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Abstract
This paper presents HiperView, a visual analytics framework monitoring and charac-
terizing the health status of high-performance computing systems through a REST-
ful interface in real time. The primary objectives of this visual analytical system are: 
(1) to provide a graphical interface for tracking the health status of a large number 
of data center hosts in real-time statistics, (2) to help users visually analyze unu-
sual behavior of a series of events that may have temporal and spatial correlation, 
and (3) to assist in performing preliminary troubleshooting and maintenance with a 
visual layout that reflects the actual physical locations. Two use cases were analyzed 
in detail to assess the effectiveness of the HiperView on a medium-scale, Redfish-
enabled production high-performance computing system with a total of 10 racks and 
467 hosts. The visualization apparatus has been proven to offer the necessary sup-
port for system automation and control. Our framework’s visual components and 
interfaces are designed to potentially handle a larger-scale data center of thousands 
of hosts with hundreds of various health services per host.
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1  Introduction

The high-performance computing (HPC) system has shown its applicability in 
many areas  [15], such as chemical simulations, physics simulations, social sci-
ence, among other financial/scientific applications. Supercomputing experts 
reported that the difficulties of hierarchical data management, better power 
monitoring and control, and standard interfaces for monitoring should be 
addressed  [1]. In response to these needs, the Intelligent Platform Management 
Interface (IPMI) has been developed and widely adopted to monitor HPC systems 
in many major manufacturers such as Dell, HP, IBM, and Lenovo. This proto-
col allows system administrators to control over remotely deployed servers. This 
permission, however, is exposed to vulnerability over a remote network attack-
ing [32]. To tackle this issue, a standard specification and schema for server con-
figuration, called Redfish  [29], were proposed by the Distributed Management 
Task Force (DMTF) in 2015. DMTF’s Redfish API is an open industry stand-
ard specification and schema designed to meet end-user expectations for simple, 
modern and secure management of scalable platform hardware. Specifically, Red-
fish is an embedded firmware web server that provides clients with simple, secure 
management by improving security and reliability to Baseboard Management 
Controller (BMC). Even though Redfish has been proven as a practical approach 
for system management, this embedded firmware web server is still challenging 
to use as the system administrators have to monitor hosts using Redfish API capa-
bilities via command lines. Nagios Core [5] allows fetching data via Redfish API 
and provides basic listing views of the hosts and services. The simple interface 
makes it infeasible for the administrators to observe a holistic monitoring view 
(in terms of spatial and temporal perspectives) of the entire data center. Thus, a 
detailed investigation must be done manually (filtering an enormous number of 
records) by system admins.

Our research fulfills the gaps by providing a framework with visual encoding 
strategy can be extended to handle large data center of thousands of hosts and 
hundreds of computer health dimensions. Our contributions thus are:

–	 We propose the visual designs for high-dimensional health services of a large 
number of computers in HPC centers. For example, we create Bundling Radar 
Chart which groups hosts with similar patterns of health status to provide a 
high-level overview of the current system status and the significant clusters.

–	 We develop the web visual framework to enable real-time monitoring through 
the integration with Nagios Core, InfluxDB, and Redfish API.

–	 To show the effectiveness of our approach, we demonstrate our visualization 
on a high-performance computing system at Texas Tech University with a 
total of 10 racks and 467 hosts with ten health dimensions per host.

The rest of this paper is organized as follows: We summarize related research 
in Sect.  2 and then present the visual interface designs in Sect.  3. We discuss 
the characteristics of each visual component in Sect. 4, describe supported user 
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interactions in Sect. 5, and illustrate the feasibility of the visual interface on real-
world use cases in Sect. 6. Finally, the conclusion and future research direction 
are presented in Sect. 8.

