
Exploiting User Activeness for Data Retention in HPC Systems
Wei Zhang

Texas Tech University
Lubbock, Texas, USA

X-Spirit.zhang@ttu.edu

Suren Byna
Lawrence Berkeley National

Laboratory
Berkeley, California, USA

sbyna@lbl.gov

Hyogi Sim
Virginia Tech

Blacksburg, Virginia, USA
hyogi@vt.edu

Sangkeun Lee
Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

lees4@ornl.gov

Sudharshan Vazhkudai
Micron Technology
Austin, Texas, USA

svazhkudai@micron.com

Yong Chen
Texas Tech University
Lubbock, Texas, USA
yong.chen@ttu.edu

ABSTRACT
HPC systems typically rely on the �xed-lifetime (FLT) data retention
strategy, which only considers temporal locality of data accesses to
parallel �le systems. However, our extensive analysis based on the
leadership-class HPC system traces suggests that the FLT approach
often fails to capture the dynamics in users’ behavior and leads to
undesired data purge. In this study, we propose an activeness-based
data retention (ActiveDR) solution, which advocates considering
the data retention approach from a holistic activeness-based per-
spective. By evaluating the frequency and impact of users’ activities,
ActiveDR prioritizes the �le purge process for inactive users and
rewards active users with extended �le lifetime on parallel storage.
Our extensive evaluations based on the traces of the prior Titan
supercomputer show that, when reaching the same purge target,
ActiveDR achieves up to 37% �le miss reduction as compared to the
current FLT retention methodology.

KEYWORDS
Storage tiering, storage resource management, data retention, user
behavior, data management, purge policy

ACM Reference Format:
Wei Zhang, Suren Byna, Hyogi Sim, Sangkeun Lee, Sudharshan Vazhkudai,
and Yong Chen. 2021. Exploiting User Activeness for Data Retention in HPC
Systems. In The International Conference for High Performance Computing,
Networking, Storage and Analysis (SC ’21), November 14–19, 2021, St. Louis,
MO, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3458817.3476201

1 INTRODUCTION
HPC systems usually o�er a large, shared scratch space - a �le
system that provides high performance and parallel �le access to
applications. Although this scratch space is not designed to store
data permanently, many users use the space as a normal �le system
where they store their data �les without any plan on releasing the
space voluntarily. On the other hand, as the upgrade process of an

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor, or a�liate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.
SC ’21, November 14–19, 2021, St. Louis, MO, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8442-1/21/11. . . $15.00
https://doi.org/10.1145/3458817.3476201

HPC storage system usually takes a vast amount of investment, time
and e�ort [7, 15, 34, 47], the total capacity of the scratch space tends
to remain �xed for a considerably long time after the deployment
of a system. Additionally, HPC applications constantly generate
a tremendous amount of data [1, 2, 9, 14, 21–23, 35], making it
necessary to manage storage resource e�ectively [11, 13, 18, 19,
38, 48] with, in particular, “data retention” – a process of retaining
useful �les and purging unimportant �les to improve the utilization
of storage space.

Over the years, various data retention methodologies have been
proposed with multiple transitions between data retention criteria.
Existing data retention methodologies include the �xed lifetime
strategy (FLT) where �les are purged according to a �xed de�nition
of �le lifetime, the value-based approach where �les are purged
according to various de�nitions on �le value, and the “scratch-
as-a-cache” approach where the scratch space is used as a cache
for job executions. However, the value-based approach remains
conceptual because the inconsistent de�nitions of �le value among
its variants compromise the applicability of this approach. Also,
the scratch-as-a-cache approach is problematic because it requires
intensive �le loading and o�-loading at the beginning and the
end of a job execution and hence can signi�cantly increase the
job execution time, making it more complicated to craft the job
scheduling algorithm. In fact, to the best of our knowledge, there
is almost no sign of the value-based and the scratch-as-a-cache
approaches in practice.

Today, the �xed-lifetime (FLT) data retention strategy is still the
dominating data retention solution being used in the vast majority
of HPC systems, while other approaches are rarely found in real
practice. Therefore, we take the FLT approach as the foundation of
our discussion in this study. In Table 1, we show several examples
of FLT at di�erent facilities. With this strategy, the data retention
process can be automated by periodically scanning and purging
the stale �les that have exceeded their lifetime. As a result, the �les
that are recently accessed within the speci�ed �le lifetime will be
retained. The underlying assumption of this retention solution is
that the most recently accessed �les will be more likely accessed
again in the near future. In other words, the FLT data retention
only considers the temporal locality of data �les in scratch space.

While it is widely recognized that the temporal locality is of great
importance in storage management, we observe that the scratch

https://doi.org/10.1145/3458817.3476201
https://doi.org/10.1145/3458817.3476201
https://doi.org/10.1145/3458817.3476201
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

SC ’21, November 14–19, 2021, St. Louis, MO, USA Wei Zhang, Suren Byna, Hyogi Sim, Sangkeun Lee, Sudharshan Vazhkudai, and Yong Chen

Table 1: Data retention solution at various HPC facilities

HPC Facility SCRATCH Retention Solution
NCAR [27] Purge any 120-day old
OLCF [31] Purge any 90-day old
TACC [40] Purge any 30-day old
NERSC [28] Purge any 12-week old

space management needs to consider more than the temporal lo-
cality. In fact, the �le access pattern in the scratch space is often
in�uenced by users’ behavior. For example, in a project execution
that drives multiple runs of HPC applications, due to various fac-
tors such as temporary administrative suspension of the project
or task switching in users’ work�ow, the users may not be able to
continuously work on their data �les. Therefore, it is very common
that users may leave their data �les untouched for quite a long time
and then come back to access these �les. Thus, the FLT data reten-
tion strategy often leads to undesired �le misses for users. Since
many datasets contain a large number of �les and the size of each
data �le can be large too, the procedures of collecting data �les are
usually complicated and hard to repeat. Therefore, recovering these
�les is not only expensive but also time-consuming, frustrating
and, sometimes, even impossible. In addition, knowing the �xed
�le lifetime speci�ed by the FLT, some users can game the system
by “touching” their �les periodically [26], as long as the lifetime of
their �les is “renewed” before �xed-lifetime data retention wipes
out these �les. This trick can lead to underutilized storage space if
the users only reserve the �les but rarely use them.

In summary, the temporal locality alone is insu�cient for eval-
uating the �le access pattern in the scratch space. Therefore, the
FLT data retention is often unable to capture the dynamics of users’
behavior with a �xed �le lifetime setting and hence leads to numer-
ous problems such as undesired �le misses, unnecessary hassle for
expensive �le re-transmission process, and underutilized scratch
space. In this study, we rethink the data retention problem from a
holistic perspective that focuses on evaluating activeness of users
that use a HPC system, access their �les, etc. and activeness of
users producing outcomes (i.e., completing jobs and tasks, produc-
ing analysis results, publications using a data set, etc.). Based on
such a perspective on users’ activeness, we propose ActiveDR, an
activeness-based data retention strategy that considers active-
ness of users at the core of its design. ActiveDR has an e�cient
activeness evaluation algorithm and measures the frequency and
the impact of user activities within a speci�ed number of periods.
Then it ranks the activeness of each user during these periods. Ac-
tiveDR categorizes users by the activeness and purges �les based
on that. It rewards active users with extended �le lifetime based on
their activeness rank. The retrospective �le purging mechanism of
ActiveDR ensures that the speci�ed purge target will be guaran-
teed while prioritizing purging inactive users’ �les. Overall, with a
user-centric view, ActiveDR is a unique and e�ective data retention
solution that, to the best of our knowledge, promotes active and
fruitful use of the HPC system.

We have evaluated the e�cacy of ActiveDR using two years of
system traces from Titan supercomputer and its Spider II storage

system. Our evaluation result demonstrates that, when reaching
the same purge target, ActiveDR e�ectively reduces up to 37%
of �le misses by retaining up to 213.47% more data for active
users, as compared to the �xed-lifetime data retention method.
Also, with ActiveDR, up to 95% active users are exempt from the
�le misses by the data purge operations. Furthermore, the Ac-
tiveDR takes less than 500MB memory footprint when evaluating
the system traces and its activeness evaluation process �nishes
rapidly, within one second. Overall, the ActiveDR takes about one
hour to �nish the entire data retention process for over 935 mil-
lion �les. Our prototype release of ActiveDR can be found from
https://doi.org/10.5281/zenodo.5168853.

The rest of the paper is organized as follows. In Section 2, we
introduce state-of-the-art data retention strategies and discuss their
drawbacks in detail. We then discuss the design principle of Ac-
tiveDR and detail its design in Section 3. After presenting the ex-
perimental result of our evaluation in Section 4, we conclude our
work in Section 6.

2 RELATEDWORK
In numerous studies on storage resource management [38, 39], the
data retention was performed by de�ning a �xed lifetime of the �les
and then monitoring the �le access time. This �xed-lifetime (FLT)
data retention strategy only relies on the temporal properties of the
�les. Backed by the temporal locality theory, the FLT approach is
widely accepted as it is believed that a data �le will not be accessed
again if it has not been accessed for a long time. In addition, the
FLT approach is simple and easy to be implemented; hence FLT is
used in most HPC systems.

Several studies proposed data value-based approaches [43, 48],
which include more �le attributes into the data retention criteria,
such as the �le type, �le size, �le age, �le access frequency or a
combination of them. The value-based approaches then led to a
series of studies on �nding the true de�nition of the �le value [4–
6, 8, 10, 17, 25, 37, 39, 41, 42, 45, 49]. However, as discussed by
Attard et al. [3], “there is no consensus on the de�nition of data
value”, and the methodology of assessing or quantifying the value
of data is currently incomplete. This drawback leads to limited
interoperability of value-based approaches as their data value spec-
i�cations remain di�erent. Consequently, value-based approaches
may introduce additional complexity in �nding the most appropri-
ate de�nition of �le value for a particular HPC storage system and
hence its practicality is substantially compromised. Therefore, we
exclude the value-based approach from our following discussion
not only because it is impractical but also because it would not be
objective if we pick any of its variants for further discussion.

