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The Kelvin-Helmholtz (KH) instability of a shear layer with an initially-uniform mag-
netic field in the direction of flow is studied in the framework of 2D incompressible
magnetohydrodynamics with finite resistivity and viscosity using direct numerical
simulations. The shear layer evolves freely, with no external forcing, and thus broad-
ens in time as turbulent stresses transport momentum across it. As with KH-unstable
flows in hydrodynamics, the instability here features a conjugate stable mode for ev-
ery unstable mode in the absence of dissipation. Stable modes are shown to transport
momentum up its gradient, shrinking the layer width whenever they exceed unstable
modes in amplitude. In simulations with weak magnetic fields, the linear instability
is minimally affected by the magnetic field, but enhanced small-scale fluctuations rel-
ative to the hydrodynamic case are observed. These enhanced fluctuations coincide
with increased energy dissipation and faster layer broadening, with these features
more pronounced in simulations with stronger fields. These trends result from the
magnetic field reducing the effects of stable modes relative to the transfer of energy to
small scales. As field strength increases, stable modes become less excited and thus
transport less momentum against its gradient. Furthermore, the energy that would
otherwise transfer back to the driving shear due to stable modes is instead allowed to
cascade to small scales, where it is lost to dissipation. Approximations of the turbu-
lent state in terms of a reduced set of modes are explored. While the Reynolds stress
is well-described using just two modes per wavenumber at large scales, the Maxwell

stress is not.



I. INTRODUCTION

Shear layers are ubiquitous in space and astrophysical systems, including Earth’s magnetosphere!,
relativistic jets?, and clouds passing by galactic and circumgalactic gas®. These flows exhibit
extremely large Reynolds numbers, and thus are often susceptible to shear-flow instabilities
that can give rise to turbulence. Among those instabilities is the Kelvin-Helmholtz (KH)
instability, the canonical shear-flow instability* ¢, which is triggered in unstable flow profiles
by sufficiently strong flow shear (i.e. it does not require other physical effects for it to be
destabilized) and thus can exist in a wide range of systems. Despite the relative simplicity
of the instability in idealized systems, the background magnetic fields present in many
astrophysical systems can have significant and complex effects on its dynamics. A uniform
field in the direction of flow can stabilize KH if the field strength exceeds some threshold*.
This stability threshold depends on fluid properties and the flow profile (see Ref.” and refer-
ences therein) but, in the perfectly conducting case, is roughly characterized by the Alfvén
velocity (in terms of the flow-aligned component of the field) exceeding the difference in
flow velocity on either side of the layer. For weaker magnetic fields, the instability remains
but with a reduction in growth rate that depends on the sonic Mach number (see Ref.® and
references therein). However, despite a uniform magnetic field decreasing the growth rate
relative to the hydrodynamic case, magnetohydrodynamic (MHD) simulations show even
weak magnetic fields significantly enhance the generation of small-scale fluctuations and the
rate at which momentum is transported across the shear layer, causing the layer to broaden
at a faster rate”™®!%. While the focus of the present work is on uniform equilibrium fields,
it is worth noting that both the linear and nonlinear dynamics are significantly different in

the case of a nonuniform magnetic field®!!.

This instability-driven turbulence generally transports momentum, as well as heat and
particles, far faster than viscosity and molecular diffusion would alone. Thus, this turbu-
lence can have important effects on systems where it is found. Indeed, transport driven by
shear-flow turbulence is often necessary to explain observations!?, or similarly plays a key

13,14 " This motivates studies of shear-driven turbulence,

role in reduced dynamical models
particularly in pursuit of transport models that can be employed when considering sys-
tems too complex for direct numerical simulation (e.g. in stellar evolution codes'®'4). With

the significant impacts that background magnetic fields can have on turbulent transport in



shear-driven turbulence, it is important that such transport models account for magnetic
effects. However, reduced models where transport is assumed to scale with the growth rate
of the driving instability, and no details of the nonlinear saturation are included, are clearly
inadequate in this case, as increasing magnetic field strength increases transport while de-
creasing the instability’s growth rate. A primary goal of this work is to explore what details
of the dynamics are responsible for this scaling, and thus might be necessary to include in

reduced models to capture key trends accurately.

In the context of turbulence driven by gyroradius-scale instabilities in fusion plasmas,

15,16 “as well as corrections to existing models'”'®, have been

novel reduced transport models
derived by accounting for the physical mechanisms that saturate the instability. Here, in-
stability saturation refers to the arresting of the exponential growth of fluctuations that
are seeded by initially-small perturbations. For example, in systems where perturbations
grow by drawing energy from an unstable momentum, density, or temperature gradient,
exponential growth might cease once perturbations have drawn so much energy from the
driving gradient that it relaxes and is no longer unstable; this is sometimes referred to as
quasilinear flattening. Particularly in systems with fixed background gradients, saturation
might instead occur when the injection of energy by the instability is balanced by the non-
linear transfer of energy to small, dissipative scales (see also Refs.!? and?®, where magnetic
field generation was noted as a saturation mechanism). A third, distinct saturation mech-
anism involves the transfer of energy to large-scale, linearly stable (damped) modes? %2,
These modes are eigenfunctions of the linearized governing equations, and they decay expo-
nentially in the absence of nonlinear energy transfer from other modes. Signatures of their

23

excitation due to nonlinear energy transfer have been measured in dipole-confined plasmas®’,

and, in this paper, a previously-observed feature of hydrodynamic shear layers in laboratory

24,25 6

experiments and simulations?®, namely counter-gradient momentum transport, will be

identified as a consequence of stable-mode excitation.

In the fusion context, analytical calculations have shown that stable-mode excitation is

21,27 Subsequent direct numerical

almost universally a significant contributor to saturation
simulations have demonstrated that stable eigenmodes not only affect instability saturation,
but also remain excited in the ensuing turbulence?®?°. Understanding the nonlinear interac-
tions primarily responsible for energy transfer to stable modes® has enabled the development

of a variety of reduced models that incorporate stable mode effects'® 8. In the case of shear-
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21,27

flow instabilities, the same analytical saturation calculations of Refs. were applied to a

hydrodynamic, KH-unstable system in Ref.??

, showing that stable modes are important in
saturating the KH instability, and that when they are excited they can significantly affect
turbulent momentum transport (see also Ref.?!, where the methods were extended to sys-
tems with eigenmodes that cannot be derived in closed form, like the system considered
here, and thus the calculation must be done numerically). In Ref.3?) gyrokinetic simulations
of an unstable shear flow revealed that stable modes are excited to significant amplitudes
in shear-driven turbulence except when heavily damped by a radiative damping term (also
called drag or friction in other contexts). There, an external forcing term partially main-
tained the unstable flow profile against quasilinear flattening, permitting a quasi-stationary
state of driven turbulence. The simulations had only two spatial dimensions, and the dy-

33,34 reminiscent of the forcing

namics were essentially hydrodynamic, with the forcing term
considered in the well-studied Kolmogorov flow problem® 37, In parameter regimes where
stable modes were significantly excited, the relevant flow fluctuations could be approximated
well by linear combinations of stable and unstable modes alone (neglecting the continuum of
marginally stable modes®). A scaling model for a quantity directly related to the Reynolds

stress as a function of the forcing was derived in terms of the stable and unstable mode

amplitudes and shown by comparison with simulations to be very accurate.

The present work explores the role of stable modes in shear-flow instability saturation
and turbulent momentum transport for a system that differs from Ref.?? in two key regards.
First, no forcing terms are included. Thus, no quasi-stationary state is formed, quasilinear
flattening is permitted, and the effects of layer broadening on saturation and the ensuing
turbulence are investigated. Second, an initially-uniform magnetic field in the direction of
flow is included. The present study focuses on the weak-field regime, where the growth rate
of the instability is only slightly reduced compared to the hydrodynamic case. The system is
studied in the MHD framework via direct numerical simulations using the code Dedalus3*.
The simulations are of a two-dimensional (2D), incompressible fluid with finite viscosity and
resistivity included explicitly.

