
2 , and therefore 1

C λ2�N ≤ ‖P hp
λ	 ‖ ≤ Cλ2�N .

As we did above for ϕ when λ, �N ≥ 1, one can identify the leading order contribution ũ to the solution 
u of (4.7) in the sense that ‖u − λ2�N ũ‖H1(Ω) ≤ C(λ2 + λ�N ), where ũ solves
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{
div(Lh

	 ∇ũ) = − div P̄ p
	 f2

p

ũ = 0 on ∂Ω,
(5.13)

where (P̄ p
	 )ij =: (λ2�N )−1(P hp

λ	 )ij is of order 1, as well as ‖fp‖L2(Ω). In particular, ‖ũ‖H1(Ω) is of order 1, 
and the above yields enhancement of elastostriction by a factor λ2�N within an error of order λ2 + λ�N

(which is relatively small with respect to λ2�N by a factor �−N + λ−1).
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Appendix A. Extension to the random setting

For simplicity, we only consider the dielectric problem (the coupling to elasticity is straightforward once 
the needed regularity results are proved) and we place ourselves in a setting similar to the example of 
Section 5 with spherical inclusions. Let P = {xn, n ∈ N} be a stationary ergodic point process on RN such 
that for all n �= m, |xn − xm| ≥ 2 + δ for some deterministic δ > 0 almost surely (we denote by E[·] the 
associated expectation), and I = ∪x∈PB(x) denote the (random) set of inclusions in RN . We then define

ε : x �→ Id + (ε̄ − 1)IdχI .

In this appendix, C denotes a constant that may change from line to line, depends on N , Ω, ε̄, controlled 
norms of φ and f , and the law of P, but which is independent of g and ψ (see below), unless otherwise 
explicitly stated (using subscripts).

A.1. Definition of g and ψ

We start with the definition of g and ψ, cf. (2.2) in the periodic setting. For conciseness, for all x ∈ RN

we denote by B(x) the ball B1+δ/2(x). In particular, by definition, the balls {B(x)}x∈P are at distance 
at least δ/2 from one another. We assume that g : RN → RN is a stationary random field supported on 
∪x∈PB(x) and satisfying 

´
B(x) g = 0 for all x ∈ P and ‖g‖L∞(RN ) < ∞. Under this specific assumption, 

there exists a stationary field ∇ψ ∈ L2
loc(RN ) with vanishing expectation E[∇ψ] = 0 and finite second 

moment E[|∇ψ|2] < ∞ satisfying almost surely

	ψ(y) = g(y). (A.1)

Let us give the short argument in favor of the well-posedness of (A.1) for completeness. As customary in 
the field, we first add a massive regularization of order T � 1 and consider the equation on RN

1
T

ψT (y) − 	ψT (y) = −g(y), (A.2)

which is well-posed in the space H1
uloc(RN ) = {ζ ∈ H1

loc(RN ) | supx∈RN

´
B(x)(ζ

2 + |∇ζ|2) < ∞}. The 
argument is standard (see e.g. [19, Lemma 2.7]): we first solve the equation on balls BR with homogeneous 
Dirichlet boundary conditions, and pass to the limit R ↗ +∞ using a uniform a priori bound in H1

uloc(RN ). 
This bound relies on the Caccioppoli inequality, which we presently work out in our setting. We display 
the argument in the whole space, assuming that all the quantities that appear are finite. The argument is 
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the same for the approximations on the balls BR (for which all quantities are indeed finite). Let ηT : x �→
exp(−c|x|/

√
T ), and test the equation with η2

T ψT . This yields after integration by parts and rearranging 
the terms

ˆ

RN

1
T

ψ2
T η2

T +
ˆ

RN

η2
T |∇ψT |2 = −

ˆ

RN

gη2
T ψT − 2

ˆ

RN

ηT ψT ∇ηT · ∇ψT .

The second term is standard: since |∇ηT | ≤ c√
T

ηT , we have for c small enough,

∣∣∣2 ˆ

RN

ηT ψT ∇ηT · ∇ψT

∣∣∣ ≤ 1
4

ˆ

RN

η2
T |∇ψT |2 + 4

ˆ

RN

|∇ηT |2ψ2
T ≤ 1

4

ˆ

RN

η2
T |∇ψT |2 + 1

4

ˆ

RN

1
T

ψ2
T η2

T .