Monti et al. [26] proposed a “scratch-as-a-cache” data retention
solution where an HPC scratch space is considered as a cache for
jobs running on HPC systems. In this solution, a data �le can only
stay in a given scratch space if an application is using it. While this
solution may be helpful in restoring the scratch space in a timely
manner, it may cause frequent loading of �les from an archive
and purging operations that are time-consuming. Also, frequent
data loading and o�-loading procedure on large �les can impose a
heavy I/O burden on the storage system as well. Hence we exclude
this approach from our following discussion as well since it may

Exploiting User Activeness for Data Retention in HPC Systems SC ’21, November 14–19, 2021, St. Louis, MO, USA

signi�cantly lengthen the execution time of an application (or even
the entire work�ow) and may introduce unnecessary performance
challenge to the storage system.

While both value-based approach and scratch-as-a-cache ap-
proach are rarely used in real practice due to their limited practi-
cality, in a majority of HPC storage systems today, the most widely
used data retention solution is still the �xed-lifetime (FLT) data
retention methodology. Essentially, the FLT method retains the �les
that are accessed within a speci�ed amount of time called “�le life-
time”. The underlying assumption of FLT is that the most recently
accessed �les will be accessed again in the near future (or within
the �le lifetime, to be speci�c).

However, users may not access �les in the speci�ed lifetime
that the FLT data retention methodology expects. Therefore, the
FLT is often unable to capture the dynamics in users’ behavior
and hence results in undesired �le removal. In some cases, the
users may process data �les through multiple iterations and they
need to access di�erent sets of �les back and forth. While some
data processing iterations may last for months and only involve
a particular set of the �les, other �les that are useful to future
data processing iterations may be purged by the FLT retention
process. Thus, the users may have to reload or restore those �les in
order to proceed with further data processing iterations. In some
other cases, the users may be temporarily distracted from their data
processing tasks due to unanticipated interruptions. For example,
some users may �nd it necessary to temporarily hold their project,
to conduct additional �eld studies or to collect additional data right
after storing some data in scratch space. If the �eld study or the
additional data collection process takes longer than the speci�ed
�le lifetime, the FLT approach will purge the data �les that are
previously loaded, causing �le misses for the users when they access
their data �les.

To verify how frequently and signi�cantly the FLT method may
introduce �le misses to users, by courtesy of Oak Ridge Leadership
Computing Facility (OLCF), we ran an emulation on the job and
system traces during 2015 and 2016 at OLCF. We formulated a
virtual �le system by collecting the paths of all accessed �les from
the command lines in the job submission traces. We emulated the
�le accesses in 2016 while applying the FLT method with 90-day �le
lifetime and 7-day purge trigger interval. From the result plotted in
Figure 1, we can see that, during the 366 days in 2016, the �le miss

20
16

-0
1

20
16

-0
2

20
16

-0
3

20
16

-0
4

20
16

-0
5

20
16

-0
6

20
16

-0
7

20
16

-0
8

20
16

-0
9

20
16

-1
0

20
16

-1
1

20
16

-1
2

Date
0%

1%

10%

100%

Fi
le

 M
is

s
R

at
io

1%
-5

%
5%

-1
0%

10
%

-2
0%

20
%

-3
0%

30
%

-4
0%

40
%

-5
0%

50
%

-6
0%

60
%

-7
0%

70
%

-8
0%

80
%

-9
0%

90
%

-1
00

%

Miss Ratio Ranges
0

30

60

90

120

N
um

be
r

of
 D

ay
s

Figure 1: File misses introduced by FLT retention method

ratio �uctuates randomly around 5%, between the lowest 0% and
the highest 95.66%. For over 120 days, the �le miss ratio is between
1% and 5%, and the �le miss ratio runs between 5% and 30% for 99
days. Although the �le miss ratio exceeds 30% for only 39 days, the

result shows that the users may intermittently su�er from 5%-100%
daily data access interruption during 138 days, almost half of the
entire year. As there is no mechanism for users to recover their
missing �les automatically, it can take hours to days for the users
to recover their data by either re-transmission or re-generation of
the data, which will cause signi�cant amount of network tra�c,
computing cycles and even project delay.

In fact, the scratch space is typically built to serve the short-term
high-performance parallel accesses from batch jobs [32]. If the users
need to keep their �les for a long-term data processing task, they
often need to manually manage their data �les, migrating them
to archival storage and loading them back to scratch space when
needed, which is time-consuming and inconvenient. According to
the observation reported in a prior study [26], some users may
even game the FLT by “touching” their data �les periodically to
avoid undesired �le purge against the temporarily unused data �les.
Such practice can lead to underutilized storage space. We observe
that the activeness of di�erent users may vary signi�cantly, and
the FLT data retention methodology ignores such variations. For
example, some users working on data analytic workload, require
an increasing amount of scratch space from time to time, while
other users may only access their data once in a while. Therefore,
it is time to devise a novel data retention solution which avoids
undesired �le purge as much as possible for active users, boosts
the overall utilization of the storage space, and encourages fruitful
usage of HPC systems.

3 ACTIVENESS-BASED DATA RETENTION
Being aware of the limitations we observed from the FLT data
retention method, we envision that a better data retention solution
should consider the �le availability to the active users as well as
the overall utilization of HPC systems towards fruitful outcomes.
Therefore, the activeness of users should be well considered in the
data retention solution. In addition, such a data retention solution
should be able to integrate with the current data management
practices in an automated fashion and does not require extensive
tuning or training e�orts from system administrators. Meanwhile,
the solution should be e�cient so that the purge decision can be
made in a timely manner without taking a signi�cant amount of
memory. In this study, we introduce a novel activeness-based data
retention solution, or ActiveDR in short, to address the limitations
of FLT and to meet data retention needs in HPC systems.

Di�erent from the �le-centric FLT data retention method, Ac-
tiveDR considers the activeness of users at the core of its design.
As shown in Figure 2, ActiveDR �rst evaluates the activeness rank
of users by evaluating the operation activeness and the outcome
activeness. Then it classi�es all users into four classes, i.e. “Both
Active” , “Operation Active Only” , “Outcome Active Only” and
“Both Inactive.” By scanning the user directories in an ascending
order of the user activeness, ActiveDR prioritizes active users over
inactive users in retaining their �les. In other words, ActiveDR cuts
back the �le lifetime of inactive users and rewards active users with
more �le lifetime using the activeness rank. The ActiveDR solution
is designed to be automated. Administrators only need an initial
setup, then the remaining procedures are automated. Additionally,
ActiveDR also supports the commonly needed purge exemption

SC ’21, November 14–19, 2021, St. Louis, MO, USA Wei Zhang, Suren Byna, Hyogi Sim, Sangkeun Lee, Sudharshan Vazhkudai, and Yong Chen

User ClassificationUser Activeness Evaluation

Data Retention

ActiveDR

Users

Both Inactive
File Lifetime
Adjustment

Purge
Exemption

Activities

t: time,
i: impact,
……

Operations

Outcome
t: time,
i: impact,
……

Both Active

Operation
Active Only

Both Inactive

Outcome
Active Only

Operation Active Only
File Lifetime
Adjustment

Purge
Exemption

Both ActiveFile Lifetime
Adjustment

Purge
Exemption

Outcome Active OnlyFile Lifetime
Adjustment

Purge
Exemption

Figure 2: Overview of ActiveDR design. ActiveDR �rst eval-
uates the activeness rank of users and classi�es them into four
classes, i.e. Both Active, Operation Active Only, Outcome Active
Only, and Both Inactive. Then it scans user directories in an as-
cending order of the user activeness and prioritizes active users
over inactive users in retaining �les, i.e. adjusts the �le lifetime
of inactive users and rewards active users with more �le lifetime
using the activeness rank. ActiveDR supports the purge exemption
feature.

feature, which allows the administrator to specify a list of �les that
are requested to retain and skip over these �les.

When designing ActiveDR, we consider that system administra-
tors need to focus on daily operations and occasional maintenance
and hence should spend minimal e�ort in tuning system manage-
ment software. Therefore, in our design, we do not attempt to pre-
dict users’ future activeness or future �le access patterns because
users’ activity is hard to be predicted precisely, if not impossible.
Although there are many studies on predicting user behaviors using
machine learning (ML) methods [12, 36, 46], they all require a com-
plicated training process which makes these methods expensive
for a rapid evaluation of users’ activeness. Additionally, tuning the
ML models can be a challenging task for system administrators.
Furthermore, the result of many ML approaches is not as intuitively
explainable as what system administrators need.

3.1 Activeness-based Perspective
With the goal of capturing the mutual impact between users’ ac-
tivities and �le accesses, we consider the data retention problem
from a novel activeness-based perspective where users’ activities
are categorized into two dimensions: operations and outcomes. Our

de�nition of an operation applies to a wide range of user activities
performed on the system, as shown in Table 2. These operations
re�ect the activeness of users and thus change the priorities in the
data retention process. Likewise, an outcome refers to an accom-
plishment users have achieved by using the HPC system, or, in other
words, what the users produce or generate after performing the
operations on the system (examples are also shown in Table 2). The
consideration of operation and outcome activities is the hallmark
of the activeness-based perspective. It ensures the fairness of user
activeness evaluation and prevents the “periodic-�le-touch” tricks.
Since many HPC facilities do keep track of (or, at least are consider-
ing tracking) user operations and outcomes [16, 20, 24, 29, 33, 44],
it is a fair assumption and feasible approach to include the consid-
eration of operations and outcomes for the data retention solution.

Table 2: Examples of user activities

Type of User Activity Examples

Operations

Job submission
Shell login
File access
Data transfer operation
...

Outcomes

Successful completion of a job
Successful completion of a task in a work�ow
Dataset generated from a job execution
Publications resulted from a job output
...

The advantage of activeness-based perspective is its inclusive-
ness for a diverse spectrum of users’ activities with a particular
focus on HPC system and its storage space, which allows �exible
choice of user activities for user activeness evaluation. In turn, this
approach makes it possible to provide a holistic consideration of
di�erent factors including temporal locality, spatial locality, users’
behavior and system utilization. For example, by capturing data
transfer or data sharing activities among users, the shared use of
data �les are considered. By capturing �le access activities, the
temporal locality is considered. By capturing activities that access
users’ directories, the spatial locality is considered. Next, we discuss
the model of activeness evaluation.