In other systems of instability-driven turbulence, stable modes are known to remove

30,41  Here, the en-

energy from fluctuations that would otherwise cascade to small scales
hancement of turbulent momentum transport and small-scale fluctuations with increasing

magnetic field strength is examined in the context of stable modes to identify whether the



enhanced small-scale fluctuations are due to a reduction in stable-mode activity. At large
scales, the linearized, dissipationless system features a pair of unstable and stable modes
at each horizontal wavenumber?. Unstable modes gain energy from the shear flow, and
their associated Reynolds and Maxwell stresses transport momentum down its gradient
and broaden the layer®. Stable modes return energy to the background, and their stresses
transport momentum against its gradient and tend to shrink the layer. Transient instances

24,25 " are ob-

of counter-gradient momentum transport, resembling those seen in experiments
served here and shown to occur whenever stable modes exceed unstable modes in amplitude.
As field strength is increased between simulations, this counter-gradient momentum trans-
port becomes weaker and eventually ceases partly because stable modes are less excited
with stronger magnetic fields. With less stable mode activity, the energy that would other-
wise be returned to the background flow instead cascades to small scales, producing more
small-scale fluctuations and a significant increase in energy dissipation relative to the hy-
drodynamic case. The small-scale fluctuations also produce a down-gradient Maxwell stress
that becomes significant for strong initial fields or sufficiently low resistivity. The enhanced
layer broadening is thus a combination of reduced counter-gradient momentum transport by
stable modes and enhanced down-gradient transport by small-scale magnetic fluctuations.
This paper is organized as follows. The system is described in Sec. II, including the
equilibrium, governing equations, and the numerical implementation. The dissipationless
linear modes are discussed in Sec. III. Nonlinear simulations are presented in Sec. IV, begin-
ning with an overview of the nonlinear evolution of the system, followed by discussions of
the effects of layer broadening in Sec. IV A, stable-mode excitation and momentum trans-
port in Sec. IV B, and small-scale fluctuations and dissipation in Sec. IV C. Conclusions are

presented in Sec. V.

II. SYSTEM SETUP

A. Equilibrium, governing equations

We study the evolution of a two-dimensional free shear layer in an incompressible fluid
in MHD with finite viscosity and resistivity, with an initially-uniform magnetic field in the

direction of the flow. Specifically, we consider an initial flow in the horizontal direction %



that varies in the vertical direction 2, i.e., Vo = U(2)X, where U(2) = Uy tanh(z/d) is the
initial flow profile, Uy is the flow speed away from the layer, and d is the layer half-width,
with an initial, uniform magnetic field By = Byx. Here, an overbar denotes a dimensional
quantity. Henceforth, we non-dimensionalize all speeds, distances, and fields according to
U=U/Uy, (z,2) = (z/d, z/d), and B = B/B,, respectively, such that V, = tanh(z)x and
B, = x. All other physical quantities will be non-dimensionalized in terms of Uy, d, By, and
combinations thereof.

We describe the flow velocity and magnetic field in terms of a streamfunction ¢ and a flux
function v, so that v.=y x V¢ and B = y x V4. Under our chosen non-dimensionalization,

we may write the governing equations as*?
—V2¢+ {V?¢,0} = M2 {V, 0} + —v4 (1)

and
9= (6.0} + V2. 2
ot Rm
Here, My is the Alfvén Mach number, or the ratio of the equilibrium flow speed to the Alfvén
speed, and scales like My oc Uy/By; the Reynolds number Re and magnetic Reynolds number
Rm are defined as Re = Uyd/v and Rm = Uyd/[i, respectively, where 7 is the kinematic
viscosity and [ is resistivity; and {f, ¢} = 0,f0.9 — 0.90.f. Equation (1) describes the
evolution of the vorticity V x v = V2¢y. The second term on the left-hand side is the
vorticity advection term, the first term on the right-hand side is the curl of the Lorentz
force, and the second term on the right-hand side is standard viscous dissipation. The terms
on the right-hand side of Eq. (2) correspond to flux advection and resistive diffusion. This
system, with the above equilibrium, is known to be linearly unstable for M, above a critical

threshold that lies between 1 and 27.

B. Perturbation equations

As will be described in Sec. II C, we solve Egs. (1) and (2) numerically using the initial
value problem capabilities in the Dedalus code®. Additionally, we use Dedalus’ eigenvalue
problem capabilities to calculate the complex frequencies (eigenvalues) and eigenmodes of
these equations linearized about an unstable equilibrium. Solving the linearized system as

an eigenvalue problem allows the full set of eigenmodes at each k., including stable modes,
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to be calculated, whereas initial value calculations yield only the most unstable mode at
each k,. This is necessary to track the amplitudes of these modes in the ensuing turbulence

in solutions of Egs. (1) and (2), which then informs how much energy they remove from

30 22,32

fluctuations®’. As with previous studies of stable modes in shear-flow turbulence®**, we
are specifically interested in the dissipationless modes of this system, so eigenmodes are
calculated with viscosity and resistivity neglected. While eigenmodes could be calculated
with dissipation included, such modes would mix together the physical effects of conservative
energy transfer between the shear flow and fluctuations — a primary focus of this paper
— and non-conservative dissipation at large scales. The stable modes of the dissipative
system owe their stability to a combination of these two effects, and thus these modes do
not lend themselves as conveniently to calculations involving the conservative effect alone.
Furthermore, the dissipationless modes have previously been shown to still be relevant in
the full, dissipative system3243,

To derive linearized equations, we separate the system into a horizontal, uniform (in x)
background flow U(z) and field B,(z), and perturbations ¢ and ¢. This allows Eqs. (1) and

(2) to be similarly separated into equations describing the background, and the following

equations for the perturbations:

9, )
Vo =—U

ot

0 -~ 1 0 ~ 0 -
2 " L NT2,, _ pir
V¢+U 8 —¢ + M2 (Bx(‘)wi B, x@b)

(T} i)
and
SG=—Ud 4B b+ {40}, )

where primes denote derivatives with respect to z, and we have neglected viscosity and re-

sistivity. Equations (3) and (4) are the MHD equivalent of Eq. (1) in Ref.??

, and describe
how fluctuations interact linearly with the background flow and field, and nonlinearly with
one another. When the fluctuations are small enough that the nonlinearities can be ne-
glected, Fourier transforming Eqgs. (3) and (4) in  and assuming solutions vary in time as

expliw(k;)t] yields
d? 2\ 2 d? 2\ 7 o
(@—k)qb——ka(P—k)qb—l—ka ¢
1 &2\ - L
— {k B, (ﬁ_k )1&—/%3414
A

8



and

wtp = —k,Uth + ky By o, (6)

where q?) and 1& are the Fourier transforms (in z) of d; and 1& Thus, at every k., we have a
separate system of linear, ordinary differential equations in z. For a given k, and My, U(z)
and B,(z), and appropriate choice of boundary conditions, this system forms a generalized
eigenvalue problem that can be solved to obtain a spectrum of eigenvalues w; and eigenmodes
j:» = (¢j(2),v;(2)), where j = 1,2,... enumerates the different solutions at each k,. While
the equilibrium considered in this paper is specifically U = tanh(z) and B, = 1, the more
general equations are presented here because eigenmodes corresponding to other U(z) and

B, (z) will be considered as well in this paper.

C. Numerical implementation

Dedalus is a pseudo-spectral code with a variety of spectral bases available. We employ
Fourier modes explik,z| in the x direction and Chebyshev polynomials 7,,(z) in z. Our
simulation domain size is L, x L, = 107 x 107, thus the minimum horizontal wavenumber
is k, = 0.2, with periodic boundaries at x = +L,/2 and perfectly conducting, no-slip,
co-moving (with the equilibrium flow V) walls at z = £L,/2. The simulations presented
here use a resolution of N, x N, = 512 x 2048, with convergence tests performed at the
highest values of Rm by ensuring that changes in spectral energy density and dissipation with
resolution are minimal. For many of the physical parameters studied here, this z-resolution

is higher than necessary for well-resolved simulations.

