
1.  Introduction
Soils are the largest carbon (C) pool in the terrestrial biosphere, storing about 700 Pg C in the top 0.3 m (Bat-
jes, 1996), or 2,300 Pg C in the top 3 m soil (Jobbágy & Jackson, 2000; Tifafi, Guenet et al. 2018). The amount 
of carbon below 0.3 m soil is about twice the amount, much older and stable than the carbon in the top 
0.3 m soil (Fontaine et al., 2007). A recent soil warming study by Qin et al. (2019) found that the response 
of soil carbon to warming was dominated by soil microbial activities in the surface soil layer (0–0.3 m), but 
was codominated by low microbial abundance and strong aggregate protection in the deep (>0.3 m) soil 
layer. Therefore, deep soil carbon was less sensitive to warming and may function as a carbon sink despite 
global warming. This is also supported by the analysis of Baldesdent et al. (2018) who found that the soil at 
the depths between 0.3 and 1 m accounted for about 19% of the total soil carbon accumulated over the last 
five decades.

There has been renewed interest within the global modeling community in representing the vertical vari-
ation of soil carbon for several reasons: (1) it enables direct comparisons of the simulations with observa-
tions of both soil carbon and carbon isotopes (13C and 14C) (see Elliott et al., 1996); (2) soil carbon in deeper 
layers is usually older and more stable than the soil carbon in surface layers (Fontaine et al., 2007; Rossel 
et al., 2019), and the sensitivity to warming is different between stable soil carbon and active soil carbon 
(Hicks Pries et al., 2017; Qin et al., 2019); and (3) most Earth system models (ESMs) significantly underesti-
mated soil carbon age by a factor of more than 6, and overestimated the soil carbon sequestration potential 
by a factor of 2 (He et al., 2016; Shi et al., 2020).
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Models resolving differences in soil organic carbon (SOC) concentrations along soil depth profiles were 
developed more than four decades ago (e.g., O'Brien & Stout, 1978). More recently, several depth-ex-
plicit soil carbon modules have been developed for global land models or ESMs (e.g., Braakhekke 
et al., 2013). Their model is based on linear kinetics of soil carbon decomposition, and vertical mix-
ing by diffusion, advection, and bioturbation. Guenet et al. (2013), Koven et al. (2013), Guimberteau 
et al. (2018), and Nakhavali et al. (2018) implemented vertically resolved soil carbon modules for ESMs 
that also use first-order kinetics of soil carbon decomposition. Only a limited number (probably <3) of 
vertically resolved soil carbon models with nonlinear kinetics for soil carbon decomposition have been 
developed, such as the model COMISSION by Ahrens et al. (2015), which was recently improved by 
including additional processes and nutrient cycles (Yu et al., 2020). Most of these models were evaluat-
ed using the data from a limited number of sites (<15) (see Koven et al., 2013; Tifafi, Camino-Serrano 
et  al.,  2018). Given the usually poor performance of soil carbon models (Todd-Brown et  al.,  2013), 
which likely leads to diverging responses of soil carbon to future climate change predicted by ESMs 
(Wieder et al., 2013), it is necessary to calibrate these models for different ecosystem types and across a 
wide range of environmental conditions before applying them globally. However, model calibration is 
often confronted with issues with field observations, such as missing key information, variation of data 
quality and underrepresentation of some regions, and mismatches in spatial and/or temporal scales 
(Luo et al., 2012).

Multiple processes control the vertical SOC profile: for example, bioturbation that mixes SOC through soil 
animals, primarily earthworm (Paton et  al.,  1995), diffusion and advection of dissolved SOC (Elzein & 
Balesdent, 1995), and root carbon input variation with soil depth (Joslin et al., 2006), variation of microbial 
decomposition activities and soil carbon stabilization (Fontaine et al., 2007; Rumpel et al., 2002). Although 
insights into the process governing the soil depth distribution of carbon have been achieved with models 
(e.g., Huang et al., 2018), it is yet not clear to what extent results are model specific or omitted processes, for 
example, microbial processes, are of importance.

Results from previous studies on the importance of different processes for simulating the vertical SOC con-
centration profile in soils are inconclusive. In calibrating the ORCHIDEE-SOM model, Guenet et al. (2013) 
found that including vertical SOC transport was important for accurately simulating the changes in SOC 
concentrations of bare fallow sites. Using a similar version of ORCHIDEE-SOM model, Tifafi, Camino-Ser-
rano et al. (2018) found that varying the SOC diffusion coefficient with soil depth improved the simulat-
ed SOC concentration and 14C profiles. However, Huang et  al.  (2018) found that the carbon input was 
more important than vertical transport in simulating vertical SOC profiles using a different version of 
ORCHIDEE, ORCHIDEE-MICT. Another study by Koven et al. (2013) using the CLM4 model also found 
that turnover rate of SOC and root carbon input profiles were more important than SOC diffusion/advec-
tion for simulating the observed 14C profile. Those studies used soil carbon models based on linear kinetics, 
for which the simulated SOC pool size is proportional to carbon inputs and mean SOC residence time. 
Therefore, a good or an improved fit to the observations can be achieved by tuning either carbon input or 
mean residence time or both. Because of very different sensitivity of the simulated SOC to carbon input 
between linear and nonlinear models (Wang et al., 2014), the importance of difference processes on the 
simulated vertical SOC profile using nonlinear soil carbon models may be quite different from those for 
linear models.

In this study, we developed a vertically resolved soil carbon model by introducing vertical transport of 
soil carbon, vertical variations of root carbon input and soil microbial activity into the MIcrobial-MIneral 
Carbon Stabilization (MIMICS) model (Wieder et al., 2015; Zhang et al., 2020). The model was calibrated 
against the observed soil organic concentration (SOC) and 14C profiles at six forest sites and the observed 
vertical SOC profiles at 91 forest sites. The calibrated model was evaluated against the observed SOC profiles 
from another 93 forests. The objectives of this study are: (1) to describe the vertically resolved soil carbon 
dynamics based on nonlinear kinetics of soil carbon decomposition (MIMICS); (2) to calibrate and evaluate 
the model to identify key controls on the vertical variation of soil carbon; and (3) to apply the model to quan-
tify the sensitivities of the modeled soil carbon profiles to microbial activities, SOC diffusion, root carbon 
input and their variations with soil depth.
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2.  Material and Methods
2.1.  Model Description

Our aim is to develop a model for simulating the vertical SOC exchange down to any arbitrary soil depth 
for implementation within ESM's. We aim to keep a reasonable balance between the number of represented 
processes, which potentially affect SOC profiles, and the number of tuneable model parameters. As a result, 
we do not explicitly resolve the individual processes contributing to the vertical transfer of soil carbon, that 
is, bioturbation, diffusion, and advection, as well as dissolved organic carbon transfer. A model named ECO-
SYS including all those processes was developed more than a decade ago (https://ecosys.ualberta.ca/). How-
ever, those processes are rarely quantified individually in the field at ecosystem scale, therefore insufficient 
data are available for model calibration (see, e.g., Koven et al., 2013; Tifafi, Camino-Serrano et al., 2018). A 
schematic diagram of the model is shown in Figure 1.

