
DriftSurf: Stable-State / Reactive-State Learning under Concept Drift

Ashraf Tahmasbi * 1 Ellango Jothimurugesan * 2

Abstract
When learning from streaming data, a change in
the data distribution, also known as concept drift,
can render a previously-learned model inaccurate
and require training a new model. We present an
adaptive learning algorithm that extends previous
drift-detection-based methods by incorporating
drift detection into a broader stable-state/reactive-
state process. The advantage of our approach is
that we can use aggressive drift detection in the
stable state to achieve a high detection rate, but
mitigate the false positive rate of standalone drift
detection via a reactive state that reacts quickly to
true drifts while eliminating most false positives.
The algorithm is generic in its base learner and
can be applied across a variety of supervised learn-
ing problems. Our theoretical analysis shows that
the risk of the algorithm is (i) statistically better
than standalone drift detection and (ii) compet-
itive to an algorithm with oracle knowledge of
when (abrupt) drifts occur. Experiments on syn-
thetic and real datasets with concept drifts confrm
our theoretical analysis.

1. Introduction
Learning from streaming data is an ongoing process in
which a model is continuously updated as new training
data arrive. We focus on the problem of concept drift, which
refers to an unexpected change in the distribution of data
over time. The objective is high prediction accuracy at
each time step on test data from the current distribution. To
achieve this goal, a learning algorithm should adapt quickly
whenever drift occurs by focusing on the most recent data
points that represent the new concept, while also, in the ab-
sence of drift, optimizing over all the past data points from
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the current distribution (for statistical accuracy). The latter
has greater importance in the setting we consider where
data points may be stored and revisited to achieve accuracy
greater than what can be obtained in a single pass. More-
over, computational effciency of the learning algorithm is
critical to keep pace with the continuous arrival of new data.

In a survey from Gama et al. (Gama et al., 2014), concept
drift between time steps t0 and t1 is defned as a change in
the joint distribution of examples: pt0 (X, y) 6= pt1 (X, y).
Gama et al. categorize drifts in several ways, distinguishing
between real drift that is a change in p(y|X) and virtual drift
(also known as covariate drift) that is a change only in p(X) 
but not p(y|X). Drift is also categorized as either abrupt
when the change happens across one time step, or gradual
if there is a transition period between the two concepts.

A learning algorithm that reacts (well) to concept drift is
referred to as an adaptive algorithm. In contrast, an oblivi-
ous algorithm, which optimizes the empirical risk over all
data points observed so far under the assumption that the
data are i.i.d., performs poorly in the presence of drift. One
major class of adaptive algorithms is drift detection, which
includes DDM (Gama et al., 2004), EDDM (Baena-García
et al., 2006), ADWIN (Bifet & Gavaldà, 2007), PERM
(Harel et al., 2014), FHDDM (Pesaranghader & Viktor,
2016), and MDDM (Pesaranghader et al., 2018). Drift de-
tection tests commonly work by tracking the prediction
accuracy of a model over time, and signal that a drift has
occurred whenever the accuracy degrades by more than a
signifcant threshold. After a drift is signaled, the previously-
learned model can be discarded and replaced with a model
trained solely on the data going forward.

There are several key challenges with using drift detection.
Different tests are preferred depending on whether a drift
is abrupt or gradual, and most drift detection tests have a
user-defned parameter that governs a trade-off between the
detection accuracy and speed (Gama et al., 2014); choosing
the right test and the right parameters is hard when the types
of drift that will occur are not known in advance. There is
also a signifcant cost in prediction accuracy when a false
positive results in the discarding of a long-trained model
and data that are still relevant. Furthermore, even when drift
is accurately detected, not all drifts require restarting with a
new model. Drift detection can trigger following a virtual
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drift when the model misclassifes data points drawn from a
previously unobserved region of the feature space, but the
older data still have valid labels and should be retained. We
have also encountered real drifts in our experimental study
where a model with high parameter dimension can adapt to
simultaneously ft data from both the old and new concepts,
and it is more effcient to continue updating the original
model rather than starting from scratch.

Our contribution is DriftSurf, an adaptive algorithm that
helps overcome these drift detection challenges. DriftSurf 
works by incorporating drift detection into a broader two-
state process. The algorithm starts with a single model
beginning in the stable state and transitions to the reactive
state based on a drift detection trigger, and then starts a
second model. During the reactive state, the model used
for prediction is greedily chosen as the best performer over
data from the immediate previous time step (each time step
corresponds to a batch of arriving data points). At the end
of the reactive state, the algorithm transitions back to the
stable state, keeping the model that was the best performer
during the reactive state. DriftSurf’s primary advantage over
standalone drift detection is that most false positives will
be caught by the reactive state and lead to continued use
of the original long-trained model and all the relevant past
data—indeed, our theoretical analysis shows that DriftSurf 
is statistically better than standalone drift detection. Other
advantages include (i) when restarting with a new model
does not lead to better post-drift performance, the original
model will continue to be used; and (ii) switching to the
new model for predictions happens only when it begins
outperforming the old model, accounting for potentially
lower accuracy of the new model as it warms up. Meanwhile,
the addition of this stable-state/reactive-state process does
not unduly delay the time to recover from a drift, because
the switch to a new model happens greedily within one
time step of it outperforming the old model (as opposed to
switching only at the end of the reactive state).

