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The Kelvin-Helmholtz (KH) instability of a shear layer with an initially-uniform mag-

netic field in the direction of flow is studied in the framework of 2D incompressible

magnetohydrodynamics with finite resistivity and viscosity using direct numerical

simulations. The shear layer evolves freely, with no external forcing, and thus broad-

ens in time as turbulent stresses transport momentum across it. As with KH-unstable

flows in hydrodynamics, the instability here features a conjugate stable mode for ev-

ery unstable mode in the absence of dissipation. Stable modes are shown to transport

momentum up its gradient, shrinking the layer width whenever they exceed unstable

modes in amplitude. In simulations with weak magnetic fields, the linear instability

is minimally affected by the magnetic field, but enhanced small-scale fluctuations rel-

ative to the hydrodynamic case are observed. These enhanced fluctuations coincide

with increased energy dissipation and faster layer broadening, with these features

more pronounced in simulations with stronger fields. These trends result from the

magnetic field reducing the effects of stable modes relative to the transfer of energy to

small scales. As field strength increases, stable modes become less excited and thus

transport less momentum against its gradient. Furthermore, the energy that would

otherwise transfer back to the driving shear due to stable modes is instead allowed to

cascade to small scales, where it is lost to dissipation. Approximations of the turbu-

lent state in terms of a reduced set of modes are explored. While the Reynolds stress

is well-described using just two modes per wavenumber at large scales, the Maxwell

stress is not.

2



I. INTRODUCTION

Shear layers are ubiquitous in space and astrophysical systems, including Earth’s magnetosphere1,

relativistic jets2, and clouds passing by galactic and circumgalactic gas3. These flows exhibit

extremely large Reynolds numbers, and thus are often susceptible to shear-flow instabilities

that can give rise to turbulence. Among those instabilities is the Kelvin-Helmholtz (KH)

instability, the canonical shear-flow instability4–6, which is triggered in unstable flow profiles

by sufficiently strong flow shear (i.e. it does not require other physical effects for it to be

destabilized) and thus can exist in a wide range of systems. Despite the relative simplicity

of the instability in idealized systems, the background magnetic fields present in many

astrophysical systems can have significant and complex effects on its dynamics. A uniform

field in the direction of flow can stabilize KH if the field strength exceeds some threshold4.

This stability threshold depends on fluid properties and the flow profile (see Ref.7 and refer-

ences therein) but, in the perfectly conducting case, is roughly characterized by the Alfvén

velocity (in terms of the flow-aligned component of the field) exceeding the difference in

flow velocity on either side of the layer. For weaker magnetic fields, the instability remains

but with a reduction in growth rate that depends on the sonic Mach number (see Ref.8 and

references therein). However, despite a uniform magnetic field decreasing the growth rate

relative to the hydrodynamic case, magnetohydrodynamic (MHD) simulations show even

weak magnetic fields significantly enhance the generation of small-scale fluctuations and the

rate at which momentum is transported across the shear layer, causing the layer to broaden

at a faster rate7,9,10. While the focus of the present work is on uniform equilibrium fields,

it is worth noting that both the linear and nonlinear dynamics are significantly different in

the case of a nonuniform magnetic field8,11.

This instability-driven turbulence generally transports momentum, as well as heat and

particles, far faster than viscosity and molecular diffusion would alone. Thus, this turbu-

lence can have important effects on systems where it is found. Indeed, transport driven by

shear-flow turbulence is often necessary to explain observations12, or similarly plays a key

role in reduced dynamical models13,14. This motivates studies of shear-driven turbulence,

particularly in pursuit of transport models that can be employed when considering sys-

tems too complex for direct numerical simulation (e.g. in stellar evolution codes13,14). With

the significant impacts that background magnetic fields can have on turbulent transport in
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shear-driven turbulence, it is important that such transport models account for magnetic

effects. However, reduced models where transport is assumed to scale with the growth rate

of the driving instability, and no details of the nonlinear saturation are included, are clearly

inadequate in this case, as increasing magnetic field strength increases transport while de-

creasing the instability’s growth rate. A primary goal of this work is to explore what details

of the dynamics are responsible for this scaling, and thus might be necessary to include in

reduced models to capture key trends accurately.

In the context of turbulence driven by gyroradius-scale instabilities in fusion plasmas,

novel reduced transport models15,16, as well as corrections to existing models17,18, have been

derived by accounting for the physical mechanisms that saturate the instability. Here, in-

stability saturation refers to the arresting of the exponential growth of fluctuations that

are seeded by initially-small perturbations. For example, in systems where perturbations

grow by drawing energy from an unstable momentum, density, or temperature gradient,

exponential growth might cease once perturbations have drawn so much energy from the

driving gradient that it relaxes and is no longer unstable; this is sometimes referred to as

quasilinear flattening. Particularly in systems with fixed background gradients, saturation

might instead occur when the injection of energy by the instability is balanced by the non-

linear transfer of energy to small, dissipative scales (see also Refs.19 and20, where magnetic

field generation was noted as a saturation mechanism). A third, distinct saturation mech-

anism involves the transfer of energy to large-scale, linearly stable (damped) modes21,22.

These modes are eigenfunctions of the linearized governing equations, and they decay expo-

nentially in the absence of nonlinear energy transfer from other modes. Signatures of their

excitation due to nonlinear energy transfer have been measured in dipole-confined plasmas23,

and, in this paper, a previously-observed feature of hydrodynamic shear layers in laboratory

experiments24,25 and simulations26, namely counter-gradient momentum transport, will be

identified as a consequence of stable-mode excitation.

In the fusion context, analytical calculations have shown that stable-mode excitation is

almost universally a significant contributor to saturation21,27. Subsequent direct numerical

simulations have demonstrated that stable eigenmodes not only affect instability saturation,

but also remain excited in the ensuing turbulence28,29. Understanding the nonlinear interac-

tions primarily responsible for energy transfer to stable modes30 has enabled the development

of a variety of reduced models that incorporate stable mode effects15–18. In the case of shear-
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flow instabilities, the same analytical saturation calculations of Refs.21,27 were applied to a

hydrodynamic, KH-unstable system in Ref.22, showing that stable modes are important in

saturating the KH instability, and that when they are excited they can significantly affect

turbulent momentum transport (see also Ref.31, where the methods were extended to sys-

tems with eigenmodes that cannot be derived in closed form, like the system considered

here, and thus the calculation must be done numerically). In Ref.32, gyrokinetic simulations

of an unstable shear flow revealed that stable modes are excited to significant amplitudes

in shear-driven turbulence except when heavily damped by a radiative damping term (also

called drag or friction in other contexts). There, an external forcing term partially main-

tained the unstable flow profile against quasilinear flattening, permitting a quasi-stationary

state of driven turbulence. The simulations had only two spatial dimensions, and the dy-

namics were essentially hydrodynamic, with the forcing term33,34 reminiscent of the forcing

considered in the well-studied Kolmogorov flow problem35–37. In parameter regimes where

stable modes were significantly excited, the relevant flow fluctuations could be approximated

well by linear combinations of stable and unstable modes alone (neglecting the continuum of

marginally stable modes38). A scaling model for a quantity directly related to the Reynolds

stress as a function of the forcing was derived in terms of the stable and unstable mode

amplitudes and shown by comparison with simulations to be very accurate.

The present work explores the role of stable modes in shear-flow instability saturation

and turbulent momentum transport for a system that differs from Ref.32 in two key regards.

First, no forcing terms are included. Thus, no quasi-stationary state is formed, quasilinear

flattening is permitted, and the effects of layer broadening on saturation and the ensuing

turbulence are investigated. Second, an initially-uniform magnetic field in the direction of

flow is included. The present study focuses on the weak-field regime, where the growth rate

of the instability is only slightly reduced compared to the hydrodynamic case. The system is

studied in the MHD framework via direct numerical simulations using the code Dedalus39,40.

The simulations are of a two-dimensional (2D), incompressible fluid with finite viscosity and

resistivity included explicitly.