2 � Related work

This section focuses on the most related monitoring tools that are used in high-per-
formance computing systems. PARMON [8], a lightweight monitoring system, was 
built to monitor and control Solaris and Linux-based clusters in the late 1990s. The 
GUI-based client allows end-users to capture data visually in real time. However, 
admins were not able to perform in-depth analysis among multiple hosts regarding 
spatial and temporal perspectives. Ganglia  [24] is an open-source PHP-based web 
front-end interface proposed by Massie et al. to help administrators to assemble data 
employing dynamic, powerful web pages. The authors utilized comparative charts to 
give an insight into CPU usage, memory usage, disk usage, network statistics, and 
concurrent running processes. The broadly used XML advances are leveraged for 
information representation. The upside of ongoing responsiveness on the web front-
end, however, leads to high latency because of the extent of the XML tree. Accord-
ingly, Ganglia is not reasonable on the less powerful machines.

Nagios [5] is a commonly used industry tool for HPC infrastructure monitoring, 
including hosts and associated hardware components, networks, storage, services, 
and applications. However, there are some issues with traditional Nagios, including:

–	 Nagios requires human intervention for the definition and maintenance of remote 
hosts configurations in Nagios Core.

–	 Nagios requires Nagios Remote Plugin Executor on Nagios Server and each 
monitored remote host.

–	 Nagios mandates Nagios Service Check Acceptor (NSCA) on each monitored 
remote host.

–	 Nagios also requires checking specific agents (e.g., SNMP) on each monitored 
remote host.

In addition to Nagios Core, Nagios provides a basic web interface easily accessible 
to the core monitoring engine. To follow an issue, however, it is a time-consuming 
task for system administrators to navigate through pages of reports on hosts, ser-
vices, and status [27]. Even though basic filtering operations are given, system status 
overview, which is valuable to explore correlation in terms of temporal and spa-
tial issues, can be lost  [3]. Figure 1 shows an example of 467 nodes listed circu-
larly: green for non-critical health status, red for critical health status, and black for 
unknown. In our framework, nodes are listed in two-dimensional space to mimic 
the physical spatial layout of the HPC center. Moreover, we keep track of histori-
cal data and highlight a sudden change in all components’ health status for system 
debugging.

CHReME [26] provides a web-based interface for monitoring HPC resources 
that took non-expert away from conventional command lines. This tool, however, 
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focuses on basic tasks, which can also be found on the Nagios engine. The most 
similar approach to our visual analytic tool is Amazon CloudWatch [20], which 
gives end-users a web service to collect, view, and analyze pre-defined metrics in 
the form of logs, metrics, and events. Clients can define the threshold to alarms, 
visualize logs/metrics besides each other, and take automated actions. However, 
the apparatus’s primary disadvantage is that it has a couple of measurements and 
is just relevant to Amazon cloud assets.

Splunk [9] is another software platform for mining and investigating log data 
for system analysts, whose most significant advantage is the capability to work 
with multiple data types (e.g., CSV, JSON, or other formats) in real time. It has 
been used and shown consistent performance in the study  [36, 40]. However, 
Greenberg and Debardeleben  [19] pointed out that Splunk was not feasible for 
searching a vast amount of data generated every day (e.g., hundreds of gigabytes 
of data) due to slow performance. Grafana  [16] provides a vibrant interactive 
visualization dashboard that enables users to view metrics via a set of widgets 
(e.g., text, table, temporal data). Grafana defines a placeholder (i.e., arrays) that 
automatically generates widgets based on their values. This is also a limitation of 
Grafana: customized visualizations (such as parallel coordinates  [30] and scat-
terplot matrices  [38] for analyzing high-dimensional data) are not supported. 
This visualization package has been used in  [6, 19] due to its multiple datastore 
features.

Fig. 1   The visual interface of Nagios Core where hosts are simply listed on a ring (no particular order). 
Green are healthy nodes, while red are computing nodes having some issues
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These tools mentioned above are helpful to some degree, contingent upon the 
necessities of a client. As pointed out by William Allcock  [1], the administration 
monitoring tools often give far more usefulness than client’s needs, or even worse, it 
powers clients to utilize the tools in a way that it was not intended to. Therefore, it is 
important to formulate research questions and enable investigators to systematically 
identify and examine a generic set of dimensions of the research problem [21]. The 
next sections discuss our research motivations and goals in monitoring HPC centers.

