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Abstract—We tackle the problem of generalization to unseen
configurations for dynamic tasks in the real world while learning
from high-dimensional image input. The family of nonlinear
dynamical system-based methods have successfully demonstrated
dynamic robot behaviors but have difficulty in generalizing to
unseen configurations as well as learning from image inputs.
Recent works approach this issue by using deep network policies
and reparameterize actions to embed the structure of dynamical
systems but still struggle in domains with diverse configurations
of image goals, and hence, find it difficult to generalize. In this
paper, we address this dichotomy by leveraging embedding the
structure of dynamical systems in a hierarchical deep policy learn-
ing framework, called Hierarchical Neural Dynamical Policies (H-
NDPs). Instead of fitting deep dynamical systems to diverse data
directly, H-NDPs form a curriculum by learning local dynamical
system-based policies on small regions in state-space and then
distill them into a global dynamical system-based policy that
operates only from high-dimensional images. H-NDPs addition-
ally provide smooth trajectories, a strong safety benefit in the
real world. We perform extensive experiments on dynamic tasks
both in the real world (digit writing, scooping, and pouring) and
simulation (catching, throwing, picking). We show that H-NDPs
are easily integrated with both imitation as well as reinforcement
learning setups and achieve state-of-the-art results. Video results
are at https://shikharbahl.github.io/hierarchical-ndps/.

I. INTRODUCTION

Consider the tasks such as pouring liquid or scooping beans
as shown in Figure 1. These tasks are dynamic in nature, i.e.,
they require the robot to continuously apply the right forces
and accelerations to act in a reactive manner to changes in
the environment. Unlike quasi-static tasks, e.g. pushing or 2D
grasping, where it can take arbitrarily long in between each
action, the robot needs to reason at the whole trajectory level to
execute a swift motion to perform dynamic tasks. For instance,
if the robot scoops the beans too slowly they will fall back into
the bowl, or if scooped too quickly the beans will be thrown
out of the bowl. A common way to address this trajectory-
level reasoning is to encode robot movements using nonlinear
dynamical systems, like the ones that govern the flow of heat
or the movement of planets. This idea is encapsulated by a
family of methods known as Dynamic Movement Primitives
(DMPs) [34, 12], which can compactly represent basic building
block trajectories that are then stitched together to perform
complex tasks. DMPs restrict the space of permissible robot
movements by constraining the robot’s goal and trajectory shape
to obey a parametric nonlinear differential equation, consistent
with the robot’s kinematics and dynamics. This allows DMPs
to effectively reason in the space of entire trajectories, rather
than at the level of individual actions. Consequently, these
approaches have led to impressive demos such as pancake
flipping [16], dart throwing [15] or playing table tennis [23].
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Fig. 1: We present H-NDPs, an efficient real-world robot learning
algorithm. Our method is able to perform scooping, writing and
pouring from image input only. We are able to generalize across
a high amount of diversity, i.e. different object positions, pose, etc.
Videos at https://shikharbahl.github.io/hierarchical-ndps/.

However, this class of approaches suffers from two drawbacks
— (a) Generalization: Because of the constraints they impose on
trajectories, DMPs do not have the power to represent general
movements, and limit the controller to small variations in
the initial or goal states. (b) Image-Observations: DMPs have
mostly been built on estimating state vectors and struggle with
high-dimension input, such as raw images. These shortcomings
are in contrast to the flexibility allowed by deep learning
methods in terms of generalization to unseen scenarios and
scalability to high-dimensional image inputs [19, 29, 21, 13].
However, most of the real robot results using deep learning
methods are still limited to pick and place-style quasi-static
tasks, as compared to the dynamic tasks achieved by DMP-
based methods.