In other systems of instability-driven turbulence, stable modes are known to remove

energy from fluctuations that would otherwise cascade to small scales30,41. Here, the en-

hancement of turbulent momentum transport and small-scale fluctuations with increasing

magnetic field strength is examined in the context of stable modes to identify whether the
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enhanced small-scale fluctuations are due to a reduction in stable-mode activity. At large

scales, the linearized, dissipationless system features a pair of unstable and stable modes

at each horizontal wavenumber4. Unstable modes gain energy from the shear flow, and

their associated Reynolds and Maxwell stresses transport momentum down its gradient

and broaden the layer6. Stable modes return energy to the background, and their stresses

transport momentum against its gradient and tend to shrink the layer. Transient instances

of counter-gradient momentum transport, resembling those seen in experiments24,25, are ob-

served here and shown to occur whenever stable modes exceed unstable modes in amplitude.

As field strength is increased between simulations, this counter-gradient momentum trans-

port becomes weaker and eventually ceases partly because stable modes are less excited

with stronger magnetic fields. With less stable mode activity, the energy that would other-

wise be returned to the background flow instead cascades to small scales, producing more

small-scale fluctuations and a significant increase in energy dissipation relative to the hy-

drodynamic case. The small-scale fluctuations also produce a down-gradient Maxwell stress

that becomes significant for strong initial fields or sufficiently low resistivity. The enhanced

layer broadening is thus a combination of reduced counter-gradient momentum transport by

stable modes and enhanced down-gradient transport by small-scale magnetic fluctuations.

This paper is organized as follows. The system is described in Sec. II, including the

equilibrium, governing equations, and the numerical implementation. The dissipationless

linear modes are discussed in Sec. III. Nonlinear simulations are presented in Sec. IV, begin-

ning with an overview of the nonlinear evolution of the system, followed by discussions of

the effects of layer broadening in Sec. IVA, stable-mode excitation and momentum trans-

port in Sec. IVB, and small-scale fluctuations and dissipation in Sec. IVC. Conclusions are

presented in Sec. V.

II. SYSTEM SETUP

A. Equilibrium, governing equations

We study the evolution of a two-dimensional free shear layer in an incompressible fluid

in MHD with finite viscosity and resistivity, with an initially-uniform magnetic field in the

direction of the flow. Specifically, we consider an initial flow in the horizontal direction x̂
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that varies in the vertical direction ẑ, i.e., V̄0 = Ū(z̄)x̂, where Ū(z̄) = Ū0 tanh(z̄/d̄) is the

initial flow profile, Ū0 is the flow speed away from the layer, and d̄ is the layer half-width,

with an initial, uniform magnetic field B̄0 = B̄0x̂. Here, an overbar denotes a dimensional

quantity. Henceforth, we non-dimensionalize all speeds, distances, and fields according to

U = Ū/Ū0, (x, z) = (x̄/d̄, z̄/d̄), and B = B̄/B̄0, respectively, such that V0 = tanh(z)x̂ and

B0 = x̂. All other physical quantities will be non-dimensionalized in terms of Ū0, d̄, B̄0, and

combinations thereof.

We describe the flow velocity and magnetic field in terms of a streamfunction φ and a flux

function ψ, so that v = ŷ×∇φ and B = ŷ×∇ψ. Under our chosen non-dimensionalization,

we may write the governing equations as42

∂

∂t
∇2φ+

{

∇2φ, φ
}

=
1

M2
A

{

∇2ψ, ψ
}

+
1

Re
∇4φ (1)

and
∂

∂t
ψ = {φ, ψ}+

1

Rm
∇2ψ. (2)

Here, MA is the Alfvén Mach number, or the ratio of the equilibrium flow speed to the Alfvén

speed, and scales likeMA ∝ Ū0/B̄0; the Reynolds number Re and magnetic Reynolds number

Rm are defined as Re = Ū0d̄/ν̄ and Rm = Ū0d̄/µ̄, respectively, where ν̄ is the kinematic

viscosity and µ̄ is resistivity; and {f, g} ≡ ∂xf∂zg − ∂xg∂zf . Equation (1) describes the

evolution of the vorticity ∇ × v = ∇2φŷ. The second term on the left-hand side is the

vorticity advection term, the first term on the right-hand side is the curl of the Lorentz

force, and the second term on the right-hand side is standard viscous dissipation. The terms

on the right-hand side of Eq. (2) correspond to flux advection and resistive diffusion. This

system, with the above equilibrium, is known to be linearly unstable for MA above a critical

threshold that lies between 1 and 27.

B. Perturbation equations

As will be described in Sec. IIC, we solve Eqs. (1) and (2) numerically using the initial

value problem capabilities in the Dedalus code39. Additionally, we use Dedalus’ eigenvalue

problem capabilities to calculate the complex frequencies (eigenvalues) and eigenmodes of

these equations linearized about an unstable equilibrium. Solving the linearized system as

an eigenvalue problem allows the full set of eigenmodes at each kx, including stable modes,
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to be calculated, whereas initial value calculations yield only the most unstable mode at

each kx. This is necessary to track the amplitudes of these modes in the ensuing turbulence

in solutions of Eqs. (1) and (2), which then informs how much energy they remove from

fluctuations30. As with previous studies of stable modes in shear-flow turbulence22,32, we

are specifically interested in the dissipationless modes of this system, so eigenmodes are

calculated with viscosity and resistivity neglected. While eigenmodes could be calculated

with dissipation included, such modes would mix together the physical effects of conservative

energy transfer between the shear flow and fluctuations – a primary focus of this paper

– and non-conservative dissipation at large scales. The stable modes of the dissipative

system owe their stability to a combination of these two effects, and thus these modes do

not lend themselves as conveniently to calculations involving the conservative effect alone.

Furthermore, the dissipationless modes have previously been shown to still be relevant in

the full, dissipative system32,43.

To derive linearized equations, we separate the system into a horizontal, uniform (in x)

background flow U(z) and field Bx(z), and perturbations φ̃ and ψ̃. This allows Eqs. (1) and

(2) to be similarly separated into equations describing the background, and the following

equations for the perturbations:

∂

∂t
∇2φ̃ =− U

∂

∂x
∇2φ̃+ U ′′ ∂

∂x
φ̃+

1

M2
A

(

Bx
∂

∂x
∇2ψ̃ − B′′

x

∂

∂x
ψ̃

)

−
{

∇2φ̃, φ̃
}

+
1

M2
A

{

∇2ψ̃, ψ̃
}

(3)

and
∂

∂t
ψ̃ = −U

∂

∂x
ψ̃ +Bx

∂

∂x
φ̃+

{

φ̃, ψ̃
}

, (4)

where primes denote derivatives with respect to z, and we have neglected viscosity and re-

sistivity. Equations (3) and (4) are the MHD equivalent of Eq. (1) in Ref.22, and describe

how fluctuations interact linearly with the background flow and field, and nonlinearly with

one another. When the fluctuations are small enough that the nonlinearities can be ne-

glected, Fourier transforming Eqs. (3) and (4) in x and assuming solutions vary in time as

exp[iω(kx)t] yields

ω

(

d2

dz2
− k2

x

)

φ̂ =− kxU

(

d2

dz2
− k2

x

)

φ̂+ kxU
′′φ̂

+
1

M2
A

[

kxBx

(

d2

dz2
− k2

x

)

ψ̂ − kxB
′′
xψ̂

] (5)
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and

ωψ̂ = −kxUψ̂ + kxBxφ̂, (6)

where φ̂ and ψ̂ are the Fourier transforms (in x) of φ̃ and ψ̃. Thus, at every kx, we have a

separate system of linear, ordinary differential equations in z. For a given kx and MA, U(z)

and Bx(z), and appropriate choice of boundary conditions, this system forms a generalized

eigenvalue problem that can be solved to obtain a spectrum of eigenvalues ωj and eigenmodes

~fj ≡ (φj(z), ψj(z)), where j = 1, 2, . . . enumerates the different solutions at each kx. While

the equilibrium considered in this paper is specifically U = tanh(z) and Bx = 1, the more

general equations are presented here because eigenmodes corresponding to other U(z) and

Bx(z) will be considered as well in this paper.

