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ABSTRACT

Bacteriophages (phages) are an underutilized biological resource with vast potential for pathogen
control and microbiome editing. Phage research and commercialization has increased rapidly in
biomedical and agricultural industries, but adoption has been limited elsewhere. Nevertheless,
converging advances in DNA sequencing, bioinformatics, microbial ecology, and synthetic
biology are now poised to broaden phage applications beyond pathogen control towards the
manipulation of microbial communities for defined functional improvements. Enhancements in
sequencing combined with network analysis makes it now feasible to identify and disrupt
microbial associations to elicit desirable shifts in community structure or function, indirectly
modulate species abundance, and target hub or keystone species to achieve broad functional shifts.
Sequencing and bioinformatic advancements are also facilitating the use of temperate phages for
safe gene delivery applications. Finally, integration of synthetic biology stands to create novel
phage chassis and modular genetic components. While some fundamental, regulatory, and
commercialization barriers to widespread phage use remain, many major challenges that have
impeded the field now have workable solutions. Thus, a new dawn for phage-based (chemical-
free) precise biocontrol and microbiome editing is on the horizon to enhance, suppress or modulate
microbial activities important for public health, food security, and more sustainable energy

production and water reuse.

Keywords: bacteriophages, microbiome editing, pathogen control, indirect targeting, chemical-
free disinfection

Synopsis: Phages offer opportunities for chemical-free bacterial control, and recent advances in
sequencing, ecological network modeling and synthetic biology will facilitate their use to edit

complex microbiomes and modulate critical bacterial activities beyond pathogen control.
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INTRODUCTION

Bacteriophages (phages) are the most abundant, diverse and underutilized biological
resource in the biosphere.! These viruses exclusively infect bacteria and utilize different life cycles
to shape microbial communities through predation, transduction and reprogramming of bacterial
metabolism.? Lytic phages function as highly selective antimicrobial agents that can control target
bacteria with limited impact on the surrounding microbial community. Conversely, temperate
phages can stably integrate their genomes into the bacterial host genome (a process referred to as
lysogeny?), and have the potential to introduce genes that alter host function or fitness. Beyond
this, phages possess many innate characteristics that make them attractive for “chemical-free”
microbial control, including specificity, replicative potential, the capacity to mutate and co-evolve
with their host, a lack of residual toxicity, and sustainable production.*

Since the realization by Félix d'Herelle in 1917 that phages could kill bacteria,” phage
research has largely focused on developing therapies to treat a small number of well-characterized
pathogens, with renewed interest primarily driven by concerns over the emergence of multidrug
resistant bacteria.®” While phages are also being increasingly applied in the food and agricultural
industries,* their adoption for environmental engineering — including applications for more
sustainable energy production and water reuse — has received limited attention (Figure 1).
Expansion of phage applications have been partly hampered by recent well-publicized failures of
phage therapy in clinical trials.'®!® Nevertheless, there are many potential applications beyond
their traditional use for pathogens control in which phages could be an effective and precise tool
for manipulating more complex and dynamic microbial communities to enhance, suppress or

modulate specific microbial processes.
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This article examines the current status of phage technology and analyzes the main barriers
preventing the transition from proof-of-concept research to commercialization and expansion of
phage applications. We also discuss how the convergence of advances in sequencing,
bioinformatics, microbial ecology and synthetic biology are enabling microbiome editing and the
development of novel phage-based microbiome editing strategies that contribute to sustainable
development.

EMERGING OPPORTUNITIES FOR PHAGE-BASED BIOCONTROL
Sequencing with higher taxonomic resolution may broaden phage-based biocontrol
applications. Phage-based biocontrol strategies have been proposed for numerous challenges

within environmental engineering, such as hydrocarbon reservoir souring,'* biofouling,' !¢

17. 18 agricultural methane emissions,'® and harmful algal

activated sludge foaming and bulking,
blooms.?® However, few of these proposed applications have progressed further than lab-scale
demonstrations. The foremost exceptions to this are in the agricultural sector in the use of phages
as alternatives to antibiotic feed additives,?! pesticides,?? or disinfectants,?®> with some products
now commercially available and several more in development (Figure 1). These products, and
most biomedical phage applications, are generally developed to control a single well-defined
bacterial target, while many proposed environmental phage applications seek to address a specific
property or function of a microbial community, such as biofouling, hydrocarbon reservoir souring
and microbial-induced corrosion. As most characterized phages are species- or strain-specific,?*
uncertainty of target species identity or the need to control multiple species substantially increases
implementation difficulty relative to broad-spectrum antibiotics and biocides.