We present a theoretical analysis of DriftSurf, showing that it
is “risk-competitive” with Aware, an adaptive algorithm that
has oracle access to when a drift occurs and at each time step
maintains a model trained over the set of all data since the
previous drift. We also provide experimental comparisons
of DriftSurf to Aware and two adaptive learning algorithms:
a state-of-the-art drift-detection-based method MDDM and
a state-of-the-art ensemble method AUE (Brzezinski & Ste-
fanowski, 2013). Our results on 10 synthetic and real-world
datasets with concept drifts show that DriftSurf generally
outperforms both MDDM and AUE.

2. Related Work
Most adaptive learning algorithms can be classifed into
three major categories: Window-based, drift detection, and

ensembles. Window-based methods, which include the fam-
ily of FLORA algorithms (Widmer & Kubat, 1996) train
models over a sliding window of the recent data in the
stream. Alternatively, older data can be forgotten gradually
by weighting the data points according to their age with ei-
ther linear (Koychev, 2000) or exponential (Hentschel et al.,
2019; Klinkenberg, 2004) decay. Window-based methods
are guaranteed to adapt to drifts, but at a cost in accuracy in
the absence of drift.

The aforementioned drift detection methods can be further
classifed as either detecting degradation in prediction accu-
racy with respect to a given model, which include all of the
tests mentioned in §1, or detecting change in the underlying
data distribution which include tests given by (Kifer et al.,
2004; Sebastião & Gama, 2007); the connection between
the two approaches is made in (Hinder et al., 2020). In
this paper, we focus on the subset of concept drifts that are
performance-degrading, and that can be detected by the frst
class of these drift detection methods. As observed in (Harel
et al., 2014), under this narrower focus, the problem of drift
detection has lower sample and computational complexity
when the feature space is high-dimensional. Furthermore,
this approach ignores drifts that do not require adaptation,
such as changes only in features that are weakly correlated
with the label. Tests for drift detection may also be com-
bined, known as hierarchical change detection (Alippi et al.,
2016), in which a slow but accurate second test is used to
validate change detected by the frst test. The two-state
process of DriftSurf has a similar pattern, but differs in that
DriftSurf’s reactive state is based on the performance of a
newly created model, which has the advantage of not pro-
longing the time to recover from a drift because the new
model is available to use immediately.

Finally, there are ensemble methods, such as DWM (Kolter
& Maloof, 2007), Learn++.NSE (Elwell & Polikar, 2011),
AUE (Brzezinski & Stefanowski, 2013), DWMIL (Lu et al.,
2017), DTEL (Sun et al., 2018), Diversity Pool (Chiu &
Minku, 2018), and Condor (Zhao et al., 2020). An ensem-
ble is a collection of individual models, often referred to
as experts, that differ in the subset of the stream they are
trained over. Ensembles adapt to drift by including both
older experts that perform best in the absence of drift and
newer experts that perform best after drifts. The predictions
of each individual expert are typically combined using a
weighted vote, where the weights depend on each expert’s
recent prediction accuracy. Strictly speaking, DriftSurf is an
ensemble method, but differs from traditional ensembles by
maintaining at most two models and where only one model
is used to make a prediction at any time step. The advan-
tage of DriftSurf is its effciency, as the maintenance of each
additional model in an ensemble comes at either a cost in
additional training time, or at a cost in the accuracy of each
individual model if the available training time is divided
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among them. The ensemble algorithm most similar to ours
is from (Bach & Maloof, 2008), which also maintains just
two models: a long-lived model that is best-suited in the
stationary case, and a newer model trained over a sliding
window that is best-suited in the case of drift. Their algo-
rithm differs from DriftSurf in that instead of using a drift
detection test to switch, they are essentially always in what
we call the reactive state of our algorithm, where they choose
to switch to a new model whenever its performance is better
over a window of recent data points. Their algorithm has no
theoretical guarantee, and without the stable-state/reactive-
state process of our algorithm, there is no control over false
switching to the newer model in the stationary case.

3. Model and Preliminaries
We consider a data stream setting in which the training data
points arrive over time. For t = 1, 2, . . . , let Xt be the set
of labeled data points arriving at time step t. We consider a
constant arrival rate m = |Xt| for all t. (Our discussion and
results can be readily extended to Poisson and other arrival

∪t2−1distributions.) Let St1,t2 = Xt be a segment of thet=t1 

stream of points arriving in time steps t1 through t2 − 1. Let
nt1,t2 = m(t2 − t1) be the number of data points in St1,t2 .
Each Xt consists of data points drawn from a distribution
It not known to the learning algorithm. In the stationary
case, It = It−1; otherwise, a concept drift has occurred at
time t.

We seek an adaptive learning algorithm A with high pre-
diction accuracy at each time step. At time t, A has access
to all the data points so far, S1,t, and a constant number of
processing steps (e.g., gradient computations) to output a
model wt from a class of functions F that map an unlabeled
data point to a predicted label. Note this setting differs from
the traditional online learning setting, as we are not limited
in memory and allow for the reuse of relevant older data
points in the stationary case to achieve higher accuracy than
what can be achieved in a single pass.