3 � The HiperView approach

The primary objective of HiperView is to provide a visual web interface aiming to 
address the research goals, which were repeatedly refined in a weekly meeting with 
the HPC domain-experts:

–	 Display the real-time and historical data hosts and their health services (e.g., 
temperature, fan speed, memory usage). The visualization should be able to han-
dle a large number of hosts and long time series.

–	 Highlight correlations between HPC health variables such as temperature vs. 
power consumption [13].

–	 Detect unusual behaviors (such as a sudden increase in temperatures). In particu-
lar, a threshold for a particular health status can be set so that an alarm can be 
triggered if the limit is reached [11].

–	 User control: Allows users to select the hosts, health services, and thresholds to 
define subjects/features of interest for in-depth investigation  [39]. User control 
and analytics are especially important when the number of health dimensions 
and the size of the HPC center increase. This allows users to define and narrow 
down a subset of metrics/hosts/time intervals for system debugging.

Overall, our visual interface design includes three main components: data process-
ing, data visualization, and user interaction.

–	 Processing input data: The input data for the HiperView are retrieved from the 
RESTful API web interface [23] as shown in Fig.  2. End-users can manually 
make a http request to the system with predefined syntax or through a visual http 
query interface (jsonquery.html). All parameters of the http request are listed on 
the left panel shown in Fig. 2, the corresponding response results in json format 
is displayed on the right panel, along with query url on the top. Our visualiza-
tion tool uses this generated http request to retrieve data from the system on-the-
fly. The blue arrow points to the essential information (memory usage) of the 
requested host (the compute-5-11).

–	 Visualization interface: Our visualization tool contains four inter-related com-
ponents as depicted in Fig. 3. The detailed description of each component will be 
presented in the next section.

–	 User interactions: HiperView supports a full range of user interactions such as 
brushing and linking, filtering, and zooming.
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Visual analytics should allow system administrators to investigate the correlations 
among a series of events with and without a clear trace  [4, 10]. Moreover, many 
research questions arise during the HPC data exploration process, such as what 
may cause a host to be overheating, why fan speed/power consumption is suddenly 

Fig. 2   Example of the RESTful API: (left) Input query for memory usage of compute-5-11 (right) API 
result

Fig. 3   Main interface of our HiperView visualization: a top panel, b summary view via radar charts, c 
main view using heatmaps, and d control panel
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increased, which in turn would allow admins to make more efficient use of the sys-
tem or give a proper caution to a particular host/health services, along with their 
correlations. Andrienko et al.  [3] suggested that information visualization systems 
should enable users to perform regular and analytical tasks concurrently. The recom-
mended visual design poses a challenge due to the engagement and scarcity of end-
users. Our approach was to collect all requirements, identify tasks, and then disperse 
them into different categories.

Thus, the HiperView implements five low-level visualization tasks, listed as 
follows:

–	 Overview (T1) Display a summary of health status  [22] of all hosts over time, 
taking into account spatial and temporal perspectives.

–	 Details-On-Demand (T2) including details on historical events and resource 
usages [35].

–	 Critical detection (T3) Highlight an alarm and the critical threshold on a given 
measurement (e.g., CPUs temperature) on a selected host [2].

–	 Detect the correlations (T4) Summarize the relationships of system parameters 
such as CPU load, fan health, and memory usage [28].

–	 Investigate the dependency across hosts (T5) Represent the dependency of sys-
tem parameters among neighboring hosts resided in racks.

4 � The HiperView architecture

4.1 � Data collection component

Our data are collected through the MonSTer framework [23] we have developed. It 
utilizes out-of-band measurements retrieved via Baseboard Management Controllers 
(BMCs) and in-band measurements accessed through the job scheduler (Univa Grid 
Engine, for example). The collected data were managed and stored in a time-series 
data, InfluxDB. We organize the collected metrics by data sources and category. For 
example, node-level power usage is stored in Power table; CPU temperature, inlet 
temperature, etc., are stored in Thermal table.