Understandably, the difficulty of designing a phage-based biocontrol strategy is

proportional to the number of species encoding the metabolic function or property of concern. For
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example, there are over 60 genera and 220 species of sulfate-reducing bacteria®® that could be
targeted to mitigate corrosion or hydrocarbon reservoir souring. While phage cocktails that target
single species have been commercialized, attempting to develop predefined cocktails for problems
caused by multiple species is impractical. In such circumstances, the use of system-specific
sequencing may be necessary to characterize the microbial community at sufficient taxonomic
resolution to determine how many relevant species are present and in what proportions. While just
a few years ago this may have been costly and challenging, recent advances in sequencing
technology and simultaneous reductions in cost have now made this an accessible and routine
task.26- 27

Beyond knowledge of the microbial community composition, phage-based approaches
benefit from detailed knowledge of the target bacterium, recognizing that major functional
differences can exist between strains of the same bacterial species. For example, E. coli Nissle
1917 is a probiotic strain used to treat inflammatory intestinal diseases® while E. coli O157:H7 is
a serotype that causes severe, acute hemorrhagic diarrhea.”” Indeed, many strains of the same
species share a common core genome, but may contain vastly different accessory genomes,
putatively as a result of extensive horizontal gene transfer. ** Thus, high taxonomic resolution of
microbiome data is critical for informing and broadening phage-based biocontrol or microbiome
editing applications. Previously, most microbiome studies utilized partial 16S rRNA gene
amplicons that typically only provide genus-level resolution, which is insufficient for developing
more selective microbial control approaches.’!** However, the development of shotgun
metagenomic sequencing and long-read sequencing technologies have facilitated species-level
analyses (in some cases even strain-level) while also increasing data throughput, reducing costs,

and enhancing de novo genome assembly accuracy.’* Indeed, starting from a phage lysate or
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environmental sample, it is now possible to produce a fully annotated phage genome or conduct a
microbial community analysis in less than a day, at higher accuracy and resolution than previously
possible.?> 3¢ Such advances in sequencing are enhancing the use of phages by providing detailed
information on their specific targets as well as their interactions with the surrounding microbial
community.

Network analysis may expand phage applications. Historically, the analytical techniques used
to study microbial communities have focused on a standardized set of properties, predominantly
diversity metrics. Recently, the ever-increasing size and number of high-resolution metagenomic
datasets has facilitated the application of network analysis towards better understanding of
complex microbial associations. Network analysis enables the exploration of direct or indirect
interactions between co-existing microorganisms and possible identification of keystone species.*”
38 Indeed, several recent microbiome studies have incorporated ecological network analysis to
explain the relationships between different taxa and identify keystone species that are critical for
community stability and function.’**! For example, Arthrobacter, Acidobacteria, Burkholderia,
Rhodanobacter, and Rhizobium were identified as keystone taxa across three agroforestry systems,
and were correlated with soil organic carbon content.*? Another study in seawater found that
biofilm formation on iron plates coated with anti-fouling paint was initiated by Alteromonas
genovensis.*> Harnessing network analysis to target pertinent bacterial taxa may expand phage
applications, though current models that predict microbial interactions are often generated from
pairwise experiments and co-occurrence networks and the relationships within microbial
communities (which can include hundreds if not thousands of taxa) are often inferred based on the