To achieve high prediction accuracy at time t, we want
to minimize the expected risk over the distribution It.
The expected risk of function w over a distribution I is:
RI (w) = Ex∼I [fx(w)], where fx(w) is the loss of func-
tion w on input x. Thus, the objective at each time t is:

min Ex∼It [fx(wt)] 
wt∈F 

Given a stream segment St1,t2 of training data points, the
best we can do when the data are all drawn from the same
distribution is to minimize the empirical risk over St1,t2 .
The empirical risk of function w over a sample S of n 

1 P 
elements is: RS (w) = fx(w). The optimizern x∈S 

∗ ∗of the empirical risk is denoted as wS , defned as w = S 
arg minw∈F RS (w). The optimal empirical risk is R∗ = S 

∗RS (w ).S 

Table 1: Commonly used symbols

Xt data points arriving at time step t 
m = |Xt|, number of points arriving at each time
RS empirical risk over the set of points S 
H statistical error boundH(n) = hn−α 

h constant factor in the statistical error bound
α exponent in the statistical error bound
W length of the windows W 1 and W 2 
r length of the reactive state
δ threshold in condition 2 to enter the reactive state
δ0 threshold in condition 3 to switch the model
Δ magnitude of a drift

In order to quantify the error in the expected risk from
empirical risk minimization, we use a uniform convergence
bound (Boucheron et al., 2005; Bousquet & Bottou, 2007).
We assume the expected risk over a distribution I and the
empirical risk over a sample S of size n drawn from I are
related through the following bound:

E[ sup |RI (w) −RS (w)|] ≤ H(n)/2 (1)
w∈F 

where H(n) = hn−α , for a constant h and 1/2 ≤ α ≤ 1.
From this relation,H(n) is an upper bound on the statistical
error (also known as the estimation error) over a sample of
size n (Bousquet & Bottou, 2007).

Let w be the solution learned by an algorithm A over stream
segment S = St1 ,t2 . Following prior work (Bousquet &
Bottou, 2007; Jothimurugesan et al., 2018), we defne the
difference between A’s empirical risk and the optimal em-
pirical risk over this stream segment as its sub-optimality:

∗ SUBOPTS (A) := RS (w) −RS (w ). Based on (BousquetS 
& Bottou, 2007), in the stationary case, achieving a sub-
optimality on the order of H(nt1,t2 ) over stream segment
St1,t2 asymptotically minimizes the total (statistical + opti-
mization) error for F .

However, suppose a concept drift occurs at time td such
that t1 < td < t2. We could still defne empirical risk
and sub-optimality of an algorithm A over stream segment
St1,t2 . But, balancing sub-optimality with H(nt1,t2 ) does
not necessarily minimize the total error. Algorithm A needs
to frst recover from the drift such that the predictive model
is trained only over data points drawn from the new distri-
bution. We defne recovery time as follows: The recovery
time of an algorithm A is the time it takes after a drift for A 
to provide a solution w that is maintained solely over data
points drawn from the new distribution.

Let td1 , td2 , . . . be the sequence of time steps at which a
drift occurs, and defne td0 = 1. The goals for an adaptive
learning algorithm A are (G1) to have a small recovery
time ri at each tdi and (G2) to achieve sub-optimality on
the order ofH(ntdi ,t

) over every stream segment Stdi ,t for
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(i.e., during the stationary, recoveredtdi + ri < t < tdi+1 

periods between drifts). In §5, we formalize the latter as A 
being “risk-competitive” with an oracle algorithm Aware. It
implies that A is asymptotically optimal in terms of its total
error, despite concept drifts.

Table 1 summarizes the symbols commonly used throughout
the rest of the paper.

4. DriftSurf: Adaptive Learning over
Streaming Data in Presence of Drift

We present our algorithm DriftSurf for adaptively learning
from streaming data that may experience drift. Incremen-
tal learning algorithms work by repeatedly sampling a data
point from a training set S and using the corresponding gra-
dient to determine an update direction. This set S expands
as new data points arrive. In the presence of a drift from
distribution I1 to I2, without a strategy to remove from S 
data points from I1, the model trains over a mixture of data
points from I1 and I2, often resulting in poor prediction
accuracy on I2. One systematic approach to mitigating this
problem would be to use a sliding window-based set S from
which further sampling is conducted. Old data points are re-
moved when they fall out of the sliding window (regardless
of whether they are from the current or an old distribution).
However, the problem with this approach is that the sub-
optimality of the model trained over S suffers from the
limited size of S. Using larger window sizes helps with
achieving a better sub-optimality, but increases the recovery
time. Smaller window sizes, on the other hand, provide
better recovery time, but the sub-optimality of the algorithm
over S increases. An ideal algorithm manages the set S 
such that it contains as many as possible data points from
the current distribution and resets it whenever a (signifcant)
drift happens, so that it contains only data points from the
new distribution.

As noted in §1, prior work (Baena-García et al., 2006; Bifet
& Gavaldà, 2007; Gama et al., 2004; Harel et al., 2014; Pe-
saranghader & Viktor, 2016; Pesaranghader et al., 2018) has
sought to achieve this ideal algorithm by developing better
and better drift detection tests, but with limited success due
to the challenges of balancing detection accuracy and speed,
and the high cost of false positives. Instead, we couple
aggressive drift detection with a stable-state/reactive-state
process that mitigates the shortcomings of prior approaches.
Unlike prior drift detection approaches, DriftSurf views per-
formance degrading as only a sign of a potential drift: the
fnal decision about resetting S and the predictive model
will not be made until the end of the reactive state, when
more evidence has been gathered and a higher confdence
decision can be made.

