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This paper presents a system to command and control a team of fixed-wing unmanned aerial vehicles (UAVs) to

sense dynamicwildfire boundaries. UAV team task and trajectory planning strategies enable the team to rapidly find,

rally around, and map the wildfire boundaries. A novel boundary estimation algorithm generates two-dimensional

concave polygonal estimates ofmultiple dynamic boundaries given sparse observation data. The algorithmwas tested

with simulated wildfire scenario binary fire or free-point observations collected by the UAV team. First, all gathered

observations are used to classify groups of points into clusters belonging to individual wildfires; then, spatiotemporal

information from wildfire observations is encoded as an image with observation age represented as pixel brightness.

A neural network performs semantic segmentation on each image and outputs a predicted binary image of the

wildfire. This image is decoded back into a point set that feeds into a boundary estimation algorithm (Polylidar) to

extract a concave boundary. Benchmarks for planner and boundary estimation times and accuracy comparisons are

provided. Our boundary estimation algorithm and supporting multiagent planning strategies were used to win the

2019 U.S. Air Force Research Laboratory’s Swarm and Search Wildfire challenge using the aerospace multiagent

simulation environment.

Nomenclature

C = regularization parameter
ddes = line-follower desired offset from local boundary
dline = actual offset from local boundary
dmax = maximum distance for cluster merging in agglomer-

ative hierarchical clustering
FHS�t� = fire hack score at time t
hmax = maximum above ground level for terrain avoidance
hmin = minimum above ground level for terrain avoidance
Kp = line-follower controller P gain

Nf = number of fires

Nv = number of vehicles

Pfire
i = set of fire points for unmanned aerial vehicle i

Pfree
i = set of free points for unmanned aerial vehicle i

rg = altitude-aware straight-line planner goal position

rs = altitude-aware straight-line planner start position
Si = scenario score; a weighted sum of FHS�t�
ŝ = scaling rate of moving boundary, m∕s
T = translation velocity of moving boundary, m∕s
Tfire
i = time of collection for Pfire

i

Tfree
i = time of collection for Pfree

i

tx = x minutes into the simulation
Δt = altitude-aware straight-line planner timediscretization
Δx = altitude-aware straight-line planner forward discreti-

zation distance
Δz� = discretized climb rate limit
Δz− = discretized descent rate limit
v = unmanned aerial vehicle speed
ψ = heading angle
ψdes = line-follower desired heading
ψ i = unmanned aerial vehicle i heading angle
ψ line = local boundary line heading

I. Introduction

W ILDFIRES have the potential to inflict serious harm on people
and property. In 2018, California suffered the worst wildfire

season ever recorded; 1.8 million acres were burned, 17,133 resi-
denceswere destroyed, andmore than 100 people died due to the fires
[1]. The 2020 fire season may be worse. Unmanned aerial vehicle
(UAV) platforms have the potential to save lives and reduce damage
through early fire detection and mapping. However, significant
research and beyond-visual-line-of-sight testing must take place
before UAVs can have appreciable fire surveillance impact.
Wildfire identification and boundary estimation require aUAV team

to offer large-scale area coverage. The UAVs might need to map
multiple, dynamic fires with range-limited onboard sensors to provide
an accurate estimate of fire boundaries in real time. Two distinct
subproblems are addressed in this paper: multi-UAV path planning
and fire boundary estimation. The planning problem requires com-
manding and controlling a team of UAVs to safely traverse potentially
mountainous terrain, avoid wildfire damage, and acquire data of wild-
fire exterior boundaries using the modest-cost sensors a UAV might
reasonably carry. The boundary estimation problem requires fusing all
incoming UAV sensor readings, accounting for data age as well as
content, to produce a global estimate of dynamic fire boundaries.
The 2019U.S. Air Force Research Laboratory (AFRL) Swarm and

Search Artificial Intelligence (AI) Competition was aimed at solving
both the multi-UAV path-planning and wildfire boundary estimation
problems. It asked competitors to develop algorithms for detecting
and mapping a dynamic fire boundary in a simulation environment
using a team of fixed-wing UAVs [2]. Aerospace multiagent simu-
lation environment (AMASE) was used as the simulation environ-
ment; anAMASEgraphical user interface (GUI) screenshot for one of
the scenarios is shown in Fig. 1 [3,4]. AMASE provides a testbed for
multiagent teams of UAVs to observe wildfires, allowing for adjust-
able growth patterns of wildfires, handling UAV dynamics, and
providing sensor models. Users interact with the system by sending
waypoint commands and receiving state and sensor data. The main
goal of the competition was to provide the best estimate of fire zones
using only UAVonboard sensor data readings. The authors took first
place in the competition, demonstrating algorithms that could con-
sistently find andmap wildfires in mountainous terrain, heavy winds,
and other anomalies introduced in the competition scenarios. This
paper describes our approaches to UAV path planning and fire boun-
dary estimation as well as benchmark results from AMASE simula-
tions. Figure 2 shows a high-level block diagram of this separation,
and Fig. 3 gives an overview of our methods.
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A planning algorithm guides UAVs to follow the lateral perimeter
of fire boundaries and gather pertinent sensor data for fire boundary

estimation. A state machine allocates UAVs between exploration and
exploitation (line following) tasks. A terrain avoidance altitude path

planner guides the UAV to avoid ground impact but remain suffi-
ciently low to collect fire data. The boundary estimation algorithm

rapidly constructs two-dimensional concave polygonal estimates
of dynamic boundaries given pointwise observations along the boun-

dary perimeter. For AMASE, pointwise observations come from
UAV-hosted fire sensors. Observations are processed with a cluster-

ing technique to determine which observations belong to which
wildfire (Sec. V.A). Next, spatial and temporal observations for each

wildfire are encoded as an image, enabling a convolution neural
network (CNN) to perform binary segmentation to estimate wildfire

boundary (Sec. V). The authors’ Polylidar algorithm [5] is then used

to quickly extract a simplified boundary polygon based on the CNN
estimate. The primary contributions of this paper are 1) a novel fusion
of deep learningwith deterministic computational geometrymethods
for dynamic wildfire boundary estimation based on pointwise obser-
vations; 2) an efficient agglomerative hierarchical clustering tech-
nique of two-dimensional (2-D) points that uses the underlying shape
of the point distribution for representative point selection, and 3) a
multi-UAVplanning framework tomanageUAV teamdata collection
while avoiding hazardous conditions.
The remainder of this paper is structured as follows. Section II is a

review of related work, followed by a problem statement in Sec. III.
Section IV details multi-UAV path planning to find and observe
wildfires without being destroyed by the fire or crashing into terrain.
Section V describes wildfire boundary estimation from an evolving
set of pointwise observations. Finally, Sec. VI shows AMASE
simulation results for boundary estimation and path-planning algo-
rithms, followed by a discussion in Sec. VII and conclusions in
Sec. VIII.

II. Related Work

Mapping a dynamic boundary of interest (e.g., a wildfire) with a
team of UAVs requires a system with diverse modules. In the follow-
ing, we will present recent work on system automation architectures
(Sec. II.A), UAV terrain avoidance (Sec. II.B), coverage path plan-
ning (Sec. II.C), clustering (Sec. II.D), and boundary estimation from
point sets (Sec. II.E).

A. Automation System Architectures

Multi-UAV system architectures describe how mission-level and
vehicle-level modules are organized, perform computations, and

Fig. 1 AMASE GUI screenshot. Simulation controls (bottom), UAV states (right), and a 2-D map (center) depicting UAVs (“flying Vs”), fires (yellow
polygons), and fire boundary estimates (purple polygons) are shown.

Planning

Boundary
Estimation

AMASE

Sensor
Data

UAV
States

UAV
Commands

Boundary
Estimates

Fig. 2 Multi-UAVsoftwareblockdiagram.Theplanner translatesUAV
states and local fire boundary information to UAV commands that keep
UAVs safe and support data collection for fire boundary estimation.
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communicate with each other. Reference [6] presents a classification
of multi-UAVarchitectures with a focus on control and communica-

tion. Four main categories are described: 1) physical coupling,

2) formation groupings, 3) decentralized swarms, and 4) task-level
cooperation. Our architecture represents task-level cooperation by

making supervision, coordination, mission planning, and task allo-

cation decisions centrally or in a distributed manner.
Distributed methods offer redundancy and scalability [7–9] and

may reduce communication overhead when data are also distributed.

Market-based techniques [8,9] are often used for distributed task
allocation, although agents require time to converge on each new

allocation. Distributed processing for multi-UAV perception [10,11]

allows individual UAVs to gather sensor data, compute a local
representation, and then share it with their neighbors to augment

overall awareness. However, comprehensive data fusion and storage

still requires task allocation and communication overhead.
Centralized methods require communication between all agents

and a central node. The required computation at that node is signifi-

cant, and it increases as the number of agents increase [12,13].
For example, Ref. [13] uses operational constraints and UAV capa-

bilities to allocate decision making across the team with reliance
on a centralized decision node communicating with each UAV. With

AMASE, we can assume reliable communication and graphics

processing unit (GPU) enabled central processing, and sowe defined
a centralized architecture to manage computing and communication

tasks. Our multi-UAV planning approach is presented in Sec. IV.

Section V presents our fire boundary estimation method requiring an

assumption consistent with AMASE: that UAV data can be globally
shared to enable centralized processing.