C. Numerical implementation

Dedalus is a pseudo-spectral code with a variety of spectral bases available. We employ

Fourier modes exp[ikxx] in the x direction and Chebyshev polynomials Tn(z) in z. Our

simulation domain size is Lx × Lz = 10π × 10π, thus the minimum horizontal wavenumber

is kx = 0.2, with periodic boundaries at x = ±Lx/2 and perfectly conducting, no-slip,

co-moving (with the equilibrium flow V0) walls at z = ±Lz/2. The simulations presented

here use a resolution of Nx × Nz = 512 × 2048, with convergence tests performed at the

highest values of Rm by ensuring that changes in spectral energy density and dissipation with

resolution are minimal. For many of the physical parameters studied here, this z-resolution

is higher than necessary for well-resolved simulations.

Previous work has shown that the nonlinear development of KH-unstable flows depends

sensitively on the choice of the initial perturbations that seed the instability44. In studying

free shear layers, a common choice of initial condition is a perturbation in one or more

velocity fields that is sinusoidal in x, with a wavelength that matches the box size or the

fastest-growing linear mode, and Gaussian in z centered about the shear layer7,40, with lower-

amplitude noise sometimes added to other horizontal wavenumbers10 . Here, we perturb both

φ and ψ at every nonzero kx with Gaussians in z that have randomly-assigned, kx-dependent

complex phases and amplitudes that decrease with kx as a power law. Thus, at t = 0 the
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streamfunction and flux function are

φ(x, z) =
∑

kx

φ̂(kx, z) = φ̂(0, z) + Aφ

∑

kx>0

ka
xe

i∆φ(kx)−z2/σ2

, (7)

and

ψ(x, z) =
∑

kx

ψ̂(kx, z) = ψ̂(0, z) + Aψ

∑

kx>0

ka
xe

i∆ψ(kx)−z2/σ2

, (8)

where the kx = 0 components are the unperturbed equilibrium profiles, Aφ and Aψ set

overall amplitudes for the perturbations, a sets the steepness of the energy spectra of the

perturbations, σ sets the width of the Gaussian in z, and at every nonzero wavenumber,

∆φ(kx) and ∆ψ(kx) are uniformly-distributed pseudo-random numbers in [0, 2π). For the

results presented here, we use σ = 2, a = −1, and Aφ = Aψ = 5 × 10−4, which allows for

a clearly-defined regime of linear growth before nonlinear interactions become important.

For MA = 5, setting Aψ = 0 did not noticeably change how the instability saturated. This

is likely a result of the flow-dominated nature of the instability at these values of MA (as

will be shown in Sec. III) and the well-defined linear growth regime permitted by our small

value of Aφ.

Previous work44 has shown that even when only two wavenumbers are perturbed, the

details of the nonlinear stage after the instability saturates are sensitive to the complex

phase differences and relative amplitudes between different kx, the overall amplitude of the

perturbation, and the structure in z of the perturbations. In this work, we are interested

in studying details of the saturated state as MA and Rm are varied. In an effort to ensure

that our observed trends are not a unique feature of a particular choice of initial conditions,

we perform multiple simulations at each MA and Rm, with different ensembles of ∆φ and

∆ψ. In practice, this is done by selecting different seeds for our pseudo-random number

generator (we use numpy.random.RandomState45,46 to ensure consistency across different

computers) and using the same seeds for different MA and Rm so that MA and Rm can be

varied independently with ∆φ and ∆ψ held fixed. For each value of MA and Rm presented

here, at least five different sets of initial conditions were simulated. While the majority of

this paper presents results from only one set of initial conditions, the trends we present were

robust and broadly representative of the range of initial conditions we sampled.
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FIG. 1. Growth rate γ for the fastest-growing mode at each kx. Each curve corresponds to a

different Alfvén Mach numberMA. While stronger magnetic fields (lower MA) provide a stabilizing

influence, γ varies little except when MA . 4. Horizontal dashed lines indicate the kx present in

our nonlinear simulations.

III. EIGENMODES AND EIGENVALUES FOR U = tanh(z) AND Bx = 1

For U = tanh(z) and Bx = 1, unstable modes, solutions to Eqs. (5) and (6) with positive

growth rates γj = −Im[ωj ], are observed as expected for wavenumbers in the range 0 < kx <

1 as long as MA is above a critical threshold between 1 and 2 (the precise value depends on

fluid properties and the flow profile, see Ref.7 and references therein). The growth rate of

the fastest-growing mode for this system is plotted against kx for a variety of MA in Fig. 1.

Magnetic tension provides a stabilizing influence that suppresses instability for MA below

the critical threshold, and significantly reduces the growth rate for MA slightly above the

threshold, but only marginally affects the growth rate for MA & 8.

Taking the complex conjugate of Eqs. (5) and (6) shows that, as in the hydrodynamic5

and gyrokinetic cases32, for every eigenvalue ωj and eigenmode (φj, ψj) that is a solution of

Eqs. (5) and (6), the complex conjugate ω∗
j and (φ∗

j , ψ
∗
j ) is a solution as well (recent work

has explored the connection between this conjugate symmetry and parity-time symmetry47).

Following Refs.22,32, when describing the eigenmodes of this system, we label the most un-
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ψj

−1 0 1

Bx(z)

−5

0
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z
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x

Stable mode ~f2

FIG. 2. The initial U = tanh(z) unstable equilibrium flow (top left) and uniform field (bottom

left) are shown alongside contours (with arbitrary units) of the streamfunction (center column)

and flux function (right column) for the unstable (top) and stable (bottom) modes at kx = 0.4 for

MA = 40.

stable mode at each kx as j = 1 and its conjugate stable mode as j = 2. Real-space contours

corresponding to φj and ψj for j = 1 and j = 2 at MA = 40, kx = 0.4 are shown in Fig. 2.

While the flow component of the mode can be roughly described as a superposition of two

waves of vorticity localized about the edges of the layer (a wealth of literature exists on this

subject48–51), the current density of the mode is more localized about the center of the layer.

The source of free energy that drives the exponential growth of the unstable mode is the

equilibrium flow U(z). In terms of Eqs. (3) and (4), the growth of the mode is due to the

(dissipationless) linear terms on the on right-hand side. These terms were derived from the

energy-conserving nonlinearities in Eqs. (1) and (2) by separating interactions involving U(z)

and Bx(z) from nonlinear interactions between fluctuations. If U(z) and Bx(z) are identified

as the horizontally-averaged flow and field and held fixed in time, so that only kx 6= 0
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perturbations are allowed to evolve, then this exponential growth does not conserve energy,

because the energy injected into ~f1 is not self-consistently removed from the mean flow. This

is the case in Ref.22, as well as previous studies of stable modes in plasma turbulence driven

by instabilities aside from KH due to the fixed background gradients that were considered

(e.g. Refs.21,27–30). However, in direct numerical simulations of Eqs. (1) and (2) (or in other

systems where driving gradients are not held fixed), energy is conservatively transferred

from the equilibrium to growing perturbations by the nonlinearities. These considerations

are critical for the relationship between the horizontally averaged flow, eigenmodes, and

Reynolds stress in counter-gradient transport events described in Sec. IV. Viewed in terms

of a separation between the mean and kx 6= 0 fluctuations, the removal of energy from U(z)

occurs via the xz components of the Reynolds and/or Maxwell stress tensors, which we

denote as

τu ≡ −

〈

∂

∂x
φ̃
∂

∂z
φ̃

〉

x

(9)

and

τb ≡
1

M2
A

〈

∂

∂x
ψ̃

∂

∂z
ψ̃

〉

x

, (10)

respectively, where 〈·〉x indicates an average in x. These stresses transport horizontal mo-

mentum along the vertical axis and evolve the mean flow according to (neglecting viscosity)

∂

∂t
〈U〉x =

∂

∂z
(τu + τb) , (11)

with a transport of momentum down the gradient lowering the kinetic energy of the mean

flow.