3.2 User Activeness Evaluation
To provide a simple and e�ective solution, the user activeness eval-
uation algorithm is designed to unify the activeness measurement
of di�erent user activities. For any type of activity, the user ac-
tiveness evaluation algorithm only needs two essential measures
which are the time and the impact of the activity. For a speci�c
type of operation, the time and the impact can be concrete metrics.
As an example, for a job submission activity (operation), the time
can be the job submission time or the job start time. The impact
can be the total run time or the CPU hours. Similarly, for an out-
come activity such as a publication, the time can be the time of
the publication and the impact can be the citation count of the
publication. With such a uni�ed activeness measurement model,
we are able to quantify and calculate the activeness of users based
on their activities. In other words, operations and outcomes can be

Exploiting User Activeness for Data Retention in HPC Systems SC ’21, November 14–19, 2021, St. Louis, MO, USA

con�gured by system administrators based on what they keep track
of and with weights to quantitatively measure the impact. Please
note that such a setup is only a one-time con�guration. ActiveDR
uses these information to calculate the activeness to make the data
retention decision, which provides an optimized control of purging
�les instead of solely based on timestamps.

Table 3: List of notations in user activeness evaluation

Description Notation
Set of 𝑛 Activity Types 𝑇 = {𝜆0, ..., 𝜆𝑛−1}
Set of 𝑘 Activities for Activity Type 𝜆 𝐴𝜆 = {𝑎0, ..., 𝑎𝑘−1}
Activeness of an Activity 𝑎𝑥 𝐷𝑎𝑥

Set of𝑚 Periods 𝑃 = {𝑝0, ..., 𝑝𝑚−1}
Average Activeness of All Activities in 𝐴𝜆

in each period 𝐴𝑣𝑔(𝐷𝐴𝜆
)

Activeness Ratio of a Certain Period 𝑝
for Activity Set 𝐴𝜆

𝑏𝑝 = 𝐷𝑝/𝐴𝑣𝑔(𝐷𝐴𝜆
)

Period Index of Activity 𝑎𝑥
𝑒 =𝑚 − (𝑎𝑥 .𝑡𝑠 − 𝑎0 .𝑡𝑠)/𝑙 + 1
(𝑡𝑠 denotes timestamp)

We now introduce how to calculate the activeness of a user. As
shown in Table 3, suppose a user may have 𝑛 types of activities,
we denote the set of all activity types as 𝑇 = {𝜆0, ..., 𝜆𝑛−1}. For a
certain activity type 𝜆 , we consider that there is a set of 𝑘 activities
𝐴𝜆 = {𝑎0, ..., 𝑎𝑘−1}. For an activity 𝑎𝑥 , we consider its activeness
to be 𝐷𝑎𝑥 . Since the activeness of each activity is measured by its
impact, the value of 𝐷𝑎𝑥 is a speci�c, prede�ned value con�gured
by system administrators. We consider that all activities of type 𝜆
are distributed among a set of𝑚 periods, and each period contains
𝑑 days. While the period length 𝑑 is a con�gurable parameter, for
the activity set 𝐴𝜆 = {𝑎0, ..., 𝑎𝑘−1} of type 𝜆, the total number of
periods𝑚𝜆 can be calculated as:

𝑚𝜆 =

⌈𝑎𝑘−1 .𝑡𝑠 − 𝑎0 .𝑡𝑠

𝑡𝑜_𝑡𝑠 (𝑑)

⌉
(1)

where function 𝑡𝑜_𝑡𝑠 converts the period length into the same
unit as the activity timestamp. We further calculate the average
activeness of all 𝑘 activities of type 𝜆 across all𝑚𝜆 periods:

𝐴𝑣𝑔(𝐷𝐴𝜆
) =

𝑘−1∑
𝑖=0

𝐷𝑎𝑖

𝑚𝜆

(2)

Afterwards, we calculate the activeness of all activities in𝐴𝜆 during
each period 𝑝 . For a period 𝑝𝑒 , let 𝐷𝑝𝑒 =

∑𝑗−1
𝑖=0 𝐷𝑎𝑖 be the overall

activeness of all 𝑗 activities {𝑎𝑖 |𝑖 ∈ [0, 𝑗)} of type 𝜆 occurred in this
period, we calculate the activeness ratio of the 𝑗 activities of type 𝜆
in this period:

𝑏𝑝𝑒 =
𝐷𝑝𝑒

𝐴𝑣𝑔(𝐷𝐴𝜆
) (3)

When the activeness ratio 𝑏𝑝𝑒 ≥ 1, we consider that the user is
active on type 𝜆 activities during period 𝑝𝑒 . When the activeness
ratio 𝑏𝑝𝑒 < 1, we consider that the user is inactive on type 𝜆

activities during period 𝑝𝑒 .
Let 𝑡𝑐 be the current time when the user activeness evaluation

begins. For an activity 𝑎𝑥 occurred during the period 𝑒 , we calculate
the index of the period 𝑒 by the following equation:

𝑒 =𝑚𝜆 −
⌈ 𝑡𝑐 − 𝑎𝑥 .𝑡𝑠

𝑡𝑜_𝑡𝑠 (𝑑)

⌉
+ 1 (4)

be

e e=5-2+1=4 e=5-1+1=5e=5-3+1=3e=5-4+1=2e=5-5+1=1

tctc - 1tc - 2tc - 3tc - 4tc - 5

Dtc-5

Avg(DA)
� �1 Dtc-4

Avg(DA)
� �2 Dtc-3

Avg(DA)
� �3 Dtc-2

Avg(DA)
� �4 Dtc-1

Avg(DA)
� �5

Figure 3: Time-series activeness rank vector when𝑚𝜆 = 5.

Then, a time-series activeness rank vector is built as shown in
Figure 3. The length of the vector is equal to the total number
of periods that the speci�ed type of activities span over, i.e. 𝑚𝜆 .
Each element in the vector represents an activeness rank of the
corresponding period. The ActiveDR is designed to value those
users who remain active recently. Therefore, at time 𝑡𝑐 , we expect
the activeness rank acquired from a closer period to have a larger
impact against the overall activeness rank. As such, we consider
the activeness rank from the 𝑒th period to be (𝑏𝑝𝑒)𝑒 . The more the
period 𝑝𝑒 is closer to the current time 𝑡𝑐 , the larger the value of 𝑒 will
be, and hence the more the activeness ratio in period 𝑝𝑒 contributes
to the overall activeness rank. This feature is guaranteed by the
monotonic property of exponential function.

Finally, after the activeness rank vector is derived, the overall
activeness rank of a particular activity type 𝜆 is calculated as:

Φ𝜆 =

𝑚∏
𝑒=1

(𝑏𝑝𝑒)𝑒 (5)

With this equation, ActiveDR guarantees that the activeness rank
Φ𝜆 is either in the range [0, 1) or in the range [1, +∞). We consider
that when 0 ≤ Φ𝜆 < 1, the user is inactive for the activities of type
𝜆, and when Φ𝜆 ≥ 1, the user is active for the activities of type 𝜆.
In addition, the larger the value of Φ𝜆 is, the more active the user
is for this type of activity, and vice versa.

In ActiveDR, we consider two classes of user activities, opera-
tions and outcomes. For𝑚𝑜𝑝 types of operation activities and𝑚𝑜𝑐

types of outcome activities, we can perform the following calcu-
lation to derive the overall operation activeness rank Φ𝑜𝑝 and the
overall outcome activeness rank Φ𝑜𝑐 :

Φ𝑜𝑝 =

𝑚𝑜𝑝∏
𝜆𝑜𝑝=1

Φ𝜆𝑜𝑝 𝑎𝑛𝑑 Φ𝑜𝑐 =

𝑚𝑜𝑐∏
𝜆𝑜𝑐=1

Φ𝜆𝑜𝑐 (6)

where 𝜆𝑜𝑝 denotes an operation activity and 𝜆𝑜𝑐 denotes an out-
come activity. It is noteworthy that both Φ𝑜𝑝 and Φ𝑜𝑐 will be within
either the range [0, 1) or the range [1, +∞) since the activeness of
each activity in these categories is within either of these two ranges
as well.

Please note that, in ActiveDR design, we have considered the
case that outcomes may need longer time to be yielded. That is why
the user activeness evaluation model is based on 𝑚 consecutive
periods, instead of just one period (please see Equations (2) - (6)
in this section). Additionally, the activeness ratio of each activity
type is calculated as an average value in each period, as shown in

SC ’21, November 14–19, 2021, St. Louis, MO, USA Wei Zhang, Suren Byna, Hyogi Sim, Sangkeun Lee, Sudharshan Vazhkudai, and Yong Chen

Equation (3). Therefore, long jobs would not be penalized because
of their long span of run time.

3.3 User Classi�cation
Based on user activeness evaluated, ActiveDR classi�es all users
into four categories, as depicted in Figure 4. In each category, users
are sorted according to their activeness rank. The data retention pro-
cedure will scan users’ directories based on these four di�erent user
activeness categories. In ActiveDR, the operation activeness rank
Φ𝑜𝑝 is given higher priority. Therefore, users are sorted according
to their operation activeness �rst and then are further di�erentiated
according to their outcome activeness.

Active

Inactive
Inactive Active

O
ut

co
m

e
A

ct
iv

en
es

s

Operation Activeness

Both Active

Operation Active
Only

Both Inactive

Outcome Active
Only

Figure 4: User classi�cation matrix

3.4 Data Retention
To run the data retention procedure, the administrator needs to
provide an initial �le lifetime for new users and the both-inactive
users so that the �les of these users will follow the initial �le lifetime
setting and will not be purged when they are scanned the �rst time.
The administrator also needs to provide a purge target indicating
the space utilization that should be reached.

Optionally, the administrator can specify a list of reserved �les
for the purpose of �le purge exemption. ActiveDR reads the �le
reservation list and stores the paths of the reserved �les into a
compact pre�x tree. When scanning the �les of each user, ActiveDR
can e�ciently determine if the path of an encountered �le is in the
�le reservation list and skip over the reserved �les for the retention
procedure. Please note that we consider the �le reservation list as a
contract between users and the system administrator. The paths of
the �les on the reservation list are not supposed to change. If a user
change the �le path of a previously reserved �le without notifying
the system administrator, we consider it means that the user has
cancelled the reservation of that �le.