B. Terrain Avoidance: Three-Dimensional Safe Path Planning for
Fixed-Wing UAVs

For fixed-wing multi-UAV path planning, physically feasible col-
lision-free paths that achieve mission goals must be planned for all
UAVs in the team. This is complicated by nonholonomic fixed-wing
UAV motion constraints for turning radius and finite limits for the
climb/descent angle and rate. Additionally, surveillance UAVs can-
not collidewith terrain but must remain close enough to the ground to
successfully acquire data. A variety of fixed-wing terrain avoidance
path-planning strategies have been developed.
Geometric path-planning strategies based on Dubins paths, Bezier

curves, and splines are intuitive and can address nonholonomic
path constraints [14–16]. Dubins paths [14] have been widely used
to rapidly compute minimum-length fixed-wing aircraft trajectories
in free airspace [17]. However, geometric methods typically do not
consider variable terrain and other obstacles. Sampling-based meth-
ods offer another avenue and work well when extended to high-
dimensional search spaces [18–20]. Reference [20] uses Bezier
curves in conjunction with a sampling-based planner to generate
kinematically feasible paths for a fixed-wing UAV, defining the
search space as a rapidly exploring random tree. This can generate
feasible paths over a complex three-dimensional (3-D) search space
with obstacles; however, its computation time is still too slow for
our application. With optimization-based planners, a variety of

Fig. 3 Boundary estimation and UAV planning modules used for mapping fire boundaries.
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constraints and cost functions can be considered to fully consider
both terrain and vehicle performance [21–23]. Reference [21] uses
mixed-integer linear programming (MILP) with position and speed
constraints, UAV collision avoidance constraints, and terrain avoid-
ance constraints for the multi-UAV planning problem. However, the
MILP computation time required is large because the problem is
nondeterministic polynomial time complete, and thus not reliable for
real-time applications of any reasonable size. Lastly, discrete plan-
ners such as A* are very popular in low-dimensional spaces due to
fast computation of optimal paths [24–27]. Reference [24] uses a
two-phase approach. First, A* is run on a large 3-D grid to create an
obstacle-free kinematically feasible path. Second, a sampling-based
local planner with motion primitives connects coarse path segments.
While effective, this approach is also computationally intensive.
Several methods reduce computation time by performing 2-D A*
with added costs from a digital elevation map to effectively plan in 3-
D [25,26]. In particular, Ref. [27] preprocesses digital terrain data to
generate a surface that is flyable by the UAV in every direction while
maintaining a minimum height clearance before a 2-D A* search is
performed. However, over large spaces, the search is also computa-
tionally expensive.
Our method is inspired by the reactionary nature of an automatic

ground collision avoidance system [28] and separation of the 3-D
path-planning problem into a simpler 2-D lateral plane path planner
with altitude-based terrain avoidance similar to techniques described
in Refs. [25–27]. While this approach is not optimal, it enables fast
coverage and path planning to support the four-times real-time
performance needed with AMASE. Sections IV.C and IV.D describe
our 2-D lateral plane planning, whereas Sec. IV.E introduces our
altitude-based terrain avoidance method.

C. Multivehicle Coverage Path Planning

Coverage path planning (CPP) is the task of planning a path that
goes through all points or regions of interest while avoiding obstacles
[29]. CPP survey papers, including Refs. [29–31], describe methods
and their applications to ground-based, undersea, and aerial robotic
systems. Reference [32] applies Boustrophedon decomposition to
mobile (ground) robots to determine how multiple robots cover a
single cell andhow robots are allocatedamongmanycells. InRef. [33],
integer programming is used for UAV coverage of a surveillance
region. Reference [34] considers a mission with a team of hetero-
geneousUAVs searching an area of interest with three steps: determin-
ing relative capabilities of each UAV, cooperatively assigning search
areas, andgeneratingefficientCPPs foreachsubregion.Reference [35]
proposes a local dispersion model for global coverage with a team of
robots, whereas Ref. [36] uses Morse-based decomposition to assign
UAVs to subregions, taking into account no-fly zones, environment
geometry, and initial/final waypoints. Most of the CPP literature
presumes a complete coverage requirement. Our application differs
in that it does not require complete coverage, and the solution must be
computed quickly and updated in real time based on collected data.
Our CPPmethod (Sec. IV.C) is inspired by related work but addresses
these additional challenges. We specify a predefined set of waypoints
within our rectangular search region and then use the Hungarian
algorithm [37] for initial UAV waypoint assignment. This approach
is computationally efficient for real-time settings such as the AFRL
Swarm and Search AI Competition.

D. Clustering

Clustering is the process of grouping similar items. Itemsmay exist
in a spatial domain, such as points in a Cartesian coordinate space, or
they may have nonmetric qualitative values. Three main algorithm
types have been developed: partitioning, density based, and hierar-
chical. Partitioning methods such as K-means [38] and K-medoid
[39] partition all items into K clusters that are each represented by a
single point used to compute similarity. For Kmeans, this point is the
mean of the cluster; whereas forKmedoid, it is the point closest to the
center.K is an input parameter, limiting adaptability to cases whereK
is unknown. Such techniques naturally bias the cluster shape to be
circular when using a Euclidean distance metric.

Density-based clustering algorithms such as DBSCAN [40] pre-

sume points that form dense regions should be assigned a single

cluster. Dense regions are often separated from one another by a

minimum threshold distance. Such methods do not rely upon know-

ing K a priori and can extract clusters of arbitrary shapes. DBSCAN

and other density-based methods are challenged when clusters have

different density characteristics or are near each other.
Hierarchical clustering is a bottom–up technique that initially

assigns each data point to its own respective cluster. The algorithm

iteratively merges any two clusters that are most similar into a new

cluster. Similarity between clusters can be computed using the single

linkage method [41], which computes the distance between clusters

u and v as the distance between the closest pair of their respective

elements:

d�u; v� � min�dist�pi; pj�� ∀ pi ∈ u; ∀ pj ∈ v (1)

This process repeats until only one cluster remains, creating a binary

clustering tree. The final number of clusters and their membership

can be determined by truncating the tree to only clusters that merge

with a distance less than dmax. The pairwise distances calculation in

Eq. (1) result in O�n2� time and memory complexity. CURE [42],

which stands for clustering using representatives, is a hierarchical

clustering technique that uses a subset of a cluster as representative

points during cluster assignments. A fixed number of representative

points are randomly chosen from the cluster and are shrunk toward

the centroid of the cluster by a fraction alpha. These points are then

used when judging the distance between clusters for merging, result-

ing in low memory overhead.
TheAFRL challenge required clustering an unknownK number of

fires, making partitioning methods unsuitable. The spatial density of

data points typically varied in between the different fires, making

density-based clusteringmethods difficult. In Sec. V.A,we describe a

hierarchical clustering method that uses representative points to

minimize memory and runtime costs. A key insight into our work

is that if the underlying shape of a point cluster distribution can be

estimated, as is the case for wildfire boundaries, effective represen-

tative points can be chosen for clusters.

E. Boundary Estimation from Point Sets

The most notable boundary estimate is the convex hull of a point

set, defined as the smallest convex polygon containing all points [43].

A convex hull tends to overestimate the point set area relative to

nonconvex distributions [44]. To resolve this issue, algorithms have

been developed to construct concave hulls. Methods such as α shape

[45], χ shape [44], or the authors’ own Polylidar [5] algorithmmay be

used for this purpose. These algorithms triangulate the point set and

remove triangles/edges greater than a specified distance. The final

shape is the union of the remaining triangles and edges producing

nonconvex (concave) polygonal shapes.
A fire boundary is dynamic and must be estimated from sparsely

sampled points near the border in our domain since a UAV will fail/

burnwhen flying low inside the fire boundary for too long. Each point

collected thus has useful spatial and temporal information. Spatial-

temporal process theory, which works with a random collection of

points representing the time and location of an event, infers the

underlying process generating the points [46]. However, this method

assumes the points are randomly sampled with no mechanism for

predicting a polygon describing the underlying process.
Deep learning in computer vision has significantly advanced our

object recognition, semantic segmentation, and trajectory prediction

capabilities.Convolutional neural networks extract features fromhigh-

dimensional images.Binary segmentation typically labels each pixel in

an image to a class label such as fire/no fire. State-of-the-art segmen-

tation neural network architectures are composed of two parts: a CNN

backbone and an upsampling meta-architecture [47]. The CNN

extracts high-level features from an input image through several layers

of convolutions. This downsamples the high-dimensional image space

to a lower-dimension feature space then fed into the meta-architecture.
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The meta-architecture is an upsampling or decoding network that
generates an image containing pixel-level classification.
An alternative to binary image segmentation is to directly predict a

polygon in the image using methods such as poly-RNN++ (polygon
recurrent neural network) [48]. This network can aid designers in
annotating outlines of objects within images. Poly-RNN++ first
identifies and isolates an object in an image. It then traverses the
object’s outline to generate a polygon.However, thismethod relies on
a continuous boundary in the image to support outline traversal and
does not handle temporal data.
As will be described in Sec. V.B.3, we propose a method that

encodes boundary observations into an image heat mapwith the pixel
brightness correlated with the time of the observation and its position
in space.As time passes, more pixels are filled in the image represent-
ing the moving boundary. The complete boundary may not be fully
explored, leading to encoded images with incomplete outlines. We
propose a dilatedCNN [49]which takes as input an encoded image of
temporal observations and predicts a binary image of the boundary.
We show that we can train this model on thousands of synthesized
examples of polygons and point observations. The binary image
predicted from the model is later transformed into a polygon using
computational geometry.