The data collection interval is restricted by the response of the BMC and the job 
scheduler’s state update time, which are 55 s and 40 s on our platform, respectively. 
Therefore, our current implementation collects the data at a reasonable interval of 
60 s to ensure that BMC metrics are retrieved even encountering network fluctua-
tions and to collect job accounting information whenever possible.

4.2 � Data visualization component

Figure 3 shows a schematic overview of our visual framework. Box (a) contains the 
system information and color legend, box (b) displays the summary of all hosts and 
available health services in the system, box (c) shows the detailed view of the 467-
node Quanah cluster, Texas Tech University, at 12 PM on Wednesday, September 
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26, 2018, and box (d) contains interface settings (such as health service selection, 
visual encodings). The following sections are dedicated to describing each compo-
nent in detail.

4.3 � The top panel

The top panel contains HPC system information such as the number of hosts, num-
ber of racks, and the current timestamp. As replaying is a desirable feature for sys-
tem debugging, HiperView provides historical simulation capability via play, for-
ward, and refresh buttons. The color legends on the right of Fig. 3b is defined based 
on the critical thresholds of the selected health service. Below the color scale, users 
can filter out some abnormal behavior of health data by setting the “Sudden change” 
slider (for the selected health service). The range of each HPC health services is 
defined as follows: 

1.	 CPU temperature

–	 Lower threshold Critical: 3 ◦ C or 37.4 ◦F
–	 Lower threshold Non-Critical: 8 ◦ C or 46.4 ◦F
–	 Upper threshold Critical: 98◦ C or 208.4 ◦F
–	 Upper threshold Fatal: 98 ◦ C or 208.4 ◦F
–	 Upper threshold Non-Critical: 93 ◦ C or 199.4 ◦F

2.	 Fan speed in Rounds Per Minute (RPM):

–	 Lower threshold Critical: 1050 RPM
–	 Lower threshold Fatal: 1050 RPM
–	 Upper threshold Critical: 17850 RPM
–	 Upper threshold Fatal: 17850 RPM

3.	 Inlet temperature:

–	 Lower threshold Critical: 0 ◦ C or 32.0 ◦F
–	 Lower threshold Fatal: 0 ◦ C or 32.0 ◦F
–	 Lower threshold Non-Critical: 3 ◦ C or 37.4 ◦F
–	 Upper threshold Critical: 47 ◦ C or 116.6 ◦F
–	 Upper threshold Fatal: 47 ◦ C or 116.6 ◦F
–	 Upper threshold Non-Critical: 42 ◦ C or 107.6 ◦F

4.	 Memory usage:

–	 OK: Memory usage ≤ 95%
–	 Warning: 95% < Memory usage < 99%
–	 Critical: Memory usage ≥ 99%

5.	 Power consumption (in Watts): .

–	 OK: Power consumption ≤ 200 W
–	 Warning: 200 W <Power consumption < 250 W
–	 Critical: Power consumption ≥ 250 W
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Color spectra for different health status data are depicted in Fig. 4. Notice that vari-
ous color transfer functions (from blue to red) are applied for different HPC health 
dimensions. For example, the Memory usage does not have a lower limit. The only 
critical threshold is on the upper limit at 99%. This explains the sudden turning from 
yellow to red at 99% on the Memory usage.

4.4 � Summary view

The summary panel provides an overview of all computing nodes at various time 
steps. Figure  5 shows the three chart types that users can select to display in the 
summary view. The charts convey a different number of dimensions from univariate, 
bivariate, to multivariate analysis (the visualization task T4).