simplifying assumption that such interactions are fixed rather than dynamic.*



114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

More robust species-level network models have the potential to transform phage-based
biocontrol by identifying microbial associations that can be disrupted to elicit desirable shifts in
microbial community structure or function. For example, phage interventions are generally
considered a “subtractive technology” in that they can be used to clear niches and/or suppress a
particular species. However, the identification of strong correlations via network analysis enables
the use of phages to indirectly increase species abundance by targeting competitors, predators or
amensalistic bacteria (Figure 2a). Multi-layered biocontrol strategies can also be developed to
provide stronger or more durable bacterial inhibition by creating phage cocktails that
simultaneously target various species with mutualistic, syntrophic or commensalistic interactions
with the primary target for indirect suppression (Figure 2b). Importantly, several studies have
reported the indirect modulation of species abundance after phage application,* which provides
some precedent for this approach. For example, ingestion of a probiotic in combination with an
E. coli phage cocktail decreased Desulfovibrio concentrations and increased Lactobacillus
colonization relative to treatment with the probiotic alone.*® Indirect modulation of species
abundance can also be used in circumstances where the primary target is too difficult to culture
(for phage isolation and production) or present at cell densities insufficient for sustaining phage
replication. In such cases, highly abundant and culturable species could be aimed at by phages to
disrupt interactions benefiting the unculturable target species (e.g., cross feeding). In
circumstances where an unwanted metabolic pathway or activity is encoded by too many
different species to practically target, network analysis could be used to identify hub or keystone
species integral to the stability of that network module or niche.

With current advances in accessibility and volume of metagenomic sequencing,**

network models should be built de novo for any environment in which phage might be used and,
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phage-based perturbation studies should be conducted to directly validate causation instead of
relying on correlations. Better understanding of the ecological relationships between taxa and
their respective phages not only advances general scientific inquiry but could concretely improve
the ability to edit complex microbiomes to improve the efficiency and sustainability of some
industrial processes.

Temperate phage selection, applications and manipulation are facilitated by phage genome
sequencing and improved annotation. Historically, lytic phages have been used to directly target
pathogens or other detrimental species of concern while temperate phages were typically avoided
for therapeutic or biocontrol purposes. This is due to their innate propensity to enter lysogeny,
which protects the lysogen (a bacterium containing a prophage) from further infection and limits
the initial bactericidal effect.> Additionally, as prophage survival is linked to host survival, many
phages have acquired genes that enhance host fitness, including some that may present safety
issues. Despite these concerns, temperate phages possess several advantageous features, including
the ability to deliver or disrupt specific genes and propagate in environments suboptimal for lytic
lifecycles. Notably, the isolation of purely lytic phages can be difficult for certain species (and in
some cases has proven impossible) while temperate phages are generally highly abundant, with
the majority of bacterial genomes deposited in the National Center for Biotechnology Information
database containing prophage sequences.*’ Thus, they can be much easier to isolate, and
sometimes the only practical source of phages for a given species. Once isolated, the editing of
temperate phages can be much more straightforward using strategies such as recombineering
instead of more conventional cloning methods.***

Advances in sequencing technology have enabled rapid and cost-effective characterization

of phage genomes, which has become an integral component of product development to ensure the
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absence of genes encoding virulence factors, toxins, or antibiotic resistance determinants. This
enhanced capacity to assemble and analyze phage genomes has renewed interest in the use and
development of temperate phages. Several studies have reported successful inhibition when

30.51 in cocktails,>® or in combination with antibiotics.

utilizing temperate phages, individually,
Moreover, virulent mutants of temperate phages which have lost the capacity to enter lysogeny
through mutations or indels (genomic insertions or deletions) have similar propagation dynamics
and behavior to lytic phages. Such phages occur spontaneously at low frequency, though this
process can be accelerated using various in vitro methods.’*>° Low-cost sequencing makes it
feasible to screen such mutants and ensure they are truly lytic and have a low probability of
reversion. However, as many phage genes have yet to be characterized, the use of temperate phages
should be constrained to low-risk applications, or situations where appropriate risk mitigation
measures can be implemented.