III. Problem Statement

An Nv agent fixed-wing UAV team is deployed to a large rectan-
gular area defined by Global Positioning System (GPS) boundary
coordinates. This region is known to contain active wildfire(s), but
no additional information on wildfire quantity, size, or location(s) is
provided. The UAV team must find and accurately map fire bounda-
ries within a fixed time limit, assuming a communication link with a
central server is always available. EachUAVaccurately senses its own
state (attitude, position, and derivatives) and hosts an ideal commu-
nication system (no latency, no data rate limit). UAVs can accurately
execute waypoint commands via onboard trajectory-following con-
trollers. Each UAV is equipped with a gimballed range-limited fire
hazard sensor that returns accurate binary results for the presence
of fire, where it is pointed at a rate of 2 Hz. There are two hazards the
UAVs must avoid: collision with mountainous terrain and flying
above any wildfire for too long. Each UAV’s goal, then, is to fly close
enough to the fire to observe it while avoiding the two destructive
hazards. UAVs also carry limited onboard energy that renders the
vehicle unusable if fully depleted. If any failure event occurs (colli-
sion, burning, energy depletion), that UAV will become disabled in
the AMASE simulation. UAVs are considered expendable however;
so, while a disabled UAVwill no longer provide data, themission can
continue.
Although the number of fires is fixed per scenario, each wildfire is

a dynamic polygon that can grow, shrink, and translate throughout a
mission scenario. The quantity, size, and location of fires are initially
unknown to the UAVs and the central planner. Once a fire is found, it
must be repeatedly surveyed due to its unknown propagation dynam-
ics. Fire boundary estimates can be centrally computed due to our
ideal communication assumption. For this paper, and the competi-
tion, the prime performance metric is the accuracy of the fire boun-
dary estimates as compared to the ground truth boundaries. Since this
metric is computed over the total wildfire area among all fires, it
captures the ability to both find fires and estimate their individual
boundaries.
The multi-UAV planner must safely guide and control team mem-

bers from their initial locations to find fires and then follow their
boundaries to persistently support boundary estimation. Each path
must respect UAV kinematic constraints and must keep the UAV
sufficiently close to the boundary and terrain surface to support
collection of positive (fire) and negative (no-fire/free) points. Each
UAV must consistently avoid terrain and fire hazards, must avoid
collision with other UAVs, and must operate efficiently to maximize
endurance. Because the search area is large, the sensor range is
limited, the team size is small, andmission duration is fixed, complete
area coverage is impossible. Thus, an efficient sparse exploration
UAV team planner is required.

Fire boundaries must be estimated from sparse observations; each
is encoded as a hit (positive) or miss (negative) along with observa-
tion location and time. We assume all positive and negative obser-
vations are accurate and that each fire boundary can be entirely
described by its perimeter (i.e., no interior holes). Because data are
sparse, significant portions of the fire boundaries are not seen, and so
a sparse data boundary estimation inference engine is required.
UAVs navigate inertially with GPS data, and sensor measurements

are converted into the local projected Universal Transverse Mercator
(UTM) coordinate system. This provides a local Euclidean reference
frame from which the distance, shape, and area are minimally dis-
torted. Free and fire data points pi are represented in a 2-D Cartesian
reference frame with orthogonal bases êx and êy, where

pi � xêx � yêy � �x; y� (2)

An n-point data array P � fp1;pi; : : : ;png contains points

pi ∈ R2 with fire and free points specified in arrays Pfire and Pfree,
respectively. The data acquisition time is reflected in accompanying

Tfire and Tfree time arrays. The primary algorithmic contributions of
this paper are in multi-UAV planning and fire boundary estimation;
each is described in the following.

IV. Multi-UAV Planning

Multi-UAV planners must compute exploration and boundary-
following paths as well as assign UAV team members to each. Each
UAV locally executes trajectory tracking control and adjusts its
altitude as needed to avoid terrain. Figure 3a illustrates our approach
in the context of AMASE. AMASE including terrain and fire hazards
is further described in Sec. IV.A. Our state machine-based task
planner is summarized in Sec. IV.B. Sections IV.C and IV.D describe
our 2-D path-planning methods for exploration and boundary follow-
ing, respectively; and Sec. IV.E describes terrain avoidance.

A. AMASEWildfire Mapping Simulation Environment

AMASE was used to test the presented methodologies on a group
of fixed-wing UAVs equipped with a fire detection sensor [3,4].
(Reference [4] is an open-source repository for “openAMASE,”
which is a different version of AMASE than what was used for the
competition and this paper. Note that openAMASE does not have the
wildfire content.) AMASE generates UAV motions over time based
on fixed-wing aircraft dynamics and wind disturbances. AMASE
models terrain, sensor pointing and measurements, and the dynamic
evolution of wildfire boundaries. Our code interacts withAMASE by
sending UAV commands and receiving state and sensor data. The
simulation treats collision with terrain and wildfires as hazards that
disable the UAV. UAVs also expend onboard fuel or battery energy
during flight as a function of airspeed and climb rate. Recovery zones
located sparsely throughout the scenario allowed UAVs to replenish
energy after remaining within their bounds for 30 s.
All scenarios were simulated in a 60 km by 60 km mountainous

region in California. At times, avoiding steep mountains requires the
UAVs to stop observing fires for some time,which provides a realistic
test case requiring intermittent wildfire observations. Each scenario
simulated 6–12 UAVs, each carrying a gimballed fire hazard sensor
that returns the status (fire point or free point) of the ground location
towhich the sensor is pointed so long as it is within range. The sensor
range limit forces the UAV to remain near the ground, and thus
requires effective terrain avoidance. If, for example, the range limit
was removed or very large, the terrain avoidance problem would
become trivial since the UAV could simply fly above all terrain.
Additionally, the fire hazard sensor only returns a single data point for
each observation at a low rate (2 Hz).While a UAVis following a fire,
this makes it much more difficult to estimate the local boundary for
safe traversal than it would if, say, a thermal camera provided dense
high-rate sensing information. Wind, UAV battery energy con-
straints, the number of wildfires, and wildfire dynamics (translation
rate and direction and growth rate) are configurable within AMASE.
Every scenario ran for 1 h of simulation timewithUAV states updated

Article in Advance / CASTAGNO ETAL. 5

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

M
IC

H
IG

A
N

 o
n 

Fe
br

ua
ry

 9
, 2

02
1 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
1.

I0
10

91
2 



every 0.5 simulation seconds. The AFRL Swarm and Search Com-
petition also required each 1 h scenario be run at four times real time.
Digital terrain elevation data for a region in California was

obtained from the U.S. Geological Survey (USGS) Earth Explorer
website. Data cover a uniform grid matrix of terrain elevation values
with postspacing of 1 arcsec (about 30 m). The keep-in operating
zone of 60 km by 60 km was centered at 39.81° N 121.06° W with
maximum and minimum elevations of 2388 and 226 m, respectively.
The steepest terrain rises about 150 m in altitude over 30 m of
horizontal movement. For all scenarios, the UAVs had a maximum
climb and descent rate of �5 m∕s, with planar speeds of 25 m∕s
making it impossible to avoid terrain and maintain observability of
the ground with naive reactive altitude guidance. With several point-
wise fire and free observations, a polygonal wildfire boundary esti-
matewas computed by our code and sent to theAMASE simulator for
scoring. Scores were computed at 20, 40, and 60 min into each 1 h
scenario. The fire boundary estimate total score is a weighted sum of
individual scores:

Si � 3FHS�t20�i � 2FHS�t40�i � FHS�t60�i (3)

FHS�t� � area��PBt ∩ GTt� − �PBt − GTt��
area�GTt�

(4)

where PB and GT are the predicted and ground truth boundaries at
time t, respectively; FHS�t� ∈ �−∞; 1� is a fire hack score function
that returns one for a perfectly matched fire boundary estimate, zero
for no estimate, and potentially negative values for overestimating
fire boundaries; and tX is a time stamp X min into the simulation.
This scoring is performed for all i ∈ �1; Nf� fires in the scenario for

the three scoring instances t20, t40, and t60.

B. Task Planning

The UAV team is managed by a centralized state machine in
constant communication with all UAVs. The state machine, shown
in Fig. 4, offers four flight modes: an initial standby mode, an
exploration mode to find wildfires, a “rally” mode to assist another
UAV that has found a wildfire, and a line-following mode to gather
observations along the wildfire perimeter. All vehicles start in the
standby flight mode “assign UAV” (FM0). Since there are no wild-
fires detected initially, all UAVs enter exploration mode (FM1),
where UAVs are assigned exploration paths that sparsely cover the
region and quickly find wildfires as explained in Sec. IV.C. If a
vehicle observes a wildfire (event “saw fire”), it transitions to line-
following mode (FM3) to traverse the perimeter of the wildfire and
gather observations per Sec. IV.D. In addition, the UAV sends a rally
signal (RY) to request its N nearest neighbors in FM1 assist in
gathering observations of the wildfire. UAVs in FM2 (go to rally
point) fly straight to the observed fire point and enter FM3when they
observe a fire point. UAVs assigned to a wildfire via rallying will
follow the fire boundary in either the clockwise or counterclockwise
direction in an alternating fashion to more effectively map the
wildfire.
Onboard energy management is handled implicitly by flying all

UAVs at their most efficient flight speeds. However, recovery zones

are ignored because replenishing energy diverts a UAV from finding/
mapping fires, and mission time is limited. In fact, a scenario would
typically end by the time a UAV finished recovering. Flying without
recovery at efficient speeds allows UAVs to remain alive for around
80–90% of each scenario. This strategy has benefit because there are
no penalties for losing the expendable UAVs.