As with the exponential growth of the unstable mode ~f1, the exponential decay of the

conjugate stable mode ~f2 does not conserve energy if the background flow and field are held

fixed. Thus, in Ref.22 and previous studies of stable modes in instability-driven turbulence,

stable modes necessarily present a nonconservative energy sink. However, they do conserve

energy when directly simulating Eqs. (1) and (2), with energy injection into the mean pro-

vided by the same stresses, in addition to a minimal amount of energy that is transferred

into the mean field. This is illustrated in Fig. 3, where the Reynolds and Maxwell stresses

are shown for ~f1 and ~f2 at kx = 0.4 for both MA = 25 and MA = 2. For unstable modes,

both τu and τb transport momentum down the gradient, so that they both contribute to a

transfer of energy from U(z) to ~f1. Likewise, for stable modes, both stresses yield counter-

gradient momentum transport, transferring energy from ~f2 to U(z). The transport of the
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FIG. 3. xz components of the Reynolds stress τu (blue) and Maxwell stress τb (orange) for the

unstable mode ~f1 (solid lines) and stable mode ~f2 (dashed lines) at kx = 0.4 for MA = 25 (left)

and MA = 2 (right). For MA = 25, τb is rescaled by a factor of 5 to improve visibility. Modes are

normalized to have unit total energy.

two modes is symmetric in the sense that τu[φ2] = −τu[φ1] and τb[ψ2] = −τb[ψ1]. As MA is

decreased, corresponding to a stronger equilibrium field, the relative amplitudes of τu and

τb change, with |τb| exceeding |τu| for only the strongest equilibrium fields, starting around

MA ≈ 2.5.

IV. NONLINEAR EVOLUTION

Consistent with previous work7,10, the addition of even a weak magnetic field causes

significant changes to the nonlinear evolution of this system despite only slight changes

to the linear instability. This is readily seen by inspecting snapshots of the flow. The

top row of Fig. 4 shows vorticity and streamlines for a hydrodynamic simulations at three

different times, corresponding to precursor vortex formation, vortex merging, and deep in

the nonlinear regime. For comparison, the middle and bottom rows of Fig. 4 show vorticity

and streamlines, as well as current density and field lines, for an MHD simulation with the

same initial conditions. This simulation has an initially-weak magnetic field, with MA = 60

and Rm = 250. In the hydrodynamic case, the vorticity equation becomes an advection-

14



−10

0

10
z

t = 40.0 t = 90.0 t = 150.0

−10

0

10

z

−10 0 10

x

−10

0

10

z

−10 0 10

x
−10 0 10

x

−1.00
−0.75
−0.50
−0.25
0.00
0.25
0.50
0.75
1.00 ∇

2φ
(hydro)

−1.00
−0.75
−0.50
−0.25
0.00
0.25
0.50
0.75
1.00 ∇

2φ
(M

H
D
)

−60
−40
−20
0
20
40
60 ∇

2ψ
(M

H
D
)

FIG. 4. Snapshots at three different times for a hydrodynamic simulation (top row) and an MHD

simulation with MA = 60 and Rm = 250 (middle and bottom rows). In the top and middle rows,

the color shows vorticity ∇2φ and black lines show contours of the streamfunction φ (streamlines of

the flow). In the bottom row, color shows current density ∇2ψ and black lines show contours of the

flux function ψ (field lines). Current sheets form along the braids between vortices at early times,

and at the edges of the vortex at later times. For vorticity plots, the colorbar has been rescaled

with ∇2φ = 1 as the maximum and −1 as the minimum with white as 0 to demonstrate that,

in the hydrodynamic case, all of the vorticity is into the page, consistent with the conservative,

advection-diffusion nature of the vorticity equation, and that this is broken in MHD, with negative

vorticity appearing at late times even at this high MA and low Rm.

diffusion equation, so no negative vorticity is produced aside from boundary layer effects.

Vorticity conservation is broken by the Lorentz force in MHD, as can be seen by the regions

of negative vorticity that form late in the simulation. From close inspection of the vorticity

fields, one can infer that vortex reconnection is occurring52, in addition to the magnetic

reconnection responsible for changes in field line topology. A thorough comparison of these

two varieties of reconnection and their influence on the dynamics is beyond the scope of
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this paper, though the significant dissipation by resistivity that will be shown in Sec. IVC

suggests magnetic reconnection is a dominant effect. This is consistent with our observation

that magnetic energy has a greater tendency to reach small scales than does the kinetic

energy.

Magnetic fields embedded in high-strain-rate flows, such as the narrow vortex sheets,

known as braids, connecting the coherent vortices in this system, are known to be amplified

by the strain provided Rm ≫ 153,54. The flow strain pushes neighboring field lines together,

forming a current sheet along the braid as seen in Fig. 4. This figure also demonstrates the

familiar amplification of magnetic fields by coherent vortices10,55, with current sheets forming

at the edge of the post-merger vortex as it wraps up the magnetic field, with the field lines

in the interior of the vortex reconnecting and drifting outwards via flux expulsion56. The

field amplification provided by both high-strain-rate flow and coherent vortices increases

with Rm10,53. Thus, when studying trends with magnetic field strength in this system, not

only does field strength vary with MA, but also with Rm. Decreasing MA corresponds to a

stronger initial field, while increasing Rm allows the field to become more amplified as time

goes on.

Consistent with Ref.44, the precursor vortex formation time and the vortex merging time

correspond to the initial saturation of kx = 0.4 and kx = 0.2, respectively. This is demon-

strated in Fig. 5, where various components of energy are plotted over time, with solid

and dashed lines corresponding to kinetic and magnetic energy for the MHD case, dotted

lines corresponding to the hydrodynamic case, and different colors corresponding to differ-

ent components of the 1D spectral energy density, defined so that KE =
∑

kx
KEkx and

ME =
∑

kx
MEkx . The precursor vortices form roughly when KEkx=0.4 reaches its first max-

imum, and they merge roughly when KEkx=0.2 reaches its first maximum. Consistent with

Ref.44, we found the saturation time for kx = 0.4 to be independent of the complex phase

∆φ(kx) of the initial flow perturbation, while the saturation time for kx = 0.2 does depend

on ∆φ(kx). Varying ∆ψ had no significant effect on the simulations. The simulations shown

here correspond to a choice of ∆φ(kx) with a relatively long merging time.
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FIG. 5. Energy components versus time for the simulations shown in Fig. 4 with MA = 60 and

Rm = 250 (top row), and a similar simulation with MA = 40 and Rm = 500 (bottom row), both

compared to the same hydrodynamic simulation. The left column plots energy on a log scale and

the right on a linear scale. Solid, dashed, and dot-dashed curves correspond to kinetic, magnetic,

and total energy, respectively. Dotted curves correspond to the hydrodynamic case. Colors indicate

different kx contributions, with total energy summed over all kx shown in brown, the contribution

from all nonzero kx in red, and contribution from small scales, given by summing over kx ≥ 1, shown

in black. The initial saturation and merger stages show no obvious changes from the hydrodynamic

case, but local minima in KEkx=0 (blue) become less pronounced with stronger fields. Small-scale

fluctuations become enhanced with increased field strength.

A. Layer broadening

The shear layer broadens over time in this system as energy is transferred from the mean

flow to fluctuations at kx > 0. Previous work has shown that the layer broadens more
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FIG. 6. Kinetic energy over time in the mean flow, KEkx=0, for a variety of MA. Each simulation

has Rm = 500 and the same. As field strength increases (MA decreases), KEkx=0 decreases more

rapidly, equivalent to a faster layer broadening rate.

quickly for stronger magnetic fields7,10. This is consistent with the results shown in Fig. 6,

where KEkx=0 is plotted versus time for simulations with the same initial conditions and

Rm, but different MA. As field strength increases, KEkx=0 decays more rapidly overall.

From Eq. (11), this implies an overall increase in momentum transport down the gradient

in U , and hence a broadening of the layer. Close inspection shows brief intervals in time

where momentum transport reverses and energy is transferred back to the mean flow, as

indicated by transient increases in KEkx=0, e.g., near t ≈ 55 and t ≈ 85. While the overall

down-gradient transport increases with field strength over long times, the counter-gradient

transport in these phases, as well as the down-gradient transport immediately before them,

decreases with increased field strength. This will be explored in greater detail in Sec. IVB.

The broadening of the layer has important consequences for the eigenmodes and their

impact on transport. While the eigenmodes described in Sec. III transfer energy to and from

the initial base flow and field, the modes governing energy transfer with the background

change as the background flow and field change.

