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ABSTRACT

This research was undertaken to comparatively assess the unprecedented travel and activity
conditions related to the onset of COVID-19 in the US in the first half of 2020. In the work,
roadway travel volumes were used to relate government directives for social separation and the
progression of COVID-19 cases in ten diversely populated and located states. Among the key
contributions of the research were its illustration of the amounts and time scales of public
response to public closures across the country and the general finding that overall, governmental
directives, as reflected through rapid traffic decreases, likely served their purpose. Another key
finding was that by June 1%, no state returned to routine levels of travel. Combined, the results
of this study illustrate the results of governmental actions with respect to the course of the virus,
including how varied timings of responses reflected outcomes based on the levels of threat and
characteristics of individual locations. It is expected that this paper will be of use to
practitioners, governmental, and researchers to assess and develop plans for future similar major

events and emergencies.
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INTRODUCTION

The 2020 global coronavirus infectious disease (COVID-19) pandemic brought historically
unprecedented levels of global social and economic disruption. Concerns over the effects of the
virus and the limited capability to treat it, coupled with its rapid spread and unknown mechanism
of transmission during its onset, prompted public officials throughout the world to issue
directives to limit person-to-person contact. Interestingly however, governmental action to slow
the spread of the virus varied widely from country to country. In the United States (US), where
governmental authority is distributed between federal, state, and local bodies and population
density varies widely, restrictions were also varied in terms of the timing, type, and level of

limitations that were placed on citizens.

During the early stages of the virus in the US, state-level governmental directives most
commonly began with Declarations of Emergency. While the effect of these actions on
influencing or restricting personal movement and interaction is unknown, they gave states a legal
basis upon which to make and enforce restrictions to protect the public. With these declarations,
authorities were able to impose limitations on public activities and prohibit large gatherings of
people. In most states, restrictions started with school closures and “‘stay-at-home™ requests,
progressed to limits on non-essential businesses like gyms and bars, then ultimately lead to the

cancellation of sporting events and concerts and closure of theme parks and movie theaters.

While there is little doubt that assessments of the complex and significant impacts of the
COVID-19 pandemic will go on for years to come, there is also a need for rapid and immediate
assessment of efforts and outcomes as they continue to evolve. One of the most critical of these
is the need to assess public acknowledgement and adherence to governmental calls to isolate and
separate from one another and determine their relationship to COVID-19 case rates. Given the
near-infinite potential for person-to-person interaction and the virtual impossibility to
comprehensively monitor the movement of individuals, it can be difficult to make community-
wide assessments of social activity, interaction, and quantify the temporal and spatial response of
the public to governmentally mandated limitations. Contact-tracing is a widely used (Dhillon
and Srikrishna 2018) and effective method to assess personal interaction and virus transmission
in epidemics and health emergencies. However, this method was not viable during the onset of

COVID-19 in the US because of the large percentage of asymptomatic cases and the limited
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ability to get timely test results (Kretzschmar et al. 2020). Another metric that has been applied
to assess behavioral response during COVID-19 was public travel (e.g., Parr et al. 2020).

Because it is so ubiquitous, travel, particularly vehicular roadway travel, can be used to show
movement and activity across wide geographic areas and over long time durations. A recent
study by Parr et al. (2020) found that traffic volume data collected in the State of Florida during
the onset period of the COVID-19 pandemic provided a reliable, low-cost, comprehensive,
consistent, and readily available source of data that shows levels of public activity. While most
traffic volume data sources do not disaggregate the activities of individual travelers and cannot
describe travel purpose, such data can be used as a surrogate representation of the level of public
movement and the general level of interaction at aggregate levels. Traffic volume data is also
valuable because it reflects location-specific conditions over time and by roadway class. In most
states, traffic volume is recorded continuously by networks of automated collectors on
representative freeway and arterial roads throughout urban, suburban, and rural regions. This

also gives it consistency across states.

In the research described in this paper, traffic volume was used to show the effects of
government-mandated social distancing directives and the progression of COVID-19 cases.
Cases were selected as the health metric over hospitalizations and deaths because the cases are
more directly related to travel and exposure. Hospitalizations and deaths occur with variable
timeframes and depend on complex individual health factors and healthcare system differences.
This work is unique and useful because it examines behavioral responses and COVID-19
infections during the onset, low point, and initial activity recovery periods. The paper also
demonstrates the impact of travel on COVID-19 infections in terms of declines and increases as
restrictions were implemented and then eased across ten states. The states in the study were
selected to reflect varying populations, governmental reactions, numbers of COVID-19 cases,
and even political orientation, as responses tended to be influenced by political leaning of the

governmental authority.