C. Exploration Search Pattern

UAVs assigned to FM1 are given a sparse-coverage exploration
path to quickly findwildfires.We initially considered using complete
coverage paths but found that the expansive search space and limited
flight time precluded their use since theywould not finish in time, nor
were complete coverage paths effective at finding fires in the avail-
able time.We emphasized finding large-area fires quickly rather than
trying to search the entire region. Once a fire was found, it was also
important for other UAVs to be nearby so they could rally to follow-
ing the fire boundary. Therefore, our manually designed exploration
paths bias the UAVs toward central region coverage rather than areas
near the perimeter.We used a priori knowledge of the keep-in zone to
make a specific solution that was effective for competition scenarios
and could handle arbitrary numbers and starting locations for UAVs
and fires.
Figure 5 depicts our method. The UAVs travel to a waypoint along

the diagonal of the keep-in zone, then to one of six waypoints along a
circle, and finally to awaypoint at the center of the region as shown in
Fig. 5a. The “diagonal waypoints” (green in Fig. 5a) are Nv linearly
spaced points along the diagonal of the keep-in zone: one waypoint
for each of theNv agents. The red “circlewaypoints” are computed by
creating a circle with a radius equal to 0.4 times the side length of the
keep-in zone. The six circle waypoints are assigned at 45 deg spac-
ings excluding the diagonal line. When Nv > 6, some circle way-
points will be visited by multiple UAVs. The Hungarian algorithm
(Munkres assignment algorithm) [37] is used to minimize the total
distance traveled by the group of UAVswhen assigning diagonal and
circle waypoints. Figure 5b shows the exploration paths for a nine-
agent UAV team in an example AMASE scenario.
Since our exploration search pattern is calculated from the keep-in

zone provided, it will automatically scale to larger scenarios. How-
ever, as regions grow, generated paths may not be traversed within
the scenario time limit, or fires are found much later, potentially too
late to survey. For our 60 km by 60 km scenarios, the first fire was
typically found at around 15min into the mission. If we assume a fire
is found on the first straight-line path segment of at least one UAV,
then themission time to first fire identificationwill scalewith keep-in
zone side length, e.g., doubling the side length to 120 km by 120 km
would push the 15 min fire identification (ID) time to 30 min. The
exploration search pattern will still be effective for scenario scalings
up to two to three times, particularly if onboard energy stores and/or
mission time are increased. We currently assume a square keep-in
zone consistent with the AMASE competition; this constraint can be
extended to any rectangular zone by using an ellipse instead of a
circle to compute waypoints.
Our assumption of a priori knowledge of the keep-in flight zone is

consistent with general wildfire response scenarios. Manned and
unmanned aircraft would likely work in tandem, coordinated at a
high level from a ground control station where keep-in zones are

Fig. 4 Flight modes’ state machine.
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applied to the unmanned aircraft to provide additional safety to

manned aircraft and to allow the large-area surveillance problem to

be broken down into smaller search sectors: one per UAV team. It

should also be noted that since we search within a circle of radius

0.4 times the keep-in zone side length, we are implicitly assuming

that there will be fires near the center. While this was true for the

competition, and it would be true for a team deployed to a region

centered on low-resolution satellite hot/bright spots, if there was a

scenario that only had fires at the corners, our UAV teamwould never

find them. Additionally, our sparse-coverage paths are expecting a

few relatively large fires. If there were numerous, small fires, in

practice, more dense sensor information would be required given

the same team size, large search area, and mission time constraints.

D. SVM-Based Line Follower

UAVs assigned to FM3 are tasked with following the fire boun-

dary. This was achieved with two subtasks:
1) Obtain a linear estimate of the fire boundary near the UAV.
2)Guide theUAV tomove tangent to this line at a fixed, orthogonal

offset that keeps the UAV clear of fire but still supports fire-point
sensing.
Figure 6 illustrates the method.

For line estimation, we used weighted support vector machine (W-

SVM) regression. Given the most recent free and fire points detected

by the UAV, W-SVM regression is performed that more heavily

values newer samples. The W-SVM returns a line approximating

the fire boundary near the UAV, separating the two classes (free and

fire). Our assumption of a linear local boundary (as opposed to amore

complex geometry) simplifies the method and reduces computation

time for both estimation and guidance.
When the actual boundary is linear and static, a linear estimate can

separate free/fire points appropriately. However, when the actual

boundary is dynamic, it is possible that old points are no longer on

the correct side of the boundary. By weighting newer points more
heavily and older points less, the estimate canmore effectively follow
the actual dynamic boundary. The same can be said about a curved
boundary. Our straight-line estimate cannot follow the curve exactly.
However, for the location that is most important (boundary portion
closest to the UAV), a linear approximation is sufficient. The newest
points are also closest to this area of interest, and so our W-SVM
method is able to follow the curve as new data are collected. For
guidance, we used a proportional heading controller [Eq. (5)] to
generate a 2-D (horizontal plane) reference state such that the UAV
remains a desired perpendicular offset from the line ddes and tracks a
reference heading in the direction of the lineψ line.While tracking this
heading, the sensor gimbal is guided to sample sensor data near the
vehicle. A preset observation sequence of observation offsets from
the vehicle considering terrain is executed to generate sufficient data
for the support vector machine (SVM) and overall fire boundary
estimation. An altitude-aware straight-line planner (AASLP;
Sec. IV.E) is used to plan the altitude to avoid terrain while still being
sufficiently close to sense fire points:

ψdes � ψ line � Kp�ddes − dline� (5)

E. Altitude-Aware Straight-Line Planner

The altitude-aware straight-line planner (Algorithm 1) is used to
command each UAV’s altitude. The AASLP prioritizes avoiding
terrain while attempting to respect range limits of the onboard fire
hazard sensor. In exploration and rally modes, the AASLP assumes
the UAV is flying in a straight line from the starting location rs to a
goal position rg and returns the altitude trajectory needed to maintain

flight between hmin and hmax, where hmin is the lowest altitude
above ground level (AGL) the UAV should ever fly and hmax is the
highest AGL altitude the UAV can fly and collect sensor readings.
The line-following mode behavior is described in the following.

Fig. 6 3-D line follower.Weighted SVM provides a linear fire boundary estimate with nearby free and fire points, and a proportional controller follows
this estimate at an offset in 2-D with altitude coming from AASLP.

Fig. 5 Multi-UAV exploration strategy: a) description of waypoints/paths, and b) generated paths on a scenario.
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Parameter hmin is treated as the stricter constraint since violating
this altitude limit could result in a crash. Climbing above hmax does
not cause an immediate crash, although losing observability of the
ground makes the UAV “blind” to nearby wildfires that can inflict
damage over time. Given a constant forward speed v, maximum
climb and descent rates vclimb > 0 and vdescent > 0, and time step
Δt, we simply estimate Δx � vΔt, Δz� � vclimbΔt, and Δz− �
vdescentΔt. Next, AASLP calculates the required altitude trajectory
via forward integration of the altitude over time. This trajectory
respects climb/descent angle constraints and considers hmin/hmax

limits given a specific terrain map. To meet climb and descent
constraints, future terrain clearance requirements on hmin are back-
propagated so the climb starts in time to avoid future terrain.A similar
strategy is followed for descent where terrain clearance hmin is
prioritized over hmax when necessary.
Exploration and rally flight modes use the altitude plan from

the AASLP directly. The line-following mode looks ahead over
a finite time horizon to compute the next altitude command in a
manner analogous tomodel predictive control. The goal position rg is
selected by projecting the vehicle’s current position forward in a
straight line based on its current heading. Straight lines at �5 deg
offset from the current heading are also considered to account for
future heading adjustments; themaximumaltitude fromall three lines
is used to select the line-following altitude.

V. Boundary Estimation from Point Observations

Boundary estimation takes as input the collective fire and free
points gathered during mission planning. Our methods for point
clustering and boundary estimation from point clusters are described
in the following:

A. Point Clustering

Multiple fires may be present in a mission region, and so multiple
UAV subteams rally around each fire to provide as many boundary
fire and free points as possible. The number ofwildfiresNf is initially

unknown, and so our clustering technique must not rely on knowl-
edge ofNf a priori. Given sensor limitations, fire and free data are not

dense point sets but instead sparsely collected individual points
hypothesized to be near the fire boundary. Clustering can thus
become difficult when separate fires are near one another. These
domain properties rule out clustering techniques such as K means,
which judges group assignments by calculating the distance between
a point and the mean of a proposed group. Figure 7a displays two fire
boundary point sets and demonstrates how K-means incorrectly
assigns point a to fire B. What is instead needed is a clustering
technique that determines group membership by the nearest point
in a proposed group.
Hierarchical clustering with single linkage distance can handle

proximal but distinct cluster cases. An example hierarchy of clusters
is visualized in the Fig. 7b dendrogram using the point set shown in
Fig. 7a. The final cluster merge, denoted by the gray line, indicates a
2m separation between the orange cluster (fire B) and the blue cluster
(fire A). The final number of clusters can be determined by setting a
maximum distance threshold dmax for which clusters may bemerged.
The dmax parameter in essence limits how close fire boundaries may
be before they aremerged as one. Single linkage distance calculations

require an O�n2� computation, making it unusable in real time for
large point sets. We propose a sparsely sampled hierarchical cluster-
ing technique that takes into account the geometry of a cluster for
point assignment. The location and number of fires are determined

through clustering on Pfire. Points in Pfree are subsequently assigned
to the nearest found cluster. The following steps outline the method:
1) Randomly downsample np points from Pfire to create the subset

Pfire
ds . The remaining unsampled points in Pfire form the compliment

Pfire;∁
ds where jPfire

ds j ≪ jPfire;∁
ds j.