Boxplot Boxplot is a standardized way of displaying the distribution of data based 
on a five-number summary: minimum, first quartile, median, third quartile, and 

Fig. 4   Customized color scales and critical thresholds for different HPC health metrics

Fig. 5   The example overview of our HiperView for: a univariate analysis (boxplot), b bivariate analysis 
(scatterplot) and c multivariate analysis (radar plot)
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maximum. It also displays the outliers which are not in the range from minimum to 
maximum. For each timestamp, the selected service (such as power consumption) of 
all hosts in the HPC center is consolidated and dispersed through the use of boxplot. 
This summary representation allows administrators to grasp the overall range of the 
selected variable of the system at the current timestamp.

Scatterplot To analyze the pairwise correlation, scatterplots and their visual fea-
tures [14] are applied to highlight unusual distributions. Figure 5b shows an exam-
ple of 2D scatterplot of CPU1 temperature vs. Fan1 speed, each data point is a host 
in the HPC center. Scatterplots are designed to handle the types of doubly multi-
variate data [12] and to unveil unusual pairwise distributions, such as linear correla-
tions [17], clusters [34], and outliers [37].

Radar Chart Within this chart, the multidimensional status of each host is repre-
sented by a closed curve traveling through the corresponding values on each dimen-
sion. As the number of hosts grows, similar hosts are grouped and presented as a 
closed band. Outliers are represented as a single black curved. The main purpose 
of this chart is to summarize typical groups of hosts in the system (which as similar 
multivariate behavior) as well as highlight abnormal behaviors (black curves). This 
design can be extended to handle the larger number of health dimensions by merely 
adding more coordinates into the circular layout [25].

4.5 � Main view

Figure 6 shows the spatial distribution of 467 hosts resided in 10 racks (the visu-
alization task T1), mimicking the physical location of hosts at the HPC center, 
Texas Tech University. In Fig. 6a, the CPUs temperature on each host (each row) 
is represented by a series of color-coded cells as defined on the top panel in Fig. 4. 
Users can select to change to a different health measurement. The color scale will be 
updated accordingly.

The two visual options that users can select to convey time series data in this 
main view, namely heatmap and area chart, are depicted in Fig. 6. While heatmap 
enables system administrators to compare the time series across different hosts eas-
ily, the area chart allows plotting many time series and highlighting changes at a 
glance. Notice that in Fig. 6(b), CPU temperature is plotted with regard to the base-
line of 55 ◦ F (the HPC normal room temperature), and the color spectrum is embed-
ded directly into the area charts. These design choices allow subtle changes easily 
detected on a small screen area and, therefore, can be adapted to monitor large HPC 
systems.

The Detailed Panel A pop-up window is introduced on the mouse over to show 
the details of a particular host (visualization task T2). While the main view shows 
an overall temporal signature of all hosts, the detail panel allows users to unveil 
more detailed information of a given host by a set of line graphs. The vertical axis 
represents the CPU temperature (from 20 to 100 ◦F), while the horizontal axis rep-
resents the time. As depicted in Fig. 7, a sudden drop on both CPUs temperature 
occurs at 12 pm. We can set up an alarm to detect these sudden changes and notify 
system administrators for timely investigations.
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At the bottom of this detailed view, a radar chart is also appended to show ten 
health dimensions of the given host (visualization task T4), including CPU temper-
ature, fans speed, memory usage, and power consumption. Using the radar chart, 
users can investigate the correlation among multivariate observations as well as dis-
cern the outliers [33]. The order, space, and orientation of these ten health metrics 

Fig. 6   Two types of visual layout for visualizing CPU temperature readings in 1 day: a the heat map; b 
the area chart
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on the radar chart are kept the same in this paper for simplification. However, the 
user can reorganize/customize the radar chart if needed. Different closed curves rep-
resent the multidimensional health status of the given host (compute-3-11 in this 
example) at different timestamps. To animate the historical data over time, users can 
activate the play back button on the top right corner via a simple mouse click.

4.6 � The control panel

The control panel in Fig. 3d enables system administrators to navigate through dif-
ferent types of HPC measurement, including CPUs temperature, job load, memory 
usage, fans speed, and power consumption. The default selection is set to a CPUs 
temperature as it is the vital metric for HPC systems. The layout of the main 
view can be switched between area chart and heat map by selecting “Chart type”. 