In unstable shear layers, the growth rate of the instability generally scales with the differ-

ence in flow velocity on either side of the layer divided by the layer width. The most-unstable

wavenumber and the critical wavenumber above which modes are no longer unstable scales

with one divided by the layer width. Thus, as the layer broadens in time, the critical

wavenumber decreases from its initial value of kx = 1, and the linear growth rate of fluc-
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tuations about the mean flow decreases (see also Ref.25, where the inverse is observed in a

system where layer thickness is made to decrease over time). Similarly, the Reynolds and

Maxwell stresses corresponding to the linear modes also broaden with the layer.

These trends can be shown directly by solving Eqs. (5) and (6) with 〈U〉x and 〈Bx〉x

in place of U and Bx, where the mean flow and field are taken from individual timesteps

in nonlinear simulations and assumed to be independent of time. Throughout this paper,

eigenmodes, complex frequencies, and growth rates obtained in this manner are respectively

denoted ~f〈j〉 ≡ (φ〈j〉(z), ψ〈j〉(z)), ω〈j〉, and γ〈j〉 to distinguish them from the eigenmodes of the

equilibrium described in Sec. III, with j = 1 and 2 continuing to denote the most-unstable

and conjugate stable modes, respectively, at each wavenumber. Note that Eqs. (5) and (6)

still admit a conjugate stable mode for every unstable mode even when using the mean flow

and field, thus γ〈2〉 = −γ〈1〉 still holds. Figure 7 shows how growth rates γ〈j〉 evolve over time

for the most unstable mode at the four initially-unstable wavenumbers for MA = 40. Even

when the mean flow has hardly evolved in the first few timesteps, the growth rates begin

to decline noticeably, particularly at the higher wavenumbers. The highest wavenumbers

stabilize first, as the critical wavenumber decreases from kx = 1. The linear growth regime

for KEkx=0.4 is seen in Fig. 5 to end at about the same time that γ〈1〉(kx = 0.4) approaches

zero, suggesting that quasilinear flattening is a dominant saturation mechanism for this

mode. The same is true for kx = 0.6 and 0.8 (not shown in Fig. 5). The structure in z of

these modes and their corresponding Reynolds and Maxwell stresses are largely the same as

~f1 and ~f2, except that they broaden with the shear layer.

In freely-evolving shear layers, the mean flow has been shown to depart from a simple,

broadened tanh profile in both MHD simulations7,10 and hydrodynamic experiments (see

Eq. (5.2) and Fig. 2 in Ref.57), and Ref.58 (see their Table 1) has shown that even minor

departures from a broadened tanh profile cause significant changes to eigenmode structures

and the critical wavenumber. In solving for ~f〈j〉 and ω〈j〉, minor features in 〈U〉x and 〈Bx〉x

can have a significant impact in the full set of linear modes, including introducing new

unstable and conjugate stable modes with finite real frequency. These modes are localized

to regions other than z = 0, including to new inflection points in 〈U〉x. At times, changes

in 〈Bx〉 separately introduce new modes as well, consistent with the understanding that

nonuniform fields can destabilize shear flows in the absence of inflection points59. These

new modes can form in addition to the existing unstable KH mode, can replace the original
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FIG. 7. Growth rates for the eigenmodes of 〈U〉x and 〈B〉x taken from a simulation with MA = 40

and Rm = 500. Different colors correspond to different wavenumbers. For each wavenumber and

at each time, only the most unstable growth rate is plotted. Even when perturbations are small

and the energy removed from the mean flow appears negligible at early times, the growth rates at

higher kx decline rapidly.

conjugate pair of modes with two conjugate pairs of finite-frequency modes, or can emerge

after the KH modes have already stabilized at that wavenumber, such as the kx ≥ 0.4

unstable modes that emerge around t ≈ 60 in Fig. 7. Each mode’s complex frequency is well

within the bounds of the modified semicircle theorems derived in Ref.60, but these modes

often bear little resemblance to the modes described in Sec. III. A detailed investigation of

these modes, such as their scaling with different system features, their effects on transport,

or their use in reduced models, is beyond the scope of this work. We note the existence of

these modes, however, to point out that while the eigenmodes ~f〈j〉 of the broadened system

correspond more directly to energy transfer to/from the mean than the eigenmodes ~fj of the

equilibrium, analyses in terms of these modes are often unwieldy because of their complexity.

Furthermore, as the proceeding subsection will show, the modes of the equilibrium lend

themselves to analyses later into the simulation than the modes of the broadened flow.
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FIG. 8. Mode amplitudes of the most unstable (blue) and conjugate stable (orange) modes for

a simulation with MA = 40 and Rm = 500. Dashed lines are mode amplitudes using a basis

of eigenmodes of perturbations about the mean flow and field, solid lines are using eigenmodes

of perturbations about the initial equilibrium. For kx = 0.4, dashed lines terminate when that

wavenumber first stabilizes.

B. Large-scale eigenmode excitation and momentum transport

At every time t and wavenumber kx, the Fourier-transformed system state f̂(kx, z, t) ≡

(φ̂(kx, z, t), ψ̂(kx, z, t)) can be expressed as

f̂(kx, z, t) =
∑

j

βj(kx, t)~fj(kx, z), (12)

provided the eigenmodes of the equilibrium, {~fj(kx, z)}, form a complete basis. The complex-

valued βj(kx, t) is the amplitude of mode ~fj(kx, z) at time t and can be understood as the

coefficient of the state vector f̂ expressed in this basis. The eigenmodes of the horizontally-

averaged system, {~f〈j〉(kx, z)}, can also be used as a basis, and the amplitudes of these

modes will be denoted as β〈j〉(kx, t) here. Note that both bases are complete (specifically,

over the finite-dimensional space of fluctuations in this numerically discretized system), thus

the corresponding mode amplitudes are uniquely defined and independent of choice of inner

product31. The procedure for calculating the mode amplitudes βj is essentially identical to

that employed in Refs.28,29,32, except that the Laplacian on the left-hand side of Eq. (3) must

be taken into account. The same methods are also employed in Ref.61.

Figure 8 shows mode amplitudes over time for the most unstable and conjugate stable
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mode for the four initially-unstable wavenumbers for the same simulation as in Fig. 7,

calculated using both sets of modes. At each time, β〈j〉 is obtained by expanding f̂ in terms

of the eigenmodes {~f〈j〉} of the instantaneous mean flow and field. Leading into saturation,

both sets of amplitudes, {βj} and {β〈j〉}, evolve as expected for systems where unstable

modes nonlinearly drive stable modes21,22,27,32: the stable modes decay linearly before being

nonlinearly driven while unstable modes are still growing linearly. Comparing the |βj| and

|β〈j〉| curves demonstrates some of the differences between the two eigenmode bases. Two

notable features indicate that ~fj fails to capture the dynamics as precisely as the more

relevant ~f〈j〉.

First, there are periods where |β2| grows at the same rate as |β1|, when it is expected

to and eventually does grow faster. These can be understood as follows: suppose the true

stable mode amplitude in some system evolves as β2(t) = β2(0)e
−|γ|t+β2

1(t), and the unstable

mode amplitude as β1(t) = β1(0)e
|γ|t (see, for example, Eqs. (22-25) in Ref.21). If a mode

that differs slightly from ~f2 is used to calculate β2(t) from simulation data, then an error of

the form ǫβ1 will almost always be introduced. This will cause the apparent stable mode

amplitude to briefly evolve as β2(t) ∼ ǫβ1(t) before the β2(t) ∼ β2
1 term becomes dominant,

provided that |ǫ| & |β1(0)|. For even small differences in ~f2 (measured by some inner

product or its corresponding norm), ǫ can still be quite large provided the eigenmodes are

nonorthogonal (under this choice of inner product). Hence, while the differences between

the two sets of modes are initially extremely small, they can cause the parametric driving

of stable modes by unstable modes to be overlooked in these analyses.

A second subtle effect that is overlooked by the equilibrium modes can be seen when |β〈2〉|

decreases briefly and dramatically before quickly increasing again. This can be attributed to

a difference in the complex phases of different interactions (either with the background flow,

or with other modes) that determine ∂β〈2〉/∂t
21,22,27: when one interaction overtakes another

and becomes dominant, if the two have approximately opposite complex phases, then β2(t)

briefly passes through or near 0 in the complex plane before growing in amplitude.