2) Perform hierarchical clustering on Pfire
ds and split into k groups

by maximum distance dmax. This creates the set of downsampled

clusters CLds � fPfire
ds;1; P

fire
ds;i; : : : P

fire
ds;kg.

3) For each Pfire
ds;i in CLds, calculate its convex hull CHi.

4) Densify the perimeter of each CHi to provide total coverage of
the cluster.

Algorithm 1: Altitude-aware straight-line planner

1: procedure: AASLP(rs, rg, Δz�, Δz−, z0, hmin, hmax, Δx)
2: Inputs: Start position rs, goal position rg, climb rate Δz�, descent rate Δz−, start altitude z0,
3: minimum AGL hmin, maximum AGL hmax, distance discretization Δx
4: Output: An altitude plan, Z, for a straight-line path from rs to rg
5:
6: Δr←rg − rs

7: N← ceil
�
jΔrj
Δx

�
� 1

8: Z← zeros(N)

9: zg← terrain_height(rs)

10: Z0← constrain(z0, zg � hmin, zg � hmax)

11:
12: for i←1, N-1 do

13 rnext←
i

N−1Δr� rs
14: zg← terrain_height(rnext)

15: Zi← constrain(Zi−1, zg � hmin, zg � hmax)

16: if Zi − Zi−1 > Δz�, then
17: for j←i − 1, 0, do

18: if Zj�1 − Zj > Δz�, then
19: Zj←Zj�1 − Δz�

20: else

21: break
22: end if
23: end for
24: else if Zi − Zi−1 < −Δz−, then
25: Zi←Zi−1 − Δz−

26: end if
27: end for
28: return Z

29: end procedure
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5) Calculate the minimum pairwise distance between CHi and

each unassigned point in Pfire;∁
ds and Pfree.

6) Assign each point in Pfire;∁
ds and Pfree to a cluster that it has

minimum distance to.
This procedure reduces the number of pairwise distance calcula-

tions performed for hierarchical clustering. The following sections

detail hierarchical clustering, densification of convex hull perimeters,

and cluster assignments.

1. Downsampling and Hierarchical Clustering

Downsampling is a critical step to reduce dimensionality of a point

set sent to hierarchical clustering (HC). For example, a downsam-

pling of one order of magnitude reduces the runtime and memory

complexity of HC by a factor of 100. The number of fire points

collected were usually greater than 20,000 by the end of the 1 g

simulation. The authors found that a random downsample to np �
2500 points reduced computation time sufficiently for real-time

processing on a desktop computer. Section VI.C provides quantita-

tive results on clustering timings.

2. Dense Convex Hull Estimation

The convex hull serves as a condensed representation of a point

set. The convex hull is represented as a convex polygon, an ordered

list of point vertices representing noncrossing line segments that is

closed, meaning the first point is also the last. In our experiments,

some convex polygons had large distances between vertices that

might cause issues when assigning points to a particular cluster.

Figure 8a shows such an examplewhere a point between two clusters

would be incorrectly assigned to the left cluster if only the vertices of

the convex polygon were used. Thus, the convex polygon of each

cluster is made dense by the procedure outlined in Algorithm 2 and

visualized in Fig. 8b. This process ensures all points on the perimeter

of the convex polygon are no more than dmax away from one another

where dmax is the same parameter used as a cluster merging con-

straint.

3. Cluster Assignment

Although the k clusters have been identified fromPfire
ds , all points in

Pfire;∁
ds and Pfree remain unclassified. Each point pi ∈ Pfire;∁

ds ∪ Pfree is

assigned to the closest cluster CHj. Using these cluster assignments,

new fire- and free-point sets Pfire
i and Pfree

i are created for clusters

�1; k�. Time stamps are also partitioned, e.g., Tfire
i and Tfree

i .

a) Simplified example of sparse boundary point
sets from fire A and fire B: point 0 would be
incorrectly assigned to fire B if using cluster mean
distance assignment

b) Dendrogram showing hierarchical cluster
merging of point set from Fig. 7a: x axis denotes
data index (cluster size), and y axis denotes
distance between two merged clusters

Fig. 7 Clustering fire boundary point sets.

a) Using only convex polygon vertices can cause
false assignments such as that shown by the
triangular point

b) The triangular point is assigned to the correct
cluster when polygons have points no more than
dmax apart

Fig. 8 Dense convex polygon points necessary to ensure proper cluster assignment.

Algorithm 2: Dense convex polygon

1: procedure: DCH(CH, dmax)

2: Inputs: Convex hull (CH), maximum distance dmax

3: Output: A dense convex polygon CHd where each ordered point is
less than dmax from its neighbors

4: N← length(CH)

5: CHd← copy(CH)

6: c←1

7: for i←0, N − 2, do

8: pi←CHi

9: pi�1←CHi�1

10: d←dist�pi;pi�1�
11: if d > dmax, then

12: vdir←normalized�pi�1 − pi� ⋅ dmax

13: k←floor�dmax∕d�
14: for j←0, k − 1, do

15: pnew←pi � k ⋅ vdir
16: insert(CHd, c, pnew)

17: c←c� 1

18: end for
19: end if
20: c←c� 1

21: end for
22: return CHd

23: end procedure
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B. Boundary Estimation

Once observationsPfire andPfree have been clustered and assigned

to their respective wildfire, a boundary estimate of each wildfire is

generated. Nonconvex polygons are often used to represent wildfire

boundaries because of their ability to accurately capture the frontier

of a wildfire as it spreads over terrain [51,52]. Wildfire behavior is

dictated primarily bywind speed and direction, fuel class (land type),

humidity, terrain slope, and elevation [53,54]. These behaviors in turn

govern how the wildfire grows in size, translates across terrain, and

evolves in shape. Our boundary estimation procedure does not rely

upon such detailed models, instead only using point observations

similar to those from Ref. [51]. We generate synthetic point data to

train a robust neural network model capable of predicting the area of

each fire polygon in pixel space given clusters of fire and free points.

The following steps are performed:
1)Generatemanynonconvex polygons and simulate their dynamic

movement.
2) Simulate UAVs gathering fire and free observations along the

perimeter of these simulated dynamic polygons.
3) Encode the point observations and ground truth polygons as

images in a labeled dataset.
4) Train a binary segmentation convolutional neural network using

the synthetic labeled dataset.
5) Convert the predicted binary image into a nonconvex polygon.

1. Synthetic Polygon Generation

Thousands of nonconvex and dynamic polygons are generated to

train the CNN. The initial condition of each training polygon is

generated as the counterclockwise, ordered placement of vertices

using polar coordinates θ and r. The polygon’s first vertex begins at
θ0 � 0, r0 � rmin and is generated over increasing θ until a closed

linear ring representing the polygon is formed. Avertex is computed

from randomly generatedΔθ ∈ R� andΔr ∈ R, which generate the

next vertex where θi�1 � θi � Δθ and ri�1 � ri � Δr. The process
is parameterized through rmin and the standard deviation forGaussian

sampling ofΔθ andΔr. An example randomly generated polygon is

shown in Fig. 9a. Movements of simulated wildfire polygons over

time are modeled as scaling and translation operations. These oper-

ations can accurately capture the effects of wildfires growing and

moving across terrain but may not be able to capture extreme shape

changes over time. Translation is described by a velocity vector T
where polygon vertices pi are updated at each time step:

pt�1
i � pt

i � T ⋅ Δt 1 ≤ i ≤ nv (6)

where nv is the number of vertices of polygon P. Growth and

shrinkage are accomplished by expanding or contracting the vertices

in the direction of the polygon centroid. This process is parameterized

through a scaling rate denoted srate, with a positive value indicating

growth and negativevalue shrinkage. Equation (7) defines the scaling

vector ŝti for the ith vertex at time step t. Equation (8) uses it to update
the placement of the next vertex at time step t� 1. This process may

introduce invalid polygons (e.g., polygons with edge crossings) in

extreme growth or shrinkage situations. Invalid polygons are identi-

fied and rejected:

ŝti �
pt
i − centroid�P�

kpt
i − centroid�P�k 1 ≤ i ≤ nv (7)

pt�1
i � pt

i � ŝti ⋅ srate ⋅ Δt 1 ≤ i ≤ nv (8)

Each randomly generated polygon is updated at 10 s intervals over

a 1 h simulation, with parameters T and srate dictating how the

boundary evolves. These parameters are changed at user-specified

nc random times during the simulation. The allowable bounds for T
are �−0.5; 4.5� m∕s, whereas srate is �0; 6.5� m∕s. These sample inter-

vals favored high growth and translation rates representative of

rapidly moving wildfires with a maximum forward rate of spread

of≈6.3 m∕s [55]. Figure 9b shows an example of polygon evolution

over time.

2. Polygon Boundary Observations

To emulate a set of UAVs gathering observations along the perim-

eter of a wildfire, we generated a set of constant-velocity observers

that gather fire and free points similar to what is expected for fire

sensor sampling inAMASE.Aconfigurable number ofUAVsmaybe

simulated that “enter” the simulation at random times. AUAV begins

at a random vertex traveling at a fixed configurable speed with the

heading corresponding to the direction of the next polygon vertex.

The next vertex towhich theUAV traversesmay be counterclockwise

or clockwise on an overhead map view, depending on a random

Boolean parameter. The UAV continues to track the line segment it

is following as the polygon translates, shrinks, or grows.
Fire and free observations were “collected” through a simple

sensor model that includes Gaussian noise and random sensor drop-

out simulating a loss of boundary tracking. There are two indepen-

dent sensors sampled: one for fire points, and one for free points.