Phages as gene delivery vectors. Beyond their use for biocontrol, phages can also be harnessed
for gene delivery, to enable the host to produce natural or transgenic proteins, including enzymes.
For example, phages could be used to deliver (or increase transcription of) genes for contaminant
biodegradation, biofilm disruption, or increased killing efficiency of competing bacteria.
Alternatively, unwanted gene activity can be repressed without necessarily killing the host to avoid
selective pressure that might result in phage resistance.® >’ When gene delivery strategies are
informed by prior microbial community characterization, the most abundant species within a
community can be targeted to ensure phage proliferation and the highest levels of gene expression.

Moreover, harnessing the native community circumvents challenges associated with survival of

exogenous species’® — the most common cause of bioaugmentation failure. Yet, despite the vast
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potential to engineer phages for such purposes, transgenic manipulations would create significant
regulatory barriers for many environmental applications and need to be carefully considered.

Though phage-mediated gene delivery has been proposed to enhance the biodegradation
capabilities of indigenous bacteria,>® the vast majority of engineered phages are derived from
model phages (e.g., T7, M13) that infect only E. coli.®° The development of more efficient and
universal methods of phage engineering is needed to enable gene delivery to a wider range of
environmentally and industrially relevant species.

Alternatively, metagenomic sequencing has made it possible to identify naturally occurring
phages that already encode important metabolic pathways. Such phages have the potential to be
utilized within a much more permissive regulatory framework. For example, environmental
viromes from arsenic- and chromium-impacted soils were found to be enriched in auxiliary
metabolic genes (AMGs) involved in transport and speciation of those metals.%! > Theoretically,
phages containing such AMGs could be isolated and used to enhance microbial community
resistance to metal-induced stress, or to control metal speciation for remedial purposes. Once
identified in a dataset, AMG-containing phages could be isolated from samples as prophages using
media or enrichment cultures selective for their host. Interestingly, recent studies investigating the

6466 and even in soils* have

effects virome transplants in a murine model,®® between people
demonstrated large shifts in microbiome composition and function, with expansion of previously
low abundance species possibly the result of AMG acquisition. This highlights the role phages can
play as “additive” microbiome editing tools (e.g., by increasing species growth) rather than simply
serving as subtractive or inhibitory agents.

Synthetic biology can accelerate, standardize and enhance phage development for broader

applications. Through the application of engineering principles to biological systems, synthetic
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biology stands to expand phage-based technology by facilitating the creation of novel phage
chassis and modular genetic components. Several phage genomes have been completely assembled

67-68

using only synthetic DNA oligonucleotides, allowing for rapid and large-scale genome

9

modification® and refactoring’® while simultaneously circumventing low recombination

efficiency associated with in vivo genome engineering. Moreover, synthetic phage genomes can

t’! or cell-free systems,’? which suggests the potential for phage

be “rebooted” in non-hos
production against unculturable hosts.

The significant relationship between phage research and synthetic biology cannot be
understated as it has generated various tools that advanced the ability to manipulate biological
organisms and biological systems. One example is the clustered regularly interspaced short
palindromic repeat (CRISPR)-associated systems (Cas),”> 7* a tool that enables precise genetic
manipulations in various of organisms for numerous applications. Other examples are the use of
integrases for the generation of genetic circuits and sensors,”> 7® the use of phage RNA
polymerases to control gene expression’’ and transcriptional regulators for creation of biological
switches and oscillators.’”® On the other hand, phage genome manipulation has enabled the creation
of phages harboring depolymerases with enhanced ability to enzymatically disperse biofilms,”
and phages with extended host range and stability useful in biomedical applications.®® 8! There are
also multiple examples of phage proteins and sub-structures that can be used to design biomaterials
with highly tunable properties. A few worth mentioning are phage-based nanomaterials for

lithium-ion batteries,*> %

phage capsid nanoparticles that can block viral infection,** and the use
of M13 bacteriophage as piezoelectric material to generate electrical energy®® among many others.