In this paper, our goal is to address the following question:
can we build generalizable robot policies for dynamic tasks
by combining the ability of DMPs to reason in the space
of trajectory distributions, with the ability of modern deep
robot learning methods to learn from unstructured image data?
Recent works [2, 25] address this via Neural Dynamic Policies
(NDPs) [2] by embedding structure of a nonlinear dynamical
system as a differentiable layer within the policy network and
training end-to-end. However, similar to DMPs, these methods
still struggle to generalize to unseen state configurations. Why
is that? Consider the examples in Figure 1 where we see a large
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diversity in the location and pose of objects. Depending on
the initial state of the robot and the location of the containers,
the joint trajectories will need to be diverse enough in terms
of reachability and dynamics, to successfully perform the task
of pouring or scooping. Hence, a direct attempt to fit a single
policy to all these trajectories poses a big practical challenge
in optimization which is further aggravated when the input is a
high-dimensional image — which we argue is the case in most
interesting real-world robotic problems.

Our solution is to harness the individual strengths of both
dynamical systems for movement representations and deep
network policies. Instead of directly fitting a single policy on
diverse scenarios, we fit dynamical system-based policies first
in local regions of the task space and then distill them together
into a global one.

Our system consists of a library of local NDPs [2] and a
single global NDP. Each local NDP exploits the strengths of
DMPs: (a) overfit to operate in small regions of the task space
and ensure task success at all times; (b) operate on privileged
low-level state information as input. The global NDP is meant
to operate on the entire space and only receives raw sensory
data as input, e.g., raw images. This global policy is trained to
not only maximize the task performance but also to imitate the
behavior of the local policies. The key here is that both local
and global policies have different objectives: local policies
place importance on task success in their local regions, and the
global policy places importance on learning from images in a
generalizable manner. Owing to this local-to-global structure,
we call our framework Hierarchical Neural Dynamic Policies
(H-NDPs).

Training H-NDPs for real-world robot learning comes
with a practical challenge: there is no guarantee that the
local trajectories distilled by the global NDP will indeed be
successful when tried even on the same local locations as
training unless it is completely overfitting in which case it will
not generalize to new locations. Instead of hoping it to just
work, we perform multiple iterations of this local-to-global
procedure by re-training local NDPs by solving local tasks
while being faithful to the global NDPs and then distilling the
refined local ones into a new global NDP until convergence,
as shown in Figure 2. Such an iterative process is standard
practice in general [18, 3, 33] to prevent the distilled network
from diverging. However, the added advantage of H-NDPs
is that the embedded dynamical system enhances both safety,
convergence, and overall performance, as we show in the results
section later.

One of the big contributions of this paper is an exhaustive
experimental evaluation of H-NDPs and several other baselines
on real-world tasks of writing, scooping, and pouring with a
robot. Our real-world experiments are conducted in realistic
settings with raw high-dimensional images as inputs, with large
variations in object positions and goal locations, involving
several hundred hours of robot interaction. Finally, we also
evaluate complex simulated tasks like throwing, catching,
and picking. We show that H-NDPs achieve state-of-the-art
performance across all the tasks in reinforcement as well as

imitation learning settings.

II. BACKGROUND
A. Dynamical Systems in Robotics

Dynamical systems have long been used in robotics to
represent trajectories and various motion primitives. Such
systems operate over an arbitrary robot state (say y, y and
1). Examples of such coordinate systems are joint angles
or end-effector positions. Specifically, past work has used a
second order dynamical system called Dynamic Movement
Primitives (DMPs) [12, 34, 27], derived from Lagrangian
Mechanics, to represent robot motions. DMPs are represented
by the following:

i=aBlg—y) =9+ f(z,9), (D

Here, g is a desired goal state and « is a hyperparameter
(and 8 = 7, in order for critical damping). The above equation
can be broken down into two parts. a(5(g — y) — ¢) allows
for smooth convergence to the goal, making the trajectory
physically realizable. f(z,g), a nonlinear forcing function,
captures the shape of the trajectory. It is a common practice
to use radial basis functions to represent f; the combination
of these allows f to represent arbitrary shapes. Traditionally,
the weights on these basis functions, w;, are fit via regression
on demonstration trajectories.