The paper includes four primary sections that highlight and summarize the primary
components of the study. The first is a brief review of related efforts and reports to examine the
travel and health outcomes of governmental restrictions during the onset of the COVID-19 in the

United States. This is followed by a description of the data and methods of the research. This
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section includes a description of state traffic count data collection systems and national COVID-
19 databases and how their output was used for this study. This is followed by a presentation
and discussion of the analytical testing of the data and the findings that were gathered from it.
Finally, the paper concludes with a discussion of what these data and results may be suggesting,
especially in terms of policy guidance - both existing and future - and the public response to

government guidance and recommendations.

BACKGROUND AND PRIOR ANALYSES

Crowding has negative impacts on health outcomes with respect to viruses. For instance,
crowded neighborhoods were correlated with influenza-associated hospitalizations for children.
Such hospitalizations were at least twice as likely in areas with higher levels of household
crowding (more than one occupant per room) than in low crowding areas (Yousey-Hindes and
Hadler 2011). While households’ ability to control crowding in their residences is limited, social
contact outside the home is influenced by strategies such as social distancing. The degree to
which the public avoids gathering in public areas may be influenced by culture (Huynh 2020),
although cultural heterogeneity exists within countries. Gender may also play a role, as survey
results found that males were less likely to alter their travel patterns in response to possibly
spreading influenza (Hotle et al. 2020). During a pandemic, social distancing’s benefits include
reducing the spread of a disease, delaying and reducing the size of the peak, and spreading cases
over time, thus reducing the burden on the health care system (Fong et al. 2020). School closures
can help reduce social contacts and are part of many countries’ pandemic plans (Sadique et al.
2008). School closures can reduce transmission of viruses, such as influenza (Stevenson et al.
2009). However, once schools reopen, disease transmission tends to increase (Jackson et al.
2013). For COVID-19, the loosening of broader restrictions may similarly be associated with a

rise in cases.

The impact of COVID-19 on general mobility has been remarkable in terms of its speed and
extent. A survey conducted in the Netherlands found that 80 percent of respondents reduced their
outdoor activity with overall trip reductions of 55 percent (de Hass et al. 2020). Further survey
results from Australia discovered household trips reduced by over 50 percent across all modes
and the proportion of transit trips decreased from a pre-lockdown level of 14 percent to just 7

percent (Beck 2020). A study of roadway detectors in Florida found that vehicle volumes across
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the state had dropped by 47.5 percent (Parr et al. 2020). Work has also attempted to correlate
mobility habits and the proliferation of COVID-19. In Italy, the number of daily new COVID-19
cases was related to trips performed three weeks earlier (Carteni et al. 2020) and another study
found that mobility reductions had a significant impact on reducing COVID-19 cases in the

United Kingdom (Hadjidemetriou et al. 2020).

Air travel has been similarly impacted, with 98 percent of passenger revenues experiencing
severe restrictions (Suau-Sanchez et al. 2020). An analysis of prior events affecting air transport
suggested unemployment in the airline workforce could range between seven and thirteen
percent (Sobieralski 2020). Forecasting models suggested that reductions in air travel could
reduce global gross-domestic product by nearly two percent (Iacus et al. 2020). Another avenue
of research into air travel has sought to identify critical airports for controlling the global spread
of COVID-19 (Mikolaou and Loukas 2020; Nakamura and Shunsuke 2020). Further
investigations into cruise ship travel sought to understand the relationship between passenger

landings and COVID-19 outbreaks (Ito et al. 2020).

Despite significant traffic decreases during the pandemic, there has been increasing
speculation that once societal interactions return to pre-pandemic levels, roadway traffic volumes
might increase significantly (Sung and Monschauer 2020). This idea is based on theories that
suggest a general avoidance of shared modes of transportation (De Vos 2020). Shared-use
mobility modes (e.g. bus, subway, taxis, mobile phone-based apps, shared bicycles etc.)
experienced significant drops in ridership during the pandemic onset period (Hendrickson and
Rilett 2020; Teixeira and Lopes 2020). Further studies have investigated the role of
transportation modes in the spread of COVID-19 (Zhang et al. 2020). Tirachini and Cats (2020)
suggested several factors may contribute to high-risk public transit including confined spaces,
high occupancy infected workers, and multiple surfaces that easily transfer germs. Avoidance of
public transit is likely to be most apparent during the highest demand periods (weekday

commuter travel) when transit utilization typically peaks.

With the expansion of technology into all aspects of travel planning and transportation, there
are many sources of regular information on traffic volume and congestion. For several private
companies, the interest in COVID-19 pandemic conditions has created another business

opportunity within their primary markets. Vehicle traffic volume, travel speeds, truck data and,
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in some cases bicycle and pedestrian data, have been tracked at a variety of geographic and
temporal scales. In most cases, the data are baselined against the period immediately before the
pandemic, despite the seasonal traffic differences that would be involved with using
January/February as a benchmark. Google, with their Global Mobility Data (2020), Unacast
(2020), INRIX (2020), StreetLight (2020) and the Center for Advanced Transportation
Technology (CATT) Laboratory at the University of Maryland (2020) are detailed vehicle travel

information sources with a variety of free and pay-for-data services.