We then use the specific properties of g to reformulate the first term as
ˆ

RN

gη2
T ψT =

∑
n∈N

ˆ

B(xn)

g(η2
T ψT − γn)

where the γn’s are arbitrary constants (since g has vanishing average on the B(xn)’s). By Poincaré-
Wirtinger’s inequality on the B(xn)’s, we thus have

∣∣∣ ˆ

B(xn)

g(y)(η2
T ψT − γn)

∣∣∣ ≤ C
( ˆ

B(xn)

g2
) 1

2
( ˆ

B(xn)

|∇(η2
T ψT )|2

) 1
2

and we expand the second factor as, using again that |∇ηT | ≤ c√
T

ηT ,

ˆ

B(xn)

|∇(η2
T ψT )|2 ≤ C

ˆ

B(xn)

η4
T |∇ψT |2 + η2

T |∇ηT |2ψ2
T ≤

(
sup

B(xn)
η2

T

) ˆ

B(xn)

η2
T |∇ψT |2 + η2

T

c2

T
ψ2

T .

By the inequality ab ≤ 1
2 ( 1

C2 a2 + C2b2) for an appropriate constant C, this yields

∣∣∣ ˆ

B(xn)

g(y)(η2
T ψT − γn)

∣∣∣ ≤ C sup
B(xn)

η2
T

ˆ

B(xn)

g2 + 1
4

ˆ

B(xn)

1
T

η2
T ψ2

T + η2
T |∇ψT |2.

Altogether, these estimates combine to the a priori estimate
ˆ

RN

1
T

ψ2
T η2

T +
ˆ

RN

η2
T |∇ψT |2 ≤ C‖g‖2

L∞(RN )

∑
n∈N

sup
B(xn)

η2
T . (A.3)

From this, it is now standard to deduce that there exists a unique random field ψ such that ∇ψ is stationary 
and has finite second moment

E[|∇ψ|2] 1
2 ≤ CE[χI (0)]‖g‖L∞(RN ), (A.4)

and ψ solves (A.1) almost surely in the distributional sense, cf. [33].
We conclude with a quick argument in favor of the additional a priori bound

E[|∇2ψ|2] ≤ E[g2]. (A.5)
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Our starting point is (A.2) which is satisfied almost surely on RN and implies that ∇2ψT ∈ L2
loc(RN ). 

Again, it is enough to prove an a priori estimate on ∇2ψT and pass to the limit T ↗ +∞. Up to proceeding 
at the level of approximations on balls BR, we may assume that all the quantities involved below are finite. 
We then test (A.2) with −η2

T 	ψT . Treating the massive term 1
T η2

T ψT 	ψT as above, and using (A.3), this 
yields

ˆ

RN

η2
T (	ψT )2 ≤

ˆ

RN

η2
T |g||	ψT | + C

T
‖g‖2

L∞(RN )

∑
n∈N

sup
B(xn)

η2
T ,

which, using 
´
RN η2

T |g||	ψT | ≤ 1
2
´
RN η2

T (g2 + (	ψ)2) and absorbing the second term in the left-hand side, 
implies

ˆ

RN

η2
T (	ψT )2 ≤

ˆ

RN

η2
T g2 + 2C

T
‖g‖2

L∞(RN )

∑
n∈N

sup
B(xn)

η2
T .

It remains to reformulate the left-hand side to recognize the Hessian. After two integrations by parts, we 
have

ˆ

RN

η2
T (	ψT )2 =

ˆ

RN

η2
T |∇2ψT |2 + 2

∑
ij

ˆ

RN

ηT ∂jηT ∂jψT ∂2
ijψT − 2

∑
i

ηT ∂iηT ∂iψT 	ψT ,

which we rewrite, using that |∇ηT | ≤ c√
T

ηT for c small enough, as

ˆ

RN

η2
T |∇2ψT |2 ≤ (1 + C

T
)
ˆ

RN

η2
T (	ψT )2 + C

T

ˆ

RN

η2
T |∇ψT |2

for some C depending only on N and c. We have thus proved
ˆ

RN

η2
T |∇2ψT |2 ≤ (1 + C

T
)
ˆ

RN

η2
T g2 + C

T
‖g‖2

L∞(RN )

∑
n∈N

sup
B(xn)

η2
T .

Taking the expectation and letting T ↗ +∞ yields the claim (A.5).