Our algorithm, DriftSurf, is depicted in Algorithm 1, which is executed when DriftSurf is in the stable state, and Algo-
rithm 2, which is executed when DriftSurf is in the reactive

Algorithm 1 DriftSurf-Stable-State: Processing a set of train-
ing points Xt arriving in time step t during a stable state

0// wt−1(S), wt−1(S 0) are respectively the parameters
// (stream segments for training) of the predictive, and
// reactive models. Every W time steps starting with
// the creation of the current predictive model, we start
// a new “window” of size W .
// wb1, wb2 are the models with the best observed risk
//Rb1,Rb2 in the two most-recent windows W 1, W 2.
if condition 2 holds then {Enter reactive state}

state← reactive
T ← ∅ {T is a segment arriving during the last r/2 
time steps of reactive state}

0wt−1 ← w0, S 0 ← ∅ {initialize randomly a new reac-
tive model}
i ← 0 {time steps in the current reactive state}
execute Algorithm 2 on Xt 

else
wt ← Update(wt−1, S, Xt) {update w, S}

end if

Algorithm 2 DriftSurf-Reactive-State: Processing a set of
training points Xt arriving in time step t during a reactive
state

0// wt−1, S , wt−1, S 0 , wb1, wb2,Rb1,Rb2 are as defned
// in Algorithm 1, except that W 1, W 2 are the two most-
// recent windows started before the current reactive state.
if condition 2 does NOT hold then {Early exit}

state← stable
execute Algorithm 1 on Xt 

else
i ← i + 1 
wt ← Update(wt−1, S , Xt) {update w, S}

0 0 0w ← Update(wt−1, S 0 , Xt) {update w , S 0}t 
rif i = 2 then

0 0w ← w {take a snapshot of reactive model}f t−1 
else if 2 

r < i ≤ r then
add Xt to T 

end if
if i = r then {Exit reactive state}

state← stable
if condition 3 holds then

0wt ← wt, S ← S 0{change the predictive model}
end if

0else ifRXt (w ) < RXt (wt) thent 
0use w instead of wt for predictions at the next timet 

step {greedy policy}
end if

end if
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state. The algorithm starts in the stable state, and the steps
are shown for processing the batch of points arriving at time
step t. When in the stable state, there is a single model,
wt−1, called the predictive model. Our test for entering the
reactive state is based on dividing the time steps since the
creation of that model into windows of size W . DriftSurf 
enters the reactive state at the sign of a drift, given by the
following condition:

RXt (wb) > Rb + δ, where b = arg minb∈b1,b2Rb (2)

and δ is a predetermined threshold that represents the
tolerance in performance degradation (the selection of δ 
is discussed in §6), and wb1 (wb2) are the parameters
of the predictive model that provided the best-observed
risk Rb1 (Rb2) over the most-recent window W 1 (second
most-recent window W 2). E.g., Rb1 = (wb1) =RXb1+1 

minj∈W 1 RXj (wj−1). Although most drift detection tech-
niques rely on their predictive model to detect a drift, we
keep a snapshot of the predictive model that provided the
best-observed risk over two jumping windows of up to W 
time steps because: (i) having a frozen model that does not
train over the most recent data increases the chance of de-
tecting slow, gradual drifts; (ii) each frozen model is at most
2W time steps old which makes it refective of the current
predictive model; and (iii) the older of the models refects
the best over W steps, while the younger of the models is
guaranteed to have at least W steps that it can be used for
drift detection tests, which are both key factors in obtaining
our theoretical analysis.

If condition 2 does not hold, DriftSurf assumes there was
no drift in the underlying distribution and remains in the
stable state. It calls Update, an update process that expands
S to include the newly arrived set of data points Xt and
then updates the (predictive) model parameters using S for
incremental training (examples in Appendix A). Otherwise,

0DriftSurf enters the reactive state, adds a new model wt−1,
called the reactive model, with randomly initialized parame-
ters, and initializes its sample set S 0 to be empty. To save
space, the growing sample set S 0 can be represented by
pointers into S .

If, at time step t, DriftSurf is in the reactive state (including
the time step that it has just entered the reactive state) (Al-
gorithm 2), DriftSurf checks that condition 2 still holds (to
handle a corner case discussed below), adds Xt to S and S 0 ,
the sample sets of the predictive and reactive models, and

0updates wt−1 and wt−1. During the reactive state, DriftSurf 
uses for prediction at t whichever model w or w0 performed
the best in the previous time step t − 1. This greedy heuris-
tic yields better performance during the reactive state by
switching to the newly added model sooner in the presence
of drift.

Upon exiting the reactive state (when i=r), DriftSurf chooses
the predictive model to use for the subsequent stable state.

It switches to the reactive model w0 if condition 3 holds:

0RT (wf ) < RT (wb) − δ0 , where b = arg minb∈b1,b2Rb 
(3)

0and w is the snapshot of reactive model (at i = r/2), wbf 
is snapshot of the predictive model with the best-observed
performance over the last two windows and δ0 is set to be
much smaller than δ (our experiments use δ0 = δ/2). This
condition checks their performance over the test set of data
points T that arrived during the last r/2 time steps of the

0reactive state (note that neither wf nor wb have been trained
over this test set). This provides an unbiased test to decide
on switching the model. Otherwise, DriftSurf continues with
the prior predictive model.