Note that these differences between the two sets of amplitudes begin quite early in the

simulation (before t = 10 for kx = 0.4, see Fig. 8). This is despite almost unnoticeable

departures of 〈U〉 and 〈Bx〉 from U = tanh(z) and Bx = 1, respectively, at these early

times. Thus, the mode amplitudes are sensitive to small perturbations in the linear system

defined by Eqs. (5) and (6), as are the growth rates (noted in the discussion of Fig. 7).
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This sensitivity is a characteristic feature of non-normal linear operators (see Ref.62 for a

comprehensive review on this subject). Indeed, in the viscous, hydrodynamic case, the linear

system is known to have significant properties that can be traced back to its non-normality63,

and insight has similarly been gained into the magnetorotational instability by considering

consequences of non-normality64,65. While Figs. 7 and 8 show some consequences of non-

normality, we stress that the excitation of stable modes is not a linear effect: it is a result of

nonlinear energy transfer from unstable modes, and is a consequence of significant coupling

between these modes through the nonlinearity21,22,27, rather than a consequence of non-

normality. Furthermore, the non-orthogonality of a set of eigenmodes, and common metrics

for the consequences of non-normality (non-trivial ε-pseudospectra and nonmodal growth),

depend on choice of inner product and norm, while the mode amplitudes we present here do

not. We encourage readers interested in further discussion of stable modes and non-normal

operators to refer to Hatch et al. (2016)43, where connections between these topics are more

thoroughly explored.

While the mean-flow amplitudes β〈j〉 capture subtler details leading into saturation than

the equilibrium amplitudes βj , and the corresponding eigenmodes ~f〈j〉 capture the layer

broadening, they become unreliable once γ〈1〉 → 0 for a given wavenumber. Furthermore,

when additional modes emerge as discussed in Sec. IVA, identifying broadened modes cor-

responding to the original stable and unstable modes, and tracking their amplitudes, can

become difficult or impossible. Despite the physical effects overlooked by the equilibrium

modes, they can still be used to assess stable mode activity and connect it to counter-gradient

momentum transport. Their utility in assessing stable mode activity is demonstrated by fol-

lowing similar methods to Ref.32: construct two approximations for the f̂ by truncating the

summation in Eq. (12) to either include only j = 1, or j = 1 and j = 2. Comparing the

accuracy of these two approximations provides a measure of how significant stable modes are

in the turbulent state in a way that is normalized to the overall amplitude of the turbulence

(whereas |β2| alone is not a normalized measure).

Figures 9 and 10 show, as functions of time, the resulting truncation errors (conceptually

similar to, but not to be confused with, the familiar truncation errors in numerical simu-

lations with spectral methods66) when fluctuations at kx = 0.2 and 0.4, respectively, are

approximated in this manner for a simulation with MA = 40 and Rm = 500. Black and

gray curves compare approximations using βj and ~fj, while blue and orange curves compare
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FIG. 9. Error over time for approximations of the flow (left) and field (right) at kx = 0.2 using

a truncated eigenmode expansion for a simulation with MA = 40 and Rm = 500. Black and gray

curves use βj and ~fj , while other curves use β〈j〉 and ~f〈j〉. The horizontal dashed line indicates

an error of 1. For a given approximation, ǫT & 1 implies that the difference between the exact

state and the approximation is at least as large, energetically speaking, as the state itself, and so

the approximation is unreliable. The importance of stable modes can be seen by noting that flow

approximations are improved when stable modes are included in both sets of models, with models

using β〈j〉 and ~f〈j〉 performing better than those that use βj and ~fj until quasilinear flattening sta-

bilizes the flow, at which point approximations using ~f〈j〉 become unreliable. Each approximation

describes magnetic fluctuations poorly, particularly after the linear regime.

approximations using β〈j〉 and ~f〈j〉, where ~f〈1〉 and ~f〈2〉 are defined as the mode with the

largest growth rate and its conjugate. The truncation errors are calculated separately for φ̂

and ψ̂ according to

ǫT[φ̂] =
||φ̂exact − φ̂approx||

2
KE

||φ̂exact||2KE

(13)

and

ǫT[ψ̂] =
||ψ̂exact − ψ̂approx||

2
ME

||ψ̂exact||
2
ME

, (14)

where ||φ̂||2KE and ||ψ̂||2ME are the kinetic and magnetic energy of a given φ̂ and ψ̂. Unsur-

prisingly, the ~f〈j〉 modes describe flow fluctuations better than the ~fj ones until quasilinear

flattening stabilizes modes at a given wavenumber, at which point such approximations be-

24



0 20 40 60 80 100

t

10−3

10−2

10−1

100

ǫT[φ̂]

0 20 40 60 80 100

t

10−1

100

101

102

103

104
ǫT[ψ̂]

β1

β1 + β2

β〈1〉

β〈1〉 + β〈2〉

FIG. 10. Identical to Fig. 9, but the kx = 0.4 fluctuations are approximated. Unlike the kx = 0.2

fluctuations, here the ~fj modes describe φ̂ well for significantly longer than the ~f〈j〉 modes. This

is to be expected as γ〈j〉 approaches 0 much sooner at this kx.

come ill-defined. However, even when quasilinear flattening has set in, flow approximations

using eigenmodes of the initial equilibrium retain some fidelity. More importantly, the ob-

servation that ǫT[φ̂] is reduced when stable modes are included holds true when either set

of modes is used. Thus, the equilibrium mode amplitudes βj serve as sufficient indicators

of stable mode activity despite the physical effects they overlook. Figure 11 is identical to

Fig. 9 but for a simulation with MA = 7.5. Here, including stable modes does not reduce

ǫT[φ̂] as dramatically as in the MA = 40 case (using either set of modes), suggesting stable

modes play less of a role as field strength is increased. Note that in all three figures, each

approximation fails to describe the fluctuating field well, particularly after the linear regime.

Figures 9–11 assess the ability of the equilibrium modes ~fj to describe the state f̂ over

the entire domain in z, demonstrating that they do assess stable mode activity despite the

evolving mean flow and field. Focusing on the center of the shear layer, z = 0, demonstrates

that they describe fluctuations there particularly well, and ties stable mode activity to

counter-gradient momentum transport. This is shown in Fig. 12, where dashed curves show

the Reynolds stress at the center of the layer due to fluctuations at different wavenumbers,

τu(kx, z = 0), over time for three different MA. The quantity |β2|
2 − |β1|

2 (cf. Eq. (23)

in Ref.22 and Eq. (15) in Ref.32) is plotted for comparison. In each case, the two curves
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FIG. 11. Identical to Fig. 9, but for MA = 7.5. Here, including stable modes does not improve

approximations as noticeably, consistent with their diminished role in the dynamics at lower MA.

essentially overlap, and are nearly identical up to a constant of proportionality that depends

on kx but not MA. The equilibrium modes ~fj capture the Reynolds stress at the center of

the layer well, and doing so requires only the stable and unstable mode at each wavenumber.

Furthermore, whenever stable mode amplitudes exceed unstable mode amplitudes at a given

wavenumber, the mid-layer Reynolds stress at that wavenumber changes sign and the stable

mode drives counter-gradient momentum transport. Conversely, whenever the mid-layer

Reynolds stress changes sign, stable modes exceed unstable modes in amplitude.

From Fig. 12 alone, it is unclear whether the general decrease in ||β2|
2 − |β1|

2| with

decreasing MA is due to a decrease in both mode amplitudes, or whether they are instead

trending towards equipartition. The first case might reflect a decrease in transport due to an

overall decrease in fluctuation amplitudes, while the second reflects a decrease in transport

that is independent of fluctuation amplitudes. Figure 13 compares |β1| and |β2| at kx = 0.2

forMA = 40 andMA = 15, showing that while stable mode amplitudes broadly decrease with

increasing field strength, unstable mode amplitudes do as well. As field strength increases the

two modes tend towards equipartition. Thus, the reduction in large-scale Reynolds stresses

with decreasing MA in Fig. 12 is not purely a result of decreased fluctuation amplitudes.