Di�erent from the FLT data retention solution where the data
�les are scanned in the order speci�ed by the system, ActiveDR
scans users’ directories in an ascending order of the users’ active-
ness rank. First, ActiveDR will evaluate users in both-inactive and
outcome-active-only categories. Afterwards, ActiveDR visits the
other two categories, i.e. operation-active-only and both-active, in
an ascending order of the outcome activeness.

When visiting users in a certain activeness category, ActiveDR
scans each �le in the user’s directory. For each �le that is not
reserved, ActiveDR adjusts the lifetime of the �le by multiplying

it with the activeness rank of the user (shown as “�le lifetime
adjustment” in Figure 2). The more active the user is, the higher
chance his/her �les will survive from being purged. Suppose the
initial �le lifetime is 𝑑 days, the adjusted �le lifetime 𝜀𝑓 of �le 𝑓

owned by a user is calculated by the following equation:

𝜀𝑓 = 𝑑 × Φ𝑜𝑝 × Φ𝑜𝑐 (7)

At time 𝑡𝑐 , ActiveDR examines the access time 𝑎𝑡𝑖𝑚𝑒𝑓 of �le 𝑓 and
purges the �le as long as 𝑡𝑐 − 𝑎𝑡𝑖𝑚𝑒𝑓 > 𝜀𝑓 .

At any time when the purge target is reached, ActiveDR will
stop the data retention procedure. To ensure that active users are
protected from �le purge to the maximum degree, each time when
�nishing the �le purge scanning of an activeness group, ActiveDR
will test if the purge target is reached or not. If not, ActiveDR
will retrospectively work on that activeness group for a speci�ed
number of times (currently �ve times in our implementation) and
decrease the user activeness rank by a prede�ned certain percentage
each time (currently 20% in our implementation). If the purge target
is still not reached after all activeness groups are tried, ActiveDR
will stop and report to the administrator via speci�ed reporting
mechanism.

In the current design, the lifetime of a �le is only extended by
its owner’s activeness rank even though the �le may be shared by
other users. We keep such a design because we consider that the
owner of the �le should be responsible for the �les when he/she
shares them. We consider that such a design principle can help with
suppressing the complexity of the solution.

When ActiveDR is used for a new system or in the case where
new users accounts are created in HPC systems, it is highly possible
that no activity information is available for all or some users. To
avoid the �les of these users being purged immediately after the
�rst run of ActiveDR, we set the initial user activeness rank of all
activity types to be 1.0. This handling ensures that new users’ �les
are provided with the initial �le lifetime and will not be purged
during the �rst data retention process.

4 EVALUATION
In this section, we �rst introduce our dataset, experimental platform,
and our evaluation procedure, then we introduce our experimental
results, including the data retention results and the performance of
ActiveDR.

4.1 Experimental Setup
4.1.1 Datasets. We used a dataset from Oak Ridge Leadership
Computing Facility (OLCF) that contains a series of system traces
recorded during 2015 and 2016 from the Titan supercomputer. The
system traces include the job scheduler logs collected from 2013 to
2016 (1,368,398 job submissions), application logs from 2015 to 2016
(1,040,886 �le paths and 4,973,011 application executions), the list
of 13,813 anonymized system users in 2016, the weekly metadata
snapshots of the Spider �le system from 2015 to 2016 (over 2TB
compressed), and the list of 1,151 publications published from 2013
to 2016 by the users at OLCF (the publication list is provided by
OLCF too). As the �le size is not directly available and we can only
get the number of stripes from the metadata snapshot, we generate

Exploiting User Activeness for Data Retention in HPC Systems SC ’21, November 14–19, 2021, St. Louis, MO, USA

a synthesized �le size for each �le in the snapshot according to the
best striping practice of the Spider �le system suggested by [30].

4.1.2 Experimental Platform. We conducted our emulation-based
evaluation on the Cori supercomputer hosted at the National Energy
Research Scienti�c Computing Center (NERSC). Speci�cally, we
used the Haswell compute nodes for our experiments. Each Cori
Haswell compute node has two 16-core Intel® Xeon™ processors
E5-2698 v3 (“Haswell") at 2.3 GHz and 128 GB of DDR4 2133 MHz
memory. The peak performance of each compute node is 1.2 TFlops.
The compute nodes use GPFS for its home directory and multiple
Lustre �le systems as scratch spaces. We used a 30 PB Lustre �le
system with over 700 GB/s peak I/O bandwidth for our evaluation.
Our ActiveDR implementation is written in Python along with
the mpi4py package to enable parallel emulation. Other python
packages we used include pandas and numpy.

4.1.3 Evaluation Procedure. In our evaluation, we designed an
emulation-based experiment to verify the e�ectiveness and e�-
ciency of ActiveDR, in comparison with the FLT data retention
method. Throughout the entire experiment, we set the purge target
to be 50% of the total storage capacity (the total synthesized size
of all �les in the last weekly metadata snapshot of 2015). Also, we
used the job scheduler logs as the input for operation activities,
and we used the research publication list as the source of outcome
activities. In particular, for each job, we use the core hours (number
of CPU cores multiplied with the job duration) as the activeness
score. Also, we derive the activeness score of each publication by
calculating the multiplication of adjusted citation count 𝜙 and the
rank of the user in the author list 𝜃 . Given the actual citation count
𝑐 , the total number of authors of each publication 𝑛 and the index
of the author in the author list 𝑖 , the activeness of each publication
𝐷𝑝𝑢𝑏 can be calculated as follows:

𝐷𝑝𝑢𝑏 = 𝜙 × 𝜃 = (𝑐 + 1) × (𝑛 − 𝑖 + 1) (8)

Our evaluations were conducted using these two activity traces in
hope to show the e�ectiveness of ActiveDR in the situation where
the outcome activities are not directly related to the operation
activities, but please note that ActiveDR can work with di�erent
types of activities, as discussed in Section 3.1.

To initialize our experiment, we �rst load the last weekly meta-
data snapshot in 2015, extract the �le paths and index them into a
compact pre�x tree along with the synthesized �le size information
generated. The compact pre�x tree serves as a virtual �le system in
our emulation. It allows us to test if a given �le path matches with
an existing �le and also enables us to e�ciently retrieve the size
information of each �le with the corresponding �le path. We then
replay the application logs of 2016 and emulate the �le accesses
and data retention processes. We run ActiveDR and FLT solutions
with 90-day �le lifetime and a 7-day purge trigger interval on the
weekly metadata snapshots. These settings were previously used
in the Spider II storage system at OLCF, and we reuse such settings
to restore the real data retention situation as much as possible.

During the experiments, each time when the ActiveDR data re-
tention is triggered, we �rst run a preparation procedure to load
the corresponding weekly metadata snapshot as well as the activity

traces, then evaluate the user activeness and store the correspond-
ing user activeness in memory. Each time when our emulator en-
counters a �le path during the process of replaying the application
logs, we �rst test whether the �le is already indexed in the compact
pre�x tree. If not, we count a �le miss; otherwise, we follow the
data retention procedure in our design to remove the �le. For FLT
data retention, we replay the logs and purge the �les as in the logs.
There is no preparation procedure for FLT.

Since the Spider metadata snapshot has already been a result of
the 90-day FLT data retention, we also tested both data retention
solution with 7-day, 30-day and 60-day �le lifetime, which are
shorter than the 90-day �le lifetime. This evaluation allows us to
observe how both data retention solutions perform with di�erent
�le lifetime con�gurations. In addition, we still include the result
with the 90-day �le lifetime con�guration in order to understand
what percentage of �le misses can be reduced by using ActiveDR
as opposed to FLT.

By utilizing the mpi4py package, we are able to use multiple
processes working together to scan the metadata snapshot. Each
process maintains a series of counters to record the number of
purged/retained �les, the total size of the purged/retained �les, and
the number of users whose �les are purged/retained, etc. Mean-
while, we set multiple probes to monitor the running time and the
memory consumption of the program.

4.2 User Activeness
ActiveDR evaluates user activeness before carrying out the data
retention procedure. As shown in Figure 5, we can see that the
entire user space can be divided into four categories as shown in
the activeness matrix. Among 13,813 users, only 0.4%-0.9% users
are in the both-active category. The percentage of the operation-
active-only users slightly increases from 1.1% to 3.5% as the period
length grows from 7 days to 90 days, and the percentage of the
outcome-active-only users slightly declines from 3.4% to 2.9%. Most
of the users are both inactive (accountable for 92.7% - 95%). For

0 10 210 1100101102103104105106107

0

10 2
10 1
100
101
102
103
104
105

O
ut

co
m

e
A

ct
iv

en
es

s G(1):0.4%

G(2):1.1%

G(3):3.4%

G(4):95.0%

7 days

0 10 210 1100 101 102 103 104 105 106 107

0

10 2
10 1
100
101
102
103
104
105

G(1):0.6%

G(2):1.7%

G(3):3.3%

G(4):94.5%

30 days

0 10 210 1 100 101 102 103 104 105

Operation Activeness

0

10 2
10 1
100
101
102
103
104
105

O
ut

co
m

e
A

ct
iv

en
es

s G(1):0.8%

G(2):2.8%

G(3):3.1%

G(4):93.4%

60 days

0 10 210 1 100 101 102 103 104 105

Operation Activeness

0

10 2
10 1
100
101
102
103
104
105

G(1):0.9%

G(2):3.5%

G(3):2.9%

G(4):92.7%

90 days

Figure 5: User activeness matrix. Letter “G” in the �gure means
“activeness group”.

the vast majority of users who are inactive for both operations

SC ’21, November 14–19, 2021, St. Louis, MO, USA Wei Zhang, Suren Byna, Hyogi Sim, Sangkeun Lee, Sudharshan Vazhkudai, and Yong Chen

and outcomes, their �les are considered to be the high-priority
candidate for purging. Therefore, when a speci�c purge target
is given, ActiveDR takes advantage of such highly-skewed user
distribution among di�erent activeness levels and start the data
retention process from purging the �les of these inactive users. As
compared to FLT, ActiveDR can reach the purge target with more
�les purged from inactive users. Therefore, more �les of active
users are expected be retained.