Jle9) = ZZ%Z%(Q —g), = el ()
f decays linearly with x, which is a variable used to replace
the time dependency of this ODE. It allows us to arbitrarily
stretch or compress time, and sample trajectories of any length
from the DMP. x obeys the following first order dynamical
system: © = —q;x

B. Neural Dynamic Policies

More recently, DMPs have been used in a deep policy
learning setup [2, 25]. Neural Dynamic Policies (NDPs) [2]
embed the dynamical system described in DMPs inside a deep
policy network. Given an input (image or state), s;, NDPs
employ a neural network ® and output DMP parameters,
wy, ..., Wy (radial basis function weights) and goal state g.
These parameters are used by a forward integrator to output
a trajectory {y:,vs, s} for ¢ = 1 to t = T. If the robot’s
action space is not in the same coordinate system as y, then
an inverse controller §)(.) is used to convert the desired
trajectory into a set of actions for the robot to execute in
the environment. The forward pass of an NDP involves solving
a second order ODE and a pass through the inverse controller.
Bahl et al. [2] show that NDPs are fully differentiable and
can be efficiently incorporated in RL or Imitation Learning
settings, and demonstrate some toy results showing that NDPs
can learn from images as well.

III. METHOD

Consider the real world task of scooping from a bowl. The
robot has to both plan a trajectory that will allow it to do
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Fig. 2: We train local Neural Dynamic Policies (NDPs) 71'1(1) on each region ¢ of the task space, from state observations. A global NDP
74 (usually taking in image input [;) learns to imitate the local experts. We use the global NDP to retrain local NDPs which keeps the
NDPs from diverging. These local-to-gloabl interactions happen in an iterative manner. NDPs make a good candidate for capturing such
local-to-global interactions due to their shared structure and the fact that they operate over a smooth trajectory space.

the scooping motion properly, and understand any potential
randomness, for instance if the bowl changes locations. A
single policy likely will have a lot of trouble with this. We
address such challenges by presenting Hierarchical Neural
Dynamic Policies (H-NDPs). H-NDPs use a local-to-global
learning scheme which makes it much easier for the agent to
learn how to handle diversity in the task and deal with raw
image inputs. We leverage structure provided by NDPs [2] for
policy learning, allowing our hierarchical policies to operate
in a shared space, and thus leads to smoother trajectories and
more sample efficient learning. In this section, we describe
how this setup works, both in the reinforcement and imitation
learning settings.

A. Hierarchical Neural Dynamical Policies

We break down policy learning for a given task into two
components: local controllers which operate from exact state
observations, and a global policy which learns from raw sensory
observations, for example robot poses and images. Both policies
are NDP; the policy networks have an embedded dynamical
system as a layer. Directly optimizing the global policy for
the full task can be difficult, since dynamical systems can
easily overfit to a single trajectory. Let m be an NDP and let
@(s;0) be the deep network inside the NDP, parameterized by
weights 0. ¢(s;0) outputs the DMP parameters which are used
by the forward integrator F' to solve the differential equation

described in Equation 1. 7, the output of 7(.|s), is F(¢(s;6)).

We divide the task space into M different regions. We train
local NDPs 7Tl(l) on each region ¢ (R;) of the task space. For
example, for a task like scooping, each bowl location would
be its own region, and we would train a single NDP to solve
the task for that specific bowl location. For the rest of this
section, let the local policy 7rl(z) be parameterized by network
weights by 91(2). For task 7, we will compute loss on the NDP
output, Li(ﬂl(l)) and optimize with respect to 091(1). This loss
can be any differentiable loss based on the policy output. In
the next two sections, we will describe what £; is in the case

of RL and imitiation learning.

Once the local policies are trained, the global NDP 7,
parameterized by network weights 6, learns to imitate the
local policies. This makes it easier for the global policy to
understand the difference between high level task details and
low level task optimization. The global NDP conditioned on
the current observation, s;, learns to clone the behavior of
the local NDPs in using the loss: Lpc =), || F(¢(s¢;04)) —
F(o(sg; Gl(l)))| |2. There is no guarantee, however, that a single
iteration of behavior cloning will work. In practice, an iterative
process is standard. Therefore, we fine-tune 7, on the loss
function for the full task (union of all task regions R;), L£4(6,).
In summary, the overall global NDP training loss is:

Egloba] = ['BC + Eg(og) (3)