Fig. 7   The detailed view of a given host: (top) CPU temperature series (bottom) the radar chart for visu-
alizing multidimensional heath status
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Similarly, three system summary types (boxplot, radar chart, and scatterplot) can be 
made interchangeably via the “Summary type” drop-down list.

5 � User interactions

HiperView supports a full range of user interactions  [31]. Host selection reduces 
visual clutter by filtering out other hosts. For example, in Fig. 8(a), when the user 
selects an abnormal host from the summary radar chart, the historical data of that 
host on the previous cycle were also highlighted. The health status of this host 
changes significantly over time, reflecting through the various shapes at different 
timestamps. Especially at 11:58, the CPU temperatures are very high, close to the 
critical threshold (the red ring) at the blue arrow.

Cluster selection Users can also select and highlight multiple hosts as depicted in 
Fig. 8b. Host health status can frequently change due to several circumstances (e.g., 
newly assigned users, newly scheduled jobs). HiperView groups hosts with similar 
behaviors into the same cluster and summarizes the cluster behaviors by multidi-
mensional bands. In Fig. 8b, we select the cluster on the rightmost radar chart (at 
16:43) and visualize the cluster dynamics in previous snapshots. In particular, the 
hosts in this cluster might represent very different behavior in the past hour. For 
example, we can easily detect a host in this cluster that experienced low power con-
sumption at the highlighted timestamps (16:06 and 16:34 at the red boxes). Users 
can visualize the temporal behaviors of individual hosts in the spatial distribution in 

Fig. 8   Brushing and linking in our HiperView: a single-host selection, b multiple-host selection and c 
corresponding hosts are highlighted in the main view
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Fig. 8c, as other hosts are faded out. HiperView supports holding the current selec-
tion via mouse click. Users can also filter the HPC health data by using sliders or 
defining a subset of metrics/hosts to be focused on.

6 � Use cases

HiperView is developed using JavaScript, a web browser programming language, 
and in particular, using the D3.js library  [7]. To demonstrate the feasibility of the 
HiperView visualization, we conduct two use cases on the Quanah cluster at Texas 
Tech University. The Quanah cluster is comprised of 467 nodes, with Intel XEON 
processors providing 36 cores per node. Quanah has a total of 16,812 cores with 
a benchmarked total computing power of 485 Teraflops/s. The cluster is based on 
Dell EMC PowerEdgeTM C6320 servers, which are equipped with the integrated 
Dell Remote Access Controller providing Redfish API for accessing the monitoring 
metrics.

The purpose of this study was to assess whether our proposed visual interface 
would be able to extract and convey useful information from the data. The expected 
results include the ability to detect correlations and anomalies of the HPC health 
dimensions.

6.1 � Use case 1: September 26, 2018

Figure 9 provides a snapshot of the event on September 26, 2018, at the HPC center 
at Texas Tech University that the HiperView revealed during the investigation pro-
cess. As shown in Fig. 9a, the CPU2 temperature on compute-3-13 (host 13 in rack 
3) passed the critical threshold. By performing further analysis on this host, there 
was a clear temperature gap between CPU1 and CPU2 shown in Fig. 9c: CPU1 tem-
perature is low, whereas CPU2 temperature almost reached 100 ◦ F. This detailed 
view also shows that the temperatures of both CPUs were not reported (unreach-
able) by our monitoring system from 11:15 AM to 12:00 AM as there is no con-
necting line in this period. Similarly, unreachable status was also represented as 
gray cells in Fig. 9a. Other information related to this host can be analyzed via a 
radar chart (Fig. 9d) along with the high CPU2 temperature such as fans speed and 
power consumption. We can quickly notice that all the fans also worked to their 
maximal capacity (close to the red line threshold as shown in Fig. 9b). One of the 
explanations to this phenomenon is that the thermal issue on compute-3-13 led to 
a temperature increase in the surrounding environment. As a consequence, fans of 
neighboring hosts had to speed up as they sense the heat. The abnormal behavior of 
this host can also be captured by looking at the outlier curve of the bundling radar 
chart in the analysis component. Figure 9d highlights the multidimensional behavior 
of compute-3-13. It was noted that compute-3-13 was not reachable from 11:02 to 
11:18 AM (as there is no services or no curves in the first two radar charts shown in 
Fig. 9d), which is consistent with the detailed view in Fig. 9c.
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We further investigate the causal relationship and discover the patterns of propa-
gation. Specifically in Fig. 9b, in addition to the high fan speed of compute-3-13, 
other neighboring nodes (compute-3-10, compute-3-11, and compute-3-12) are also 
reported a sudden increase on fans speed at the very same time. The detail on the 
health services of these hosts is plotted at the orange arrows. In this use case, the 
spatial layout, together with temporal representation, provided system administrators 
a more detailed investigation of the health status for a subset of HPC nodes.