4.3 File Miss Reduction

1%
-5

%

5%
-1

0%

10
%

-2
0%

20
%

-3
0%

30
%

-4
0%

40
%

-5
0%

50
%

-6
0%

60
%

-7
0%

70
%

-8
0%

80
%

-9
0%

90
%

-1
00

%

Miss Ratio Ranges
0

30

60

90

120

150

N
um

be
r

of
 D

ay
s

124

59

27
13 8 5 4 4 8 4 6

112

29
20

12 9 4 0 5 6 4 6

FLT
ActiveDR

Figure 6: File miss ratio distribution by number of days

Figure 6 shows a comparison between FLT and ActiveDR in
terms of the �le miss ratio distribution throughout 366 days in 2016.
As can be seen from the �gure, with ActiveDR, the number of days
with 1%-5% �le misses is roughly reduced by 10% and the number
of days with 5%-10% �le misses is almost reduced by half. Overall,
the number of days with more than 5% �le misses is reduced by
31%, from 138 days to 95 days §. This result shows that, on a yearly
basis, ActiveDR reduced the total time during which users may
randomly su�er from over 5% �le misses from half year to only a
quarter. Except for the �le miss ratio range within 30%-40% and
the one within 60%-70%, we see 1 to 4 days of reduction on the
�le miss ratio ranges over 20%. Additionally, ActiveDR successfully
reduced the number of days with 50%-60% �le misses from 4 to 0.
Considering the fact that re-transmission or re-generation of a �le
upon a �le miss can be very expensive, even such a small reduction
can be highly bene�cial.

We report the �le miss reduction of each user group in Figure 7.
Overall, the number of �le misses for both FLT and ActiveDR shows
an uprising trend with major increases in almost every 3 months
of the year. This is because of two reasons. First, when initializ-
ing the virtual �le system, we only load the last weekly metadata
snapshot in 2015 which is already a snapshot of a data retention
result produced by the OLCF 90-day retention solution. Thus, in
our experiment result, the number of �le misses remains small for
the �rst few months of 2016. Second, as the weekly data retention
performs with a 90-day �le lifetime setting, more and more �les
are deleted, which leads to an increasing number of �le misses.

§This is calculated by summing up all the number of days in each miss ratio range
that is larger than 5%.

0
800

1600
2400
3200
4000
4800
5600
6400
7200

N
um

be
r

of
Fi

le
 M

is
se

s

Outcome Active Only

0

4
8

12
16
20
24
28

Both Active

20
16 Fe
b

M
ar Ap
r

M
ay Ju
n Ju
l

Au
g

Se
p

O
ct

N
ov D
ec

Date 2016

0
8000

16000
24000
32000
40000
48000
56000
64000

N
um

be
r

of
Fi

le
 M

is
se

s

Both Inactive

20
16 Fe
b

M
ar Ap
r

M
ay Ju
n Ju
l

Au
g

Se
p

O
ct

N
ov D
ec

Date 2016

0
250
500
750

1000
1250
1500
1750
2000

Operation Active Only

FLT ActiveDR

Figure 7: File miss reduction in user activeness matrix

However, while both �le miss numbers of FLT and ActiveDR in-
crease with a growing number of data retention operations being
performed, we can see that the number of reduced �le misses by
ActiveDR, i.e., the gap between FLT and ActiveDR, also grows, for
all four types of users. In general, the result indicates that ActiveDR
helps reduce the �le misses in the long run, as compared to FLT
solution.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Both Active

Operation Active Only

Outcome Active Only

Both Inactive

File Miss Reduction Ratio

Figure 8: Statistics on �le miss reduction ratio

Figure 8 reports the statistics about the �le miss reduction ratio,
which is the percentage of �le miss reduction introduced by re-
placing FLT with ActiveDR. On average, as indicated by the green
triangles in the box plot, ActiveDR is able to reduce 37% of the
�le misses for both-active users, 7.5% for operation-active-only,
11.2% for outcome-active-only and 27.5% for both-inactive, as com-
pared to the traditional FLT data retention method. While ActiveDR
achieves the largest average �le miss reduction ratio for both-active
users, it surprisingly achieves the second largest one for the group
of both-inactive users, with the maximum reduction of 100%, which
is twice large as that of both-active category.

When examining the details, we found that the number of FLT
�le misses for both-inactive users remains very small during the
�rst 4-5 months. However, the number of �le misses with the Ac-
tiveDR solution is even smaller and sometimes zero in several days

Exploiting User Activeness for Data Retention in HPC Systems SC ’21, November 14–19, 2021, St. Louis, MO, USA

during these months. This result leads to the 100% �le miss reduc-
tion ratio and overall higher miss reduction ratio than those of
outcome-active-only and operation-active-only users. Such a phe-
nomenon exactly shows the sensitivity of our approach in re�ecting
the users’ activeness, because the �le miss was very low during
the very �rst few months of 2016. In our emulation, we started
data retention iterations from the beginning of 2016 and not many
recently accessed �les were purged at that time.

Additionally, we can observe that ActiveDR acts very similarly
to FLT for operation-active-only users, because only operational ac-
tivities are considered for those users. This observation also shows
a positive sign about the relevance between operations and �le
accesses, since we only use the job scheduler logs as the source
of operations and no �le access traces were used. In comparison,
we can see the bene�ts of considering outcome for the outcome-
active-only users, as this user group experiences noticeably less �le
misses than operation-active-only users, attributing to ActiveDR.

4.4 Retention with Various Lifetime Settings
We also investigate how ActiveDR and FLT behave di�erently when
the �le lifetime is set to 7, 30, 60 and 90 days, respectively. We
analyze how much data can be retained by each solution. For this
purpose, we select the retention result on the last weekly metadata
snapshot we have (which was captured on Aug 23rd of 2016) to
examine the details.

ActiveDR prioritizes active users and their �le availability. There-
fore, when a speci�c data retention target is given, we expect that
ActiveDR should retain more �les for active users and less �les
for inactive users. In our evaluation, we set up the purge target to
be 50% of the total capacity. With this purge target, we run both
FLT and ActiveDR to observe the retention result for the users of
various activeness categories.

Both Active Operation
Active Only

Outcome
Active Only

Both Inactive
0
2
4
6
8

10
12
14
16
18
20
22

To
ta

l S
iz

e
of

R
et

ai
ne

d
Fi

le
s(

P
B

)

7 days

Both Active Operation
Active Only

Outcome
Active Only

Both Inactive
0
2
4
6
8

10
12
14
16
18
20
22
24
26
28

30 days

Both Active Operation
Active Only

Outcome
Active Only

Both Inactive

Type of Users

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5
25.0
27.5
30.0
32.5

To
ta

l S
iz

e
of

R
et

ai
ne

d
Fi

le
s(

P
B

)

60 days

Both Active Operation
Active Only

Outcome
Active Only

Both Inactive

Type of Users

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5
25.0
27.5
30.0
32.5

90 days

FLT ActiveDR

Figure 9: Total size of retained �les for users of various ac-
tiveness categories

As shown in Figure 9 and Table 4, for both-inactive users with
any period lengths, ActiveDR retains 13PB - 16PB less data than
FLT. The saved space is about half of the 32PB total capacity of the
Spider �le system. In addition, for each category of users, ActiveDR

retains up to 213.47% more data for active users as shown in Table 4
(about 10TB to 2PB more �les across di�erent period lengths as
shown in Table 5).

Table 4: Percentage of �le size that ActiveDR retains more
than FLT

Period Length (days) Both Active Operation
Active Only

Outcome
Active Only Both Inactive

7 71.42% 59.80% 36.07% -75.67%
30 213.47% 1.66% 35.66% -48.96%
60 36.32% 1.85% 18.62% -42.24%
90 33.58% 0.32% 1.33% -40.48%

Table 5: Di�erence between the total size of �les retained by
ActiveDR and FLT (in PB)

Period Length (days) Both Active Operation
Active Only

Outcome
Active Only Both Inactive

7 0.299 1.120 2.044 -16.390
30 0.490 0.045 1.547 -13.393
60 0.192 0.059 1.051 -13.222
90 0.181 0.011 0.118 -13.223

It is worth noting that the metadata snapshot we use is already
a result of the 90-day FLT data retention at OLCF, and a signi�cant
number of �les were already purged from the �le system when the
metadata snapshot was captured. Therefore, ActiveDR was only
able to evaluate a limited number of �les from the remaining �les
as what should be retained given larger period length settings such
as 60 days and 90 days. This explains the declining trend of �le
retention di�erence shown in Table 4 and Table 5 as the period
length increases. Also, given large period length settings (such
as 60-day and 90-day), the retention di�erence remains relatively
insigni�cant for both-active users and operation-active-only users
as compared to that of smaller period length settings. This is because
almost every job submission can result in renewing the access time
of �les that the job accesses, and the �le access time is exactly what
the 90-day FLT retention solution at OLCF monitors. Therefore, the
impact of the job activeness and the �le access recency remains
similar. Moreover, the retention di�erence for the outcome-active-
only users given larger period length settings is still remarkably
larger than that of both-active and operation-active-only users.
This is because the number of outcome-active-only users is either
larger than that of both-active users or close to the number of
operation-active-only users (as shown in Figure 5). Therefore, it is
normal that the total size of �les retained for the outcome-active-
only users is larger than that of the other two types of users. In fact,
this result exactly shows the bene�ts of considering the “outcome”
perspective.