Previous work has shown that the nonlinear development of KH-unstable flows depends
sensitively on the choice of the initial perturbations that seed the instability**. In studying
free shear layers, a common choice of initial condition is a perturbation in one or more
velocity fields that is sinusoidal in x, with a wavelength that matches the box size or the

740 with lower-

fastest-growing linear mode, and Gaussian in z centered about the shear layer
amplitude noise sometimes added to other horizontal wavenumbers'?. Here, we perturb both
¢ and v at every nonzero k, with Gaussians in z that have randomly-assigned, k,-dependent

complex phases and amplitudes that decrease with k, as a power law. Thus, at ¢t = 0 the



streamfunction and flux function are

B(w,2) = Hhs,2) = ¢(0,2) + Ay Y _ kieibolhr)==/e" (7)
ko kz>0
and
U@, 2) =Y (ke 2) = (0,2) + Ay »_ kgeideka ==/, (8)
ka kz>0

where the k, = 0 components are the unperturbed equilibrium profiles, A, and A, set
overall amplitudes for the perturbations, a sets the steepness of the energy spectra of the
perturbations, o sets the width of the Gaussian in z, and at every nonzero wavenumber,
Ay(k;) and Ay(k,) are uniformly-distributed pseudo-random numbers in [0,27). For the
results presented here, we use 0 = 2, a = —1, and A, = A, = 5 x 107*, which allows for
a clearly-defined regime of linear growth before nonlinear interactions become important.
For My = 5, setting Ay = 0 did not noticeably change how the instability saturated. This
is likely a result of the flow-dominated nature of the instability at these values of Ma (as
will be shown in Sec. III) and the well-defined linear growth regime permitted by our small

value of A,.

Previous work? has shown that even when only two wavenumbers are perturbed, the
details of the nonlinear stage after the instability saturates are sensitive to the complex
phase differences and relative amplitudes between different k,, the overall amplitude of the
perturbation, and the structure in z of the perturbations. In this work, we are interested
in studying details of the saturated state as M and Rm are varied. In an effort to ensure
that our observed trends are not a unique feature of a particular choice of initial conditions,
we perform multiple simulations at each M, and Rm, with different ensembles of Ay and
Ay. In practice, this is done by selecting different seeds for our pseudo-random number
generator (we use numpy.random.RandomState®5:4® to ensure consistency across different
computers) and using the same seeds for different M and Rm so that M and Rm can be
varied independently with A, and Ay held fixed. For each value of M and Rm presented
here, at least five different sets of initial conditions were simulated. While the majority of
this paper presents results from only one set of initial conditions, the trends we present were

robust and broadly representative of the range of initial conditions we sampled.
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FIG. 1. Growth rate ~ for the fastest-growing mode at each k.. Each curve corresponds to a
different Alfvén Mach number M. While stronger magnetic fields (lower My ) provide a stabilizing
influence, ~ varies little except when Ma < 4. Horizontal dashed lines indicate the k, present in

our nonlinear simulations.

III. EIGENMODES AND EIGENVALUES FOR U = tanh(z) AND B, =1

For U = tanh(z) and B, = 1, unstable modes, solutions to Egs. (5) and (6) with positive
growth rates v; = —Im[w,|, are observed as expected for wavenumbers in the range 0 < k, <
1 as long as M, is above a critical threshold between 1 and 2 (the precise value depends on
fluid properties and the flow profile, see Ref.” and references therein). The growth rate of
the fastest-growing mode for this system is plotted against k, for a variety of M, in Fig. 1.
Magnetic tension provides a stabilizing influence that suppresses instability for My below
the critical threshold, and significantly reduces the growth rate for M, slightly above the
threshold, but only marginally affects the growth rate for My = 8.

Taking the complex conjugate of Eqs. (5) and (6) shows that, as in the hydrodynamic®

and gyrokinetic cases®, for every eigenvalue w; and eigenmode (¢;,1);) that is a solution of

*

Egs. (5) and (6), the complex conjugate w} and (¢3,%;) is a solution as well (recent work

has explored the connection between this conjugate symmetry and parity-time symmetry??).

22,32

Following Refs. , when describing the eigenmodes of this system, we label the most un-
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FIG. 2. The initial U = tanh(z) unstable equilibrium flow (top left) and uniform field (bottom
left) are shown alongside contours (with arbitrary units) of the streamfunction (center column)

and flux function (right column) for the unstable (top) and stable (bottom) modes at k, = 0.4 for
Ma = 40.

stable mode at each k, as j = 1 and its conjugate stable mode as 7 = 2. Real-space contours
corresponding to ¢; and ¢, for j =1 and j = 2 at My = 40,k, = 0.4 are shown in Fig. 2.
While the flow component of the mode can be roughly described as a superposition of two
waves of vorticity localized about the edges of the layer (a wealth of literature exists on this

subject®® 1), the current density of the mode is more localized about the center of the layer.

The source of free energy that drives the exponential growth of the unstable mode is the
equilibrium flow U(z). In terms of Eqgs. (3) and (4), the growth of the mode is due to the
(dissipationless) linear terms on the on right-hand side. These terms were derived from the
energy-conserving nonlinearities in Eqgs. (1) and (2) by separating interactions involving U(z)
and B,(z) from nonlinear interactions between fluctuations. If U(z) and B,(z) are identified

as the horizontally-averaged flow and field and held fixed in time, so that only k, # 0

12



perturbations are allowed to evolve, then this exponential growth does not conserve energy,
because the energy injected into ﬁ is not self-consistently removed from the mean flow. This

.22 as well as previous studies of stable modes in plasma turbulence driven

is the case in Re
by instabilities aside from KH due to the fixed background gradients that were considered
(e.g. Refs.212730) However, in direct numerical simulations of Eqs. (1) and (2) (or in other
systems where driving gradients are not held fixed), energy is conservatively transferred
from the equilibrium to growing perturbations by the nonlinearities. These considerations
are critical for the relationship between the horizontally averaged flow, eigenmodes, and
Reynolds stress in counter-gradient transport events described in Sec. IV. Viewed in terms

of a separation between the mean and k, # 0 fluctuations, the removal of energy from U(z)

occurs via the xz components of the Reynolds and/or Maxwell stress tensors, which we
0 ~0 -~

w=— 7705 9

n=- (g0 82¢>m )

1 /0 -0 -
Ty = m <%¢&¢>wa (10)

respectively, where (-), indicates an average in x. These stresses transport horizontal mo-

denote as

and

mentum along the vertical axis and evolve the mean flow according to (neglecting viscosity)

0 0
E<U>x:£(7_u+7_b)> (11)

with a transport of momentum down the gradient lowering the kinetic energy of the mean
flow.

As with the exponential growth of the unstable mode fl, the exponential decay of the
conjugate stable mode fé does not conserve energy if the background flow and field are held
fixed. Thus, in Ref.?? and previous studies of stable modes in instability-driven turbulence,
stable modes necessarily present a nonconservative energy sink. However, they do conserve
energy when directly simulating Eqs. (1) and (2), with energy injection into the mean pro-
vided by the same stresses, in addition to a minimal amount of energy that is transferred
into the mean field. This is illustrated in Fig. 3, where the Reynolds and Maxwell stresses
are shown for fl and fé at k, = 0.4 for both M = 25 and M = 2. For unstable modes,
both 7, and 7, transport momentum down the gradient, so that they both contribute to a
transfer of energy from U(z) to f; Likewise, for stable modes, both stresses yield counter-

gradient momentum transport, transferring energy from fé to U(z). The transport of the
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FIG. 3. xz components of the Reynolds stress 7, (blue) and Maxwell stress 7, (orange) for the
unstable mode fi (solid lines) and stable mode fo (dashed lines) at k, = 0.4 for Ma = 25 (left)
and My = 2 (right). For My = 25, 73 is rescaled by a factor of 5 to improve visibility. Modes are

normalized to have unit total energy.

two modes is symmetric in the sense that 7,[¢s] = —7,[¢1] and 7p[we] = —1[1h1]. As My is
decreased, corresponding to a stronger equilibrium field, the relative amplitudes of 7, and
7, change, with |7| exceeding |7,| for only the strongest equilibrium fields, starting around

MA ~ 2.5.