Each sensor draws independent random samples over a longitudinal

lookahead distance described as a zero-mean half-normal Gaussian

with variance σ2h, as shown on the left side of Fig. 10a. The indepen-
dent fire-point and free-point sensors differ in which transverse

direction they check when sampling zero-mean half-Gaussian dis-

tributions of variance σ2p. Fire points are positive in this transverse

sample, whereas the free points are negated to constrain observations

to be outside the fire at all times. This setup enables different

sampling frequencies of fire or free points to emulate different

sweeping patterns (e.g., observing more free points than fire points).

The transverse half-Gaussians are illustrated on the right side of

Fig. 10a. Equation (9) shows a joint longitudinal and transverse

Gaussian distribution:

X ∼N
��

0

0

�
;

�
σ2h 0

0 σ2p

��
(9)

a) Example of a simulated nonconvex polygon
representing a fire boundary

b) Example of a fire boundary growing and translating
over time: polygon outline displayed at 0, 10, 20, and 30
min snapshots into simulation

Fig. 9 Simulated polygons and movement.
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Yfire
s � sample�jXj� (10)

Yfree
s � sample�jXj� ⋅

�
1 0

0 −1

�
(11)

where Yfire
s and Yfree

s are fire- and free-point samples from half-
Gaussian distributions. Final sensor readings are then

pti � ri � R�ψ i�Yo
s (12)

where ri and ψ i are the UAV i position and heading, R�ψ i� is the
corresponding rotationmatrix, and Yo

s is a sample drawn fromYfire or

Yfree for a fire or free point, respectively. Figure 10b displays the fire
and free points collected for the simulated polygon shown in Fig. 9b.
The time of point collection is encoded as transparency.

3. Image Encoding

A Red-Green-Blue (RGB) image holds three M × N channels of
pixels, where M and N denote the numbers of rows and columns,
respectively. At each time step, we encode fire and free points of a
wildfire into the “R” and “G” channel, respectively, leaving the “B”
channel empty. Rasterization converts points to discrete pixels with a
value determined by the time the data point was acquired. The
resulting image compactly encodes position of fire boundaries
throughout time. Rasterization performs a mapping between the
UTM coordinate system of the points to the pixel space of the image.
Awindowdefined to constrain image extentmust be the same for fire-
and free-point channels. This window is defined by the bounding box
(BBOX) of the fire points as shown in Eq. (13), with the width and
height described in Eq. (14). It is possible that the fire points have not
captured the full boundary of the fire, and the BBOX may be too
small. Therefore, a configurable percent expansion α is added to
attenuate this issue. For example, a value of α � 1.10 provides a 10%
window expansion. Equation (15) then calculates image resolution in
the x and y dimensions:

xmin; xmax; ymin; ymax � BBOX�Pfire
i � (13)

xrange � xmax − xmin yrange � ymax − ymin (14)

xres � floor

�
α ⋅ xrange

N

�
yres � floor

�
α ⋅ yrange

M

�
(15)

The affine transformation of every point into pixel space can be
described as

uoi � clip

�
floor

�
Po
i;x − x 0

min

xres

�
; 0; N

�
(16)

voi � clip

�
floorclip

�
Po
i;y − y 0

max

−yres

�
; 0;M

�
(17)

where o refers to either the free- or fire-point data, u and v are
horizontal and vertical pixels with origins on the top left of the image,
and x 0

min and y 0
max are defined as

x 0
min � xmin − xrange

α − 1

2
y 0
max � ymax � yrange

α − 1

2

Pixel positions in Eqs. (16) and (17) are clipped to be within image
bounds. The time of each point is normalized within the range [0,1]
according to the time range of the fire points as given by

~To
i � max�Tfire� − To

i

max�Tfire� −min�Tfire� (18)

The final raster value for fire and free bands in image (IM) is then

IMo�voi ; uoi � � ~To
i (19)

Using the fire points as the basis for space and time ensures that fire
and free channels are spatially and temporally aligned. Figure 11a
visualizes fire and free points of a UAV simulation after 5 min. In this
case, the boundary is moving and the UAVSs have not fully traversed
it. The top images in Fig. 11b show the encoded fire and free
channels, respectively; whereas the bottom left shows the final
RGB image. Normalized time encodes the brightness of the pixel.
The ground truth image label of the wildfire is similarly created by

rasterizing the wildfire polygon. A similar rasterization procedure
described earlier in this paper is also completed, except the polygon
area is also filled in. In addition, the ground truth image is binary,
meaning each pixel is either zero or one, where one indicates a fire.
The bottom-right image in Fig. 11b demonstrates this rasterization
process for the ground truth polygon.

4. Neural Network Design and Training

Asemantic segmentation neural network is constructedwhose input
is the encoded fire-/free-point image and the output is a binarymask of
the wildfire prediction. The neural network’s output mirrors the input
resolution and is trained to match the ground truth binary mask of the
wildfire as shown in Fig. 11b. The neural network architecture is
composed of two parts: a convolutional neural network backbone
and an upsampling meta-architecture. There are many architectural
choices for both the CNN backbone and meta-architecture, with each
having tradeoffs between execution time, memory consumption, and
complexity. We chose a residual neural network (Resnet) CNN for
feature extraction for its effective feature map generation with deep

a) Sensor model for fire and free point detection: UAV
traveling in the direction of green line, with sampling
fire and free points to the left and right

b) Fire (red) and free (green) points after 30 min of simulation
time: two UAVs traversing evolving boundary shown in Fig. 9b,
time of point collection encoded with transparency, and older
points less visible

Fig. 10 Simulated UAV sensor data point collection.
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layers [56]. Resnet18 was used because it has lower computational

complexity demands than other Resnet family architectures. We use

dilated convolutions and context modules for our meta-architecture.

TheCNNbackbone is initializedwithweights pretrained on ImageNet

to reduce training time.

5. Polygon Estimation

A binary mask predicted by the neural network must be trans-

formed into a polygon in UTM coordinates. The process begins with

transforming every fire pixel (white pixels in the binary image) to a

dense point cloud denoted Pfire
dense. This transformation is the inverse

transformation shown in Eqs. (16) and (17). Concretely, the process

involves organizing the fire pixels into a K × 3 matrix UV and

subsequently multiplying by an affine transformation matrix A:

UV �

2
6664
u1 v1 1

ui vi 1

..

. ..
. ..

.

uK vK 1

3
7775 (20)

A �
"
xres 0 x 0

min

0 −yres y 0
max

#
(21)

Pfire
dense � A ⋅ UVT (22)

Shape is then estimated using Polylidar [5]: a fast concave hull

extraction algorithm developed by the authors. Polylidar extracts

polygons fromadense point set. Ifmore than one polygon is returned,

which may occur from a malformed prediction from the neural net-

work, only the largest polygon is used for a final prediction. Any

interior holes in the polygon are ignored. Figure 12b demonstrates the
dense point cloud shape extracted as the green polygon boundary.

VI. Results

This section describes results obtained from a series of AMASE
simulations. Line estimation and terrain avoidance planning results
were generated on a laptop with an Intel core i7-9750H processor.
Section VI.A evaluates the weighted SVM local boundary line
estimator, whereas Sec. VI.B compares our AASLP terrain avoid-
ance algorithm against a baseline A* algorithm. Section VI.C eval-
uates our geometrical hierarchical clustering method, and Sec. VI.D
shows training and test results for neural network boundary predic-
tion. Clustering and fire boundary estimation results were generated
on an Intel core i7-6700HQ processor laptop with NVIDIA
GTX1060.

A. Local Boundary Line Estimation

Local boundary line estimation was evaluated on three AMASE
scenarios with distinct fire boundary behaviors. Data gathered from
the three scenarios are used to compare local line estimates from the
weighted SVM against estimates from the baseline weighted least-
squares and weighted logistic regression methods. Our combined
3-D line-following algorithm was used to guide a single UAV in the
AMASE simulation to obtain fire and free points with associated
observation times. We post-processed the data to provide each line
estimation method with the preceding 15 s of data for each point in
time. Figure 13a shows scenario 1, which has a static fire zonewith a
straight boundary, a river crossing (large terrain transition with
missing data), an acute left turn, and an obtuse left turn. Scenario 2
has the same fire boundary now with a constant translation speed of
5 m∕s to the east. Scenario 3 is the same region with a constant fire
translation speed of 5 m∕s to the west. Boundaries update in distinct

a) Binary mask image of predicted
wildfire

b) Transforming fire pixels to a dense point cloud (blue); a
concave hull extracted with Polylidar [5] predicts boundary

Fig. 12 Image prediction to UTM polygon.

a) sensor data points collected after 5 min: fire-point BBOX
expanded to generate raster window, with actual fire
boundary shown in green

b) Fire channel (top left), free channel
(top right), combined RGB (bottom left), 
and mask (bottom right): RGB image
input to neural net becomes a binary mask

Fig. 11 Fire- and free-point encoding.
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steps every 10 s (e.g., 50 m jumps for 5 m∕s travel speed). The UAV
flew at 20 m∕s and received a new sensor reading every 0.5 s.

Scenarios 1, 2, and 3 had 3357, 826, and 743 test instances, respec-

tively. Scenario 1 had 3357 test instances; for this case, the UAV

ended at the beginning of the third boundary edge, past the obtuse

angle. Scenarios 2 and 3 had 826 and 743 test instances, respectively.

In these cases, the UAVonly traversed a portion of the first straight

edge.