Handling a corner case. Consider the case that a drift
happens when DriftSurf is in the reactive state (due to an
earlier false positive on entering the reactive state). In this
case, no matter what predictive model DriftSurf chooses at
the end of the reactive state, both the current predictive and
reactive models are trained over a mixture of data points
from both the old and new distributions. This will decrease
the chance of recovering from the actual drift. To avoid this
problem, DriftSurf keeps checking condition 2 and drops out
of the reactive state if it fails to hold (because the failure
indicates a false positive). Then the next time the condition
holds, a fresh reactive state is started. This way the new
reactive model will be trained solely on the new distribution.

Algorithm 1 and 2 are generic in the individual base learner.
For the experimental evaluation in §6, we focus on base
learners where the update process is STRSAGA (Jothimu-
rugesan et al., 2018), a variance-reduced SGD for streaming
data. Compared to SGD, STRSAGA has a faster conver-
gence rate and better performance under different arrival
distributions. The time and space complexity of DriftSurf is
within a constant factor of the individual base learner.

5. Analysis of DriftSurf 
In this section, we show that DriftSurf achieves goals G1
and G2 from §3. As in prior work (Bousquet & Bottou,
2007; Jothimurugesan et al., 2018), we assume thatH(n) = 
hn−α, for a constant h and 1 ≤ α ≤ 1, is an upper bound2 
on the statistical error over a set of n data points all drawn
from the same distribution.

Aware is an adaptive learning algorithm with oracle knowl-
edge of when drifts occur. At each drift, the algorithm
restarts the predictive model to a random initial point and
trains it over data points that arrive after the drift. The main
obstacle for other adaptive learning algorithms to compete
with Aware is that they are not told exactly when drifts
occur.

We assume that Aware and DriftSurf use base learners that
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effciently learn to within statistical accuracy:
Assumption 1. Let t0 be the time the base learner B was
initialized. At each time step t,

E[SUBOPTSt0,t (B)] ≤ H(nt0 ,t). 

As an example, a base learner that uses STRSAGA as the
update process satisfes Assumption 1 by Lemma 3 in (Joth-
imurugesan et al., 2018). We use STRSAGA in the bulk of
our experimental evaluation.

As a means of achieving goal G2 (sub-optimality on the
order ofH(ntd ,t) after a drift at time td), we will show that
the empirical risk of DriftSurf after a drift is “close” to the
risk of Aware, where close is defned formally in terms of
our notion of risk-competitiveness in Defnition 1.
Defnition 1. For c ≥ 1, an adaptive learning algorithm A 
is said to be c-risk-competitive to Aware at time step t > td 
if E[SUBOPTStd,t (A)] ≤ cH(ntd,t), where td is the time
step of the most recent drift and ntd,t = |Std ,t|.

We will analyze the risk-competitiveness of DriftSurf in a
stationary environment and after a drift. Additionally, we
will provide high probability analysis of the recovery time
after a drift (goal G1).

Let td1 , td2 , . . . be the sequence of time steps at which a
drift occurs. We assume that each drift at tdi is abrupt
and that it satisfes the following assumption of sustained
performance-degradation.
Assumption 2. For the drift at time tdi , and for both
frozen models wb ∈ {wb1, wb2} stored at tdi , we have

(wt−1) > Rb for each time tdi < t < asRXt tdi+1 

long as DriftSurf has not recovered. Furthermore, we
denote Δ to be the magnitude of the drift where Δ = 
minwb (RJ (wb) −RI (wb)) where I denotes the distribu-
tion at the time tdi − 1 before the drift, and J denotes the
distribution at tdi .

Typically in drift detection, the magnitude of a drift is de-
fned as the difference in the expected risks over the old
and new distributions with respect to the current predictive
model. But that defnition results in a moving target after
the drift but before replacement of the model, as the model
gets updated with new data, and possibly slowly converges
on the new distribution, making the drift harder to detect.
Instead in our approach in DriftSurf, detection is done on
frozen models snapshotted prior to the drift, and we accord-
ingly defne the drift magnitude with respect to the frozen
models. The implication of Assumption 2 is that after a
drift, the current predictive model being continually updated
with the new data does not automatically adapt to the drift
for at least W time steps and actually needs to be replaced.

Finally, we assume that all loss functions fx are
bounded [0, 1], that the optimal expected risk R∗ = It 

infw∈F RIt (w) = 0 for each distribution It, that the
batch size m > 16/δ0 , that each drift magnitude Δ > 
δ, that 2W is upper bounded by both exp( 1 mδ2) and2 
exp( 1 m(Δ − δ)2) for each drift magnitude Δ, and that2 
for each frozen model wb that yielded a minimal observed
riskRb, that its expected risk is at least as good as its expec-
tation.