As shown in Figure 1, we discretize the soil into a finite number of vertical layers. There are two litter car-
bon pools, two microbial biomass pools and three SOC pools in each layer. Carbon exchanges among those 
seven pools are modeled using MIMICS-DBT (see Zhang et al., 2020) with some modifications described 
below. Carbon inputs to litter carbon pools include aboveground and belowground plant litter, and output 
is CO2 released from decomposition of two litter carbon pools and the active SOC pool.

Across different vertical layers, dynamics of a given carbon pool (Ci) caused by vertical carbon transfers is 
governed by the following equation:
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Figure 1.  A schematic diagram showing the structure of the vertically resolved soil carbon model (left) and carbon 
flows as simulated in MIMICS (right). For the left panel, IA and IB represent carbon input from aboveground litter and 
belowground litter, respectively. Right-angle arrow represents CO2 efflux from carbon decomposition of a soil layer, and 
gray downarrow represents the vertical transport of soil organic carbon between two adjacent soil layers. Within each 
layer, there are two litter carbon pools (metabolic litter [m], and structural litter [s]), two microbial biomass pools (r 
and k) and three soil organic carbon pools (physically protected soil carbon [p], active soil carbon [a], and chemically 
protected soil [c]). There are two kinds of carbon flows into carbon pools or between carbon pools as represented 
by gray and black arrows in the right panel. Equations for all fluxes are presented in supporting information, and 
are represented by Fi,j, where j is donor pool and i is receiving pool. Fluxes into the two microbial pools (r and k) are 
represented by black arrows, as only a fraction of those fluxes from the donor pool enters a microbial pool, the other 
fraction is lost as CO2. Fluxes as represented by gray arrow have no CO2 loss. Imfm and Isfs are the fluxes of metabolic 
into pool p and structural litter into pool c, respectively. All carbon pools can be transported vertically. Aboveground 
litter (leaf and woody litter) enters the top-soil layer only, and the fractions of root litter into different soil layers are 
calculated using a negative exponential function. MIMICS, MIcrobial-MIneral Carbon Stabilization.

https://ecosys.ualberta.ca/


Journal of Geophysical Research: Biogeosciences

with the boundary conditions of

   


i
c A i 1/CD z I a z

z
 at the soil surface (z = 0);

 



i 0

C z
z

 at the bottom of soil layer (z = h).

where Ci is the concentration of carbon in pool i (i = m, s, r, k, a, p, c for metabolic litter, structural litter, mi-
crobial r, microbial k, active soil carbon, physically protected carbon and chemically protected soil carbon, 
respectively) in mg C/cm3, t is time in hour, Dc is the diffusion rate of carbon pool i due to bioturbation and 
diffusion (cm2/h), z is depth in cm from the soil surface where z = 0, and h is total soil depth in cm, z1 is the 
thickness of surface soil layer in cm, IA and IB are the aboveground and belowground litter carbon inputs in 
mg C cm−2 h−1, ai is fraction of the aboveground litter carbon entering carbon pool i, and bi is fractions of 
belowground litter carbon entering pool i, and    i i

i i
1, 1a b .

In MIMICS, litter carbon input is partitioned between metabolic and structural litter carbon pool, and the 
partitioning coefficient depends on the lignin:nitrogen ratio of the litter input. r(z) is the fraction of total 
belowground litter carbon input at a soil depth z, and is a function of soil depth (z) and subject to the 

constraint   0 1h r z dz . Rr and Rk are CO2 effluxes from the decomposition of carbon by microbial r or k, 
respectively in mg C cm−3 h−1. Fi,j is carbon flux from pool j to pool i in mg C cm−3 h−1. Equations for Fi,j are 
given in supporting information.

CO2 loss from soil carbon decomposition (i.e., heterotrophic soil respiration) at a given soil depth, z in mg 
C cm−3 h−1 is proportional to rate of carbon decomposition by two physiologically distinctive microbial 
communities with r- versus k-life history strategies, or microbial r and k. They are

 

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1R F� (2)

 


  k k,i k,i
i m,s,a

1R F� (3)

where Fr,i and Fk,i are carbon decomposition rates from pool i by microbial r and k in mg C cm−3 h−1, respec-
tively. A fraction, (1 − ε), of that decomposed carbon is lost as CO2, where ε is microbial (r and k) growth 
efficiency, which varies according to carbon pools (i.e., metabolic, structural litter carbon, and active SOC). 
See Table B1 of Wieder et al. (2015) for values of ε for different carbon pools.

Because we do not model dissolved organic carbon in soil, advection of SOC in soil is ignored. In the follow-
ing, we will only describe the equations in the modified MIMICS model with the parameters to be optimized 
in this study. For the sake of readability, we will drop (z) from the equations presented below.

Rate of carbon decomposition by soil microbe r (Fr,i) or microbe k (Fk,i) is modeled using Michaelis-Menten 
kinetics:



i

r,i r r,i
r,i i

CF C V
K C� (4)



i

k,i k k,i
k,i i

CF C V
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where Vr,i and Vk,i are the maximum decomposition rates for microbial r and k communities, respectively 
(mg C−1 h−1); and Kr,i and Kk,i are the Michaelis-Menten constants for microbial r and k, respectively (mg C/
cm3). Cr and Ck are the microbial r and k biomass, respectively (mg C/cm3), and Ci is the pool size of carbon 
to be decomposed by soil microbes (two litter pools and active soil carbon pool) in mg C/cm3. Both maxi-
mum decomposition rates (Vr,i or Vk,i) and Michaelis-Menten constants (Kr,i or Kk,i) may vary with soil depth. 
Fang et  al.  (2005) found that specific soil respiration rate decreased exponentially with soil depth. This 
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variation in soil respiration may result from increasing sorption and energy limitation (Ahrens et al., 2015) 
with depth or change in soil microbial community composition or activity (Fiere et al., 2003). In this study, 
we modeled the soil depth-dependencies of Vr,i and Vk,i using a negative exponential function:

    r,i v r,i v s v maxexpV x m f T z V� (6)

and

    k,i v k,i v s v maxexpV x m f T z V� (7)

where maxV  is set to a constant value of 8.0 × 10−6 mg C−1 h−1, mr,i and mk,i are modifiers to account for 
differences in the decomposability of different substrates by microbial r or k on soil carbon pool i. mr,i has 
values of 10, 2, and 10, and mk,i has values of 3, 3, and 2 for metabolic, structural litter and active soil C, 
respectively. fv(Ts) is used to describe the dependence of carbon decomposition by soil microbes on soil 
temperature (Ts in °C) (see Table B1 of Wieder et al., 2015 for further information). The term exp(−αvz) is 
added to Equations 6 and 7 to account for the dependence of soil microbial activity on soil depth, and αv is 
an empirical constant with a unit of cm−1, and is estimated using optimization. Finally, another parameter 
xv is introduced to account for any remaining variations in microbial activities with soil depth.

The parameters Kr,i and Kk,i in Equations 4 and 5 vary with soil temperature, soil clay content (see Table 
B1 of Wieder et al., 2015). The values of both Kr,i and Kk,i are scaled by a calibration parameter xk that is 
estimated by optimization.

Turnover rates of microbial r and k, Mr or Mk, are proportional to their respective biomass raised to power 
of β (Equation 16 of Zhang et al., 2020 for both microbial r and k). That is

r r rM C� (8)

and

k k kM C� (9)

Values of μr and μk used in this study are taken from Zhang et al. (2020) (their Equation 6), and parameter 
β is optimized.

Previous studies also found the diffusion coefficient of SOC may also vary with soil depth (Elzein & Bales-
dent, 1995; Tifafi, Camino-Serrano et al., 2018). Here we modeled the variation of Dc as follows:

c D 0D x D� (10)

Following Koven et al. (2009), we used a value of 1.14 × 10−4 cm2/h for D0. In some other models, a negative 
exponential function was used to represent an exponential decrease in Dc with soil depth (Koven et al., 2013; 
Tifafi, Camino-Serrano et al., 2018). However, we found that the model results were not very sensitive to 
variation of Dc with soil depth, therefore, only a constant value of Dc with soil depth is used in this study.

Carbon inputs from plant roots to soil via root mortality and exudates at different soil depths have rarely 
been measured in the field, and are often modeled using a negative exponential or power function (Guenet 
et al., 2013; Koven et al., 2013). However, plant functional type (PFT) specific values of the exponential 
parameter are not yet available for earth system modeling. However, the single parameter in the power func-
tion describing the depth-dependency of fine root biomass has been estimated for all major PFT's (Jackson 
et al., 1996), and can be used to approximate root carbon inputs if fine-root turnover rate does not vary with 
soil depth (see Koven et al., 2013). However, fine-root biomass turnover rate was found to actually decrease 
with soil depth (Joslin et al., 2006), therefore litter carbon input from root mortality will decrease much 
faster with soil depth than fine-root biomass. Thus, we use a negative exponential function to describe the 
variation of the fraction of root carbon input, r(z) with soil depth. That is

 
 
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where parameter αr in cm−1 is optimized. The total root litter carbon input is IB in mg C cm−2 h−1.

Finally, Zhang et al. (2020) modeled the desorption of physically protected soil carbon to active carbon (Fa,p 
in mg C cm−3 h−1) according to:

    5
a,p d c p1.5 10 exp 1.5F x f C� (12)

where xd is a calibration parameter, and fc is soil clay fraction.

In calibrating the model using field observations, we varied seven model parameters, xv, xk, xd, xD, αr, αV, and 
β (see Table 1).

2.2.  Model Simulations

Equation 1 was solved numerically using a fully implicit method (Press et al., 1996). The integration time 
step was hourly, and soil was divided into 20 layers, each of 5 cm thickness. However, variable thickness 
can also be used for different vertical soil layers. At each site, we initialized each model pool using some 
arbitrary proportions for different pools, then ran the model to steady state (with pool size change between 
two successive year <0.01%). This simulation, or C simulation, was conducted for all sites with or without 
14C measurements.

We conducted an additional 14C simulation for each of those sites with 14C measurements available. The 
model was run to steady state by using the fraction modern of atmospheric 14C in 1950 as the 14C for litter 
carbon input, and then integrated forward until the year when measurements of 14C in soil carbon were 
taken. When integrating the model forward from 1950, we assumed that the 14C in plant litter lagged behind 
the atmospheric 14C by 1 year, and that 14C in each carbon pool decayed at a constant rate with half-life of 
5,730 years (Godwin, 1962) in addition to the other decays as simulated in MIMICS (see Tifafi, Camino-Ser-
rano et al., 2018).

We ran C and 14C simulations independently, and the ratio of the simulated total SOC pools (active + phys-
ically protected + chemically protected pools) of 14C and C simulations at the year of 14C measurements at 
each site was compared with measured value at each soil depth (see Tifafi, Camino-Serrano et al., 2018). In 
this study, we used fraction modern as advocated by Reimer et al. (2004) rather than Δ14C as used in some 
other studies (e.g., Koven et al., 2013).

Assuming steady states for all sites, we only compared the equilibrium soil carbon as simulated by the mod-
el with the observed SOC concentrations. We used the mean daily air temperature for soil temperature, and 
measured soil clay fractions, lignin:N ratio of litter input (aboveground and belowground separately), mean 
annual aboveground and belowground litter carbon input as data inputs to the model (see Tables B and C 
and Zhang et al., 2020). Mean daily soil temperature was assumed to be constant at all depths, and was 
assumed to be equal to mean daily surface air temperature, which was calculated using the data extracted 
for the period 1981–2010 from the Global Soil Wetness Project Phase 3 (Dirmeyer et al., 2006) based on site 
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Parameter Definition Range

xv A scaling factor for Vmax 2–30 (4)

xK A scaling factor of Kr and Kk 2–30 (8)

xd A scaling factor for SOC desorption rate 0.1–15 (2)

xD A scaling factor for SOC diffusion coefficient in soil 0.01–25 (0.75)

αr An exponent of the exponential decline of root C input with soil depth 1–30 (10)

αV An exponent of the exponential decline of Vmax with soil depth 1–30 (1)

β An exponent of the biomass density dependent mortality rate of soil microbes 1–2 (1.2)

Note. The unit is m−1 for αr and αv, and dimensionless for all other parameters. Default value for each parameter is included in brackets in the third column.