Each of these platforms uses a combination of anonymized cell phones and connected
vehicles to provide information on estimated trip types and a variety of US geographies
including states and counties. What distinguishes them from one another are the available data,
the possible products, and the effort required by the user to analyze the data. Google and the
CATT Lab, for example, have publicly available information about broad travel trends, as well
as a variety of trip purpose, day-of the week, and geographic comparison tools. MS2’s Traffic
Count Database System (2020), on the other hand, uses data derived by communicating with
state DOT automated traffic volume counting devices to provide traffic count data for passenger
vehicles and trucks. This device-based permanent counter network allows comparisons across
many years of consistent data collection. SafeGraph (2020) has a service that provides pedestrian
activity data using opt-in anonymized mobile devices to study usage patterns for a variety of
location types including restaurants, retail shops, supermarkets, movie theaters, airports and
other industries. Their collection methods are also similar across 2019 and 2020, allowing year-

over-year comparisons.

DATA AND METHODS

The data and methods used in this study build from related work conducted during the initial
appearance of COVID-19 in Florida (Parr et al 2020). As such, it includes both virus-related
health statistics reported to public health agencies and traffic volume data collected by state
DOTs. By the late spring of 2020, COVID-19 had been diagnosed in every state of the US.
From a public health standpoint, the manner and variation of where, when, and how the virus
was occurring and spreading was of primary interest. While the virus was overwhelming health
care systems in some states and, more specifically some metropolitan regions (like New York), it

was having comparatively far less impact in others (like Montana). Clearly, one explanation for
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these differences was the high amount and density of the population in these areas. However,

factors like the amount of interaction between people, levels of mobility, and the availability of

testing were likely also contributing to these differences.

A sample set of ten states were selected to comparatively assess the range of conditions and

COVID-19 cases. While the inclusion of all 50 states would have been ideal to comprehensively

illustrate and discuss every case, limitations in data availability and quality; its timeliness and

spatial extent; and its ability to “representatively” reflect conditions, made it impractical.

Although, nearly all the states were in the eastern half of the country, they reflect diversity

among relevant characteristics in the study. Table 1 lists the states and summarizes key

population, mobility and broad political orientation characteristics to illustrate the studied states

diversity.

Table 1. Characteristics of State Study Pool

Population Largest Transit Trips Governor’s State

State Population® Density per Capita of Urbanized Political Senate
(people/mi?)® Areas in the State® Party! Majority*
Florida 21,477,737 401 53.3 Republican | Republican
Illinois 12,671,821 228 75.1 Democratic | Democratic
Indiana 6,732,219 188 (excluding Cl?iia';o metro area) Republican | Republican
Massachusetts 6,892,503 884 93.1 Republican | Democratic
Michigan 9,986,857 177 42.2 Democratic | Republican
Montana 1,068,778 7 15.6 Democratic | Republican
New Hampshire 1,359,711 152 . 5.2 Republican | Democratic

(excluding Boston metro area)

New York 19,453,561 413 2234 Democratic | Democratic
Ohio 11,689,100 286 26.4 Republican | Republican
Vermont 623,989 68 23.5 Republican | Democratic

*Estimate by US Census (2019); ° Statista (2020); ¢ US Department of Transportation (2015); ¢ Kaiser Family

Foundation (2020)

Traffic Data and Statistics

As part of the National Highway Performance Monitoring System (HPMS), the Federal
Highway Administration (FHWA) mandates state departments of transportation to submit annual
traffic statistics (FHWA 2014). State transportation agencies build, operate, and maintain
permanent traffic monitoring stations to collect, among other measures, traffic count information.

Referred to as continuous count stations, these traffic count detectors report hourly traffic counts
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continuously throughout the year, year-over-year, to meet the federal requirements outlined by
the HPMS. The states analyzed in this study have made their traffic count data publicly available
through their websites (NY), through data requests (FL), or have permitted Modern Traffic
Analytics (a third party vendor) to share HPMS data, publicly online (IL, IN, MA, MI, MT, NH,
OH, VT).

The analysis of traffic patterns was completed by comparing daily traffic totals for each day
from continuous count stations located in the ten states. Traffic counts from 2020 for each station
were compared to base year levels for similar days in 2019 using a paired t-test. Traffic counts
were aggregated for each 24-hour period and no distinction was made between vehicle types.
The detectors were located on major highways and arterials in a mix of urban and rural locations
throughout each state. The comparison dates were March 1 to May 31, 2020 and March 3 to June
2, 2019, with matched days of the week. For example, a paired t-test was used to investigate if
the daily traffic measured by 137 detectors in the state of New York from Friday, May 29, 2020
was significantly different from the daily traffic measured, at these same 137 detectors, on
Friday, May 31, 2019. The null hypothesis was that no difference in traffic occurred between

these two dates. The alternative hypothesis was that traffic between these dates were not equal.