Our weighted support vector machine method was compared with

weighted least-squares regression (W-LS) and weighted logistic

regression (W-LOG). Values were weighted linearly based on time

(e.g., a current observation has a weight of one, and a 15-s-old data

point has a weight of 0.5) for all methods. Several hyperparameters

for each algorithm were considered, and the best were used for

testing. The regularization parameter for W-SVM was set to

C � 100; a standard scaling was applied to W-SVM input; and the

regularization parameter for W-LOG was set to C � 1. All methods

were run with scikit-learn in Python. Figure 13b shows line estimates

from the three methods in scenario 1 at 5.25 s.

Three metrics were used for evaluation: line heading error, for-

ward alignment error, and computation time. The line heading error

is the error in degrees between the ground truth line heading and the

estimated line heading. The forward alignment error is the average

distance between 10 points on the ground truth line and 10 points on

the estimated line obtained by projecting the original points nor-

mally from the ground truth line onto the estimated line. Ground

truth line points are sampled in the forward direction every 10 m,

starting at the nearest point to the UAV. The forward alignment error

is limited to a maximum of 1000 m since orthogonal line estimates

could produce extremely large errors that skew statistics. The

computation time is the algorithm execution time in milliseconds.

Lower is better for all three metrics. Table 1 shows aggregated

results. W-LOG had the best line heading error (9.01 deg) and

forward alignment error (21.59 m); however, it also took the longest

to compute (5.78 ms on average). W-LS was fastest to compute

(0.6 ms average) but had the worst performance with a line heading

error of 14.26 deg and a forward alignment error of 52.65 m. Our

method, the W-SVM, came close in performance to W-LOG

(9.26 deg line heading error and 24.85 m forward alignment error)

and came very close in computation time to W-LS with an average

of 1.05 ms.

B. Terrain Avoidance

This section evaluates the performance of our altitude aware
straight-line planner as compared with a baseline A* algorithm. We
used the coarse exploration waypoints from the scenario depicted in
Fig. 5b as our test dataset. Each test instance is a straight-line path in
2-D space, and each tested algorithmmust plan an altitude path along
this line that avoids terrain, respects vehicle performance limits, and
attempts to stay below amaximum above ground level altitude. There
were 27 total test instances, but only 19 had viable solutions. Both
AASLPandA* failed on the same eight cases because theUAVclimb
rate was insufficient to clear the terrain. Normally, the AASLP will
always return a safe, feasible path in the discretized space, with the
caveat that the desired initial altitudemay differ from the actual initial
altitude if it is either out of the hmin − hmax range initially or no
collision-free path is possible from the initial altitude. For the com-
petition, this was a useful feature because it allowed us to perform
additional 3-D climbing maneuvers; but, for the results presented
here, any time there was a discrepancy between actual and planned
initial altitudes, we counted this as a failure. For both algorithms, Δt
was chosen as 10 s so that the discretization along the straight-line
pathΔxwas about 300 m. In general, settingΔx equal to terrain data
resolution (about 30m for USGS) is the smallest practical value since
all terrain grids will be considered. However, in the competition and
these results, 300mwas used since it reduces computation timewhile
only introducing a small chance that dangerous terrain would be
missed between samples. For A*, a branching factor of three was
used (maximum climb, straight, maximum descent). Additionally,
the UAV was assumed to fly at 30 m∕s with a maximum climb rate
of 5 m∕s (Δz� ≈ 50 m) and a maximum descent rate of 5 m∕s
(Δz− ≈ 50 m). The minimum AGL altitude hmin was chosen as
200 m, and the maximum AGL altitude hmax was chosen as 300 m.
The UAValways started at 250 m AGL. Both A* and AASLP were
run in Python.
Figure 14 shows planned altitude time histories from both algo-

rithms executing on one of the test cases. The UAV’s AGL altitude
never goes below hmin to ensure no collisions with terrain. However,
sometimes the steep terrain drops faster than the UAV’s descent
rate, causing violations of hmax. Table 2 shows results from all
case studies. A* performed slightly better with an average distance
above hmax of 14.82 m vs 18.71 m with the AASLP, but A* required
approximately 100 times longer computation time (7.22 ms vs
0.09 ms).

a) Scenario 1 initial conditions b) Scenario 1 line estimate at t=5.25 s

Fig. 13 Local boundary estimation results for scenario 1 with a static boundary.

Table 1 Local boundary estimation resultsa

Line heading error, deg Forward alignment error, m Computation time, ms

Method μ σ Max μ σ Max μ σ Max

W-LS 14.26 11.54 86.74 52.65 84.23 1000.00 0.60 0.05 1.47
W-LOG 9.01 8.99 89.10 21.59 48.68 1000.00 5.78 0.61 10.48
W-SVM 9.26 9.35 88.59 24.85 63.81 1000.00 1.05 0.19 5.12

aOurmethod (W-SVM)provided estimates nearly as accurate asW-LOGbut five times faster.W-LSwas fast but provided poor estimates.
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C. Clustering

This section evaluates the performance of our efficient hierarchical
clustering algorithm in accuracy and execution time. Figure 15 shows
a test case where three separate fires slowly grow toward each other
until the clustering algorithm fails to distinguish them. Collected data
points for each fire boundary are duplicated and translated to test
cases in which fire boundaries nearly merge. Over time, the fires also
grow, and more fire points are collected by boundary-following
UAVs. Visual and timing results are presented only for fire points
since free-point assignment only occurs after the number and group-
ing of wildfires are determined.
The maximum distance threshold dmax indicating merging clusters

is set to 2000 m. In each case, the algorithm accurately separates fires
even as they grow close; all fires merge at 3300 s when distance
between them drops below dmax. Execution time statistics of naive
hierarchical clustering and our geometric hierarchical clustering are
shown in Table 3. The naive method uses all points in single linkage
hierarchical clustering to determine groups and scales quadratically in
bothmemory and time.Each successive row in the table corresponds to
each of the successive simulation snapshots shown in Fig. 15. Each
method was on 30 cases to provide the statistical mean and standard
deviation shown. With a low number of fire points, both methods are
identical; however, as the point set size increases, quadratic scaling of
the naivemethod leads to substantial increase in the execution time and
eventually out of memory (OOM) errors. Our method appears stable,
growing to a maximum observed execution time of 90 ms. Therewere
no differences in group classification between the methods.

D. Boundary Estimation

Sections VI.D.1 and VI.D.2 describe synthetic labeled dataset
generation for boundary estimation as well as training and validation

of the neural network model. Section VI.D.3 provides an evaluation
of boundary estimation in AMASE.

1. Dataset Generation

A labeled dataset was generated using the procedures outlined in

Sec. V. The dataset begins with 672 random polygons generated with
varying size, number of vertices, and shape. Each of these polygons is

used as the starting outline of a wildfire and then simulated to change
over time per Sec. V.B.1. Growth and translation rate parameters srate
and Trate were sampled in the domains of �−0.5; 4.5� and �0; 6.5� m∕s,
respectively. Each polygon evolutionwas simulated twice, providing
a total of 1344 unique wildfire dynamic boundary simulations. A

UAV simulation was then run against each of these simulations to
provide collected fire and free points over the 1 h simulation. Each of

these 1344 simulations was then encoded into a set of 15 fire-/free-
point image and ground truth binarymask pairs at specific times. The
15 time snapshots began at 500 s and ended at 3500 s at 200 s

increments. This generated over 20,160 input/output image pairs as
our final labeled dataset. This dataset was then split into an 80/20

training/validation dataset at the UAV simulation level. With this
strategy, all 15 images generated from a single UAV simulation were

grouped into either the training or validation dataset.

2. Training and Validation

Training loss and validation set accuracy are shown in Fig. 16a

as blue and orange lines, respectively. Validation set accuracy is

Fig. 15 Hierarchical clustering results for three fires growing toward each other. Snapshots from left to right are at progressive simulation times with
colors denoting group membership.

a) MSL altitude trajectory b) AGL altitude trajectory

Fig. 14 Altitude plan examplewith complex terrain. AASLPmeetshmin but cannot alwaysmeethmax. A* is slower but has slightly better performance in

meeting hmax.

Table 2 Terrain avoidance planning algorithm benchmark results

Distance above hmax, m Computation time, ms

Method μ σ Max μ σ Max

AASLP 18.71 54.01 242.68 0.09 0.03 0.14
A* 14.82 43.50 181.29 7.22 5.98 25.08

Table 3 HC execution time benchmarks in seconds

Method

Naive HC Geometric HC

No. of points μtime σtime μtime σtime

1,209 0.015 0.000 0.015 0.000
4542 0.187 0.002 0.066 0.001
11,661 1.236 0.007 0.076 0.001
18,540 3.274 0.038 0.086 0.001
24,459 OOM OOM 0.080 0.001
30,900 OOM OOM 0.086 0.001
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represented as the intersection over union (IOU) of every pixel’s
binary classification. Training was halted after 30 epochs, which
took approximately 8 h. Validation set accuracy is labeled on the
right y axis, indicating that additional training may provide marginal
improvements in accuracy. Figure 16b shows an example of the
neural network predictions of a validation set fire boundary at three
different time instances. The first, second, and third rows correspond
to 500, 700, and 900 s into the simulation, respectively. The first,
second, and third columns correspond to the fire-/free-point encoded
image, neural network prediction, and ground truth image, respec-
tively. In all cases, the simulatedUAVs have only traversed part of the
boundary. The model must estimate the remaining fire boundary
contained within the designated image window. It is clear that even
without a complete boundary, the neural network has learned to
effectively estimate boundary shape.