5.1. Stationary Environment

We will show that DriftSurf is competitive to Aware in the sta-
tionary environment during the time 1 < t < td1 before any
drift happens. By Assumption 1 the expected sub-optimality
of Aware and DriftSurf are (respectively) bounded byH(n1,t) 
and H(nte,t), where te is the time that the current predic-
tive model of DriftSurf was initialized. To prove DriftSurf is
risk-competitive to Aware, we need to show that nte,t, the
size of the predictive model’s sample set, is close to n1,t.
To achieve this, we frst give a constant upper bound ps on
the probability of entering the reactive state:

Lemma 1. In the stationary environment for 1 < t < 
td1 , the probability of entering the reactive state is upper
bounded by ps = 2 exp(− 1 mδ2).8 

In the proof (Appendix B.1), we use sub-Gaussian concen-
tration in the empirical risk under a bounded loss function.

Besides, if DriftSurf enters the reactive state in the station-
ary case, Lemma 2 asymptotically bounds the probability
of switching to the reactive model by qs(β) to approach 0,
where β is the age of the frozen model wb used in condi-
tion 3.

Lemma 2. In the stationary environment for 1 < t < 
td1 , if DriftSurf enters the reactive state, the probability of
switching to the reactive model at the end of the reactive
state is bounded by qs = c1/β2 for β > c2, where β is
the number of time steps between the initialization of the
model wb and the time it was frozen, and the constants

1c1 = (2h/mα)mrδ0/4 and c2 = (2h/δ0)1/α.m 

In the proof (Appendix B.1), we use the convergence of the
base learner and Bennett’s inequality.

As the probability of falsely switching to the reactive model
goes to 0, DriftSurf is increasingly likely to hold onto the
predictive model. Using the above results, we bound the
size of the predictive model’s sample set to at least half of
the size of Aware’s sample set, with high probability.

Corollary 1. With probability 1 − �, the size of the sample
set S for the predictive model in the stable state is larger
than 1 n1,t at any time step 2W + c4/(� − c3) ≤ t < td1 ,2 
where n1,t is the total number of data points that arrived
until time t, and constants c3 = c1((c2 + W ) − 1/c2)ps 

2 2and c4 = (2c3 − 8)c1p + 6c1ps (where c1 and c2 are thes 
constants in Lemma 2).
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Based on the result of Corollary 1, we show that the pre-
dictive model of DriftSurf in the stable state is 41 

7 
−α -risk-

competitive with Aware with probability 1 − �, at any time
step 2W + c4/(� − c3) ≤ t < td1 . This is a special case of
the forthcoming Theorem 1 in §5.2.

In addition, it follows from Lemma 1 and Corollary 1 that
DriftSurf maintains an asymptotically larger expected num-
ber of samples compared to the standalone drift detection
algorithm that resets the model whenever condition 2 holds
(this algorithm is DriftSurf without the reactive state).

Lemma 3. In the stationary environment for 1 < t < td1 ,
let β be the age of the predictive model in DriftSurf and let
γ be the age of the model of standalone drift detection. For
(2W + 2c4 ) < t < td1 , E[β] > t/4 (where c3 and c4 are1−2c3 
the constants in Corollary 1). Meanwhile, even as t →∞ 
(in the absence of drifts), E[γ] > 1/ps − o(1).

When each model is trained to statistical accuracy (Assump-
tion 1), the total (statistical+optimization) error bound is
asymptotically limited by the statistical error for the number
of samples maintained. Hence, DriftSurf is statistically better
than standalone drift detection in a stationary environment.

5.2. In Presence of Abrupt Drifts

Consider an abrupt drift that occurs at time tdi , and let Δ be
its magnitude. Suppose the drift occurs while DriftSurf is in
the stable state. The case of drift occurring when DriftSurf 
is in the reactive state is handled in Appendix B.2. We
show that DriftSurf has a bounded recovery time (goal G1).
In order to do so, we frst give a lower bound pd on the
probability of entering the reactive state:

Lemma 4. For tdi < t < W , the probability of entering
the reactive state while DriftSurf has not yet recovered is
lower bounded by pd = 1 − 2 exp(−( 1 m(Δ − δ)2).8 

Next, we give a lower bound qd on the probability of switch-
ing to the reactive model at the end of the reactive state:

Lemma 5. For tdi < t < W , the probability of switch-
ing to the reactive model at the end of the reactive state
while DriftSurf has not yet recovered is lower bounded by
qd = 1 − 2 exp(−C2) where C = (Δ − δ0) 

√ 
mr/2 − 

2α+1h/(mr)α−1/2 subject to C > 0.

The proofs of the preceding two lemmas are similar to their
stationary counterparts due to the use of frozen models:
for the W time steps after the drift, by Assumption 2, the
previous frozen models will not be displaced by a newer
model that has been partially trained over data after the drift.

Following from Lemmas 4 and 5, the recovery time of
DriftSurf is bounded by W with a probability 1 − �r where
�r is parameterized by pd, qd, which is shown in Lemma 11
in Appendix B.2.

We next show the risk-competitiveness of DriftSurf after
recovery (goal G2). The time period after recovery until
the next drift is a stationary environment for DriftSurf, in
which each model is trained solely over points drawn from
a single distribution, allowing for an analysis similar to the
stationary environment before any drifts occurred.

Theorem 1. With probability 1 − �, the predictive model
7of DriftSurf in the stable state is 41−α -risk-competitive with

Aware at any time step tdi + 3W + c4/(�s − c3) ≤ t < 
, where tdi is the time step of the most recent drift andtdi+1 

� = �s + �r (where c3, c4 are the constants in Corollary 1).