We also compare the total size of �les purged by ActiveDR and
FLT in Figure 10 and Table 6. We can see that, as compared to FLT,
ActiveDR purges fewer �les for all active users, and purges more
�les for both-inactive users for 7-day and 30-day period lengths.
The �le purge e�ect of ActiveDR remains about the same as FLT
for 60-day and 90-day period lengths. Still, as the period length
grows, we observe a declining trend in the �le purge di�erence
and we attribute this to the fact that the metadata snapshot we

SC ’21, November 14–19, 2021, St. Louis, MO, USA Wei Zhang, Suren Byna, Hyogi Sim, Sangkeun Lee, Sudharshan Vazhkudai, and Yong Chen

Both Active Operation
Active Only

Outcome
Active Only

Both Inactive
0
2
4
6
8

10
12
14
16
18
20
22

To
ta

l S
iz

e
of

P
ur

ge
d

Fi
le

s(
P

B
)

7 days

Both Active Operation
Active Only

Outcome
Active Only

Both Inactive
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

30 days

Both Active Operation
Active Only

Outcome
Active Only

Both Inactive

Type of Users

0.0
0.8
1.6
2.4
3.2
4.0
4.8
5.6
6.4
7.2
8.0
8.8
9.6

To
ta

l S
iz

e
of

P
ur

ge
d

Fi
le

s(
P

B
)

60 days

Both Active Operation
Active Only

Outcome
Active Only

Both Inactive

Type of Users

0.0
0.6
1.2
1.8
2.4
3.0
3.6
4.2
4.8
5.4
6.0
6.6
7.2
7.8
8.4

90 days

FLT ActiveDR

Figure 10: Total size of purged �les for the users of various
activeness categories

Table 6: Di�erence between the total size of �les purged by
FLT and ActiveDR (in PB)

Period Length (days) Both Active Operation
Active Only

Outcome
Active Only Both Inactive

7 0.299 1.120 2.044 -3.167
30 0.490 0.045 1.547 -0.170
60 0.192 0.059 1.051 0.001
90 0.181 0.010 0.117 0.00007

use is already a result of the 90-day FLT data retention at OLCF.
Also, we can see that the �le purge di�erences for all activeness
types of users are exactly the same as the �le retaining di�erences
shown in Table 5. However, in terms of the purge di�erences for
both-inactive users, the numbers are much smaller. We can see that
ActiveDR does not lose the ability to purge �les for inactive users
and actually performs better than FLT.

FLT ActiveDR
0

250
500
750

1000
1250
1500
1750
2000
2250
2500
2750
3000

N
um

be
r

of
 U

se
rs

Outcome Active Only

FLT ActiveDR
0

60
120
180
240
300
360
420
480
540
600
660
720
780
840

N
um

be
r

of
 U

se
rs

Both Active

FLT ActiveDR
0

500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000

N
um

be
r

of
 U

se
rs

Both Inactive

FLT ActiveDR
0

200
400
600
800

1000
1200
1400
1600
1800
2000
2200

N
um

be
r

of
 U

se
rs

Operation Active Only

7 days 30 days 60 days 90 days

Data Retention Solution Data Retention Solution

Data Retention Solution Data Retention Solution

Figure 11: Number of users a�ected by �le purge

As shown in Figure 11, by adopting ActiveDR, the number of
users a�ected by data purge actions in all three active user groups
is much smaller than that of the FLT approach. Speci�cally, the
number of both-active users a�ected by �le purge actions is less
than 60, while such number for the FLT approach is over 700 when
the period length is 7 days. This result shows that ActiveDR can
protect active users from data loss caused by �le purge operations.

4.5 Performance Evaluation
As a data retention solution aiming to be used in real systems, we
expect ActiveDR to be e�cient in terms of both time and space
complexity. We report the performance evaluation result in Fig-
ure 12. From Figure 12a, we can see that ActiveDR only consumed
48.85MB memory for the user list, 3.5 MB for the publication list
and 419.77MB for the job traces. The total time for loading these
traces is only 1 minute and 35 seconds. Figure 12b shows that,
when executing in parallel mode, the main process takes 700 ms
for activeness evaluation while other processes only take a few
microseconds to perform the activeness evaluation. All processes
accumulatively take 1 to 5 seconds for making purge decision for
all 1,040,886 �les recorded in the application log. Since �le access
pattern is no longer a necessary consideration in ActiveDR when
evaluating user activeness, we can avoid loading gigabytes of meta-
data snapshots in real practice. Instead, we load the job activity
trace, which only accounts for hundreds of megabytes. This further
ensures the rapid process for user activeness evaluation and for
making purge decision. When testing the purge e�ect with di�erent
period length settings on a single metadata snapshot, it took about
1 hour to scan the entire metadata snapshot with multiple parallel
processes, as shown in Figure 12c. As the metadata snapshot is
stored as a series of gzipped text �les, each process took about 50
to 400 seconds to scan each �le, as shown in Figure 12d.

5 DISCUSSION
This research study aims to provide a novel data retention strat-
egy that values the data accessibility of active users and promotes
fruitful use of HPC system. In our evaluation, we selected job sub-
missions as operation activities and selected the publications as the
outcome activities. We made such a choice for two reasons. First,
we hope to select a type of operation activity that users perform in
the HPC system but it does not have to be directly relevant to any
�le properties. Also, we hope to select a type of outcome activity
unlike job completion or data generation that can be easily captured
inside the HPC system. Rather, we would like to select a type of
outcome activity that user perform outside the purview of HPC
system. In other words, we would like to show how diverse the
user activity types can be, with the objective of being practical still.
Second, the dataset we have allows us to explore such an interesting
combination of operation activities and outcome activities, but also
limits us to explore other types of operation activities or outcome
activities such as data transfer or data generation.

However, it is noteworthy that the system administrator can
choose any type of operation activity and any type of outcome
activity which are appropriate for their own system settings. There
is no limitation on the type of activities as long as the activities are
trackable with occurrence timestamp and quanti�able impact factor.

Exploiting User Activeness for Data Retention in HPC Systems SC ’21, November 14–19, 2021, St. Louis, MO, USA

User Publication Job
Memory (MiB) 48.85 3.5 419.775
Loading Time(s) 4.756075 1.2693 89.877925

48.85

3.5

419.775

0

20

40

60

80

100

1

10

100

1000

(a) Memory consumption during activeness evaluation

0.000001

0.0001

0.01

1

R
an

k
0

R
an

k
1

R
an

k
2

R
an

k
3

R
an

k
4

R
an

k
5

R
an

k
6

R
an

k
7

R
an

k
8

R
an

k
9

R
an

k
10

R
an

k
11

R
an

k
12

R
an

k
13

R
an

k
14

R
an

k
15

R
an

k
16

R
an

k
17

R
an

k
18

R
an

k
19

Ti
m

e
(s

)

Rank

Activeness Evaluation Purge Decision Making

(b) Time overhead to evaluate activeness and to make decisions

0
500
1000
1500
2000
2500
3000
3500
4000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Sc
an

ni
ng

 T
im

e
(s

)

Rank
(c) Total �le scanning time of each process

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Rank

0

200

400

Fi
le

 S
ca

nn
in

g
Ti

m
e(

s)

(d) Single �le scanning time variations of di�erent processes

Figure 12: Performance evaluation

For operation activities, we suggest choosing the ones that can be
easily tracked through various logs and traces. When choosing the
types of operations, we suggest considering whether the actual
data retention strategy is more relevant to �le properties. Likewise,
when choosing the types of outcomes, we suggest considering
whether the resulting data retention strategy is more sensitive to
the completion of activities performed on an HPC system or it is
more sensitive to other accomplishments that users get outside the
purview of the HPC system.

Once the operation activities and the outcome activities are se-
lected, the system administrator can utilize various techniques to
collect the traces about the selected activities. The system admin-
istrator can either utilize logs or traces that are readily available
in the HPC system or develop scripts or tools to facilitate tracing
activities automatically. Also, if the system can tolerate inaccurate
user activeness evaluation to some extent, there is no limitation on
the application of manually collected activity traces as well. For
example, for the sample operation activities and outcome activities
listed in Table 2, most of them can be tracked via readily available
logs and traces in the HPC system, such as job submission and
job completion (via job scheduler logs), �le access and dataset gen-
eration (via PFS logs and job scheduler logs). Some of them may
need e�orts in con�guring or developing monitoring tools, such
as shell login, data transfer, task completion in a work�ow. Others,
such as publications resulted from job output, may be captured
with a combination of automated solutions (e.g., job-related user ID
extractor and publication database crawler) along with additional
manual e�orts (e.g., manual auditing). Please note that the major
focus of our study is to propose an activeness-based data retention
solution rather than proposing any activity tracing mechanism. We
provide the above discussion as a suggestion or a starting point
for any system administrator who might be interested in applying
our method in practice. The system administrators eventually have
the due right to choose the most appropriate activity types and the

corresponding activity tracing methods that meet the need of their
system accordingly.

ActiveDR promotes fruitful use of HPC storage space. We cur-
rently consider it is a good practice if the users just access their
�les according to their inherent needs. For most cases, we suggest
that the users should actively perform operations and/or generate
outcomes and naturally bene�t from the convenience ActiveDR
provides. However, if the users need to be aware of the �le life-
time settings and need to plan for backing up important data �les,
we suggest that the system administrators can provide the purge
trigger interval to the users as a reference.

In our evaluation, we ran our prototype implementation as a
regular job. But our prototype implementation proved that our
method can be implemented as a parallel program working on HPC
systems. In actual practice, the system administrator can implement
their own version, which adapts to their data retention work�ow
and handles the fault-tolerance issue according to their system
speci�cs.

ActiveDR is not only unique as compared to state-of-the-art
data retention strategies. The superiority of ActiveDR lies in its
consideration of user activities, its low cost of implementation, and
its practicality.

6 CONCLUSION
Existing data retention methodologies on HPC systems either are
limited by compromised e�cacy or ignore the dynamics of users’
activities and hence undermine the �le availability to users. In this
study, we rethink the data retention problem from the activeness-
based perspective which holistically captures users’ activeness. We
have introduced ActiveDR, an activeness-based data retention solu-
tion which is unique, e�ective, and reproducible with the following
characteristics: 1) user-friendly: in ActiveDR, we consider users and
their activities at the core of its design. The activeness-based per-
spective holistically captures both operations that users perform on
the system and the outcomes that users yield by using the system.