A.2. Qualitative homogenization of the dielectrics

Once g and ψ are defined as above, the proof of the qualitative homogenization of the dielectrics follows 
the proof of Section 2, replacing periodicity by stationarity – the adaptation is standard and left to the 
reader (see e.g. [22, Chapter 7] or [33]).

In particular, (2.9) is replaced by εh�ej := E[ε∇wj ], and the formula (2.10) for a takes the form aj :=
E[∇ψ · ∇wj ].

A.3. Improved integrability in homogenization of the dielectrics

In this paragraph we extend the results of Section 3 to the random setting. Since the results are based on 
large-scale regularity for random elliptic operators, we need to make some quantitative mixing assumptions 
on the point process P. In particular, a hardcore Poisson point process or the random parking measure will 
do, cf. [12,18].

We start with the extension of Proposition 3.1.
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Proposition A.1. For all 2 ≤ q, q′ < ∞, the sequence ∇ϕδ satisfies E[‖∇ϕδ‖qq′

Lq(Ω;RN )] ≤ Cq,q′,g, uniformly 

in δ. In particular, ∇ϕδ is bounded in Lq(Ω; RN ) along any subsequences of δ almost surely.

Proof. Step 1. First, we apply the large-scale Calderón-Zygmund estimates of [1, Theorem 7.7] to (3.3). 
In this random setting, the estimate involves a stationary random field r∗ ≥ 1 on RN , which, in the 
examples considered above, satisfies E[exp( 1

C r∗(0))] ≤ 2 for some finite constant C, cf. [18, Theorem 4] (by 
stationarity, this holds for r∗(0) replaced by r∗(x) for all x ∈ RN ). We then obtain for all q ≥ 2, with the 
short-hand notation B∗,δ(x) := Bδr∗( x

δ )(x)

ˆ

Ω

(  

B∗,δ(x)

χΩ(z)|∇(ϕδ − φ)|2(z) dz
) q

2
dx ≤ Cq

(
‖∇(ϕδ − φ)‖q

L2(Ω) + ‖fτ δ − εδ∇φ + ∇ζδ‖q
Lq(Ω)

)
.

As in the periodic setting, since ζδ is the unique H1
0 (Ω)-solution to 	ζδ = ∇f · τ δ, we have by maximal 

regularity for the Laplacian

‖fτ δ − εδ∇φ + ∇ζδ‖q
Lq(Ω) ≤ C

(
(‖f‖C1,α(Ω) + 1)‖τ δ‖Lq(Ω) + ‖φ‖C1,α(Ω)

)q

and we have to control ‖τ δ‖Lq(Ω). As opposed to the periodic setting, this is a random quantity. We proceed 
in two steps. First, taking the derivative of (A.1) and using deterministic Calderón-Zygmund estimates for 
the Laplacian, we have for all R ≥ 1

 

BR

|∇2ψ|qq′ ≤ Cq,q′

((  

B2R

|∇2ψ|2
)qq′/2

+
 

BR

|g|qq′
)

so that by taking the limit R ↗ +∞ we obtain by stationarity of these random fields and the ergodic 
theorem

E[|∇2ψ|qq′
] ≤ Cq,q′

(
E[|∇2ψ|2]qq′/2 + E[|g|qq′

]
)

.

Using (A.5) and Hölder’s inequality in probability, this turns into E[|∇2ψ|qq′ ] ≤ Cq,q′E[|g|qq′ ]. Combined 

with (A.4) and Poincaré’s inequality in form of ‖∇ψ‖Lqq′ (B) ≤ C
(

‖∇2ψ‖Lqq′ (B2) + ‖∇ψ‖L2(B)

)
, and using 

the ergodic theorem as above, this yields

E[|∇ψ|qq′ |] ≤ Cq,q′‖g‖qq′

L∞(RN ), (A.6)

that is, the desired control E[‖τ δ‖qq′

Lq(Ω)] ≤ Cq,q′‖g‖qq′

L∞(RN ). As in the periodic setting, we also have

ˆ

Ω

(  

B∗,δ(x)

χΩ|∇φ|2 dz
) q

2
dx ≤

ˆ

RN

 

B∗,δ(x)