IV. NONLINEAR EVOLUTION

Consistent with previous work”!?, the addition of even a weak magnetic field causes
significant changes to the nonlinear evolution of this system despite only slight changes
to the linear instability. This is readily seen by inspecting snapshots of the flow. The
top row of Fig. 4 shows vorticity and streamlines for a hydrodynamic simulations at three
different times, corresponding to precursor vortex formation, vortex merging, and deep in
the nonlinear regime. For comparison, the middle and bottom rows of Fig. 4 show vorticity
and streamlines, as well as current density and field lines, for an MHD simulation with the
same initial conditions. This simulation has an initially-weak magnetic field, with M, = 60

and Rm = 250. In the hydrodynamic case, the vorticity equation becomes an advection-
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FIG. 4. Snapshots at three different times for a hydrodynamic simulation (top row) and an MHD
simulation with M4 = 60 and Rm = 250 (middle and bottom rows). In the top and middle rows,
the color shows vorticity V2¢ and black lines show contours of the streamfunction ¢ (streamlines of
the flow). In the bottom row, color shows current density V2 and black lines show contours of the
flux function ¢ (field lines). Current sheets form along the braids between vortices at early times,
and at the edges of the vortex at later times. For vorticity plots, the colorbar has been rescaled
with V2¢ = 1 as the maximum and —1 as the minimum with white as 0 to demonstrate that,
in the hydrodynamic case, all of the vorticity is into the page, consistent with the conservative,
advection-diffusion nature of the vorticity equation, and that this is broken in MHD, with negative

vorticity appearing at late times even at this high M4 and low Rm.

diffusion equation, so no negative vorticity is produced aside from boundary layer effects.
Vorticity conservation is broken by the Lorentz force in MHD, as can be seen by the regions
of negative vorticity that form late in the simulation. From close inspection of the vorticity
fields, one can infer that vortex reconnection is occurring®?, in addition to the magnetic
reconnection responsible for changes in field line topology. A thorough comparison of these

two varieties of reconnection and their influence on the dynamics is beyond the scope of

15



this paper, though the significant dissipation by resistivity that will be shown in Sec. IV C
suggests magnetic reconnection is a dominant effect. This is consistent with our observation
that magnetic energy has a greater tendency to reach small scales than does the kinetic

energy.

Magnetic fields embedded in high-strain-rate flows, such as the narrow vortex sheets,
known as braids, connecting the coherent vortices in this system, are known to be amplified
by the strain provided Rm > 1354, The flow strain pushes neighboring field lines together,
forming a current sheet along the braid as seen in Fig. 4. This figure also demonstrates the

1035 with current sheets forming

familiar amplification of magnetic fields by coherent vortices
at the edge of the post-merger vortex as it wraps up the magnetic field, with the field lines
in the interior of the vortex reconnecting and drifting outwards via flux expulsion®. The
field amplification provided by both high-strain-rate flow and coherent vortices increases
with Rm!%%3. Thus, when studying trends with magnetic field strength in this system, not
only does field strength vary with My, but also with Rm. Decreasing My corresponds to a

stronger initial field, while increasing Rm allows the field to become more amplified as time

goes on.

Consistent with Ref.**, the precursor vortex formation time and the vortex merging time
correspond to the initial saturation of k, = 0.4 and k, = 0.2, respectively. This is demon-
strated in Fig. 5, where various components of energy are plotted over time, with solid
and dashed lines corresponding to kinetic and magnetic energy for the MHD case, dotted
lines corresponding to the hydrodynamic case, and different colors corresponding to differ-
ent components of the 1D spectral energy density, defined so that KE = °, KE;, and
ME =" 3, MEg, . The precursor vortices form roughly when KE_ ¢4 reaches its first max-
imum, and they merge roughly when KE;, _2 reaches its first maximum. Consistent with
Ref.*, we found the saturation time for &, = 0.4 to be independent of the complex phase
Ay(k;) of the initial flow perturbation, while the saturation time for k, = 0.2 does depend
on Ay(k,). Varying Ay had no significant effect on the simulations. The simulations shown

here correspond to a choice of Ay(k,) with a relatively long merging time.
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FIG. 5. Energy components versus time for the simulations shown in Fig. 4 with M = 60 and
Rm = 250 (top row), and a similar simulation with M = 40 and Rm = 500 (bottom row), both
compared to the same hydrodynamic simulation. The left column plots energy on a log scale and
the right on a linear scale. Solid, dashed, and dot-dashed curves correspond to kinetic, magnetic,
and total energy, respectively. Dotted curves correspond to the hydrodynamic case. Colors indicate
different k, contributions, with total energy summed over all k, shown in brown, the contribution
from all nonzero k,, in red, and contribution from small scales, given by summing over k; > 1, shown
in black. The initial saturation and merger stages show no obvious changes from the hydrodynamic
case, but local minima in KE;,—¢ (blue) become less pronounced with stronger fields. Small-scale

fluctuations become enhanced with increased field strength.

A. Layer broadening

The shear layer broadens over time in this system as energy is transferred from the mean

flow to fluctuations at k, > 0. Previous work has shown that the layer broadens more
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FIG. 6. Kinetic energy over time in the mean flow, KE;, o, for a variety of M4. Each simulation
has Rm = 500 and the same. As field strength increases (Ma decreases), KEj, o decreases more

rapidly, equivalent to a faster layer broadening rate.

quickly for stronger magnetic fields”1%. This is consistent with the results shown in Fig. 6,
where KEj ¢ is plotted versus time for simulations with the same initial conditions and
Rm, but different My. As field strength increases, KE;, —y decays more rapidly overall.
From Eq. (11), this implies an overall increase in momentum transport down the gradient
in U, and hence a broadening of the layer. Close inspection shows brief intervals in time
where momentum transport reverses and energy is transferred back to the mean flow, as
indicated by transient increases in KEj —g, e.g., near ¢ ~ 55 and ¢ ~ 85. While the overall
down-gradient transport increases with field strength over long times, the counter-gradient
transport in these phases, as well as the down-gradient transport immediately before them,

decreases with increased field strength. This will be explored in greater detail in Sec. IV B.

The broadening of the layer has important consequences for the eigenmodes and their
impact on transport. While the eigenmodes described in Sec. I1II transfer energy to and from
the initial base flow and field, the modes governing energy transfer with the background

change as the background flow and field change.

In unstable shear layers, the growth rate of the instability generally scales with the differ-
ence in flow velocity on either side of the layer divided by the layer width. The most-unstable
wavenumber and the critical wavenumber above which modes are no longer unstable scales
with one divided by the layer width. Thus, as the layer broadens in time, the critical

wavenumber decreases from its initial value of k, = 1, and the linear growth rate of fluc-
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f.25 where the inverse is observed in a

tuations about the mean flow decreases (see also Re
system where layer thickness is made to decrease over time). Similarly, the Reynolds and

Maxwell stresses corresponding to the linear modes also broaden with the layer.