With stronger magnetic fields, the large-scale eddies arrange themselves in a manner that

reduces their associated Reynolds stress.
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FIG. 12. Dashed curves show the contribution to Reynolds stress τu made by fluctuations at

kx = 0.2 (left) and 0.4 (right) evaluated at z = 0 versus time for three of the simulations shown in
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FIG. 13. Mode amplitudes |β2| (orange) and |β1| (blue) at kx = 0.2 (left) and 0.4 (right) for

MA = 40 (solid), 25 (dashed), and 15 (dotted lines). As MA decreases, both mode amplitudes are

reduced while also trending closer towards equipartition.

We have established that stable modes are directly responsible for reversals in the mid-

layer Reynolds stress of low-kx fluctuations. To demonstrate that τu is the dominant con-

tributor to the total momentum transport at high MA, and solely responsible for the local

minima in KEkx=0 identified in Sec. IVA, we compare τu and τb. This is done at four differ-

ent times for a simulation with MA = 60 and Rm = 250 in Fig. 14. The four times shown
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are shortly before and after the first two local minima in KEkx=0. At each time, the trans-

port is separated into the Reynolds stress τu and Maxwell stress τb, which are themselves

separated into contributions from different kx. At all times, |τu| exceeds |τb| by over an order

of magnitude. The Reynolds stress is dominated first by kx = 0.4 and then by kx = 0.2, the

same scales that contain the majority of the kinetic energy in kx > 0 fluctuations. Thus, not

only are the local minima in KEkx=0 due to reversals in τu and not τb, they are specifically

due to τu reversals at small wavenumbers, where we have identified stable-mode excitation

as the effect that causes these reversals. This definitively ties counter-gradient momentum

transport in this system to stable-mode excitation.

In contrast to the Reynolds stress, the Maxwell stress τb is dominated by scales beyond

the initially-unstable range, aside from the very first panel in Fig. 14. This is similarly

consistent with the distribution in kx of magnetic energy. While the low-kx Reynolds stresses

resemble the Reynolds stress of the eigenmodes τu[φj ] – albeit broadened, consistent with the

broadening of the flow profile and eigenmodes discussed in Sec. IVA – the low-kx Maxwell

stresses bear less of a resemblance to τb[ψj ], or to τb[ψ〈j〉], particularly as time goes on.

Furthermore, τb was never observed to change sign for the simulations considered here. When

counter-gradient momentum transport occurs, it is always due to τu changing sign. This is

consistent with the truncation error for the field, ǫT[ψ̂], generally exceeding the truncation

error for the flow, ǫT[φ̂]: if stable and unstable modes alone captured the Maxwell stress

as well as they capture the Reynolds stress, then τb at low kx would reverse sign whenever

τu does. Instead, τb consistently transports momentum down the gradient. This τb-driven

transport is not captured by a simple Fick’s law, though more sophisticated models, such

as a magnetic eddy viscosity model67, which applies to the same parameter regime studied

here, may perform better.

While counter-gradient momentum transport has been firmly tied to stable mode activity

in this paper, the weakening and eventual suppression of counter-gradient transport events

with increased field strength is only partly due to magnetic fields reducing stable mode

activity. This consistent, down-gradient τb becomes stronger for stronger magnetic fields,

and can reduce or even cancel the effect of any counter-gradient τu. This is seen in Fig. 15,

where τu and τb are shown for different MA, focusing on the first two counter-gradient

transport phases. As field strength increases, |τb| increases. This trend is seen for both a

stronger initial field from a decreased MA or with more field amplification from an increased
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FIG. 14. Different contributions to momentum transport at four different times for the same MHD

simulation as in Fig. 4. Solid lines show Reynolds stresses τu and dashed lines show Maxwell

stresses τb (rescaled by a factor of 100 for improved visibility). Black lines are the total Reynolds

and Maxwell stresses, while different colors indicate contributions from different kx. While τb is

generally dominated by larger kx and is always negative, τu is dominated by smaller kx and changes

sign over time.

Rm (not shown, however trends are qualitatively similar, but the high-kx contributions

become progressively more dominant at higher Rm). This reduces the net counter-gradient

transport during these phases and increases down-gradient transport at other times. In the

first phase of counter-gradient transport, τu remains mostly unchanged with MA, as the

relative amplitudes between stable and unstable modes does not significantly change with

MA at this time (see Fig. 12). So while stable mode activity does become less prominent

at this time as field strength increases, it is not due to a clear suppression of stable modes

relative to unstable ones (cf. Ref.32) and a corresponding decrease in counter-gradient τu.
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FIG. 15. The same breakdown of stresses as in Fig. 14, but for four simulations with Rm = 500 and

different MA. The two rows correspond to the first two instances of counter-gradient momentum

transport (see, e.g., Fig. 6). Note that τb is rescaled by a factor of 10. As MA decreases, τb becomes

more dominant, reducing net counter-gradient transport. At earlier times |τu| varies little with MA,

but at later times it decreases with stronger fields.

Instead, the influence of stable modes has become less prominent due to an increase in energy

transfer to small scales leading to increased |τb(kx)| for large kx – that is, the stable modes

play a less prominent role only because small-scale magnetic fluctuations are playing more

of a role. For Rm = 500, this holds true for all simulations with MA & 5. For lower MA,

the counter-gradient τu(kx = 0.4) at this time does become partially reduced and then fully

removed as MA decreases, and τb remains down-gradient but becomes dominated by larger

scales. In the second phase of counter-gradient transport, the dominant contributor to the

Reynolds stress, kx = 0.2, becomes noticeably weaker with stronger fields. This trend in τu

amplitudes is similar to what happens during the down-gradient transport phases at t = 40

and 85: |τu| becomes weaker as field strength increases at later times, but does not change

with MA at earlier times.
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FIG. 16. Viscous (solid) and resistive (dashed) dissipation over time for simulations with the same

initial conditions as those in Fig. 4, with different colors corresponding to different MA and Rm, and

black corresponding to the hydrodynamic case. Even a weak magnetic field significantly increases

total dissipation relative to the hydrodynamic case. Resistive dissipation increases with Rm, and

peaks at a time that increases with Rm. Viscous dissipation is similar to the hydrodynamic case

except when the amplified field increases beyond a threshold that depends on both MA and Rm.

From these results, the overall increase in down-gradient transport and decrease in KEkx=0

with field strength can be interpreted as a combination of two factors. First, reduced counter-

gradient transport from large-scale flow fluctuations, and second, enhanced down-gradient

transport from small-scale field fluctuations. The former is a direct result of decreased

stable mode amplitudes. The latter can be understood as an indirect result of stable modes

playing a less prominent role in this system. When stable modes activity is significant,

energy that would otherwise cascade to small scales is instead returned to the mean flow. As

previous work has noted30, a reduction in stable mode activity allows more energy to reach

small scales. The enhanced small-scale fluctuations are further explored in the following

subsection.
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C. Small-scale fluctuations, dissipation

The enhanced generation of small-scale fluctuations as magnetic field strength increases

has been noted in terms of the distribution in kx of the Maxwell stress (Fig. 15) and of energy

(Fig. 5), particularly magnetic energy. When stable mode activity becomes less prominent,

the transfer of energy to small, dissipative scales is enhanced. This increases the energy

dissipation rate.

Figure 5 shows that the total energy in the system decreases more rapidly in the MHD sim-

ulations than in the hydrodynamic one, and that it decreases more rapidly as field strength

increases. The enhanced transfer of energy to small scales coincides with an overall increase

in energy dissipation. While the magnetic field does increase the kinetic energy at small

scales, the increased dissipation is almost entirely due to the addition of resistive dissipa-

tion. This is seen in Fig. 16, where viscous and resistive dissipation are plotted for a variety

of simulations, each with the same initial condition but different MA and Rm. For simu-

lations where the amplified field is not sufficiently strong, the viscous dissipation remains

essentially identical to that of the hydrodynamic case. This threshold depends on both MA

and Rm. For MA = 60, viscous dissipation does not increase until Rm reaches 1000, while

for MA = 40 the Rm = 500 simulation does exhibit enhanced viscous dissipation while the

Rm = 250 case (not shown) does not. The precise threshold for this change in behavior, and

a detailed investigation of its cause, is beyond the scope of this paper. Resistive dissipation,

on the other hand, matches or even exceeds viscous dissipation, consistent with magnetic

energy exceeding kinetic energy at small scales. As expected from Ref.53 (see Eq. (6) there),

the local maxima in resistive dissipation are greater and occur later with increasing Rm,

as the current sheets formed by the high-strain-rate flow take longer to reach small enough

scales that resistivity overtakes flux advection. This trend is mostly robust to changes in

initial conditions. However, for initial conditions where the merging of the two initial vor-

tices occurs rapidly, the first peak in resistive dissipation may be determined by the time

when the merging process disrupts the first current sheet along the braid between the two

vortices (e.g. the current sheet seen at t = 40 in Fig. 4), rather than being determined by

resistive effects disrupting the sheet53. For these reasons, care must be taken when studying

dissipative processes in KH-unstable systems in MHD to consider appropriate initial con-

ditions, box sizes that permit mergers if relevant, and explicit viscosity40 and resistivity7
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wherever possible. While MA has no clear effect on the time of these local maxima in high-

MA simulations, it does affect the overall level of resistive dissipation, with stronger fields

(lower MA) yielding greater resistive dissipation. This can be understood as a lower MA

increasing the amplitude of the magnetic fluctuations that reach small scales, thus increasing

the amplitude of the small-scale, dissipative currents.