At a high level, �r and �s, respectively, capture the error
rates in false negatives in drift detection and false positives
in the stationary period afterwards. The full proof is in
Appendix B.2.

6. Experimental Results
In this section, we present experimental results on datasets
with drifts that (i) empirically confrm the advantage of
DriftSurf’s stable-state / reactive-state approach over Stan-
dard Drift Detection (StandardDD), (ii) empirically con-
frm the risk-competitiveness of DriftSurf with Aware, and
(iii) show the effectiveness of DriftSurf via comparison to
two state-of-the-art adaptive learning algorithms, the drift-
detection-based method MDDM and the ensemble method
AUE. Both StandardDD and MDDM are standalone drift
detection algorithms, with the key difference being that
StandardDD’s drift detector matches the test used by Drift-
Surf to enter the reactive state, enabling us to quantify the
gains of having a reactive state. More details on these algo-
rithms, and additional algorithm comparisons, are provided
in Appendix C.1.

We use fve synthetic, two semi-synthetic and three real
datasets for binary classifcation, chosen to include all such
datasets that the authors of MDDM and AUE use in their
evaluations. These datasets include both abrupt and gradual
drifts. Drifts in semi-synthetic datasets are generated by
rotating data points or changing the labels of the real-world
datasets that originally do not contain any drift. We divide
each dataset into equally-sized batches that arrive over the
course of the stream. More detail on the datasets is provided
in Appendix C.2.

In our experiments, a batch of data points arrives at each
time step. We frst evaluate the performance of each al-
gorithm by measuring the misclassifcation rate over this
batch, and then each algorithm gains access to the labeled
data to update their model(s); i.e., test-then-train. The base
learner in each algorithm is a logistic regression model with
STRSAGA as the update process. More details on this base
learner, hyperparameter settings, and additional base learn-
ers, are provided in Appendix C.3. All reported results of
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Figure 1: Misclassifcation rate over time for CoverType, PowerSupply, and Electricity
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Figure 2: CoverType (update steps di-
vided among each model)
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Figure 3: All datasets, DriftSurf and
StandardDD under varying threshold δ 
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Figure 4: RCV1, DriftSurf and DriftSurf 
(no-greedy)

the misclassifcation rates represent the median over fve
trials.

We present the misclassifcation rates at each time step on
the CoverType, PowerSupply, and Electricity datasets (see
Appendix D.1 for other datasets) in Figure 1. A drift occurs
at times 30 and 60 in CoverType, at times 17, 47, and 76
in PowerSupply, and at time 20 in Electricity. We observe
DriftSurf outperforms MDDM because false positives in drift
detection lead to unnecessary resetting of the predictive
model in MDDM, while DriftSurf avoids the performance
loss by catching most false positives via the reactive state
and returning to the older model. CoverType and Electricity
were especially problematic for MDDM, which continually
signaled a drift. We also observe DriftSurf adapts faster than
AUE on CoverType and Electricity. This is because after an
abrupt drift, the predictions of DriftSurf are solely from the
new model, while for AUE, the predictions are a weighted
average of each expert in the ensemble. Immediately after
a drift, the older, inaccurate experts of AUE have reduced,
but non-zero weights that negatively impact the accuracy.
In particular, on CoverType, we observe the recovery time
of DriftSurf is within one reactive state.

StandardDD also suffers from false-positive drift detection,
especially on PowerSupply and Electricity. However, it out-
performs all the other algorithms on CoverType. It detects
the drifts at the right moment and resets its predictive model.
Following the greedy approach during the reactive state al-

lows DriftSurf to converge to its newly created model with
only a one time step lag.

Table 2: Average of misclassifcation rate (equal number of
update steps for each model)

ALGORITHM AUE MDDM Stand- DriftSurf Aware 
DATASET ardDD 

SEA0 0.093 0.086 0.097 0.086 0.137
SEA20 0.245 0.289 0.249 0.243 0.264
SEA-GRADUAL 0.162 0.165 0.160 0.159 0.177
HYPER-SLOW 0.112 0.116 0.116 0.118 0.110
HYPER-FAST 0.179 0.163 0.168 0.173 0.191
SINE1 0.212 0.176 0.184 0.187 0.171
MIXED 0.209 0.204 0.204 0.204 0.192
CIRCLES 0.379 0.372 0.377 0.371 0.368
RCV1 0.167 0.125 0.126 0.125 0.121
COVERTYPE 0.279 0.311 0.267 0.268 0.267
AIRLINE 0.333 0.345 0.338 0.334 0.338
ELECTRICITY 0.296 0.344 0.320 0.290 0.315
POWERSUPPLY 0.301 0.322 0.308 0.292 0.309