A common error found in the data was missing data and/or stations reporting zero values. The
zero values were due to road closures because of incidents, scheduled maintenance work, and
malfunctioning roadway sensors. Sensors with missing information were removed from
consideration for that day, but were included in the analysis when volume data was available.
The daily number of observations therefore varied, depending on which stations within the state
had paired data between years. The median, minimum, maximum, and standard deviation of the
number of observations used in the paired t-test analysis, for each state, was provided in the
figures shown in the Findings section (lower right-side corner of each figure). Statistically
significant changes based on the results of a paired two-sided t-test rejection of the null
hypotheses of equal means at a significance level 0.05 were noted, along with days for which t-
testing failed to reject the null hypotheses (suggesting traffic on the 2019 and 2020 days may

have been similar).
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Health Data and Statistics

The coronavirus health-related data for the ten study states was obtained from the daily
updates from Johns Hopkins University (Dong et al. 2020). This dataset provided the number of
reported cases and deaths by US state (and other parts of the world). This dataset was selected
for several reasons including: its scope, widespread use, and update regularity. The range of
dates used for this study were January 22, 2020 (the earliest dataset available from this data
source) to June 14, 2020 (two weeks after the last traffic observation). In the graphs presented
later in this paper, daily COVID-19 cases are shown as seven day moving-averages to remove
the day-to-day testing and reporting variations. The COVID-19 data in the analyses has also been
temporally offset from the traffic data by two weeks (that is, the COVID-19 case data is reported
for the date two weeks prior to its posting). This was done to associate the extent of COVID-19
cases with the traffic conditions during the time when virus infections occurred. The Centers for
Disease Control and Prevention (CDC) recommend this period to account for viral incubation
and testing time (CDC 2020). The authors recognize that there are many other exposure

opportunities that are not associated with vehicular travel (e.g., spread within a household).

The raw data provided the cumulative number of reported cases. The daily number of reported
cases was obtained by taking the difference between two consecutive days. A few data
inconsistencies were identified. For example, in the New Hampshire dataset, two days showed a
decline in the cumulative values of more than 50 cases (April 2 and 14). Examination of the
county-level data revealed some difficulties with Hillsborough County in Florida. On April 2,
this county was missing but was present on adjacent days. On April 14, this County’s report was
lower than on the adjacent days. For both anomalies, the reports for this county were linearly
interpolated from the adjacent days and then added to the sum of the other counties to produce

the state total.
Beginning of Pandemic Cases

The first three COVID-19 cases in the ten study states occurred well in advance of the other
cases, and before the infection was a significant public concern. Table 2 lists the dates of the first
three COVID-19 cases in each state. The distribution of the first infection dates are fairly broad.

The two Illinois cases were a wife who had traveled to Wuhan, China and her husband (Ellwood
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2020); the early Massachusetts case was a student who also traveled to Wuhan (Burke 2020).

The third case dates are more indicative of the beginning of sustained cases in each state. The

third case occurred across a narrower 15-day range between February 29 and March 14.

Table 2. First Three Confirmed COVID-19 Infection Dates in Each State

State First COVID-19 | Second COVID-19 | Third COVID-19
Case Date Case Date Case Date
Florida 2-Mar 2-Mar 3-Mar
Illinois 24-Jan 30-Jan 29-Feb
Indiana 6-Mar 8-Mar 9-Mar
Massachusetts 1-Feb 3-Mar 6-Mar
Michigan 11-Mar 11-Mar 13-Mar
Montana 11-Mar 14-Mar 14-Mar
New Hampshire 2-Mar 3-Mar 8-Mar
New York 2-Mar 3-Mar 4-Mar
Ohio 10-Mar 10-Mar 10-Mar
Vermont 8-Mar 12-Mar 14-Mar

Governmental Directive Dates

The dates of the State of Emergency (SOE) declarations, statewide closures of schools (Sch.
Closed) and restaurants (Rst. Closed) and reopening phases (Phase 1, Phase 2, and Phase 3 Reopen)
are shown in Table 3. Governmental directives, closures, and re-openings were collected from

state official websites, executive orders, and print news articles covering gubernatorial press

conferences.