V. CONCLUSIONS

In turbulence driven by unstable, freely-evolving shear layers in MHD, the addition of

a magnetic field has been observed to increase the layer broadening rate due to enhanced

turbulent momentum transport7,10, and to increase energy transfer to small scales, despite

stabilizing the driving instability4. This work has investigated the role of large-scale, dis-

sipationless stable modes in this system to identify whether these trends are caused by a

reduction in stable mode activity. These modes transfer energy from large-scale fluctuations

back to the driving momentum gradient, shrinking the layer width, removing energy from

fluctuations, and impeding the cascade to small scales30,41. The results presented here show

that the enhanced transfer to small scales and increased broadening rate with stronger mag-

netic fields do coincide with reduced stable mode activity. Furthermore, in allowing the shear

layer to evolve freely without additional forcing terms, this presents the first investigation

into the role of stable modes in a system where the source of instability is not fixed21,22,28 or

quasi-stationary32.

Allowing the layer to broaden introduces quasilinear flattening as a saturation mechanism

and yields two distinct sets of eigenmodes: the modes obtained by linearizing about the

equilibrium flow U = tanh(z) and field Bx = 1, denoted by ~fj, and those obtained by

linearizing about the instantaneous mean flow 〈U〉x and field 〈Bx〉x at each timestep, denoted

by ~f〈j〉. The ~f〈j〉 modes correspond more directly to energy transfer to and from the mean

flow, and they reflect the broadening of fluctuations as the layer broadens. However, they

quickly vanish or become ill-defined as the layer evolves and develops small-scale features

in z. On the other hand, while the ~fj modes do not correspond to the evolved system as

directly as the f〈j〉 modes, they remain useful for assessing stable mode activity, and they

capture the mid-layer Reynolds stress almost exactly when using only two modes at each

kx. Thus, the same eigenmode decompositions used in systems with a fixed28,29 or otherwise
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quasi-stationary32 unstable profile driving the turbulence are also effective in this system,

despite the evolution of the mean flow that drives instability.

These eigenmode decompositions were used to track the amplitudes of stable and unstable

modes through the evolving turbulence. In simulations with stronger magnetic fields, stable

mode activity becomes less prominent, and the layer broadening rate increases for two

reasons. First, stable mode amplitudes are reduced relative to unstable ones in simulations

with stronger magnetic fields. This reduces the counter-gradient momentum transport these

stable modes drive via turbulent Reynolds stresses. Second, the down-gradient Maxwell

stress due to small-scale magnetic fluctuations becomes stronger with stronger fields. This

can be understood as a result of stable-mode excitation playing less of a role in instability

saturation relative to energy transfer to small scales. When stable modes are less impactful,

the energy they would remove from fluctuations instead makes its way to small scales30,41.

While the Maxwell stress produced by these small-scale fluctuations does not fit a simple

Fick’s Law in terms of the mean flow gradient, it is possible that more sophisticated models,

such as a magnetic eddy viscosity67, might capture this effect.

These enhanced small-scale fluctuations, which are generally magnetic fluctuations, sig-

nificantly boost the energy dissipation rate even for very weak magnetic fields (more than

doubling the dissipation rate relative to the hydrodynamic case for MA = 100), with dissipa-

tion increasing as Rm increases orMA decreases. This increased dissipation is almost entirely

due to resistivity, although viscous dissipation increases with field strength as well, provided

the field is stronger than some threshold that depends on Rm and whose precise value for

different Rm is beyond the scope of this paper to determine. Thus, even in the presence of

a magnetic field much too weak to significantly affect the linear instability, shear layers in

non-ideal MHD can dissipate energy much faster than the hydrodynamic counterpart, with

the reduction of stable mode activity providing an underlying explanation.

The observed variation in dynamics as stable-mode activity changes invites the question of

how astrophysical shear flow instabilities saturate, where stable modes play a role, and how

their presence or absence affects the system. For example, in galaxy halos, the entrainment

of cold gas into galactic outflows is a topic of active research68, and is thought to occur in part

via shear-flow instabilities. How these instabilities saturate in different parameter regimes

likely affects the rate at which passive scalars are mixed, in addition to the momentum

mixing studied here. Recent work69 found that background magnetic fields dramatically
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affect the drag between a cold cloud and hot medium, suggesting that this is a scenario

where stable-mode activity or lack thereof may play a role. However, that work also noted

the importance of 3D effects, which have been neglected in the present study. Furthermore,

the dependence on magnetic Reynolds number we observed precludes reliable speculation

of the background field strength necessary to suppress stable modes at the large Rm (and

large magnetic Prandtl number) found in these systems.

Fingering (or “thermohaline”) convection in stellar interiors70 presents a system that does

not suffer from these concerns, but where the effects of stable modes are likely more subtle.

Simulations show that the fingering instability saturates by driving so-called “parasitic” KH

instabilities in both the hydrodynamic71,72 and MHD73 cases (similar to channel modes of

the magnetorotational instability74–77). The length scales of these KH modes is small enough

that the Reynolds and magnetic Reynolds numbers are often similar to the values studied

here, and turbulent transport models based on these KH parasites are remarkably accurate

even when neglecting density gradients and 3D effects71,73. This suggests that the results

of the present paper are applicable to fingering convection, and that the saturation mecha-

nisms of these KH modes may have significant bearing on turbulent transport. In particular,

recent work in the hydrodynamic case78 showed that adding a horizontal shear body forc-

ing to fingering convection yields counter-gradient momentum transport in some parameter

regimes. The results of the present paper suggest this counter-gradient transport may be

suppressed by the addition of a magnetic field similar in strength to the weakest fields con-

sidered in Ref.73: as stable modes become subdominant, smaller-scale magnetic fluctuations

may produce significant down-gradient momentum transport. Accurately capturing these

effects may require finer numerical resolutions than in the hydrodynamic case.

This work motivates two related possible future directions of inquiry. First, while the

Reynolds stresses in this system can be reasonably modeled using stable and unstable modes

alone, the Maxwell stresses cannot. Not only do these modes fail to describe large-scale field

fluctuations well, but the Maxwell stress is primarily driven by small-scale fluctuations,

while the modes considered in this paper exist at large scales. Recent work67 involving a

quasi-stationary system of driven, shear-flow turbulence has suggested these stresses can be

described by a magnetic eddy viscosity model. It is plausible that for the same system con-

sidered here, with the addition of a shear forcing term to permit a quasi-stationary state, the

momentum transport could be well-described by a combination of stable and unstable modes
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for the Reynolds stress and a magnetic eddy viscosity model for the Maxwell stress. Further-

more, a quasi-stationary system enables a thorough investigation of the dominant nonlinear

interactions in the saturated state, potentially informing saturation theories for predicting

eigenmode amplitudes without first performing direct numerical simulations (similar to the

saturation theories15 that were informed by studies of dominant nonlinear interactions30 in

the context of fusion plasmas).

Provided a reduced model that is informed by stable mode activity, a second direction for

this work is the application of such a model to physical systems. For example, if the effect

of density stratification is included, such a model might be used to improve predictions of

shear-driven transport in stellar evolution codes13.
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