Overall, the ability to move, minimize and refactor phage genomes to later re-boot them in wall-

less bacteria or yeast’! have reinvigorated interest and opened new avenues for high-precision

10
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microbial manipulation. While the creation of engineered phages presents substantial technical
and regulatory challenges, it also yields major benefits for intellectual property protection and
standardization greatly accelerates new product development. For example, imagine a universal
phage chassis that can be selectively targeted by only swapping out the receptor binding domain.
This would not only reduce the need to isolate new phages, but culture optimization, scale up,
stability testing, purification process design, and formulation would only need to be conducted
once. The feasibility of such a system is within reach because the mosaic nature of phages®®
makes them well suited to swapping components through promiscuous recombination. Though a
streamlined system has yet to be brought to market, there is a robust body of work demonstrating
that tail-fiber mutagenesis can broaden phage host range,®” as well as design principles and
strategies that could be used to this end.3®

IMPLEMENTATION BARRIERS AND ENABLING STRATEGIES

Fundamental and technological implementation challenges. Many studies have demonstrated
phage applications in the laboratory but fail to translate these benefits into the field. Issues that
need to be considered include whether phages can reach their hosts due to environmental
challenges (e.g., poor diffusion through biofilms or survival at low pH), whether host
concentrations are sufficient to sustain lytic phage replication, and whether phages isolated and
developed under laboratory conditions are suitable for field use (Figure 3). The combination of
improved environmental characterization and network analysis alongside strategies such as in
vitro adaptation, selection or engineering of polyvalence® to combat the challenge of narrow
host ranges, and the use of natural or engineered phages conjugated with other nanomaterials”
may enable phage applications to succeed where they have heretofore failed in industrial and

environmental systems.

11
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As with any emerging technology or material, unintended consequences need to be
considered to ensure that phage applications evolve as a tool for sustainability rather than a
liability. This includes a proactive assessment of potential disruption of microbial ecology. One
common concern is the potential for transduction and enhanced dissemination of pathogenic or

9193 or other genes that endow host bacteria with a competitive

antibiotic resistance genes
advantage that results in detrimental consequences. For example, phages from arsenic-resistant
bacteria can transduce arsenic-resistance genes such as arsC, which codes for As(V) reduction to
excretable (via efflux pumps) but more toxic As(III)).%! This transduction was observed to
change arsenic speciation and increased soil toxicity. Another unintended consequence is the
counterintuitive stimulation of biofilm growth and densification by polyvalent phages applied at
relatively low concentration (e.g., 10% pfu/mL),* which might accelerate biofouling,
biocorrosion, or other biofilm-related water quality problems. Another concern is the fear of
extensive phage use leading to widespread phage resistance, ushering in another problem akin to
that of the spread of antibiotic resistance.”> However, the tendency for phages to have a narrow
host range near eliminates the chance of horizontal gene transfer to distant taxa, and bacterial
immunity to phage via clustered regularly interspaced short palindromic repeats (CRISPR) or
modification of surface receptors is highly specific and unlikely to provide adaptive value even
in the unlikely event it is disseminated to other genera.”®

Regulatory concerns and commercialization roadblocks. Regulators want assurances that
products will be safe, effective, and standardized. The safety of eukaryotic organisms from
phages is inherent in phage biology; these viruses are only able to infect and reproduce inside
bacteria.”’ Indeed, the healthy human gut is estimated to host at least 10'° phage particles at any

given time, and investigations of interactions between phages on eukaryotic immune and

12
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neurological systems found no harmful effects.’® In terms of effectiveness, phage-based
biocontrol applications in environmental and industrial processes should recognize that phage
therapy using a single phage resulted in resistance development by the target host in 7.5 to 85.7%
of cases, depending on the pathogen.”® Therefore, in the face of bacteria developing resistance to
phages, synergistic cocktails’’ or sequential treatment should be established as standard practice.
Well documented shortcomings and failures®®!% in clinical phage therapy such as rapid
resistance development and the long and complicated road to approval as a medicine are of lower
concern in industrial and environmental applications. Designating certain phage products as
GRAS (Generally Recognized as Safe) is a particularly favorable strategy to overcome potential
regulatory or public acceptance barriers (Figure 3). In the case of engineered phages,
differentiating between cisgenic and transgenic modifications (which is the strategy used by
Pivot Bio to develop nitrogen fixing biofertilizers!’!) may help streamline commercialization.
There is great potential that further research and testbed demonstrations will overcome
commercialization roadblocks (Figure 3). Precedent was set by promising or proven phage
products currently on the market for medical and agricultural applications. For example, an EPA
approved phage product!®? (XylPhi-PD™) targets the etiologic agent of Pierce’s disease in
grapes (Xylella fastidiosa) and was shown to reduce the abundance of this phytopathogen by
several orders of magnitude and eliminate this disease when administered prophylactically.'®
Another example is PreforPro, a phage plus probiotic product produced by Deerland Probiotics