Table 3. Key COVID-Related Closing and Opening Dates

State of Restaurants Phase 1 Phase 2
State Emergency Schools Closed Closed Opening Opening
Florida 9-Mar 13-Mar 20-Mar 18-May 5-June
Illinois 9-Mar 13-Mar 17-Mar 1-May 29-May
Indiana 6-Mar 19-Mar 16-Mar 4-May 22-May
Massachusetts 10-Mar 17-Mar 17-Mar 18-May 8-June
Michigan 10-Mar 16-Mar 16-Mar 7-May 26-May
Montana 12-Mar 16-Mar 21-Mar 27-April 1-June
New Hampshire 13-Mar 16-Mar 16-Mar 18-May 15-June
New York 7-Mar 16-Mar 17-Mar 8-June 19-June
Ohio 9-Mar 16-Mar 16-Mar 12-May 22-June
Vermont 13-Mar 18-Mar 17-Mar 17-April 22-May

10
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Beyond the Study Period

In terms of the study duration and its end date, it should be noted that the course of the
pandemic was clearly not over by June 1, 2020. Health data in early June began to show that the
spread of COVID-19 had not subsided as hoped. In fact, by June and July, COVID-19 deaths,
hospitalizations, and infections had begun to increase. In some places, like the State of Florida,
numbers had increased quite significantly as the phased re-opening of major gathering places
continued, tourism returned, and traffic volume neared prior-year levels. In fact, statistics in
Florida showed that daily COVID-19-related fatalities in mid-July were double those of the
peaks of April and May. How the virus will continue to evolve and affect highway, air, rail,
public transit etc. modes throughout 2020 and in the years that follow will be studied for some
time. However, given the criticality of initial viral onset periods, the focus of this paper, was on

the initial wave of the pandemic in the US.

FINDINGS

The traffic volume and virus trends during the onset of the pandemic in the US were analyzed
both on individual, state-by-state bases as well as in-total and by like-combinations of metrics.
Results are also discussed and presented mathematically, statistically, graphically, and tabularly.
The graphical comparisons, presented in Figures 1 through 10 and discussed in the following
section, illustrate overall trends and comparative levels of impact within and across states. They
simultaneously illustrate all three key parameters in the study; changing traffic volumes,

governmental directives, and COVID-19 diagnoses.
State Graphical Summary

The traffic volume trend lines in Figures 1 through 10 represent the percentage change observed
between 2020 and the corresponding 2019 day-of-week dates (that is, the second Mondays of
March were compared to each other). Statistically significant decreases in traffic between the
years, using paired t-testing (significance level 0.05), are noted with asterisks. The amount of
change in traffic from 2019, is also represented relative to a “0% Change in Vehicles” and has
been further emphasized in the figures with gradient shading; the darker the shading the greater
the difference. Days for which t-testing failed to reject the null hypotheses (suggesting traffic on

these days may have been similar) are indicated with a circle. The median (Med), minimum
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(Min), maximum (Max), and standard deviation (StDev) for the number of observations (Obs.)
(i.e. traffic detectors) is provided in the lower right corner of each state graph. Finally, dark gray
dots are used to represent daily COVID-19 diagnoses per million in population in each state.
These cases are represented in the figures as seven-day moving-averages and, as previously
described, are temporally offset by two weeks to account for the viral incubation and testing
time. This period was selected to associate the case data with the traffic situations, during the

time of virus contraction (CDC 2020).
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Figure 6: Indiana Daily Traffic, New COVID Cases, and Directives
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Figure 7: Michigan Daily Traffic, New COVID Cases, and Directives
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Figure 8: Vermont: Daily Traffic, New COVID Cases, and Directives
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Figure 9: Montana Daily Traffic, New COVID Cases, and Directives
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Figure 10: New Hampshire Daily Traffic, New COVID Cases, and Directives
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As the figures show, the traffic volume data in every state followed a similar general pattern, with
a sharp initial decline, some period at a low level relative to the same dates in 2019, and then a
gradual increase back toward 2019 levels. Also clear was that the vast number of days in all the
states had significantly lower year-to-year traffic differences, especially after the first week of
March. The peak in COVID-19 diagnoses, shown as a seven-day rolling average of new cases,
varied across a broad range of periods (Table 4). The states in Table 4 are organized by the number
of days to reach the initial COVID-19 case peak; the period is labeled from “Early” in the COVID

case increase period to “Late” in the COVID case increase period.

Table 4. Initial Peak of COVID-19 Case Growth

Third 7-day Peak of Cases
COVID- | Moving Avg Days Peaking Per Million
State 19 Case Peak Between Pattern Population
Montana 14-Mar 19-Mar 5 Early 20
Michigan 13-Mar 24-Mar 11 Early 170
Vermont 14-Mar 27-Mar 13 Early 70
Florida 3-Mar 25-Mar 22 Middle 80
New York 4-Mar 27-Mar 23 Middle 500
Ohio 10-Mar 7-Apr 28 Middle 80
Massachusetts 6-Mar 13-Apr 38 Late 400
Indiana 9-Mar 17-Apr 39 Late 110
Illinois 29-Feb 13-Apr 44 Late 220
New Hampshire 8-Mar 23-Apr 46 Late 70