3. Testing in AMASE

This section summarizes overall system performance from data
gathered in the AMASE simulator. It is important to note that the fire
boundaries,UAVsimulationmodel, and fire sensormodel are outside
of the authors’ control; so, test results are a true indication of how the
model fares within AMASE. Each of the tests show predicted boun-
daries at 1800, 2400, and 3600 s into the AMASE simulation.
Gathered fire/free points are shown at each time stamp and encoded
as an image, the neural network boundary prediction, the ground truth
image, and the final predicted fire boundary compared against theGT
fire boundary. A final plot is also shown, comparing our boundary
estimates’ intersection over union and fire hack score over simulation
time against a baseline convex hull method with a 1000 s time
threshold. The FHS was defined previously in Eq. (4). In the convex
hull method, all fire points in the last 1000 s are used to construct a
convex hull, which is given as the predicted boundary.
The first test labeled challenge 2 fire Awas provided by the AFRL

competition supervisors. Two UAVs do not find the fire until around
1700 s, leaving little time to gather fire/free points at the 1800 smark,
as shown in Fig. 17a. The first image shows unique circular paths in
the free points that are not captured in our synthetic data. These
circular free-point paths appear because the UAV loses track of a fire
boundary segment and must circle back toward the fire. Even with
such limited fire-point data, the neural network makes a modest
approximation of the boundary but with jagged edges, holes, and
separated regions. However, our boundary polygon approximation
with Polylidar is able to filter out the holes and extraneous regions to
provide a reasonable estimate of the fire boundary, as shown in the
last column. At 2400 s, Fig. 17b shows that even though the UAVs
have not fully circled the fire, an excellent boundary estimate is
provided, giving a FHS of ∼89.4%. Figure 17c shows the boundary
prediction algorithm, using limited information from UAVs on the
right side of the boundary, predicts high growth leading to an over-
estimation of the fire resulting in a FHS of 76.2%. In this case, the

boundary was translating and could be determined once the UAVs
reached the left side of the fire. The final image demonstrates our
algorithm outperforming a baseline convex hull method overall with
a mean FHS of 73.5%, versus 60.7% for the convex hull. The second
case (challenge 2 fire B) was also provided by competition super-
visors. Figure 18 shows results at 1800, 2400, and 3600 s boundary
predictions and achieves FHS values of 70.5, 83.1, and 75.8%,
respectively. Figure 18d shows our boundary prediction mean FHS
score of 79.6%, surpassing the convex hull method with a mean FHS
of 63.2%.

VII. Discussion

Multi-UAVplanningwas developed to specifically support the fire
boundary estimation mission goal. Speed, safety, and optimality are
important planning metrics. Execution speed is important because
updateswere required in real time.Additionally, boundary estimation
relied on there being operational UAVs collecting sensor data, which
require a focus on UAV safety even though small UAVs are typically
considered expendable. Gathering useful sensormeasurements of the
fire is of course also important. Our local boundary line estimation
and terrain avoidance algorithms provided reasonable solutions with
significantly less computation time than compared baselines. In line
estimation, our W-SVMmethod was more than five times faster than
W-LOG with comparable accuracy. Our method was also signifi-
cantly more accurate than W-LS with a marginal increase in compu-
tation time. For terrain avoidance path planning, our AASLP was
more than 50 times faster than A* with less than a 4 m difference in
altitude solutions. Overall, results show our practical planners’meth-
ods provide safe real-time solutions. Of course, our dynamic boun-
dary estimation domain was quite specific, and so extensions would
likely be required for other multi-UAV surveillance missions.
The neural network boundary estimation algorithm, although

trained on simplified synthetic data, performed surprisingly well
during competition scenarios in the AMASE simulator. However,
the neural networkwas faced with situations it had never before seen,
such as circular free-point paths and limited fire-point data, as seen in
Fig. 17a. In these situations, the output of the neural network pre-
dictionwas unstablewith jagged edges, holes, and separated fire zone
predictions. A postprocessing step using Polylidar, which extracted
the largest polygon, was critical to help attenuate these issues and
provide relatively stable predictions. Another key insight is that the
neural network prediction is constrained by the image dimension
size, which is determined by the BBOX of the fire points. This
constraint benefits our algorithm in this situation by limiting over-
estimation of a malformed prediction. A strength of our boundary
prediction algorithm is its ability to extrapolate a polygon boundary
with very limited information, as shown in Fig. 18a. Although only
two sides of the fire boundary have been found at 1800 s, the
algorithm is able to accurately guess the boundary extends fully to
the bottom left of the image. This allows the boundary prediction to

a) Training loss and validation accuracy over 30 epochs;
validation set accuracy reported as IOU of binary
classification of every pixel

b) Boundary predictions at three time
instances: columns represent fire-/free-point
encoded images (left), neural network
prediction (center), and ground truth (right)

Fig. 16 Training and validation of the fire boundary prediction neural network.
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achieve high scores near the start of the simulation in time for the

first official scoring (1800 s). For the competition, this was valuable

since the first score was worth three times more than the final score

(at 3600 s).
However, this strength can also be a weakness at times, as seen in

Fig. 18c. In this case, the fire boundary translates northeast, where the

UAVs collect fresh points on the top-right boundary. The stale point

observations on the old southwest boundary lead to an overestimation

of the fire, resulting in a lower final score at 3600 s. As soon as the

UAVs reach the west border, the error is immediately corrected, but

this is after the final scoring. It is clear that the neural network has
learned to favor high growth/size of boundary predictions in contrast

to conservative predictions. We found that this choice was beneficial

given higher score weights for early predictions, but this bias should

be revisited in future work. These examples also highlight our

method’s singular reliance on point observation data for boundary

estimation. Future work should investigate integrating additional

inputs into the neural network such as wind velocity and terrain
topology. These additions will allow the network to better compen-

sate for stale data.
The neural network was trained on synthetic polygons with ran-

dom translation and scaling operations. Suchmethods can accurately

capture the growth and translation of wildfires, but they may not be

able to capture extreme shape changes over time. Future work will

investigate using more detailed wildfire behavior models [57] to
generate synthetic polygonmovement for training data. Additionally,

we will integrate documented real-life wildfires from existing fire

databases that capture their change over time [52,54]. The methods

proposed for estimatingwildfire boundaries from temporal pointwise

samples can be generalized to other domains requiring polygon

estimates from pointwise boundary observations, e.g., estimating

the growing boundary of an ocean oil spill through UAVmonitoring

[58]. Our method could be adapted to this domain by modifying the

polygon evolution method in Sec. V.B.1 to oil slick propagation

models and adjusting the UAV sampling strategy in Sec. V.B.2 to
match oil/water sensor properties. With these changes, new synthetic

datasets can be generated to train any domain-specific neural network

model to predict boundaries of interest.
Our agglomerative hierarchical clustering technique does not cur-

rently take into account point data age. This may cause issues, e.g.,

one fire crossing a separate fire’s boundary. In future work, we plan
on integrating time as part of the distance measurement between

points for cluster assignment. Distances in data collection time and

physical space are not directly related, and thus will require integra-

tion into a single “distance” metric. This will support clustering of

point observations onlywhen they are similar in bothmetrics. Recent

augmentations such as accelerated hierarchical density-based clus-

tering [59] should also be considered for boundary sets such as those
generated in AMASE.
Our binary segmentation neural network performed well overall

but overestimated the boundary during fast movement, producing

malformed predictions on occasion. Future work will investigate

the use of recurrent neural networks to help the network store

memory of the boundary over time to incorporate data age into

results [60]. Currently, we use dilated convolutions with Resnet to
extract features from the encoded image. However, transformers

have shown promise in extracting important features from image

data through self-attention [61,62]. Future work will investigate

their use for extracting the most salient spatial and temporal features

for boundary prediction.

a) 1800 s into simulation: fire hack score = 28.9%

b) Boundary estimation accuracy (IOU) over simulation time; our neural network model is compared against
a baseline convex hull model with a 1000 s time threshold

c) 3600 s into simulation: fire hack score = 76.2%

d) Boundary estimation accuracy (IOU) over simulation time. Our neural network model is compared against
a baseline convex hull model with a 1000 s time threshold

Fig. 17 Boundary estimation in AMASE with challenge 2 fire A. NN denotes neural network.
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VIII. Conclusions

This paper described planning and fire boundary estimation tech-

niques enabling a team of UAVs to find and map fire boundaries in a

large complex terrain region. UAV behaviors are governed by a state

machine supported by exploration, rally, and line-following planning

and guidance laws. A novel concave polygon boundary estimation

technique leveraging computer vision and computational geometry

was presented. Spatial and temporal point observations of moving

boundaries were processed by a neural network and converted to a

concave boundary polygon. It was shown that the neural network

trained on thousands of synthetic images provides excellent boun-

dary predictions on unseen test datasets.

At a system level, AMASE simulations showed the current inte-

grated multi-UAV planning and boundary mapping system performs

well despite a large operating area, complex terrain, wind disturb-

ances, and moving fire boundaries. The team of UAVs rapidly found

fire boundaries, rallied around them, and successfully followed their

outlines. Terrain and fire hazards were avoided even while UAVs

were sufficiently close for fire point sampling. The current methods

were further validated when the authors placed first in the 2019

AFRL Swarm and Search AI Challenge.

While AMASE focused on multi-UAV fire boundary characteri-

zation, the proposed planning and boundary mapping methods may

be applied to any problem domain that requires multiple agents to

identify and map a complex boundary from point observations. The

current method only requires models for pointwise observations and

ground truth polygon estimates for training the neural network.

Future work is recommended to explore and potentially optimize

over the suite of possible large-area exploration patterns, to incorpo-

rate more complex sensor data into boundary estimation (e.g., from

thermal imagers), and to decentralize planning and local boundary
estimation computations for cases when a continuous global com-
munication link cannot be maintained.
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