6.2 � Use case 2: March 21, 2019

The HPC center at Texas Tech University uses chilled water to cool down the sys-
tems. At 3:20 PM on Thursday, March 21, 2019, the chill system starts delivering 
higher temperature water which was not enough chilled to cool down the CPUs 
temperature and finally at 4:00 PM, CPUs temperature reaches their critical stage. 
Consequently, the whole cluster was shut down by the system admins. Figure 10a 
shows a summary of the situation on March 21, 2019, where significant events are 
annotated on top of the temperature time series charts. A more detailed timeline of 
the situation is listed below:

Fig. 9   The event on September 26, 2019, for the 467-node Quanah cluster, HPC center, Texas Tech Uni-
versity: a heat map of CPUs temperature, b heat map of Fans speed, c detailed view of the compute-3-13, 
d real-time CPUs temperature of host data compute-3-13, and e radar charts of compute-3-13 at consecu-
tive timestamps from 11:02 AM to 12:20 PM
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–	 At 2:00 PM, chilled water temperatures began to rise steadily.
–	 At 3:23 PM, chilled water temperatures began to rise suddenly.
–	 At 3:40 PM, chilled water temperature rose above 55◦ F (a key metric for the 

HPC center).
–	 At 3:46 PM, chilled water temperature detected above 55◦ F for over 5 straight 

minutes, which triggered the “chilled water alarm script” and notified HPCC 
staff by email. They then put the cluster into a low power state.

–	 Between 3:50 PM and 3:55 PM, CRAC​1 went into high-temperature alarm. 
CRAC received a remote shutdown command from Operations’ monitoring soft-
ware. CRAC went offline. This caused a sudden spike in temperatures.

–	 At 4:00 PM, the whole cluster was shut down.

Fig. 10   The situation on March 21, 2019, for the 467-node Quanah cluster, HPC center, Texas Tech Uni-
versity: a summary of HPC chiller system and HPC cluster temperatures. b The Fans speed heatmap of 
our HiperView visualization c the CPUs temperature area charts of our HiperView visualization. Time 
expands from 3:00 to 4:10 PM of the same day

1  A computer room air conditioning (CRAC) unit is a device that monitors and maintains the tempera-
ture, air distribution, and humidity in a network room or data center.
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The last two panels shown in Fig. 10 show how our HiperView visualization cap-
tures the entire event on March 21, 2019. In particular, Fig. 10b shows the heatmap 
of Fans speed for the time span from 3:00 to 4:10 PM. We can see that on many 
hosts, the fans were creasing their speeds toward 4:00 PM, returning regular rota-
tions after that, and suddenly stopped at around 4:10 PM (represented by gray cells 
that the end of each series). Figure 10b shows the area charts of CPUs temperature 
during the same time interval. Sudden appearances and drops of red areas occurred 
around 3:15–4:00 PM. It took 45 min for CPUs temperature to reach a critical 
threshold. As a result, having sensors on the water chiller can provide some preven-
tive actions which might avoid downtime. It was also discussed whether the moni-
toring framework could predict an unexpected shutdown incident with rationales.