To examine the initial onset period more closely, Table 5 shows the initial date in each state
on which 2020 traffic volume was statistically different from 2019. All fell within the same
narrow 12-day window from March 6 to 17. The third diagnosed COVID-19 case benchmark (in
all states this was the beginning of a sustained case increase), the difference between that case
and the first significant traffic decline ranges from negative one day in Ohio to 9 days later in

Illinois.
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Table 5. Initial Onset Period — State COVID-19 Case and Traffic Volume Changes

Third COVID | First Traffic Days to
State Case Decrease Change
Ohio 10-Mar 9-Mar -1
Michigan 13-Mar 13-Mar 0
Montana 14-Mar 14-Mar 0
Massachusetts 6-Mar 7-Mar 1
Indiana 9-Mar 10-Mar 1
New York 4-Mar 6-Mar 2
Vermont 14-Mar 17-Mar 3
Florida 3-Mar 7-Mar 4
New Hampshire 8-Mar 12-Mar 4
Illinois 29-Feb 9-Mar 9

Another interesting general traffic volume trend in Figures 1 through 10 was that traffic
conditions demonstrated periodic patterns of change relative to 2019 levels, particularly weekly
Monday-to-Monday stepped increases. While all days of the week in 2020 were less than the
corresponding 2019 days, weekend traffic decreases (Sundays in particular) were more
pronounced across most states during the analysis period. This is likely because weekend
discretionary travel was impacted most acutely by the closure orders. A similarly notable trend
in the graphs is the inverse relationship between traffic volume and COVID-19 infections. Not
surprisingly, closures of business and cancellation of activities with high person-to-person
interaction led to decreases in both traffic volume and rates of COVID-19 spread. Reduction in
spread rates were not instantaneous, however. Even taking the two-week time adjustment into
account, it was non-uniformly related across the sample states. This further suggests that other
mechanisms of virus spread, aside from interactions reflected through travel, also accounted for

initial infection increases.

State-Specific Trends

Montana data, shown in Figure 9, illustrates the conditions of a low population density,
largely rural state. Traffic in early-March 2020 across Montana was actually significantly higher
than 2019 then declined steadily through mid-March. COVID-19 cases in the state peaked in
mid-to-late March, declining to fewer than ten daily new cases throughout the remainder of the

study period. These low case numbers were sustained after the late-April Phase 1 reopening
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even as traffic volume recovered — ultimately returning to within about 15 percent below prior

year levels.

Michigan’s trend data (Figure 7), shows that the first significant traffic volume decline
occurred after the state of emergency declaration. This was after COVID-19 cases had already
begun a steep increase. The traffic trough and virus case peak both happened in the last week of
March. Interestingly, while COVID-19 cases began to decline after the peak, traffic volume
slowly increased, remaining 50 percent lower than 2019 through late-April. During May, cases
generally continued to decline, but traffic increased. Ultimately, traffic remained 25 percent

below 2019 levels by the end of the study period.

Vermont, another relatively low population state, experienced the clearest offset relationship
between traffic volume and COVID-19 infections. As shown in Figure 8, new cases decreased
with traffic volumes after an initial peak. Obviously, this was the intended relationship and the
purpose for limiting personal interaction. Similar to Montana, Vermont’s 2020 traffic volume
was also higher than 2019 prior to the closures of schools and restaurants. Later, traffic volume
dropped rapidly and significantly while COVID-19 infections grew rapidly and significantly
through the remainder of March. Ultimately, as also shown in Table 4, infections peaked at a
level near the peaks of Florida and Ohio when adjusted for population. While traffic volume in
Vermont stayed low throughout March, April, and May, COVID-19 cases did as well; even
through their mid-April Phase 1 opening — one of the earliest of any state. Traffic volume in
Vermont continued to stay around 25 percent below 2019 levels even after the Phase 2 opening
in late May. COVID-19 infections in the state, however, began a near-immediate surge after the
easing of restrictions without a clear link to traffic and travel trends. However, this “surge”

represented only about 20 reported cases per million people per day.

As shown in Figure 4, Florida maintained a relatively constant rate of infection,
comparatively speaking, during most of the analysis period. Alarming from a health outcome
standpoint, however, was that COVID-19 diagnoses in Florida began to grow in late-May as
traffic steadily trended closer to 2019 levels. Positive diagnoses accelerated sharply after the

Phase 1 re-opening and as traffic volumes continued the several-week trend of steady increase.