46,105 3nd found to

& Enzymes'™ which was tested in a series of human clinical studies
selectively reduce target organisms without significant disruption of the gut community as well

as a reduction in gastrointestinal inflammation. Interest is clearly resurging in the medical field

also, through compassionate use of phage therapy at the George Eliava Institute of

13



297  Bacteriophage, Microbiology and Virology (active since the 1930s in Tbilisi, Georgia and co-
298  founded by D’Herelle),'® IPATH (the Center for Innovative Phage Applications and

299  Therapeutics - the first phage therapy center in the United States in 2016 at the University of
300 California, San Diego)'%” and the recent efforts of the TAIL®R (Tailored Antibacterials and
301 Innovative Laboratories for phage (®) Research) initiative at Baylor Medical School (Houston,
302  Texas).!®

303 OUTLOOK FOR FUTURE OPPORTUNITIES

304 Many success stories in the clinical realm are limited to tailored treatment which is far
305 removed from the vision of widely distributed broad range phage preparations that make

306 attractive investments.!” However, as the sequencing and network analysis technology

307 advances, the use of phages as microbiome editing tools could be approached more holistically
308 for faster innovation and broader commercialization. Expanding phage applications to

309 environmental, industrial, and more nuanced agricultural niches would be a logical next step.
310 Advances in nucleotide sequencing technologies, omics analyses and data sciences are
311  facilitating system-specific characterization of microbiomes and associated ecological networks
312 to discern bacterial targets for customized (direct or indirect) microbiome editing. Eventually,
313  accessible “personalized” manipulations might even be possible for gut microbiome

314  development to enhance public health or for other non-traditional applications discussed below.
315  Realizing this potential, however, will require obtaining and broadly sharing species level

316  microbiome and virome data from various systems, which would be facilitated by more frequent
317  sequencing and publishing of isolated phage sequences, and utilizing tools such as HI-C to better

318 understand phage-host linkages.!!® The creation and expansion of public phage libraries and
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banks, similar to those that exist for bacteria, would also facilitate selection and formulation of
phage cocktails for various applications.

Precise microbiome editing opens unprecedented opportunities to enhance or suppress
specific microbial activities, which would expand phage applications beyond the traditional use
for controlling antibiotic-resistant pathogens in clinical settings. Broader phage-based biocontrol
applications could include enhanced food security through higher crop productivity and
resilience to climate-related stress (e.g., thizosphere or phyllosphere'!! microbiomes edited to
increase water and nutrient retention or nitrogen fixation in soil, or to produce in planta growth-
stimulating hormones), increased feed efficiency for livestock production (e.g., rumen
microbiome manipulations to mitigate non-productive feed utilization by methanogens), and
mitigation of antibiotic resistance propagation by animal agriculture (e.g., by replacing or
minimizing the use of antibiotics that exert selective pressure for resistance development). Phage
based biocontrol could also enhance chemical-free water treatment and reuse!!? (e.g., to control
Nocardia foaming in activated sludge systems''® and harmful algal blooms'!'* in source waters,
as well as biofouling of filtration membranes, contactor surfaces!!> or storage tanks).
Microbiome manipulation could also bring significant benefits to energy production, ranging
from enhanced carbon sequestration by increasing plant productivity, to mitigation of methane or
sulfide emissions. Other microbial activities important to the energy industry that could be
controlled theoretically via phages include those associated with hydrocarbon reservoir souring
(mainly associated with sulfidogenic bacteria) and associated infrastructure corrosion (Figure
1).116

Synthetic biology could be a revolutionary approach to empower lysogenic and

filamentous phages as gene delivery vectors to endow indigenous bacteria with enhanced fitness

15
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or novel metabolic capabilities for bioremediation or biorefining purposes. Other properties that
could be engineered in phages include altering tail fibers to be used as biosensors or enabling
phages to display proteins that serve as selective adsorbents to recover rare earth metals or other
high-value elements (Figure 4). Nevertheless, genetic engineering of phages will likely face
some regulatory and public acceptance hurdles, particularly if the genetic manipulations are
transgenic rather than cisgenic.