χΩ|∇φ|q dzdx ≤ C

ˆ

RN

χΩ|∇φ|qdx =
ˆ

Ω

|∇φ|q dx,

where we used [18, (140)] in form of 
´
RN

ffl
B∗,δ

∼
´
RN . Hence, we have proved that

E
[( ˆ (  

χΩ|∇ϕδ|2 dz
) q

2
dx
)q′]

≤ Cq,q′,g (A.7)

Ω B∗,δ(x)
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for some finite constant Cq,q′ depending on q, q′ and on ‖f‖C1,α(Ω), ‖φ‖C1,α(Ω), and ‖g‖L∞ . As opposed to 
the periodic setting, we have to reformulate this estimate in order to remove the stochastic dependence of 
the local averages upon the random field r∗. The rest of this step is dedicated to the proof of

E
[(ˆ

Ω

(  

Bδ(x)

χΩ|∇ϕδ|2 dz
) q

2
dx
)q′]

≤ Cq,q′,Ω,g. (A.8)

As customary in the field, this can be done at the price of some (arbitrarily small) loss of stochastic 
integrability (the dependence of the constants in (A.7) and (A.8) with respect to q and q′ are different). Since 
we are not interested in the precise stochastic integrability in this contribution, we display an elementary 
(and suboptimal) proof of this improvement of (A.7). The argument relies on the estimate

ˆ

Ω

(  

Bδ(x)

χΩ|∇ϕδ|2 dz
) q

2
dx ≤ C

(δ infΩ r∗( ·
δ )N

|Ω| + 1
) ˆ

Ω

r∗(x
δ )N(q−2)

(  

B∗,δ(x)

χΩ|∇ϕδ|2 dz
) q

2
dx (A.9)

in favor of which we presently argue (note that the averages on the left-hand side are made on balls of fixed 
radius δ). Following [18], we replace the integral of local averages by a sum on a partition. In particular, 
by [18, (139)], there exists a partition of RN into a family of cubes Q := {Q}Q such that supQ r∗ ≤
C infQ r∗, diam (Q) ∼ infQ r∗ and for all functions h ≥ 0 and exponents γ ≥ 1 we have 

´
RN

( ffl
B∗(x) h

)γ ∼∑
Q |Q|(

ffl
Q

h)γ . Denote by Qδ(Ω) the smallest subset of Q which contains 1
δ Ω in the sense that 1

δ Ω ⊂
∪Q∈Qδ(Ω)Q. For convenience, we call Qδ(x) the cube of radius δ centered at x ∈ RN . Then we have by the 
discrete �1 − �γ estimate

ˆ

Ω

(  

Bδ(x)

hχΩ

)γ

dx ≤ C
∑

Q∈Qδ(Ω)

ˆ

δQ

(  

Qδ(x)

hχΩ

)γ

dx

≤ 3N C
∑

Q∈Qδ(Ω)

diam (Q)(γ−1)N

ˆ

δQ

(  
δQ

hχΩ

)γ

dx.

We now distinguish two cases: If supQ⊂Qδ(Ω) diam (Q) ≤ 1
δ diam (Ω), then [18, (146)] combined with the 

property supQ r∗ ≤ C infQ r∗ yields

ˆ

Ω

(  

Bδ(x)

hχΩ

)γ

dx ≤ C

ˆ

Ω

r∗(x
δ )(γ−1)N

(  

B∗,δ(x)

h(z)χΩ(z) dz
)γ

dx,

whereas if supQ⊂Qδ(Ω) diam (Q) > 1
δ diam (Ω), then

ˆ

Ω

(  

Bδ(x)

hχΩ

)γ

dx ≤ C
(δ infΩ r∗( ·

δ

)N

|Ω| + 1)
ˆ

Ω

r∗(x
δ )(γ−1)N

(  

B∗,δ(x)

h(z)χΩ(z) dz
)γ

dx.