In New York, the first significant drop in traffic occurred on March 6, 2020 but statewide

traffic did not have a sustained significant statewide traffic decrease until a week later, just
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before the closure of schools, as shown in Figure 1. By the time restaurants closed on March 17,
traffic had decreased by 25 percent. Ultimately, traffic in the state decreased by 62 percent and
by Sunday May 31, the last day of observation, traffic was still 32 percent below 2019 levels.
New York’s COVID-19 rate increased more significantly than any other state in March and April
despite notable reductions in vehicular traffic. The high case rate has been associated with New
York City’s high population and its high transit ridership (about 50 percent of all trips are made
by bus or train (Berggren 2020)) suggesting that road traffic reductions only accounted for a
portion of the travel declines. Another source has been theorized to be the internationally-
transient nature of the City. Similar to cities like London, Hong Kong, and Dubai, New York is
a crossroads for international travelers. It is likely that the city was one of the primary gateways
for the entry of the virus into the US. However, it is also notable that after about six weeks of

traffic reductions, the rate of new reported cases of COVID-19 dropped to half of the peak level.

Ohio’s COVID-19 and traffic trends are both unique within the ten analyzed states. Figure 5
shows a varying traffic volume pattern throughout the period, even by day of the week. The
“saw tooth” volume trendline is the result of pronounced peaking on Fridays and Saturdays then
significant decreases on Sundays throughout the pandemic. While late week traffic peaks with
weekend declines is typical in urbanized areas with heavy commuter travel, the trends in Figure
5 are not “volume,” they are the “volume differences” between 2020 and 2019. Thus, the data
suggest that traffic in Ohio was less impacted on Fridays and Saturdays during the pandemic

than other states, while Sunday reductions in traffic were comparatively more severe.

The large decreases in Ohio’s Sunday traffic (70 percent of 2019 levels) were the largest
amount of traffic decline in the study sample and had the longest sustained duration (of any day
of the week) at its low (29 days) from late-March to late-April (Figure 6). Also notable was the
fact the Friday traffic volumes were so consistently and unusually high that by the end of the
study period, they were nearly back to 2019 levels. From a health-outcomes perspective, Ohio
faired about in the middle of the sample of states. The state COVID-19 cases peaked at around
80 cases per million people in early April, then generally remained steady through late April and
early May. Cases declined during May after the Phase 1 re-opening while traffic volumes

increased.
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Both Illinois and Massachusetts showed interesting connections between traffic and the
course of the virus as shown in Figures 2 and 3. The first reported case of COVID-19 in Illinois
and Massachusetts were January 24™ and February 2, 2020, respectively; several weeks prior to
any other state in the sample. Traffic decreases reached their maximums in both states somewhat
earlier than other states, then both reached their peak COVID-19 diagnoses rates later than the
other states. This relationship points to the desired connection between lowered travel and
COVID-19 case “curve flattening.” Interestingly, however, by the end of the study period both
states remained among the slowest in volume returns to 2019 levels. Massachusetts also had one
of the higher overall rates of COVID-19 fatalities in the sample (see Table 4), while Illinois was

on the lower end.

As shown in Figure 6, Indiana’s sustained traffic decline began on March 12 and traffic
volume remained below 75 percent of 2019 volume into May. While the peak in COVID-19
cases was much later than neighboring Michigan, the number of cases per million residents was
much lower. After the new case rolling average peaked in mid-April, cases declined while traffic

increased.

Traffic patterns in New Hampshire were similar to neighboring Vermont, however, the
infection trends were markedly different as shown in Figure 10. This could be related to the fact
that Manchester, New Hampshire (population - 112,525) (Census 2019) is a more populous city
than any in Vermont, but none of the cities in either state could be described as large or dense.
New COVID-19 cases in New Hampshire briefly peaked in mid-to-late April at over 70 per
million people, higher than even Florida during all but the end of the study period. Then, most
notably, cases dropped markedly within the days affer the Phase 1 opening and as traffic steadily

increased.

General Trends and Observations Between Traffic Volume and Viral Progression

All states in the sample experienced a gradual increase of traffic volume toward 2019 levels in
late April and May. The largest difference between the states, however, was the path of the
infections over the analysis period. Table 6 summarizes the period for virus and traffic changes
revealed during the time from the initial “peak” in cases to the greatest traffic decline. Montana
was the only states where the time for the virus cases to peak was shorter than the time for traffic

to reach its bottom point (as measured by change from 2019 levels). Figure 11 shows that for
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these relatively diverse ten states the more rapid the declines in traffic volume, the slower the
growth in COVID-19 virus cases. The four states where it took longer than 50 days to reach the
COVID-19 case peak, were also the four states with the most rapid decline to the vehicle volume
“bottom.” Since “flattening the curve” and delaying the peak was a primary purpose of social
distancing (Fong et al. 2020), these findings suggest that overall, governmental directives, as

reflected through rapid traffic decreases, served their purpose.