These trends can be shown directly by solving Egs. (5) and (6) with (U), and (B,).
in place of U and B,, where the mean flow and field are taken from individual timesteps
in nonlinear simulations and assumed to be independent of time. Throughout this paper,
eigenmodes, complex frequencies, and growth rates obtained in this manner are respectively
denoted ﬁj> = (¢(jy(2),¥(y(2)), wey, and ¢ to distinguish them from the eigenmodes of the
equilibrium described in Sec. III, with 7 = 1 and 2 continuing to denote the most-unstable
and conjugate stable modes, respectively, at each wavenumber. Note that Egs. (5) and (6)
still admit a conjugate stable mode for every unstable mode even when using the mean flow
and field, thus vy = —v() still holds. Figure 7 shows how growth rates v(;, evolve over time
for the most unstable mode at the four initially-unstable wavenumbers for M, = 40. Even
when the mean flow has hardly evolved in the first few timesteps, the growth rates begin
to decline noticeably, particularly at the higher wavenumbers. The highest wavenumbers
stabilize first, as the critical wavenumber decreases from k, = 1. The linear growth regime
for KEg, —o.4 is seen in Fig. 5 to end at about the same time that fy<1>(km = 0.4) approaches
zero, suggesting that quasilinear flattening is a dominant saturation mechanism for this
mode. The same is true for k, = 0.6 and 0.8 (not shown in Fig. 5). The structure in z of
these modes and their corresponding Reynolds and Maxwell stresses are largely the same as

ﬁ and j'g, except that they broaden with the shear layer.

In freely-evolving shear layers, the mean flow has been shown to depart from a simple,
broadened tanh profile in both MHD simulations™!® and hydrodynamic experiments (see
Eq. (5.2) and Fig. 2 in Ref.’"), and Ref.”® (see their Table 1) has shown that even minor
departures from a broadened tanh profile cause significant changes to eigenmode structures
and the critical wavenumber. In solving for ﬁj> and w;), minor features in (U), and (B,),
can have a significant impact in the full set of linear modes, including introducing new
unstable and conjugate stable modes with finite real frequency. These modes are localized
to regions other than z = 0, including to new inflection points in (U),. At times, changes
in (B,) separately introduce new modes as well, consistent with the understanding that

nonuniform fields can destabilize shear flows in the absence of inflection points®. These

new modes can form in addition to the existing unstable KH mode, can replace the original
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FIG. 7. Growth rates for the eigenmodes of (U), and (B), taken from a simulation with M, = 40
and Rm = 500. Different colors correspond to different wavenumbers. For each wavenumber and
at each time, only the most unstable growth rate is plotted. Even when perturbations are small
and the energy removed from the mean flow appears negligible at early times, the growth rates at

higher &, decline rapidly.

conjugate pair of modes with two conjugate pairs of finite-frequency modes, or can emerge
after the KH modes have already stabilized at that wavenumber, such as the k, > 04
unstable modes that emerge around ¢ ~ 60 in Fig. 7. Each mode’s complex frequency is well
within the bounds of the modified semicircle theorems derived in Ref.®’, but these modes
often bear little resemblance to the modes described in Sec. III. A detailed investigation of
these modes, such as their scaling with different system features, their effects on transport,
or their use in reduced models, is beyond the scope of this work. We note the existence of
these modes, however, to point out that while the eigenmodes f(]’) of the broadened system
correspond more directly to energy transfer to/from the mean than the eigenmodes f; of the
equilibrium, analyses in terms of these modes are often unwieldy because of their complexity.
Furthermore, as the proceeding subsection will show, the modes of the equilibrium lend

themselves to analyses later into the simulation than the modes of the broadened flow.
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FIG. 8. Mode amplitudes of the most unstable (blue) and conjugate stable (orange) modes for
a simulation with M4 = 40 and Rm = 500. Dashed lines are mode amplitudes using a basis
of eigenmodes of perturbations about the mean flow and field, solid lines are using eigenmodes
of perturbations about the initial equilibrium. For k, = 0.4, dashed lines terminate when that

wavenumber first stabilizes.

B. Large-scale eigenmode excitation and momentum transport

At every time ¢t and wavenumber k., the Fourier-transformed system state f (kyy2,t) =

(¢(ks, 2,t), 1h(ky, 2, 1)) can be expressed as

flk z,t) = Zﬁj(km,t)ﬁ(km,z), (12)

provided the eigenmodes of the equilibrium, { f;(kx, z)}, form a complete basis. The complex-
valued S;(k,,t) is the amplitude of mode f;(k‘x, z) at time ¢t and can be understood as the
coefficient of the state vector f expressed in this basis. The eigenmodes of the horizontally-
averaged system, { fgﬂ(l{;x,z)}, can also be used as a basis, and the amplitudes of these
modes will be denoted as ;) (k;,t) here. Note that both bases are complete (specifically,
over the finite-dimensional space of fluctuations in this numerically discretized system), thus
the corresponding mode amplitudes are uniquely defined and independent of choice of inner
product®'. The procedure for calculating the mode amplitudes 3; is essentially identical to
that employed in Refs.?®2932 except that the Laplacian on the left-hand side of Eq. (3) must
be taken into account. The same methods are also employed in Ref.%!.

Figure 8 shows mode amplitudes over time for the most unstable and conjugate stable
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mode for the four initially-unstable wavenumbers for the same simulation as in Fig. 7,
calculated using both sets of modes. At each time, 3; is obtained by expanding f in terms
of the eigenmodes { f?ﬁ} of the instantaneous mean flow and field. Leading into saturation,
both sets of amplitudes, {3;} and {8}, evolve as expected for systems where unstable
modes nonlinearly drive stable modes?:?2:27:32; the stable modes decay linearly before being
nonlinearly driven while unstable modes are still growing linearly. Comparing the |3;| and
|B(jy| curves demonstrates some of the differences between the two eigenmode bases. Two
notable features indicate that f; fails to capture the dynamics as precisely as the more
relevant ﬁj>.

First, there are periods where |f32| grows at the same rate as ||, when it is expected
to and eventually does grow faster. These can be understood as follows: suppose the true
stable mode amplitude in some system evolves as (5(t) = £2(0)e~ "+ 52(¢), and the unstable
mode amplitude as 3;(t) = £1(0)el" (see, for example, Eqs. (22-25) in Ref.?!). If a mode
that differs slightly from fé is used to calculate [35(t) from simulation data, then an error of
the form ef; will almost always be introduced. This will cause the apparent stable mode
amplitude to briefly evolve as By(t) ~ €31 (t) before the B5(t) ~ 3? term becomes dominant,
provided that |e[ > |81(0)|. For even small differences in f; (measured by some inner
product or its corresponding norm), € can still be quite large provided the eigenmodes are
nonorthogonal (under this choice of inner product). Hence, while the differences between
the two sets of modes are initially extremely small, they can cause the parametric driving
of stable modes by unstable modes to be overlooked in these analyses.

A second subtle effect that is overlooked by the equilibrium modes can be seen when |35
decreases briefly and dramatically before quickly increasing again. This can be attributed to
a difference in the complex phases of different interactions (either with the background flow,
or with other modes) that determine 939y /0t*'***": when one interaction overtakes another
and becomes dominant, if the two have approximately opposite complex phases, then [5(t)
briefly passes through or near 0 in the complex plane before growing in amplitude.

Note that these differences between the two sets of amplitudes begin quite early in the
simulation (before ¢ = 10 for k, = 0.4, see Fig. 8). This is despite almost unnoticeable
departures of (U) and (B,) from U = tanh(z) and B, = 1, respectively, at these early
times. Thus, the mode amplitudes are sensitive to small perturbations in the linear system

defined by Egs. (5) and (6), as are the growth rates (noted in the discussion of Fig. 7).
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This sensitivity is a characteristic feature of non-normal linear operators (see Ref.®? for a
comprehensive review on this subject). Indeed, in the viscous, hydrodynamic case, the linear
system is known to have significant properties that can be traced back to its non-normality®?,
and insight has similarly been gained into the magnetorotational instability by considering

64,65 'While Figs. 7 and 8 show some consequences of non-

consequences of non-normality
normality, we stress that the excitation of stable modes is not a linear effect: it is a result of
nonlinear energy transfer from unstable modes, and is a consequence of significant coupling

212227 rather than a consequence of non-

between these modes through the nonlinearity
normality. Furthermore, the non-orthogonality of a set of eigenmodes, and common metrics
for the consequences of non-normality (non-trivial e-pseudospectra and nonmodal growth),
depend on choice of inner product and norm, while the mode amplitudes we present here do
not. We encourage readers interested in further discussion of stable modes and non-normal

operators to refer to Hatch et al. (2016)*3, where connections between these topics are more

thoroughly explored.