Applied to h = |∇ϕδ|2 and γ = q
2 this proves (A.9). We conclude by deriving (A.8) from (A.9). To 

that end, we control the infimum of r∗ on 1
δ Ω by its average, use several times Hölder’s inequality in 

probability, the moment bound E[exp( 1
C r∗)] ≤ 2, and the triangle inequality in probability in the form 

E[
( ´

|h|)q′ ]
1
q′ ≤

´
E[|h|q′ ]

1
q′ . This yields
Ω Ω
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E
[(ˆ

Ω

(  

Bδ(x)

χΩ|∇ϕδ|2
) q

2
dx
)q′] 1

q′

≤ CE
[(

1 + δ

 

Ω

r∗( ·
δ )
)2q′] 1

2q′
E
[( ˆ

Ω

r∗(x
δ )

q−2
2 N

(  

B∗,δ(x)

χΩ|∇ϕδ|2
) q

2
dx
)2q′] 1

2q′

≤ Cq,q′

ˆ

Ω

E
[
r∗(x

δ )Nq′(q−2)
(  

B∗,δ(x)

χΩ|∇ϕδ|2 dz
)qq′] 1

2q′
dx

≤ Cq,q′

ˆ

Ω

E
[
r∗(x

δ )2Nq′(q−2)
] 1

4q′
E
[(  

B∗,δ(x)

χΩ|∇ϕδ|2 dz
)2qq′] 1

4q′
dx

≤ Cq,q′,ΩE
[ˆ

Ω

(  

B∗,δ(x)

χΩ|∇ϕδ|2 dz
)2qq′

dx
] 1

4q′
.

Combined with (A.7), this entails (A.8), which enables us to control ∇ϕδ on scales larger than δ. In a second 
step, we will derive an estimate for small scales, that is for scales smaller than δ.

Step 2. Take a point x ∈ Ω and consider the cube Q2δ(x) of side-length 2δ centered at x. We blow up 
equation (2.4) so as to obtain an equation on Q2(0).

To that effect, we set Φδ(z) := 1
δ ϕδ(x + δz), which satisfies

divz(ε(x

δ
+ z)∇zΦδ −f(x + δz)τ δ(x + δz))= −δτ δ(x + δz)·∇f(x + δz) in (Ω − {x})/δ ∩ Q2(0). (A.10)

The only difference with the periodic setting is that τ δ is now random. By elliptic regularity for the Laplacian 
in (A.1), we have

‖∇ψ‖C1,α(B(x)) ≤ C
(

‖∇ψ‖H1(B2(x)) + ‖g‖C0,α(B2(x))

)
.

Using this bound, the same argument as in the periodic setting allows to conclude that

sup
Bδ/d(x)∩Ω

|∇ϕδ| ≤ C
((  

Ω∩Bδ(x)

|∇ϕδ(y)|2 dy
) 1

2 + C ′ + ‖∇ψ‖H1(B2(x/δ)) + ‖g‖C0,α(B2(x/δ))

)
, (A.11)

where C ′ is a constant that only depends on ‖f‖C1,α(Ω) and ‖φ‖C1,α(Ω).

Step 3. We combine the estimates obtained in the first two steps as in the periodic setting. This yields

E
[(ˆ

Ω

|∇ϕδ|q
)q′]

≤ CE
[(ˆ

Ω

(  

Bδ(x)

χΩ|∇ϕδ|2 dz
) q

2
dx
)q′]

+ E
[( ˆ

Ω

‖∇ψ‖q
H1(B2(x/δ)) + ‖g‖q

C0,α(B2(x/δ))

)q′]
,

which, by (A.8), stationarity of ∇ψ and g and by (A.6), entails E
[( ´

|∇ϕδ|q
)q′]

≤ Cq,q′ , as claimed. �
Ω



418 G.A. Francfort et al. / J. Math. Pures Appl. 156 (2021) 392–419
A.4. Enhancement of the dielectric coefficient

The successful strategy we used in the periodic setting to prove the enhancement of the dielectric coeffi-
cient in the dilute case can be implemented in the random setting considered here, using the same g as in 
the periodic setting around the spherical inclusions. The proof raises additional technicalities, which can all 
be dealt with as we did above for the other results. The analysis is again inspired by recent results on the 
Clausius-Mossotti formula. As opposed to the periodic setting, there are many ways to thin a random point 
process and reach the dilute regime. As in the periodic setting, one may use geometric dilation and consider 
P	 = �P, but one may also attach a Bernoulli variable to each point and discard it if the variable is 0 – this 
leads to thinning by random deletion. For general thinning, we refer to the recent work [13] on the Einstein 
formula. In the case of geometric dilation, [34] provides tools which extend the results we used above in the 
periodic setting (this is however more involved since massive regularization is needed and this generates an 
additional error term that can be controlled using results of [17]). Likewise, for random deletion, one can 
combine tools introduced in [11] with [17].
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