Table 1 
The Optimized Model Parameters and Their Value Ranges
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locations. We did not consider effects of variable soil moisture on soil carbon decomposition and on vertical 
transport of SOC in this study.

2.3.  Model Sensitivity Analysis

We used the Morris method to analyze the sensitivity of the cost function (J) (see Section  2.3.1, Equa-
tions 14–16) to each of the seven model parameters (Morris, 1991). These seven model parameters were 
selected based on preliminary analysis of model simulations (results not shown here). In this study, we 
sampled each parameter across its uncertainty range (see Table 1) at four different levels, and a total of 50 
trajectories was selected for each parameter (n = 50). In total, we have 400 different combinations of all 
seven parameters. We ran the model and calculated the cost for each of 400 different parameter sets.

For a parameter pm, the elementary effect, Em,n was calculated as

    


   1 2 m 7 1 2 m 7
m,n

, , Δ, , , , , ,
Δ

J p p p p J p p p p
E� (13)

where Δ is the step size of a change in parameter pi, and is set to 2/3 of the difference between the max-
imum and minimum of that parameter (see Morris, 1991). Across 50 different trajectories, there will 50 
different estimates of elementary effects for each parameter. We calculate mean (μm) and standard deviation 
(σm) from those 50 different estimates of Em,n, and the importance of that parameter, θm, is quantified by 

 

2 2

m m , where σ is the standard deviation of  2 2
m m  for all seven parameters. Further details for the 

calculation procedure can be found in Lu et al. (2013). In this study, we calculated the importance of a pa-
rameter for soil carbon concentration and 14C separately by setting J = J1 or J2 (see the below for definitions 
of J, J1, and J2). The importance of a parameter (θm) quantifies the sensitivity of cost function to a fractional 
change of that parameter. The fractional change (Δ) is calculated as (p − pmin)/(pmax − pmin), here pmin and 
pmax are the minimum and maximum value of that parameter, respectively.

2.3.1.  Parameter Optimization and Cost Function

Based on the results of parameter sensitivity analysis, we optimized seven model parameters for each of six 
sites with both SOC and 14C measurements at different soil depths. For the 184 forest sites from Europe and 
China, we grouped these sites into four different forest types, and optimized seven model parameters using 
observations from half number of sites in each forest type, and evaluated the performance of the model 
using the remaining half of the sites for each forest type.

We used an effective global optimization algorithm (SCE-UA) (version 2.2; Duan et al., 1993) for parameter 
optimization. The cost function (J) that is optimized is constructed as follows:

 1 2J J J� (14)

 
 

2
obs,l mod,l

1 2l 1

C C
J

s
� (15)

 



 

214 14
obs,l mod,l

2 2j 2

C C
J

s
� (16)

where Cobs,l is observed total soil carbon (microbial r, k, active, physically protected, and chemically pro-
tected pools) in soil layer l (mg/cm3), and Cmod,l is modeled total soil carbon in soil layer l, s1 is the error of 
soil carbon measurement, and was arbitrarily assumed to be 10% of the measured SOC and 14C. For sites 
with 14C observations, 14

obs,lC  14
mod,lC  are observed and measured 14C in soil layer l in fraction modern. 14

mod,lC  is 
calculated as the pool-size weighted average in soil layer l. λ is a Lagrange multiplier, and is used to ensure 
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that the contributions of the two terms in Equation 14 to total cost (J) was similar near the optimal values of 
the optimized model parameters. After a few trial and error tests, we set λ = 5 in this study.

Seven parameters are optimized in this study. We optimized these parameters for each of six sites using the 
observations of both SOC concentration and 14C at different soil depths or for each of the four forest types 
from Europe and China. Ranges of those parameters if optimized are listed in Table 1.

2.4.  Metrics for Model Performance Evaluation

We used three metrics to quantify the model performance. They are root mean square error (RSME), Bayes-
ian information criterion (BIC), and linear regression between the observed and modeled variables. RSME 
and BIC are calculated as

    


2
l obs i mod,i

1

RMSE
N C C

M
N

� (17)

where i is soil carbon pool, M is number soil layers of a site, and N is number of sites.

   pBIC 2 log RMSE 2N N� (18)

where Np is number of optimized model parameters.

Linear regression, y = a + bx, was also used, where y and x are modeled and observed soil carbon concen-
tration at any given layer at a site. Two regression coefficients (a and b) and correlation square (r2) are also 
used to evaluate model performance. For a perfect model performance, a = 0, b = 1, and r2 = 1.

2.5.  Field Data

2.5.1.  Six Forest Sites With Both Soil Organic C and 14C Data

Measurements of SOC concentration, bulk density and 14C at different soil depths down to 60 or 120 cm 
from the soil surface were downloaded from six sites from Lawrence et al. (2020, https://doi.org/10.5281/
zenodo.2613911). Two tropical sites (Misiones and Kissoko), and four temperate deciduous forest sites were 
selected. Across these six sites, SOC concentration and apparent age of the soil in the bottom layer varied by 
one factor of 10. Other related information, such as the observed soil clay fraction, and the simulated mean 
annual above-ground and below-ground carbon input by ORCHIDEE model were obtained from Tifafi, 
Camino-Serrano et al. (2018) for the two tropical sites and from McFarlane et al. (2013) for the four forest 
sites in USA (see Table B for further details).

2.5.2.  Forest Site of Measurements of Soil Carbon Concentration at Different Depths

We selected 134 forests from China and 50 sites from Europe. Measurements of soil carbon and related soil 
properties at those 184 sites were made using consistent protocols for Europe and China, respectively, and 
all sites experienced minimal disturbance for the last several decades. These 184 forest sites represent four 
major forest types, and span a range of climate conditions and soil types.