While the mean-flow amplitudes 3;y capture subtler details leading into saturation than
the equilibrium amplitudes ;, and the corresponding eigenmodes f@ capture the layer
broadening, they become unreliable once 7y — 0 for a given wavenumber. Furthermore,
when additional modes emerge as discussed in Sec. IV A, identifying broadened modes cor-
responding to the original stable and unstable modes, and tracking their amplitudes, can
become difficult or impossible. Despite the physical effects overlooked by the equilibrium
modes, they can still be used to assess stable mode activity and connect it to counter-gradient
momentum transport. Their utility in assessing stable mode activity is demonstrated by fol-

£32; construct two approximations for the f by truncating the

lowing similar methods to Re
summation in Eq. (12) to either include only j = 1, or j = 1 and 7 = 2. Comparing the
accuracy of these two approximations provides a measure of how significant stable modes are
in the turbulent state in a way that is normalized to the overall amplitude of the turbulence

(whereas |f2| alone is not a normalized measure).

Figures 9 and 10 show, as functions of time, the resulting truncation errors (conceptually
similar to, but not to be confused with, the familiar truncation errors in numerical simu-
lations with spectral methods®) when fluctuations at k, = 0.2 and 0.4, respectively, are
approximated in this manner for a simulation with M, = 40 and Rm = 500. Black and

gray curves compare approximations using 3; and f;, while blue and orange curves compare
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FIG. 9. Error over time for approximations of the flow (left) and field (right) at k; = 0.2 using
a truncated eigenmode expansion for a simulation with M = 40 and Rm = 500. Black and gray
curves use f3; and f;-, while other curves use f(; and ﬂj>. The horizontal dashed line indicates
an error of 1. For a given approximation, ep = 1 implies that the difference between the exact
state and the approximation is at least as large, energetically speaking, as the state itself, and so
the approximation is unreliable. The importance of stable modes can be seen by noting that flow
approximations are improved when stable modes are included in both sets of models, with models
using ;) and f;j) performing better than those that use 3; and f; until quasilinear flattening sta-

bilizes the flow, at which point approximations using f?j> become unreliable. Each approximation

describes magnetic fluctuations poorly, particularly after the linear regime.

approximations using ((;y and ﬁj>, where ﬁ1> and ﬁ2> are defined as the mode with the
largest growth rate and its conjugate. The truncation errors are calculated separately for quS

and 1/3 according to

n Aexac - Aa TOX 2
6T[¢] — ||¢ t ¢ pPp ||KE (13)

| Gexact | ee

and

p _ 2
e w}] — | |77Z)exact ¢approx| |ME ’ (14>

| W}exact | |12\/IE
where ||¢]|25 and [|1)||3 are the kinetic and magnetic energy of a given ¢ and t. Unsur-
prisingly, the ﬁj> modes describe flow fluctuations better than the f; ones until quasilinear

flattening stabilizes modes at a given wavenumber, at which point such approximations be-
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FIG. 10. Identical to Fig. 9, but the k, = 0.4 fluctuations are approximated. Unlike the k, = 0.2
fluctuations, here the f; modes describe (5 well for significantly longer than the f?j) modes. This

is to be expected as ;) approaches 0 much sooner at this k.

come ill-defined. However, even when quasilinear flattening has set in, flow approximations
using eigenmodes of the initial equilibrium retain some fidelity. More importantly, the ob-
servation that ep[¢] is reduced when stable modes are included holds true when either set
of modes is used. Thus, the equilibrium mode amplitudes [3; serve as sufficient indicators
of stable mode activity despite the physical effects they overlook. Figure 11 is identical to
Fig. 9 but for a simulation with M, = 7.5. Here, including stable modes does not reduce
er[¢] as dramatically as in the My = 40 case (using either set of modes), suggesting stable
modes play less of a role as field strength is increased. Note that in all three figures, each

approximation fails to describe the fluctuating field well, particularly after the linear regime.

Figures 9-11 assess the ability of the equilibrium modes f; to describe the state f over
the entire domain in z, demonstrating that they do assess stable mode activity despite the
evolving mean flow and field. Focusing on the center of the shear layer, 2 = 0, demonstrates
that they describe fluctuations there particularly well, and ties stable mode activity to
counter-gradient momentum transport. This is shown in Fig. 12, where dashed curves show
the Reynolds stress at the center of the layer due to fluctuations at different wavenumbers,
Tu(ke,z = 0), over time for three different M. The quantity |32]? — [81]* (cf. Eq. (23)

in Ref.?? and Eq. (15) in Ref.3?) is plotted for comparison. In each case, the two curves
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FIG. 11. Identical to Fig. 9, but for Ms = 7.5. Here, including stable modes does not improve

approximations as noticeably, consistent with their diminished role in the dynamics at lower Maj.

essentially overlap, and are nearly identical up to a constant of proportionality that depends
on k, but not M. The equilibrium modes f; capture the Reynolds stress at the center of
the layer well, and doing so requires only the stable and unstable mode at each wavenumber.
Furthermore, whenever stable mode amplitudes exceed unstable mode amplitudes at a given
wavenumber, the mid-layer Reynolds stress at that wavenumber changes sign and the stable
mode drives counter-gradient momentum transport. Conversely, whenever the mid-layer

Reynolds stress changes sign, stable modes exceed unstable modes in amplitude.

From Fig. 12 alone, it is unclear whether the general decrease in ||3:]? — |B1|%| with
decreasing M, is due to a decrease in both mode amplitudes, or whether they are instead
trending towards equipartition. The first case might reflect a decrease in transport due to an
overall decrease in fluctuation amplitudes, while the second reflects a decrease in transport
that is independent of fluctuation amplitudes. Figure 13 compares |3;] and |5 at k, = 0.2
for Ma = 40 and M, = 15, showing that while stable mode amplitudes broadly decrease with
increasing field strength, unstable mode amplitudes do as well. As field strength increases the
two modes tend towards equipartition. Thus, the reduction in large-scale Reynolds stresses
with decreasing M, in Fig. 12 is not purely a result of decreased fluctuation amplitudes.
With stronger magnetic fields, the large-scale eddies arrange themselves in a manner that

reduces their associated Reynolds stress.
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FIG. 12. Dashed curves show the contribution to Reynolds stress 7, made by fluctuations at
k., = 0.2 (left) and 0.4 (right) evaluated at z = 0 versus time for three of the simulations shown in
Fig. 6, each with a different value of M. Solid curves show the quantity |32|? — |51|? over time for
the same simulations. The agreement between the two quantities motivates the use of these two

modes to characterize the system.
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FIG. 13. Mode amplitudes |fB2| (orange) and |Bi| (blue) at k; = 0.2 (left) and 0.4 (right) for
Ma = 40 (solid), 25 (dashed), and 15 (dotted lines). As M decreases, both mode amplitudes are

reduced while also trending closer towards equipartition.