SC ’21, November 14–19, 2021, St. Louis, MO, USA Wei Zhang, Suren Byna, Hyogi Sim, Sangkeun Lee, Sudharshan Vazhkudai, and Yong Chen

We value the user experience of the scratch space and we aim to
reduce the �le misses for active users; 2) administrator-friendly:
the de�nition of operations and outcomes in the activeness-based
perspective covers a wide range of user activities. Therefore, the
administrators can simply utilize traces available or activities cap-
tured by monitoring tools they have been using to serve the user
activeness evaluation. They can customize the ActiveDR as needed
too; 3) resource-friendly: ActiveDR provides an e�cient activeness
evaluation algorithm that only requires some important properties
of user activities. As such, the activeness evaluation process of
ActiveDR runs very fast and the memory footprint is negligible; 4)
HPC-ecosystem-friendly: ActiveDR is the �rst data retention solu-
tion that promotes the active and fruitful use of the HPC system,
which helps promote productive use of HPC facilities.

Although our evaluation was performed based on user job sub-
mission and publication traces, system administrators can select
other appropriate activities for user activeness evaluation. ActiveDR
is designed for HPC storage system, but its reproducibility and
resource-e�ciency make it a valuable reference to meet the data
management need of other shared storage systems as well. More
importantly, our study o�ers new insights about HPC storage man-
agement problem and can have an impact on new practices in the
HPC community.

ACKNOWLEDGMENTS
We are thankful to the anonymous reviewers for their valuable
feedback. This research is supported in part by the National Sci-
ence Foundation under grant CCF-1718336, OAC-1835892 and CNS-
1817094. Thismanuscript has been authored by an author at Lawrence
BerkeleyNational Laboratory under Contract No. DE-AC02-05CH11231
with the U.S. Department of Energy, and has been authored by UT-
Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S.
Department of Energy (DOE). The U.S. Government retains, and the
publisher, by accepting the article for publication, acknowledges
that the U.S. Government retains a non-exclusive, paid-up, irrevoca-
ble, world-wide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for U.S. Government
purposes. DOE will provide public access to these results of feder-
ally sponsored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).

REFERENCES
[1] MG Aartsen, K Abraham, M Ackermann, J Adams, JA Aguilar, M Ahlers, M

Ahrens, D Altmann, K Andeen, T Anderson, et al. 2016. Search for Sources of
High-Energy Neutrons with Four Years of Data from the Icetop Detector. The
Astrophysical Journal 830, 2 (2016), 129.

[2] MG Aartsen, M Ackermann, J Adams, JA Aguilar, Markus Ahlers, M Ahrens,
I Al Samarai, D Altmann, K Andeen, T Anderson, et al. 2017. Constraints on
Galactic Neutrino Emission with Seven Years of IceCube Data. The Astrophysical
Journal 849, 1 (2017), 67.

[3] Judie Attard and Rob Brennan. 2018. Challenges in Value-Driven Data Gov-
ernance. In On the Move to Meaningful Internet Systems. OTM 2018 Confer-
ences - Confederated International Conferences: CoopIS, C&TC, and ODBASE
2018, Valletta, Malta, October 22-26, 2018, Proceedings, Part II. 546–554. https:
//doi.org/10.1007/978-3-030-02671-4_33

[4] Judie Attard and Rob Brennan. 2018. DaVe: A Semantic Data Value Vocabulary
to Enable Data Value Characterisation. In Enterprise Information Systems - 20th
International Conference, ICEIS 2018, Funchal, Madeira, Portugal, March 21-24,
2018, Revised Selected Papers (Lecture Notes in Business Information Processing,
Vol. 363), Slimane Hammoudi, Michal Smialek, Olivier Camp, and Joaquim Filipe
(Eds.). Springer, 239–261. https://doi.org/10.1007/978-3-030-26169-6_12

[5] Judie Attard and Rob Brennan. 2018. A Semantic Data Value Vocabulary Sup-
porting Data Value Assessment and Measurement Integration. In Proceedings of

the 20th International Conference on Enterprise Information Systems, ICEIS 2018,
Funchal, Madeira, Portugal, March 21-24, 2018, Volume 2, Slimane Hammoudi,
Michal Smialek, Olivier Camp, and Joaquim Filipe (Eds.). SciTePress, 133–144.
https://doi.org/10.5220/0006777701330144

[6] Ranjita Bhagwan, Fred Douglis, Kirsten Hildrum, Je�rey O. Kephart, and
William E. Walsh. 2005. Time-Varying Management of Data Storage. In Pro-
ceedings of the First Conference on Hot Topics in System Dependability (Yokohama,
Japan) (HotDep’05). USENIX Association, USA, 14.

[7] Buddy Bland. 2014. Present and Future Leadership Computers at OLCF. In OLCF
User Group Conference Call December, Vol. 3.

[8] Rob Brennan, Judie Attard, and Markus Helfert. 2018. Management of Data
Value Chains, a Value Monitoring Capability Maturity Model. In Proceedings of
the 20th International Conference on Enterprise Information Systems, ICEIS 2018,
Funchal, Madeira, Portugal, March 21-24, 2018, Volume 2, Slimane Hammoudi,
Michal Smialek, Olivier Camp, and Joaquim Filipe (Eds.). SciTePress, 573–584.
https://doi.org/10.5220/0006684805730584

[9] Chi Chen, Zhi Deng, Richard Tran, Hanmei Tang, Iek-Heng Chu, and Shyue Ping
Ong. 2017. Accurate Force Field for Molybdenum by Machine Learning Large
Materials Data. Physical Review Materials 1, 4 (2017), 043603.

[10] Ying Chen. 2005. Information Valuation for Information Lifecycle Management.
In Proceedings of the Second International Conference on Automatic Computing
(ICAC ’05). IEEE Computer Society, USA, 135–146. https://doi.org/10.1109/ICAC.
2005.35

[11] Peng Cheng, Yutong Lu, Yunfei Du, and Zhiguang Chen. 2018. Accelerating
Scienti�c Work�ows with Tiered Data Management System. In 20th IEEE Interna-
tional Conference on High Performance Computing and Communications; 16th IEEE
International Conference on Smart City; 4th IEEE International Conference on Data
Science and Systems, HPCC/SmartCity/DSS 2018, Exeter, United Kingdom, June 28-
30, 2018. IEEE, 75–82. https://doi.org/10.1109/HPCC/SmartCity/DSS.2018.00042

[12] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks
for youtube recommendations. In Proceedings of the 10th ACM conference on
recommender systems. 191–198.

[13] Tina M Declerck et al. 2014. Using Robinhood to Purge Data from Lustre File
Systems. Proceedings of the 2014 Cray User Group, Lugano (2014).

[14] Je�rey J Donatelli, James A Sethian, and Peter H Zwart. 2017. Reconstruction
from Limited Single-Particle Di�raction Data via Simultaneous Determination
of State, Orientation, Intensity, and Phase. Proceedings of the National Academy
of Sciences 114, 28 (2017), 7222–7227.

[15] Matt Ezell, Rick Mohr, John Wynkoop, and Ryan Braby. 2012. Lustre at Petascale:
Experiences in Troubleshooting and Upgrading. In 2012 Cray User Group Meeting.

[16] RIKEN Center for Computational Science. 2021. Expected Outcome: Prior-
ity Issues and Exploratory Challenges. https://www.r-ccs.riken.jp/en/fugaku/
outcome.

[17] Timothy J. Gibson. 1999. An Improved Long-Term File Usage Prediction Algo-
rithm. In 25th International Computer Measurement Group Conference, December 5-
10, 1999, Reno, Nevada, USA, Proceedings. Computer Measurement Group, 639–648.
http://www.cmg.org/?s2member_�le_download=/proceedings/1999/9527.pdf

[18] Min-Woo Kwon, JunWeon Yoon, TaeYoung Hong, and ChanYeol Park. 2017. Ac-
celerated Purge Processes of Parallel File System on HPC by Using MPI Program-
ming. In Advances in Computer Science and Ubiquitous Computing - CSA/CUTE
2017, Taichung, Taiwan, 18-20 December (Lecture Notes in Electrical Engineering,
Vol. 474), James J. Park, Vincenzo Loia, Gangman Yi, and Yunsick Sung (Eds.).
Springer, 1134–1140. https://doi.org/10.1007/978-981-10-7605-3_181

[19] J. Li, S. Singhal, R. Swaminathan, and A. H. Karp. 2012. Managing Data Retention
Policies at Scale. IEEE Transactions on Network and Service Management 9, 4
(December 2012), 393–406. https://doi.org/10.1109/TNSM.2012.101612.110203

[20] Seung-Hwan Lim, Hyogi Sim, Raghul Gunasekaran, and Sudharshan S Vazhkudai.
2017. Scienti�c user behavior and data-sharing trends in a petascale �le system.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 1–12.

[21] J. Liu, D. Bard, Q. Koziol, S. Bailey, and Prabhat. 2017. Searching for Millions
of Objects in the BOSS Spectroscopic Survey Data with H5Boss. In 2017 New
York Scienti�c Data Summit (NYSDS). 1–9. https://doi.org/10.1109/NYSDS.2017.
8085044

[22] Yaning Liu, George Shu Heng Pau, and Stefan Finsterle. 2017. Implicit Sam-
pling Combined with Reduced Order Modeling for the Inversion of Vadose zone
Hydrological Data. Computers & Geosciences (2017).

[23] Arun Mannodi-Kanakkithodi, Tran Doan Huan, and Rampi Ramprasad. 2017.
Mining Materials Design Rules from Data: The Example of Polymer Dielectrics.
Chemistry of Materials 29, 21 (2017), 9001–9010.

[24] Marta Mattoso, Jonas Dias, Kary ACS Ocana, Eduardo Ogasawara, Flavio Costa,
Felipe Horta, Vitor Silva, and Daniel De Oliveira. 2015. Dynamic steering of HPC
scienti�c work�ows: A survey. Future Generation Computer Systems 46 (2015),
100–113.