Measurements from the 134 forest sites in China were part of a strategic project on the national carbon 
budget led by the Chinese Academy of Sciences (Tang et al., 2018). All 134 forests were over 40-year-old. All 
measurements were conducted using a consistent methodology (see Tang et al., 2018). Soil carbon content, 
soil bulk density, clay content were measured at each site for 0–10, 10–20, 20–30, 30–50, and 50–100 cm 
soil depths from the soil surface between 2010 and 2015. The 50 European sites are part of the Internation-
al Co-operative Program on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests, 
http://icp-forests.net) operating under the UNECE Air Convention. Soil carbon content, soil bulk density, 
clay content from 0–10, 10–20, 30–40, and 40–80 cm at each site were taken from the ICP Forests Level II 
aggregated forest soil condition database by Fleck et al. (2016). Soil measurements within the ICP Forests 
are conducted consistently according to the ICP Forests Manual (Expert Panel on Soil & Forest Soil Coor-
dinating Centre, 2006)
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These 184 forest sites are divided into four forest types: temperate needleleaf evergreen forest (ENF), 
broadleaf evergreen forest (BEF), broadleaf deciduous forest (BDF), and boreal needleleaf evergreen forest 
(BNF). Together, these 184 forest sites cover a wide range of climate and soil conditions (see Table C).

2.5.3.  Atmospheric 14C Data

The atmospheric 14C data from 1950 to 2010 were from Hua et al. (2013), who divided the global atmosphere 
into five regions. We assumed that 14C content in plant litter carbon (both aboveground and belowground) 
was the same as the 14C of the atmosphere of the previous year in the region. For woody litter, this is an ap-
proximation, as the wood tissue generally has an age more than 1 year. The region each site belongs to was 
determined by its latitude and longitude. In this study, we assumed that 14C in the atmosphere was same as 
in 1950 before 1950, and remained at 2010 level after 2010 in each region.

3.  Results
3.1.  Importance of Model Parameters

Importance of a parameter is calculated based on elemental effects that include both the linear effect and 
nonlinear interactions with other model parameters (see Lu et al., 2013). As shown in Figure 2, importance 
of a single parameter varies across the six sites and between SOC concentration and 14C for a given site. For 
example, desorption coefficient of the physically protected SOC pool (xd) is the least important parameter 
for most sites for both SOC and 14C observations, but is the second most important parameter for 14C ob-
servations at Kissoko among the seven model parameters. On average, the simulated SOC concentration 

profile by the model is most sensitive to density-dependent microbial 
turnover parameter (β), and least sensitive to desorption rate of physical-
ly protected SOC (xd) across the six sites. The simulated 14C profile is less 
sensitive to the parameter used for scaling Kr or Kk (xk) and most sensitive 
to SOC diffusion coefficient (xD) on average across six sites. Because of 
these large variations of parameter importance across the six sites and 
between SOC and 14C observations, we chose to optimize all seven model 
parameters in model calibrations.

3.2.  Model Calibration

3.2.1.  SOC Concentration and 14C Profiles at the Six Sites

Estimates of the optimized model parameters are presented in Table 2, 
and comparisons of model simulations and observations are shown in 
Figures  3 and  4. At Misiones (a tropical evergreen broadleaf forest), 
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Figure 2.  Importance of seven parameters in MIMICS at six sites with both the observed organic C concentration 
and 14C soil profiles. The gray line shows the mean importance of each parameter across six sites. See Table 1 for the 
definitions of the seven model parameters. MIMICS, MIcrobial-MIneral Carbon Stabilization.

MIMICS7 xv xk xd xD αr αv β Cost

Misiones 6.46 11.77 1.83 2.07 14.38 5.60 1.57 11.50

Kissoko 18.25 2.03 0.79 0.63 15.19 13.36 2.00 19.50

MI-coarse 15.95 9.38 3.27 7.71 18.42 3.91 1.76 9.90

Bartlett 5.90 19.86 4.53 0.67 23.35 2.13 1.74 10.00

Harvard 5.70 11.99 3.67 2.22 24.66 3.22 1.40 7.80

Ozark 13.72 13.25 1.07 2.19 24.76 3.15 1.53 1.70

Note. See Table 1 for prior values for the optimized model parameters.
Abbreviation: MIMICS, MIcrobial-MIneral Carbon Stabilization.

Table 2 
Estimates of the Optimized Model Parameters at Each of the Six Sites With 
Both SOC Concentration and 14C Profiles
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MIMICS estimates the observed SOC concentration and 14C from the soil 
surface layer down to 80 cm soil depth quite well, but underestimates the 
observed SOC concentration, and 14C in the deepest layers (90 cm) (see 
Figure 3). At Kissoko site, MIMICS simulates the observed SOC profile 
quite well, but consistently underestimates the observed 14C at all depths 
except the deepest layer at 110 cm below the soil surface, and that similar 
underestimation of 14C in soil by the model persists at all soil depth down 
to 70 cm below the soil surface.

By comparing the optimized values of the seven model parameters, we 
find that the optimized value of xk at Kissoko was only about one sixth of 
that at Misiones (see Table 2), this difference largely results from the large 
differences in SOC concentration between the two sites. The optimized 
value of xv and αv at Kissoko are much greater than those at Misiones, 
therefore, the relative microbial activity at the surface layer at Kissoko 
is larger and decreases with soil depth much faster than at Misiones. 
The rapid decrease in microbial activity (V) with depth slows down SOC 
decomposition in deeper layers, therefore, simulated SOC is relatively 
constant in depth as observed at Kissoko site between 20 and 70 cm soil 
depth.

Across the four temperate forest sites in the USA, the model simulates 
quite well the observed SOC profiles, and consistently overestimates the 
14C in soil from 0 to 40 cm soil depth at Barlett and Harvard forest sites 
(see Figure 4).

The optimized values are quite similar in αv, β, and αr, and vary greatly in the other four parameters among 
the four temperate forests (see Table 2). For two sites with relatively higher SOC concentrations (Barlett and 
Harvard), the optimized values of xv are smaller therefore microbial activities and SOC decomposition rates 
are slower than the other two sites with lower SOC concentrations. The optimized desorption rate of the 
physically protected SOC is lowest at Ozark forest and the optimized diffusion coefficient is lowest at Barlett 
forest among the four temperate forest sites (see Table 2).

Overall, our results demonstrate that MIMICS can simulate the observed SOC and 14C profiles sufficiently 
well for six sites. Value of optimized model parameters vary greatly among the different sites. In general, the 
smaller values of V (or xv) are estimated for those sites with higher SOC concentrations.

3.2.2.  Model Calibration Against 91 Forest Sites

Here we calibrated MIMICS using SOC concentration profiles measured at 91 forest sites from Europe and 
China. These sites are grouped into four ecosystem types: 32 ENF, 16 BDF, 39 EBF, and 4 BNF. Optimal 
estimates of the seven model parameters for each of the ecosystem types are listed in Table 3.