We have established that stable modes are directly responsible for reversals in the mid-
layer Reynolds stress of low-k, fluctuations. To demonstrate that 7, is the dominant con-
tributor to the total momentum transport at high My, and solely responsible for the local
minima in KEy, _q identified in Sec. IV A, we compare 7, and 7,. This is done at four differ-

ent times for a simulation with M, = 60 and Rm = 250 in Fig. 14. The four times shown
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are shortly before and after the first two local minima in KE; _y. At each time, the trans-
port is separated into the Reynolds stress 7, and Maxwell stress 7,, which are themselves
separated into contributions from different k,. At all times, |7, | exceeds |7,| by over an order
of magnitude. The Reynolds stress is dominated first by k, = 0.4 and then by k, = 0.2, the
same scales that contain the majority of the kinetic energy in k, > 0 fluctuations. Thus, not
only are the local minima in KEj, _q due to reversals in 7, and not 7, they are specifically
due to 7, reversals at small wavenumbers, where we have identified stable-mode excitation
as the effect that causes these reversals. This definitively ties counter-gradient momentum

transport in this system to stable-mode excitation.

In contrast to the Reynolds stress, the Maxwell stress 7, is dominated by scales beyond
the initially-unstable range, aside from the very first panel in Fig. 14. This is similarly
consistent with the distribution in &, of magnetic energy. While the low-k, Reynolds stresses
resemble the Reynolds stress of the eigenmodes 7, [¢;] — albeit broadened, consistent with the
broadening of the flow profile and eigenmodes discussed in Sec. IV A — the low-k, Maxwell
stresses bear less of a resemblance to 7[1);], or to m[1)(;], particularly as time goes on.
Furthermore, 7, was never observed to change sign for the simulations considered here. When
counter-gradient momentum transport occurs, it is always due to 7, changing sign. This is
consistent with the truncation error for the field, er [1&], generally exceeding the truncation
error for the flow, ep[¢]: if stable and unstable modes alone captured the Maxwell stress
as well as they capture the Reynolds stress, then 7, at low k, would reverse sign whenever
7, does. Instead, 7, consistently transports momentum down the gradient. This 7,-driven
transport is not captured by a simple Fick’s law, though more sophisticated models, such

167

as a magnetic eddy viscosity model®’, which applies to the same parameter regime studied

here, may perform better.

While counter-gradient momentum transport has been firmly tied to stable mode activity
in this paper, the weakening and eventual suppression of counter-gradient transport events
with increased field strength is only partly due to magnetic fields reducing stable mode
activity. This consistent, down-gradient 7, becomes stronger for stronger magnetic fields,
and can reduce or even cancel the effect of any counter-gradient 7,. This is seen in Fig. 15,
where 7, and 7, are shown for different My, focusing on the first two counter-gradient
transport phases. As field strength increases, |7| increases. This trend is seen for both a

stronger initial field from a decreased M, or with more field amplification from an increased
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FIG. 14. Different contributions to momentum transport at four different times for the same MHD
simulation as in Fig. 4. Solid lines show Reynolds stresses 7, and dashed lines show Maxwell
stresses 73, (rescaled by a factor of 100 for improved visibility). Black lines are the total Reynolds
and Maxwell stresses, while different colors indicate contributions from different k,. While 7, is
generally dominated by larger k, and is always negative, 7, is dominated by smaller k£, and changes

sign over time.

Rm (not shown, however trends are qualitatively similar, but the high-k, contributions
become progressively more dominant at higher Rm). This reduces the net counter-gradient
transport during these phases and increases down-gradient transport at other times. In the
first phase of counter-gradient transport, 7, remains mostly unchanged with My, as the
relative amplitudes between stable and unstable modes does not significantly change with
My at this time (see Fig. 12). So while stable mode activity does become less prominent
at this time as field strength increases, it is not due to a clear suppression of stable modes

relative to unstable ones (cf. Ref.3?) and a corresponding decrease in counter-gradient .
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FIG. 15. The same breakdown of stresses as in Fig. 14, but for four simulations with Rm = 500 and
different Ma. The two rows correspond to the first two instances of counter-gradient momentum
transport (see, e.g., Fig. 6). Note that 73 is rescaled by a factor of 10. As M decreases, 7, becomes
more dominant, reducing net counter-gradient transport. At earlier times |7, | varies little with My,

but at later times it decreases with stronger fields.

Instead, the influence of stable modes has become less prominent due to an increase in energy
transfer to small scales leading to increased |1,(k,)| for large k, — that is, the stable modes
play a less prominent role only because small-scale magnetic fluctuations are playing more
of a role. For Rm = 500, this holds true for all simulations with My = 5. For lower My,
the counter-gradient 7, (k, = 0.4) at this time does become partially reduced and then fully
removed as M decreases, and 7, remains down-gradient but becomes dominated by larger
scales. In the second phase of counter-gradient transport, the dominant contributor to the
Reynolds stress, k, = 0.2, becomes noticeably weaker with stronger fields. This trend in 7,
amplitudes is similar to what happens during the down-gradient transport phases at t = 40
and 85: |7,| becomes weaker as field strength increases at later times, but does not change

with M, at earlier times.
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FIG. 16. Viscous (solid) and resistive (dashed) dissipation over time for simulations with the same
initial conditions as those in Fig. 4, with different colors corresponding to different M and Rm, and
black corresponding to the hydrodynamic case. Even a weak magnetic field significantly increases
total dissipation relative to the hydrodynamic case. Resistive dissipation increases with Rm, and
peaks at a time that increases with Rm. Viscous dissipation is similar to the hydrodynamic case

except when the amplified field increases beyond a threshold that depends on both M and Rm.

From these results, the overall increase in down-gradient transport and decrease in KEj_ g
with field strength can be interpreted as a combination of two factors. First, reduced counter-
gradient transport from large-scale flow fluctuations, and second, enhanced down-gradient
transport from small-scale field fluctuations. The former is a direct result of decreased
stable mode amplitudes. The latter can be understood as an indirect result of stable modes
playing a less prominent role in this system. When stable modes activity is significant,
energy that would otherwise cascade to small scales is instead returned to the mean flow. As
previous work has noted®’, a reduction in stable mode activity allows more energy to reach
small scales. The enhanced small-scale fluctuations are further explored in the following

subsection.
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C. Small-scale fluctuations, dissipation

The enhanced generation of small-scale fluctuations as magnetic field strength increases
has been noted in terms of the distribution in k, of the Maxwell stress (Fig. 15) and of energy
(Fig. 5), particularly magnetic energy. When stable mode activity becomes less prominent,
the transfer of energy to small, dissipative scales is enhanced. This increases the energy

dissipation rate.

Figure 5 shows that the total energy in the system decreases more rapidly in the MHD sim-
ulations than in the hydrodynamic one, and that it decreases more rapidly as field strength
increases. The enhanced transfer of energy to small scales coincides with an overall increase
in energy dissipation. While the magnetic field does increase the kinetic energy at small
scales, the increased dissipation is almost entirely due to the addition of resistive dissipa-
tion. This is seen in Fig. 16, where viscous and resistive dissipation are plotted for a variety
of simulations, each with the same initial condition but different M, and Rm. For simu-
lations where the amplified field is not sufficiently strong, the viscous dissipation remains
essentially identical to that of the hydrodynamic case. This threshold depends on both My
and Rm. For M, = 60, viscous dissipation does not increase until Rm reaches 1000, while
for M = 40 the Rm = 500 simulation does exhibit enhanced viscous dissipation while the
Rm = 250 case (not shown) does not. The precise threshold for this change in behavior, and
a detailed investigation of its cause, is beyond the scope of this paper. Resistive dissipation,
on the other hand, matches or even exceeds viscous dissipation, consistent with magnetic
energy exceeding kinetic energy at small scales. As expected from Ref.? (see Eq. (6) there),
the local maxima in resistive dissipation are greater and occur later with increasing Rm,
as the current sheets formed by the high-strain-rate flow take longer to reach small enough
scales that resistivity overtakes flux advection. This trend is mostly robust to changes in
initial conditions. However, for initial conditions where the merging of the two initial vor-
tices occurs rapidly, the first peak in resistive dissipation may be determined by the time
when the merging process disrupts the first current sheet along the braid between the two
vortices (e.g. the current sheet seen at ¢ = 40 in Fig. 4), rather than being determined by
resistive effects disrupting the sheet®. For these reasons, care must be taken when studying
dissipative processes in KH-unstable systems in MHD to consider appropriate initial con-

ditions, box sizes that permit mergers if relevant, and explicit viscosity*® and resistivity”
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wherever possible. While M, has no clear effect on the time of these local maxima in high-
M, simulations, it does affect the overall level of resistive dissipation, with stronger fields
(lower My) yielding greater resistive dissipation. This can be understood as a lower My
increasing the amplitude of the magnetic fluctuations that reach small scales, thus increasing

the amplitude of the small-scale, dissipative currents.