Similar to other emerging technologies, phage-based biocontrol for non-traditional
applications will need to carefully consider and mitigate potential system-specific failure modes
and unintended consequences. Proactive risk assessment will be important to enhance public and
regulatory acceptance. Overall, we have come a long way since d’Herelle first proposed phage
therapy, and phage-based biocontrol is likely to experience a renaissance inspired by novel,
chemical-free strategies to edit microbiomes and enhance, suppress or modulate microbial

processes important for sustainable development.
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P — Pathogen Control

R | M | — Infrastructure Protection
- R — Resource Enhancement/Recovery
nergy M — Problem Mitigation
R Pl
Water
R
M P &
Biomedical
Ideation Commercialization
Technology Readiness Level
Reduction of pathogen load in water systems 117118
Pathogen Control Pathogens in food supply chains 23119120121122123
Targeted elimination of bacteria known to Recurrent antibiotic resistant infections (pre-clinical and
cause disease in humans compassionate use) 100107108124 125 p* denotes approved phage
prOdUCtS for human use 46 104 105 106 126 127 128 129 130
Corrosion of energy related infrastructure 116131
Infrastructure Protection Water pipe corrosion and clogging ***
. . . . . Membrane biofouling 1> 16
Mitigate m!croblal-related deterioration or | i o< in water distribution systems 112
monitor process performance Replace corrosive/toxic cleaning disinfectants 133

Point of care diagnostics 134 135

Extraction of bio-lipids 136
Nanomaterial synthesis 8283

Resource Enhancement/Recovery Protect marine systems (e.g. coral pathogens, harmful algal
Improve resource production & utilization | blooms) 15713813
Feed supplementation for livestock growth enhancement 140 141
Antibiotic use reduction or replacement 142

. . Hydrocarbon reservoir souring 14
Problem Mitigation Control lactic acid bacteria in bioethanol fermentation 143 144 145

Prophylactically mitigate interference with | Activated sludge bulking and foaming 712

8922102
resource recovery or process performance | Phytopathogen treatments #2221
Broad gut microbiome manipulation 146

Figure 1. Technology Readiness Level progress of phage applications in various fields. TRL
1-Ideation, TRL 2-Basic research, TRL 3-Proof-of-concept, TRL 4-Small prototype, TRL 5-Pilot
scale, TRL 6-Prototype system, TRL 7-Demonstration system, TRL 8-Commercial system, and

TRL 9-Full commercialization. Selected applications are expanded in the accompanying table.
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Figure 2. Indirect fostering or suppression of growth of species of interest by phage biocontrol.
Novel phage biocontrol strategies to (A) foster or (B) suppress the growth of other species of

interest, informed by advanced sequencing and omics analysis.
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Adaptation of lysogenic phages,
indirect targeting, synthetic
biology

Narrow host ranges
Phage cocktails, polyvalent
phages, and host-range
expansion

Insufficient hast density
Polyvalent phages, indirect
targeting

Biofilm accessibility
Natural or engineered phages
with depolymerases, combination
treatment

Phage resistant bacteria
Sequential phage application,

combination treatment or phage

training

Phage product stability
Phage encapsulation and
controlled release, in vitro

adaptation

Regulatory concerns
Creation of standards separate
from current medical antimicrobial
guidelines, GRAS, favor cisgenic
over transgenic editing

Low investment
Increased public education &
outreach, focus on high ROI

applications

Figure 3. Potential roadblocks and challenges facing phage applications on the road to

commercialization. Challenge is in bold italics, possible strategies and solutions to overcoming

these challenges are below
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Figure 4. Phage components that could be modified by synthetic biology to enable phage-based
microbiome editing and other functions.
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