For the 32 temperate ENFs, MIMICS explains 43% of the variance in the observations (r2 value in Table 4). 
Model simulation of SOC is biased high when the observed SOC concentration is low (<20 g C/kg), and 
underestimates otherwise (see Figure 5 ENF insert). Across the ENF sites, MIMICS underestimates the 
observed SOC at the surface layer (0–5 cm). Agreement is very good for other soil depths between the sim-
ulated and observed SOC concentrations (Figure 5 ENF).

For 16 EBFs, MIMICS explains 62% of the variance of the observed SOC (Table 4). Model simulation of SOC 
is biased high when the observed SOC concentration <30 g C/kg, and underestimates the observed SOC 
concentration otherwise (see Figure 5 EBF insert). The agreement is very good between mean observed and 
modeled SOC concentration across the sites (Figure 5 EBF).

For 39 DBFs, MIMICS explains 45% of the variance of the observed SOC (Table 4) and generally underes-
timates SOC except when the observed SOC concentration is low (<20 g/kg) (Figure 5 DBF insert). Com-
pared with the observed mean SOC concentration profile, MIMICS simulates very well the observed SOC 
concentration (Figure 5 DBF).
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Figure 3.  Comparison of the observed (open circle) and modeled (black 
curve) soil organic concentration (SOC) (left plots) or 14C (right panels) 
profiles for a tropical forest (Misiones) and a savannah (Kissoko).
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For the four BNFs, MIMICS explains 95% of the variance in the observed 
SOC concentration, and agreement is excellent between the observed and 
modeled mean SOC concentration profile (Figure 5 BNF).

3.3.  Model Validation

Using the optimized parameter values for each forest type, we ran MIM-
ICS for the other half of the sites for each forest type from Europe and 
China. Across all four forest types, the model performs well except for 
four BNFs. For BNFs, the model used for validation only explains 77% 
of the variance in the observed SOC of the evaluation sites, as compared 
with 93% of the variance in the observed SOC of the calibration sites (see 
Table 4). This degeneration in model performance during validation for 
the four boreal evergreen needleleaf forests may result from a relatively 
small number of sites (4) used for calibration.

For the temperate ENF with 32 sites, the model overestimates SOC when 
it is less than 20 g/kg, and underestimates SOC otherwise (Figure 6 ENF 
insert). Across the different ENF sites, the model underestimates SOC 
concentrations in the top 20 cm soil, but overestimates SOC in the soil 
below 40 cm depth (Figure 6 ENF).

For the 17 EBFs, performance metrics as measured by RMSE, BIC for 
MIMICS validation is quite similar to the performance of MIMICS for 
calibration. However, the r2 for MIMICS validation is lower than that for 
MIMICS calibration (see Table 4), and the means of the simulated SOC 
concentrations at all soil depth except the bottom layer are consistently 
higher than the observed (see Figure 6 EBF).

For DBFs, MIMICS underestimates SOC concentrations by about 37% on 
average (see Table 4). However, the simulated mean SOC concentrations 
by MIMICS agrees quite well with the observed (Figure 6 DBF), which 
suggests that model biases are uniformly distributed at each soil depth.

For the boreal ENF with five sites only, MIMICS overestimates SOC con-
centrations in the surface layer (0–5 cm depth), but underestimates SOC 
at soil depths below 25 cm (see Figure 6 BNF). Overall MIMICS explained 
77% of the variance in the observed SOC concentration across five boreal 
ENF sites (see Table 4).

3.4.  Sensitivities of Simulated SOC to Variations of Microbial 
Activity, SOC Diffusion, and Root Carbon Input

The simulated vertical profile of SOC concentration depends on three 
processes: microbial activities, SOC diffusion, and root carbon input, and 

three of the seven model parameters are related to those three processes: xD for SOC diffusion coefficient, 
αv for soil-depth dependence of soil microbial activity, and αr for depth-dependency of root carbon input. 
Figure 7 shows the sensitivities of the simulated mean SOC concentration profile to each of those three 
parameters for each of the four forest types.

For all the four forest types, the sensitivity of the simulated SOC profile to xD is lower than that αv or αr (see 
Figure 7). The simulated SOC profile becomes less steep with an increase in soil SOC diffusion (xD) or a 
more uniform root carbon input at different soil depth (a decrease in αr). The relative sensitivity of the sim-
ulated steady state SOC pool size to αv or αr generally increases with soil depth for all the four forest types, 
and this dependence on soil depth is greatest for BNF and smallest for DBF (see Figure 7).
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Figure 4.  Comparison of the observed (open circle) and modeled (black 
curve) soil organic concentration (SOC) (left plots) or 14C (right panels) 
profiles for the four temperate forest sites in USA.
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Because αr and αv are exponents in the negative exponential functions 
used to describe the dependences of root carbon input and V in Micha-
lis-Menten equation and with soil depth, respectively, the impact of a giv-
en change in αr or αv on the carbon input and V and carbon also increases 
exponentially with soil depth. To understand the estimated responses as 
shown in Figure 7 for the four different PFTs, we disabled diffusion in 
MIMICS and ran the model for two sites by varying V or root carbon in-
put in each layer. The results are shown for an EBF site and a BNF site 
in Figure 8.

Without changing V, the equilibrium size of simulated total SOC increas-
es with root litter input, and the response of the simulated SOC to an 
increase in root litter input saturates much faster in the second layer than 
the fourth layer (see Figures 8a and 8b). As a result, the relative changes 
in the root litter input for a ±25% change in αr in the fourth soil layers, 
therefore the response of the equilibrium size of total SOC are also much 
greater than those in the second soil layers (see Figures 8a and 8b). These 
responses together explain why the sensitivity of soil carbon to αr increas-
es with soil depth in all the four forest types as shown in Figure 7.

Without changing root litter input, the simulated steady state soil carbon decreases with an increase in V at 
all depths for both sites (see Figures 8c and 8d), and the relative sensitivity of the simulated SOC declines 
with soil depth, particularly at lower V (relative change <0.5). For a ±25% change in αv, the simulated 
change in V is much greater in deeper than upper layers. The relative change in the simulated SOC pool size 
is quite insensitive to changes in V when the relative change of V is more than 0.5 (see Figures 8c and 8d). 
Therefore, the relative change in the simulated response of SOC to a ±25% of αv is quite constant at different 
soil depths for all the four forest types as shown in Figure 7.