V. CONCLUSIONS

In turbulence driven by unstable, freely-evolving shear layers in MHD, the addition of
a magnetic field has been observed to increase the layer broadening rate due to enhanced

turbulent momentum transport”!?

, and to increase energy transfer to small scales, despite
stabilizing the driving instability?. This work has investigated the role of large-scale, dis-
sipationless stable modes in this system to identify whether these trends are caused by a
reduction in stable mode activity. These modes transfer energy from large-scale fluctuations
back to the driving momentum gradient, shrinking the layer width, removing energy from

fluctuations, and impeding the cascade to small scales3?:4!

. The results presented here show
that the enhanced transfer to small scales and increased broadening rate with stronger mag-
netic fields do coincide with reduced stable mode activity. Furthermore, in allowing the shear
layer to evolve freely without additional forcing terms, this presents the first investigation
into the role of stable modes in a system where the source of instability is not fixed?!-?%28 or
quasi-stationary>2.

Allowing the layer to broaden introduces quasilinear flattening as a saturation mechanism
and yields two distinct sets of eigenmodes: the modes obtained by linearizing about the
equilibrium flow U = tanh(z) and field B, = 1, denoted by f;—, and those obtained by
linearizing about the instantaneous mean flow (U), and field (B, ), at each timestep, denoted
by ﬁj>. The f@ modes correspond more directly to energy transfer to and from the mean
flow, and they reflect the broadening of fluctuations as the layer broadens. However, they
quickly vanish or become ill-defined as the layer evolves and develops small-scale features
in z. On the other hand, while the ﬁ modes do not correspond to the evolved system as
directly as the f; modes, they remain useful for assessing stable mode activity, and they
capture the mid-layer Reynolds stress almost exactly when using only two modes at each

q28:29

k. Thus, the same eigenmode decompositions used in systems with a fixe or otherwise
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quasi-stationary3? unstable profile driving the turbulence are also effective in this system,
despite the evolution of the mean flow that drives instability.

These eigenmode decompositions were used to track the amplitudes of stable and unstable
modes through the evolving turbulence. In simulations with stronger magnetic fields, stable
mode activity becomes less prominent, and the layer broadening rate increases for two
reasons. First, stable mode amplitudes are reduced relative to unstable ones in simulations
with stronger magnetic fields. This reduces the counter-gradient momentum transport these
stable modes drive via turbulent Reynolds stresses. Second, the down-gradient Maxwell
stress due to small-scale magnetic fluctuations becomes stronger with stronger fields. This
can be understood as a result of stable-mode excitation playing less of a role in instability
saturation relative to energy transfer to small scales. When stable modes are less impactful,
the energy they would remove from fluctuations instead makes its way to small scales3*4!.
While the Maxwell stress produced by these small-scale fluctuations does not fit a simple
Fick’s Law in terms of the mean flow gradient, it is possible that more sophisticated models,
such as a magnetic eddy viscosity®”, might capture this effect.

These enhanced small-scale fluctuations, which are generally magnetic fluctuations, sig-
nificantly boost the energy dissipation rate even for very weak magnetic fields (more than
doubling the dissipation rate relative to the hydrodynamic case for M4 = 100), with dissipa-
tion increasing as Rm increases or M4 decreases. This increased dissipation is almost entirely
due to resistivity, although viscous dissipation increases with field strength as well, provided
the field is stronger than some threshold that depends on Rm and whose precise value for
different Rm is beyond the scope of this paper to determine. Thus, even in the presence of
a magnetic field much too weak to significantly affect the linear instability, shear layers in
non-ideal MHD can dissipate energy much faster than the hydrodynamic counterpart, with
the reduction of stable mode activity providing an underlying explanation.

The observed variation in dynamics as stable-mode activity changes invites the question of
how astrophysical shear flow instabilities saturate, where stable modes play a role, and how
their presence or absence affects the system. For example, in galaxy halos, the entrainment
of cold gas into galactic outflows is a topic of active research®, and is thought to occur in part
via shear-flow instabilities. How these instabilities saturate in different parameter regimes
likely affects the rate at which passive scalars are mixed, in addition to the momentum

mixing studied here. Recent work® found that background magnetic fields dramatically
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affect the drag between a cold cloud and hot medium, suggesting that this is a scenario
where stable-mode activity or lack thereof may play a role. However, that work also noted
the importance of 3D effects, which have been neglected in the present study. Furthermore,
the dependence on magnetic Reynolds number we observed precludes reliable speculation
of the background field strength necessary to suppress stable modes at the large Rm (and

large magnetic Prandtl number) found in these systems.

Fingering (or “thermohaline”) convection in stellar interiors™ presents a system that does
not suffer from these concerns, but where the effects of stable modes are likely more subtle.
Simulations show that the fingering instability saturates by driving so-called “parasitic” KH
instabilities in both the hydrodynamic™ ™ and MHD™ cases (similar to channel modes of

™17 The length scales of these KH modes is small enough

the magnetorotational instability
that the Reynolds and magnetic Reynolds numbers are often similar to the values studied
here, and turbulent transport models based on these KH parasites are remarkably accurate

7173 This suggests that the results

even when neglecting density gradients and 3D effects
of the present paper are applicable to fingering convection, and that the saturation mecha-
nisms of these KH modes may have significant bearing on turbulent transport. In particular,
recent work in the hydrodynamic case™ showed that adding a horizontal shear body forc-
ing to fingering convection yields counter-gradient momentum transport in some parameter
regimes. The results of the present paper suggest this counter-gradient transport may be
suppressed by the addition of a magnetic field similar in strength to the weakest fields con-
sidered in Ref.”™: as stable modes become subdominant, smaller-scale magnetic fluctuations

may produce significant down-gradient momentum transport. Accurately capturing these

effects may require finer numerical resolutions than in the hydrodynamic case.

This work motivates two related possible future directions of inquiry. First, while the
Reynolds stresses in this system can be reasonably modeled using stable and unstable modes
alone, the Maxwell stresses cannot. Not only do these modes fail to describe large-scale field
fluctuations well, but the Maxwell stress is primarily driven by small-scale fluctuations,
while the modes considered in this paper exist at large scales. Recent work®" involving a
quasi-stationary system of driven, shear-flow turbulence has suggested these stresses can be
described by a magnetic eddy viscosity model. It is plausible that for the same system con-
sidered here, with the addition of a shear forcing term to permit a quasi-stationary state, the

momentum transport could be well-described by a combination of stable and unstable modes
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for the Reynolds stress and a magnetic eddy viscosity model for the Maxwell stress. Further-
more, a quasi-stationary system enables a thorough investigation of the dominant nonlinear
interactions in the saturated state, potentially informing saturation theories for predicting
eigenmode amplitudes without first performing direct numerical simulations (similar to the
saturation theories'® that were informed by studies of dominant nonlinear interactions®® in
the context of fusion plasmas).

Provided a reduced model that is informed by stable mode activity, a second direction for
this work is the application of such a model to physical systems. For example, if the effect
of density stratification is included, such a model might be used to improve predictions of

shear-driven transport in stellar evolution codes'®.
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