[25] Michael Mesnier, Eno Thereska, Gregory R Ganger, Daniel Ellard, and Margo
Seltzer. 2004. File Classi�cation in Self-* Storage Systems. In International Con-
ference on Autonomic Computing, 2004. Proceedings. IEEE, 44–51.

http://energy.gov/downloads/doe-public-access-plan
https://doi.org/10.1007/978-3-030-02671-4_33
https://doi.org/10.1007/978-3-030-02671-4_33
https://doi.org/10.1007/978-3-030-26169-6_12
https://doi.org/10.5220/0006777701330144
https://doi.org/10.5220/0006684805730584
https://doi.org/10.1109/ICAC.2005.35
https://doi.org/10.1109/ICAC.2005.35
https://doi.org/10.1109/HPCC/SmartCity/DSS.2018.00042
https://www.r-ccs.riken.jp/en/fugaku/outcome
https://www.r-ccs.riken.jp/en/fugaku/outcome
http://www.cmg.org/?s2member_file_download=/proceedings/1999/9527.pdf
https://doi.org/10.1007/978-981-10-7605-3_181
https://doi.org/10.1109/TNSM.2012.101612.110203
https://doi.org/10.1109/NYSDS.2017.8085044
https://doi.org/10.1109/NYSDS.2017.8085044

Exploiting User Activeness for Data Retention in HPC Systems SC ’21, November 14–19, 2021, St. Louis, MO, USA

[26] Henry M. Monti, Ali R. Butt, and Sudharshan S. Vazhkudai. 2009. /Scratch as
a Cache: Rethinking HPC Center Scratch Storage. In Proceedings of the 23rd
International Conference on Supercomputing (Yorktown Heights, NY, USA) (ICS
’09). Association for Computing Machinery, New York, NY, USA, 350–359. https:
//doi.org/10.1145/1542275.1542325

[27] National Center for Atmospheric Research. 2020. GLADE File Space. https:
//www2.cisl.ucar.edu/resources/storage-and-�le-systems/glade-�le-spaces.

[28] National Energy Research Scienti�c Computing Center. 2020. NERSC Data
Management Policy. https://docs.nersc.gov/data/policy/.

[29] National Energy Research Scienti�c Computing Center (NERSC). 2021. Publica-
tions Resulting from the Use of NERSC Resources. https://www.nersc.gov/news-
publications/publications-reports/nersc-user-publications/.

[30] Oak Ridge Leadership Computing Facility. 2016. Best Practice @ OLCF.
https://www.olcf.ornl.gov/wp-content/uploads/2016/01/Best-Practices-v6.pdf. ,
60 pages.

[31] Oak Ridge Leadership Computing Facility. 2020. OLCF Policy Guides - Data
Management Policy. https://docs.olcf.ornl.gov/accounts/olcf_policy_guide.html#
data-management-policy.

[32] Oak Ridge Leadership Computing Facility. 2020. Storage Overview. https:
//docs.olcf.ornl.gov/data/storage_overview.html.

[33] Oak Ridge Natinal Laboratory Leadership Computing Facility (OLCF). 2021. OLCF
Project Search. https://www.olcf.ornl.gov/leadership-science/project-search/.

[34] Sarp Oral, James Simmons, Jason Hill, Dustin Leverman, Feiyi Wang, Matt Ezell,
Ross Miller, Douglas Fuller, Raghul Gunasekaran, Youngjae Kim, et al. 2014. Best
Practices and Lessons Learned from Deploying and Operating Large-scale Data-
centric Parallel File Systems. In SC’14: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis. IEEE, 217–
228.

[35] David Paez-Espino, I Chen, A Min, Krishna Palaniappan, Anna Ratner, Ken Chu,
Ernest Szeto, Manoj Pillay, Jinghua Huang, Victor M Markowitz, et al. 2017.
IMG/VR: A Database of Cultured and Uncultured DNA Viruses and Retroviruses.
Nucleic acids research 45, D1 (2017), D457–D465.

[36] Kumar Attangudi Perichiappan Perichappan. 2018. GreedyAlgorithmBased Deep
Learning Strategy for User Behavior Prediction and Decision Making Support.
Journal of Computer and Communications 6, 6 (2018), 45–53.

[37] Gauri Shah, Kaladhar Voruganti, Piyush Shivam, and Maria Alvarez. 2006. Ace:
Classi�cation for Information Lifecycle Management. NASAMass Storage Systems
and Technologies (2006).

[38] Arie Shoshani, Alexander Sim, and Junmin Gu. 2004. Storage Resource Managers.
In Grid Resource Management. Springer, 321–340.

[39] Stephen Strange. 1992. Analysis of Long-Term UNIX File Access Patterns for
Application to Automatic File Migration Strategies. Technical Report UCB/CSD-
92-700. EECS Department, University of California, Berkeley. http://www2.eecs.
berkeley.edu/Pubs/TechRpts/1992/6258.html

[40] Texas Advanced Computing Center. 2020. TACC Usage Policy. https://portal.
tacc.utexas.edu/tacc-usage-policy.

[41] Lars Turczyk, Marcel Groepl, Nicolas Liebau, and Ralf Steinmetz. 2007. A Method
for File Valuation in Information Lifecycle Management. AMCIS 2007 Proceedings
(2007), 38.

[42] Lars Arne Turczyk, Oliver Heckmann, Rainer Berbner, and Ralf Steinmetz. 2006.
A Formal Approach to Information Lifecycle Management. In Proceedings of 17th
Annual IRMA International Conference, Washington DC.

[43] Lars Arne Turczyk, Oliver Heckmann, and Ralf Steinmetz. 2007. File Valuation
in Information Lifecycle Management. In Proceedings of the Thirteenth Americas
Conference on Information Systems, Keystone, Colorado.

[44] Sudharshan S Vazhkudai, John Harney, Raghul Gunasekaran, Dale Stansberry,
Seung-Hwan Lim, Tom Barron, Andrew Nash, and Arvind Ramanathan. 2016.
Constellation: A science graph network for scalable data and knowledge discovery
in extreme-scale scienti�c collaborations. In 2016 IEEE International Conference
on Big Data (Big Data). IEEE, 3052–3061.

[45] Akshat Verma, David Pease, Upendra Sharma, Marc Kaplan, Jim Rubas, Rohit
Jain, Murthy Devarakonda, and Mandis Beigi. 2005. An Architecture for Lifecycle
Management in Very Large File Systems. In Proceedings of the 22nd IEEE / 13th
NASA Goddard Conference on Mass Storage Systems and Technologies (MSST ’05).
IEEE Computer Society, USA, 160–168. https://doi.org/10.1109/MSST.2005.4

[46] Armando Vieira. 2015. Predicting online user behaviour using deep learning
algorithms. arXiv preprint arXiv:1511.06247 (2015).

[47] Brent Welch and Garth A Gibson. 2004. Managing Scalability in Object Storage
Systems for HPC Linux Clusters. In MSST. Citeseer, 433–445.

[48] FonsWijnhoven, Chintan Amrit, and Pim Dietz. 2014. Value-Based File Retention:
File Attributes as File Value and Information Waste Indicators. J. Data and
Information Quality 4, 4, Article 15 (May 2014), 17 pages. https://doi.org/10.1145/
2567656

[49] Erez Zadok, Je�rey Osborn, Ariye Shater, Charles P Wright, Kiran-Kumar
Muniswamy-Reddy, and Jason Nieh. 2004. Reducing Storage Management Costs
via Informed User-Based Policies.. In MSST. 193–197.

https://doi.org/10.1145/1542275.1542325
https://doi.org/10.1145/1542275.1542325
https://www2.cisl.ucar.edu/resources/storage-and-file-systems/glade-file-spaces
https://www2.cisl.ucar.edu/resources/storage-and-file-systems/glade-file-spaces
https://docs.nersc.gov/data/policy/
https://www.nersc.gov/news-publications/publications-reports/nersc-user-publications/
https://www.nersc.gov/news-publications/publications-reports/nersc-user-publications/
https://www.olcf.ornl.gov/wp-content/uploads/2016/01/Best-Practices-v6.pdf
https://docs.olcf.ornl.gov/accounts/olcf_policy_guide.html#data-management-policy
https://docs.olcf.ornl.gov/accounts/olcf_policy_guide.html#data-management-policy
https://docs.olcf.ornl.gov/data/storage_overview.html
https://docs.olcf.ornl.gov/data/storage_overview.html
https://www.olcf.ornl.gov/leadership-science/project-search/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1992/6258.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1992/6258.html
https://portal.tacc.utexas.edu/tacc-usage-policy
https://portal.tacc.utexas.edu/tacc-usage-policy
https://doi.org/10.1109/MSST.2005.4
https://doi.org/10.1145/2567656
https://doi.org/10.1145/2567656

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
We conducted our simulation-based evaluation on the Cori su-
percomputer hosted at the National Energy Research Scientific
Computing Center (NERSC). Specifically, we used the Haswell com-
puting nodes for our experiments. Each Cori Haswell compute node
has two 16-core Intel®Xeon™ processors E5-2698 v3 ("Haswell") at
2.3 GHz and 128 GB of DDR4 2133 MHz memory. The peak perfor-
mance of each compute node is at 1.2 TFlops/node. The compute
nodes use GPFS for its home directory and multiple Lustre file sys-
tems as scratch spaces. We used a 30 PB Lustre file system with
over 700 GB/s peak I/O bandwidth for our evaluation. The simula-
tion program is written in Python along with mpi4py package to
enable parallel simulation. Other python packages we used in the
simulation includes pandas and numpy.

Author-Created or Modified Artifacts:

Persistent ID: 10.5281/zenodo.5168853
Artifact name: ActiveDR v1.0.6

Persistent ID: 10.5281/zenodo.5152773
Artifact name: data_min.tar.gz

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Cori, CPU(2*16-core Intel Xeon pro-
cessors E52698), Lustre File System

Operating systems and versions: CLE7.0UP00

Compilers and versions: py_compiler (Python 3.8.3)

Applications and versions: ActiveDR v1.0.6 (written in python)

Libraries and versions: mpi4py, numpy, pandas

URL to output from scripts that gathers execution environment
information.
https://raw.githubusercontent.com/zhangwei217245/Act ⌋

iveDR/master/haswell_env.txt↩→

	Abstract
	1 Introduction
	2 Related Work
	3 Activeness-based Data Retention
	3.1 Activeness-based Perspective
	3.2 User Activeness Evaluation
	3.3 User Classification
	3.4 Data Retention

	4 Evaluation
	4.1 Experimental Setup
	4.2 User Activeness
	4.3 File Miss Reduction
	4.4 Retention with Various Lifetime Settings
	4.5 Performance Evaluation

	5 Discussion
	6 Conclusion
	Acknowledgments
	References