4.  Discussions
MIMICS was used to study the importance of soil carbon stabilization 
(Zhang et al., 2020) and microbial growth efficiency on the projected soil 
carbon under future conditions (Wieder et al., 2013). It was demonstrated 
that MIMICS simulated the spatial patterns of soil carbon variations on 
continental and global scale reasonably well (Wieder et al., 2018; Zhang 
et al., 2020). However, MIMICS used in those studies did not resolve the 
vertical variation of SOC, and therefore comparison of the simulated soil 
carbon with observation is highly dependent on soil depth, particularly 
at regional scale. This is the first study to account for the processes gov-
erning the vertical profile of SOC in MIMICS. Validation of the calibrated 
model against independent field observations demonstrated that the per-
formance of the calibrated model is robust (see Table 4).

This study finds that resolving variations in root carbon input and mi-
crobial activity with soil depth are important for accurately simulating 
SOC and 14C profiles in forest soils (see Figure 7). While the importance 
of root carbon input for the simulated SOC increases with soil depth (e.g., 
the sensitivity of the simulated SOC to root carbon input is higher in 
deeper soil, see Figures 8a and 8b), the sensitivity of the simulated SOC 
to soil microbial αv does not vary much with soil depth (see Figures 8c 
and 8d). This difference in SOC sensitivity to root carbon input and αv 
largely results from αr being much greater than αv (see Tables 2 and 3), 
therefore root litter input decreases with soil depth much faster than V. 
Soil microbial activities (Vr, Vk) at the deeper soil layers are more strongly 
limited by carbon substrate, and less limited by microbial activities than 
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MIMICS N xv xk xd xD αr αv β RMSE

ENF 32 22.10 22.31 7.45 8.59 17.40 2.41 1.11 18.2

EBF 16 7.75 11.72 1.44 1.55 22.74 4.71 1.19 12.9

DBF 39 8.91 15.49 4.19 0.63 10.51 1.56 1.40 13.9

BNF 4 8.96 23.97 1.89 0.06 14.59 3.89 1.62 4.9

Note. N is number of sites in each forest type. ENF, EBF, DBF, and BNF 
represent temperate evergreen needleleaf forest, evergreen broadleaf 
forest, deciduous broadleaf forest, and boreal evergreen needleleaf forest, 
respectively.
Abbreviations: MIMICS, MIcrobial-MIneral Carbon Stabilization; RMSE, 
root mean square error.

Table 3 
Estimates of Seven Model Parameters From Optimization Using the 
Observed SOC Concentration Profiles From 91 Sites From Europe and 
China

Forest type N RMSE AIC a b r2

Temperate ENF (C) 32 18.7 942 10.3 0.50 0.43

Temperate ENF (V) 32 18.3 945 10.00 0.50 0.47

EBF (C) 16 13.1 423 9.9 0.64 0.62

EBF (V) 17 13.3 454 12.90 0.71 0.45

DBF (C) 39 13.9 1,040 7.22 0.52 0.45

DBF (V) 39 11.1 929 5.56 0.58 0.63

Boreal ENF (C) 4 4.9 78 1.9 0.95 0.93

Boreal ENF (V) 5 10.5 108 −1.7 1.03 0.77

Note. ENF, EBF, and DBF represent evergreen needleleaf forest, 
evergreen broadleaf forest, and deciduous broadleaf forest, respectively. 
N is number of sites, a and b are regression coefficients in the linear 
regression of y = a + bx, where y and x represent modeled and observed 
SOC concentration, respectively. The unit is g C/kg soil for RMSE, a and 
b are dimensionless. All correlations are highly significant with p < 0.05.
Abbreviations: AIC, Akaike information criterion; RMSE, rooted mean 
square error.

Table 4 
Performance of Model Calibration (C) and Validation (V) on Predicting 
SOC Concentrations Under Europe and China Forests
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in shallower soil layers where carbon substrate is more abundant. Furthermore, the sensitivity of the simu-
lated SOC by MIMICS to carbon input also depends on β, the biomass-dependent mortality parameters for 
soil microbes. As shown by Georgiou et al. (2017) using the analytic solution to their four-pool microbial 
soil carbon model at steady state, the sensitivity of steady state SOC pool size to carbon input increases with 
β. That explains why the simulated SOC pool size of a BNF site is more sensitive to carbon input than the 
EBF site (see Figures 8a and 8b), as the BNF has greater β value than EBF (see Table 3).

Furthermore, the impact of vertical variation of V with soil depth on the simulated response to external 
perturbation, such as warming or increasing C input by MIMICS may be quite different from that by linear 
models, such as CENTURY, as decomposition of soil carbon in the deep soil is less limited by microbial 
activity (V), and more strongly limited by carbon input in MIMICS (see Figures 7 and 8), whereas decom-
position of soil carbon is always limited by carbon input in the linear model (see Koven et al., 2017). This 
is an importance distinction between linear and nonlinear soil carbon models, which may have significant 
implications on the predicted response of soil carbon to warming. For example, under soil warming, the 
vertically resolved soil carbon using MIMICS would predict much less change in deeper soil carbon than 
that by a vertically resolved soil carbon using CENTURY-type model, providing everything else being equal.

For simulating SOC profiles only, our results show that the performance of MIMICS is quite robust (see 
Table  4). However, the calibrated model may not correctly simulate soil carbon age. This is shown in 
our simulations for two temperate forest sites, MI-coarse and Harvard forest. MIMICS can simulate the 
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Figure 5.  Results of model calibration for 32 temperate evergreen needleleaf forests (ENF) (upper two panels) or 16 
evergreen broadleaf forests (EBF), 39 deciduous broadleaf forests (DBF), or 4 boreal evergreen needleleaf forests (BNF). 
In each of the four panels, the black curve with black circles, gray curve with open circles represent the means of the 
observed and modeled SOC profiles, respectively. Within each panel, the insert shows the observed (x-axis) against 
simulated (y-axis) SOC concentrations at different soil depths within each forest type, and the dashed line and black 
line in the insert represent 1:1 and best-fitted linear regression. SOC, soil organic concentration.
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observed SOC profile quite well, but overestimates 14C at most soil depths (see Figure 4). As shown by Shi 
et al. (2020), most ESMs underestimated soil carbon age, therefore overestimated soil carbon accumulation. 
Therefore, future model improvement will require calibrating the model against more sites with both SOC 
and 14C profiles, such as the data available from the global soil radiocarbon database (Lawrence et al., 2020).

Here we do not explicitly model dissolved organic carbon, as some other models do (Ahrens et al., 2015; 
Braakhekke et al., 2013; Nakhavali et al., 2018). Therefore, our model may not be applicable to some highly 
eroded soils. This may be one of main reasons why our model did not perform well for the Kissoko site, 
where the observed SOC concentration was very low (<6 g/kg) and varied very little, but soil carbon age 
increased rapidly with soil depth between 20 and 70 cm, suggesting that this site experienced high erosion.