7 � Discussions and limitations

7.1 � Overhead

The temperature, fan speed, and power consumption are collected through the Base-
board Management Controller, which utilizes an independent network to commu-
nicate with the data collection component. This out-of-band measurement avoids 
interfering with ongoing computation fabric. The job load and memory usage are 
collected from the scheduler accounting information, which is done only between 
the host running the data collection component and the cluster head node running 
the job scheduler. Our measurements show that the network bandwidth consumed 
for transmitting the monitoring data (in-band) for each node is 0.32KB/s, which is 
negligible compared to the management network’s speed.

7.2 � Data volume and security

In our project, the data volume for 1-year monitoring data of 467 nodes is about 25 
GB. For larger clusters, the data volume will expand. However, since our visualiza-
tion tool focuses on the visualization of real-time data (although it supports visuali-
zation of historical data), we do not have to keep all historical data and can keep the 
data in a reasonable size by setting the retention policies in the database.

As we mentioned in the data collection section, the data are collected through the 
BMC and the job scheduler, which have dedicated authentication methods. In addi-
tion, the collected data are managed by a time-series database, InfluxDB, which also 
has an authentication process. In addition, HiperView is intended to be used by sys-
tem administrators, not by regular HPC users, and the data access can be restricted 
at the HPC center. Therefore, there are no major security concerns regarding data 
collection and visualization.



	 T. Dang et al.

1 3

7.3 � Limitations

HiperView heavily relies on the collected data, especially relies on the existing infra-
structures. Therefore, it cannot be directly used in other HPC centers that do not 
have such out-of-band measurements. In order to be adopted by other HPC cent-
ers, we have to make extra efforts to adapt the interface to other existing monitor-
ing infrastructures. Besides, the monitoring metrics cannot be retrieved within sec-
onds, and for some relatively short duration state changes, HiperView cannot capture 
them. The HiperView source codes are hosted on the GitHub page of our project, 
located at https://​idata​visua​lizat​ionlab.​github.​io/​HPCC/​Hiper​View/​demo.​html.

Our HiperView visualization component is limited by the screen sizes and resolu-
tions, as depicted in Fig. 6a. As the numbers of computes and time steps increase, 
the heatmap cells’ overlapping becomes more significant. Moreover, the rendering 
time is another consideration as an average laptop can draw around 10K rectangles 
with a JavaScript Canvas at 60 frames per second (FPS) on the web browsers. This 
is not an issue with the stream graphs in Fig. 6b. However, a sudden event on the 
time series (only for a particular time step) might become less visible due to the 
space allocation for a time step is small. We can mitigate the visual limitations by 
allowing users to define and narrow down a subset of computers/time interval of 
interest rather than plotting the entire time series data.

8 � Conclusion and future work

In this paper, we presented HiperView visual interface for tracking the dynamic 
behavior of the data center. The HiperView introduces multivariate analysis for HPC 
health services (such as using bundling radar chart), which provides a complete pic-
ture of health status for interpreting high-dimensional data and helps users explain 
the phenomenon of an unexpected event. More importantly, the HiperView can 
help system administrators analyze, monitor, and debug HPC system health status 
in real time based on the industry-standard Redfish protocol. HiperView supports 
a full range of user interactions such as brushing and linking, filtering, and zoom-
ing, as demonstrated through visual examples. The visual framework is validated 
on two use cases where unexpected events occurred at the HPC center, Texas Tech 
University.

In the future, this work can be extended by incorporating machine learning 
frameworks to predict the system health status. The model will be trained on histori-
cal data, make real-time predictions, and raise the alarm to the system administrator 
for timely actions. Our long-term research vision is to provide a holistic monitoring 
and controlling framework with rich visual interfaces to automate the management 
of highly sophisticated data centers focusing on user analytics.
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