Table 2 summarizes the results for all the datasets in terms
of the total average of the misclassifcation rate over time.
In the frst two rows, we observe the stability of DriftSurf 
in the presence of 20% additive noise in the synthetic SEA
dataset, again demonstrating the beneft of the reactive state
while MDDM’s performance suffers due to the increased
false positives. We also observe that DriftSurf performs well
on datasets with gradual drifts, such as SEA-gradual and Cir-
cles, where the stable-state / reactive-state approach is more
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accurate at identifying when to switch the model, compared
to MDDM and StandardDD, respectively. Overall, DriftSurf 
is the best performer on a majority of the datasets in Table 2.
For some datasets (Airline, Hyper-Slow) AUE outperforms
DriftSurf. A factor is the different computational power (e.g.,
number of gradient computations per time step) used by
each algorithm. AUE maintains an ensemble of ten experts,
while DriftSurf maintains just one (except during the reactive
state when it maintains two), and so AUE uses at least fve
(up to ten) times the computation of DriftSurf. To account for
the varying computational effciency of each algorithm, we
conducted another experiment where the available computa-
tional power for each algorithm is divided equally among all
of its models. (A different variation on AUE that is instead
limited by only maintaining two experts is also studied in
Appendix D.2.) The misclassifcation rates for each dataset
are presented in Table 3, where we observe DriftSurf dom-
inates AUE across all datasets. The CoverType dataset is
visualized in Figure 2 (compare to Figure 1a for equal com-
putational power given to each model), where we observe a
signifcant penalty to the accuracy of AUE because of the
constrained training time per model.

Table 3: Average of misclassifcation rate (update steps
divided among each model)

ALGORITHM AUE MDDM Stand- DriftSurf Aware 
DATASET ardDD 

SEA0 0.201 0.089 0.097 0.094 0.133
SEA20 0.291 0.283 0.253 0.249 0.266
SEA-GRADUAL 0.240 0.172 0.161 0.160 0.174
HYPER-SLOW 0.191 0.116 0.117 0.130 0.117
HYPER-FAST 0.278 0.164 0.168 0.188 0.191
SINE1 0.309 0.178 0.180 0.209 0.168
MIXED 0.259 0.204 0.204 0.204 0.191
CIRCLES 0.401 0.372 0.380 0.369 0.368
RCV1 0.403 0.131 0.128 0.143 0.120
COVERTYPE 0.317 0.313 0.267 0.271 0.267
AIRLINE 0.369 0.351 0.338 0.348 0.338
ELECTRICITY 0.364 0.339 0.319 0.308 0.311
POWERSUPPLY 0.313 0.309 0.311 0.307 0.311

Another advantage of the stable-state / reactive-state ap-
proach of DriftSurf is its robustness in the setting of the
threshold δ. In general, drift detection tests have a threshold
that poses a trade-off in false positive and false negative
rates (for StandardDD, Lemmas 1 and 4 in §5), which can
be diffcult to tune without knowing the frequency and mag-
nitude of drifts in advance. Across a range of δ, Figure 3
shows the misclassifcation rates for DriftSurf compared to
StandardDD, averaged across the datasets in Table 2 (see
Appendix D.3 for results per dataset). We observe that the
performance of DriftSurf is resilient in the choice of δ. We
also confrm that lower values of δ, corresponding to ag-
gressive drift detection in the stable state, allow DriftSurf 
to detect subtle drifts while not sacrifcing performance
because the reactive state eliminates most false positives.

We also study the impact of the design choice in DriftSurf 
of using greedy prediction during the reactive state. While
in the reactive state, the predictive model used at one time
step is the model that had the better performance in the
previous time step, and then at the end of the reactive state,
the decision is made whether or not to use the reactive
model going forward. The natural alternative choice is that
switching to the new reactive model can happen only at the
end of the reactive state; we call this DriftSurf (no-greedy).
The comparison of these two choices is visualized on the
RCV1 dataset in Figure 4, where we observe the delayed
switch of DriftSurf (no-greedy) to the new model following
the drifts at times 30 and 60. The full results for each
dataset are presented in Appendix D.4, where we observe
that DriftSurf performs equal or better than DriftSurf (no-
greedy) on 11 of the 13 datasets in Table 2, and, averaging
over all the datasets, has a misclassifcation rate of 0.221
compared to 0.229.

Appendices D.5–D.8 contain additional experimental re-
sults. In Appendix D.5, we report the results for single-pass
SGD and an oblivious algorithm (STRSAGA with no adapta-
tion to drift), which are generally worse across each dataset.
Appendix D.6 includes results for each algorithm when
SGD is used as the update process instead of STRSAGA.
We observe that using SGD results in lower accuracy for
each algorithm, and also that, relatively, AUE gains an edge
because its ensemble of ten experts mitigates the higher vari-
ance updates of SGD. Appendix D.7 studies base learners
beyond logistic regression, showing the advantage of Drift-
Surf’s stable-state/reactive-state approach on both Hoeffding
Trees and Naive Bayes classifers. Finally, Appendix D.8
reports additional numerical results on the recovery time of
each algorithm.

7. Conclusion
We presented DriftSurf, an adaptive algorithm for learning
from streaming data that contains concept drifts. Our risk-
competitive theoretical analysis showed that DriftSurf has
high accuracy competitive with Aware both in a stationary
environment and in the presence of abrupt drifts. Further
analysis showed that DriftSurf’s reactive-state approach pro-
vides statistically better learning than standalone drift de-
tection. Our experimental results confrmed our theoretical
analysis and also showed high accuracy in the presence of
abrupt and gradual drifts, generally outperforming state-of-
the-art algorithms MDDM and AUE. Furthermore, DriftSurf 
maintains at most two models while achieving high accuracy,
and therefore its computational effciency is signifcantly
better than an ensemble method like AUE.
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