The estimated values are quite similar for xk, αr, and β, but highly variable for the other four parameters 
among the four forest types (Table 3). For example, the estimated desorption rate varied by more than 
fourfold across four forest types, and that variation cannot be explained by clay fraction alone (data not 
shown). It is very likely that other factors play a significant role in the physical stabilization of SOC, such 
as clay mineralogy (Singh et al., 2018), and organo-mineral interactions (Hernandez-Soriano et al., 2018). 
Further studies should address how some of those model parameters vary across different ecosystem and 
soil types, and under different climate conditions using larger data set to increase the robustness of model 
predictions.
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Figure 6.  Results of model validation for 32 temperate evergreen needleleaf forests (ENF), or 17 evergreen broadleaf 
forests (EBF), 39 deciduous broadleaf forests (upper two panels), or 5 boreal evergreen needleleaf forests (BNF). In 
each panel of the four panels, the black curve with black circles, gray curve with open circles represent the means of 
the observed and modeled SOC profiles, respectively. Within each panel, the insert shows the observed (x-axis) against 
simulated (y-axis) SOC concentrations at different soil depths within each forest type, and the dashed line and black 
line in the insert represent 1:1 and best-fitted linear regression. SOC, soil organic concentration.
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Two parameters, xv and xk, that are related to the Michaelis-Menten V and K kinetic parameters are likely 
to be strongly negatively correlated, as an increasing V can have similar effect to a decreasing K on the sim-
ulated microbial activities. By comparing the optimized values of these two parameters for ENF and BNF 
(see Table 3), we found that the estimated microbial activity in ENF was much higher than that in BNF, 
this is also consistent with the much higher microbial biomass as simulated for ENF than that for BNF (see 
Figure S1). On the other hand, the EBF and DBF have similar values of xv and xk (see Table 3), suggesting 
the sensitivity of microbial activity to soil temperature of these two broadleaf forest types is quite similar, 
but quite different from two other needleleaf forest types (see Figure S1). However, what controls those dif-
ferences in the estimated microbial activities between broadleaf and needleleaf forest types remains largely 
unknown. Further studies are needed to obtain appropriate values of those model parameters, or depend-
ence of those model parameters on other ecosystem properties for global modeling.

Overall, our calibrated model explains 90% of the variance in the observed SOC concentration and 14C 
profiles at six sites with about 30-fold variation in total soil carbon, and amount of variance in the observed 
SOC across a wide range of soil conditions (see Table B) similar to the bulk version of MIMICS by Zhang 
et al. (2020) for total soil carbon only. More importantly, MIMICS represents a new generation of soil carbon 
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Figure 7.  Sensitivity of the simulated vertical SOC profile to varying xD (black curve), αV (red curve), or αr (green 
curve). Solid and dashed curve represent profile by reducing or increasing that parameter value by 25% from the 
optimized value, values of other parameters were the optimized values (see Table 3). ENF, EBF, DBF, and BNF 
represent temperate evergreen needleleaf forest, evergreen broadleaf forest, deciduous broadleaf forest, and boreal 
evergreen needleleaf forest, respectively. The solid blue curve in each panel represents the vertical SOC profile as 
simulated by MIMICS using the optimized parameter values for each forest type. Note that scale is logarithmic for 
x-axis and the range of variation may differ among the panels. MIMICS, MIcrobial-MIneral Carbon Stabilization; SOC, 
soil organic concentration.
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models that include explicit representation of soil carbon stabilization and microbial growth and competi-
tion, which are important in the new paradigm of soil organic matter formation (Lehmann & Kleber, 2015).

We intend to integrate this vertically resolved soil carbon model into the Australian community land model, 
CABLE (Wang et al., 2011) and ORCHIDEE-SOM (Guenet et al., 2013). However, applying the model at 
global scale is confronted with many challenges, particularly (1) some key processes are still missing, such 
as effects of soil water on soil microbial activities (Yan et al., 2019), dependence of sorption and desorption 
of physically protected soil carbon on soil physical and chemical properties (e.g., Mayes et al., 2012); (2) 
parameterization of the model for different plant functional or soil types. For example, variations of root 
mortality rate or soil microbial activities at different soil depths that are critically important for correctly 
simulating vertical SOC variation are rarely measured in the field (Iversen et al., 2017); (3) evaluate the 
modeled fractions of different soil carbon pools against field measurements, such as the data compiled by 
Contrufo et al. (2019) to improve the fidelity of the simulated soil C persistence. Given the general poor 
performance of land surface model with respect to soil carbon, it nonetheless is a reasonable endeavor to 
test our model in the framework of a land surface model.

Recent progress in data compilation is facilitating the assessment of processes underlying SOC patterns on 
global scale. Examples are, the developing global fine root trait database FRED (http://roots.ornl.gov), the 
mapping of soil properties like clay mineralogy (Ito & Wagai, 2017), the quantifying the responses of dif-
ferent soil carbon pools to warming (Qin et al., 2019), as well as the global database on soil 14C and derived 
data product of soil carbon age (Shi et al., 2020). By continuing integrating field observations with this new 
generation of soil carbon models, such as MIMICS, we will improve the predictive ability of the terrestrial 
carbon cycle, and its response under future climate change.
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Figure 8.  Sensitivity of the simulated steady state soil carbon concentration (SOC) in the second (or at 15 cm soil 
depth) (black curves and symbols) or the fourth (or at 35 cm soil depth) soil (gray curves and symbols) layer to change 
in litter carbon input (a and b) or maximal microbial activity (V) of the forward Michaelis-Menten kinetics (the lower 
two panels) at an EBF site (the left two panels) or BNF (c and d) site. The two triangle symbols along each curve 
represent changes in litter input (x-axis) and SOC (y-axis) when αr is varied from −25% to +25% (top two panels) or 
changes in maximal microbial activity (x-axis) and SOC (y-axis) when αv is varied from −25% to +25% (lower two 
panels). Upright triangle for +25% and inverted triangle for −25%.

http://roots.ornl.gov/
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Data Availability Statement
Observations for the six forest sites with both SOC concentration and 14C are available from https://doi.
org/10.5281/zenodo.2613911. SOC data, source codes of the model are available from the CSIRO data portal 
service (https://doi.org/10.25919/843a-w584).
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