Table 6. Initial Peak Periods for COVID-19 Cases and Traffic Volume Decline

Initial Peak
State COVID-19 Traffic Volumes
1%t Peak Date Days to Reach Traffic Days to Reach
Peak “Bottom” Date “Bottom”
Montana 2-April 19 11-April 28
Michigan 9-April 27 4-April 22
Vermont 11-April 28 12-April 26
Florida 9-April 37 5-April 29
New York 11-April 38 29-March 23
Ohio 22-April 43 12-April 34
Massachusetts 28-April 53 29-March 22
Indiana 4-May 4 56 20-March 10
Illinois 5-May 5 66 22-March 13
New Hampshire 8-May 8 61 29-March 17

Days to Reach Peak — Time from third COVID case occurrence to highest rolling seven-day average cases
Days to Reach “Bottom” — Time from initial traffic decline to largest traffic volume change from 2019 to 2020.

Another primary finding was that at the conclusion of the analysis period, none of the states
showed a complete return to “normal” levels and the amount of their return to routine levels
varied across the sample. Table 7 shows that four states experienced renewed growth in
COVID-19 cases. Three of the four states, however, were also locations where there were early
initial COVID-19 case declines. Numerous factors influenced the variation in the COVID-19 and
traffic volume trends, however, the intent of this paper is to explain what occurred rather than

why things occurred.
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Figure 11. Comparison of Days to Peak Rolling Seven-Day Average COVID Case Count
and Time to The Largest Change Between 2019 and 2020 Traffic Volume
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Table 7. “Progression” Summary — Return to COVID-19 Case and Traffic Volume

Increases
COVID-19 Cases Traffic Volume Changes
State Second Days at Start of Days at
Increase | "Bottom'" Recovery "Bottom"'
Montana 15-May 5 13-April 2
Michigan None NA 20-April 16
Vermont 4-June 54 4-May 22
Florida 1-June 53 13-April 8
New York None NA 20-April 22
Ohio 1-May 9 11-May 29
Massachusetts None NA 27-April 29
Indiana None NA 13-April 24
Illinois None NA 6-April 15
New Hampshire None NA 19-April 21

CONCLUSIONS

The findings of this research illustrate a number of key facts relative to the spread of COVID-

19 during its initial onset period in the US in 2020 and its relationship to highway transportation.
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While the virus will inevitably continue its spread across the world in the months and years to
come, this paper provides a description of what and when governmental authorities took actions
across the United States and how these actions manifested themselves in terms of roadway
travel. Then, and perhaps most critically, how travel may have been related to the virus spread,
particularly during its most critical initial stages. Another key contribution of this research is
that it provides context on both the extent and time scale of public responses in different states
and shows the varying levels of delay and/or immediacy in the COVID-19 cases that resulted

from them.

While some of the findings discussed here were expected, others were somewhat-more
unexpected. Among the most significant of the unexpected findings was the indication that
assumptions of public behavioral response, viral spread mechanisms, and health outcomes may
not be as closely linked as previously thought. The data showed a generally similar pattern of
traffic decreases, then a bottom, followed by increases, across all states. Also apparent was a
clear connection between the closure of schools and business and the decline in traffic. What was
less clear was the connection between this decline and the timing and amount of viral spread. In
fact, not only were the trends of COVID-19 infection increase and decrease markedly different
from state to state, they were so even between neighboring states. This suggests that there were
other personal interactions taking place, unrelated to roadway travel, that were continuing the

progression of the virus.

In terms of the overall amount-of-maximum-traffic-decrease at the height of the lock down,
the data suggest relative similarities of 60 to 65 percent less than 2019 levels. This amount of
drop and its sustained duration across the entire United States is without equal in the past
century. Even the periods of decline during World War II, the 1970s oil crisis, September 2001
terror attacks, and the economic contraction of the late 2000’s saw percentage declines in the
single digits (Puentes 2008 and Federal Highway Administration 2020). The data also show that,
while somewhat varying on amount, there was a similar trend of traffic volume “recovery”
across all states by the end of the study period. The rate of recovery has been much slower than
the decline in March. By May 31%, the end of the study period, most states were in the range of
about 25 to 30 percent below the 2019 traffic volumes; bounded by New Hampshire down only

16 percent and Ohio down 44 percent from prior year levels. Interestingly, these amounts did
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not appear to be related to population density or rates of COVID-19 infection, but more a
reflection of what level of restrictions existed to create opportunities, motivation, and

destinations for travel.

Combined, these results may also illustrate the need for governmental responses that are
appropriate to the threat faced and the specific characteristics of the location. Clearly, the threat
and outcomes faced by Montana, for example, were vastly different than those of New York.
Thus, a one-size-fits-all response to these two states or across all states may not make sense

within the context of actual conditions and level of risk that may exist.

It is hoped that the contributions made by this work can be used by practitioners and
governmental authorities to assess and develop plans for future similar major events and
emergencies as well as by researchers who will continue to assess and evaluate aspects of the

COVID-19 virus and its spread throughout the country over many years to come.
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