We would like to minimize the amount of human supervision,
thus we do not want to create more task spaces but need more
data to train the policy. One possibility is to retrain the local
NDPs and collect more data, However this could easily lead to
divergence. Thus we use the NDP 7, to reduce divergence by
adding o; D1, (\”||,) to the local NDP task loss £;(6\").
«; 1s a hyperparameter for the weight of this extra loss term.
We collect more data from the local experts and repeat the
above steps until convergence. We call this process iterative
refinement. This structure allows the local experts to adjust
their outputs based on what is easier for the global policy to
learn. NDPs make a good candidate for such a learning scheme
due to their shared structure and the fact that they both operate
over a smooth trajectory space, leading to much more efficient
learning. Hence, the overall loss for the ¢th local NDPs is:

Lioear = L:(6) + ;D (x| y) “

We provide a detailed description of H-NDPs in Algorithm 1.

The general idea of local-to-global learning has been widely
studied in machine learning for generalization in complex
domains [38, 3, 33]. For robot learning in particular, local-to-
global structure has been exploited by for imitation learning



by Levine and Koltun [18] and for RL by Ghosh et al. [10], Teh
et al. [39]. In contrast to the black-box policy networks used in
these works, our main contribution is to embed the structure of
a nonlinear dynamical system within the network. NDPs make
the interactions between global and local policies a lot more
efficient, since both operate in the same DMP parameter space.
This allows generalization to new configurations for dynamic
tasks, a strong advantage of our method. We now discuss how
to apply H-NDPs to both imitation and RL settings in the
following subsections.

B. H-NDPs for Imitation Learning

In the imitation learning setting, we train the global NDP
(mg) via visual inputs and the local NDPs (wl(l)) are trained
via supervised learning to imitate kinesthetic demonstrations.
We start with a single demonstration for each R;. Let this
demonstration be Td(;)no. Therefore the local NDP loss L;
(described in Equation 4) for the IL case:

£i(07) = 1P (&(s:6)) = Tieml

demo

&)

For simplicity, both local and global NDPs are set to be
Guassian with a fixed variance. The KL-divergence in the
extra loss term to the local NDP loss (described in Equation 4)
therefore simply becomes:

Dicr(m|mg) = il |[F(é(s(”56007)) = F(¢(58”;04))]]2 (6)

Here, let Where sy) be the observation received by the agent
while performing task 7. Naively using a constant o« might
make the local NDPs worse. For instance, at the beginning of
training, the global NDP may not be successful for every task
region. Instead, we deploy the trained global policy to collect
F(gzﬁ(sgz); 6,4)), a trajectory for every local region i. We set
a; = 1 only if F(gb(sgl); 64)) is judged successful by a human.
Otherwise, we set it to 0. Finally, £,(6,), the loss function
for the global NDP is simply the imitation learning loss on
the original demonstrations:

Ly(65) = D IIF((si7:00) —miemlF (D)

C. H-NDPs for Reinforcement Learning

In the RL framework, the objective is to learn a pol-
icy 7'('(0,25|St72 that maximizes the sum of expected rewards
R, =E[>,_,7v"R(si,a;,si+1)]. It can be difficult for RL
policies to work in highly dynamic environments, especially
when there is a high amount of stochasticity or variation in
the task.

In the RL setting, similarly to the imitation learning setting,
we split the task into ¢ regions. Each local NDP is an RL
policy and we use L£; = J;, where J; is the surrogate
policy gradient loss from an off-the-shelf policy optimization
algorithm. Specifically, we use the loss from Proximal Polic
Optimization (PPO [35]), and update the parameters of 7T£l
with respect to VJ;. Similarly, m, is optimized via PPO on
the loss £, = J,. To avoid divergence of the global NDP, we
compute the KL divergence from the global NDP to each local

Algorithm 1 Training H-NDPs

Require: NDP Policy randomly initialized global policy 7y with weights 6,
M local regions R;, for each region ¢ a local NDP 7rl(2> and corresponding

NN weights G(i), initialize empty D
for 1,2, ... iterations do
for i = 1...m do

Run policy wl(i) on environment R; for H steps

Collect trajectory F(¢(.; Bl(i))) and store into D
C(O_;npllte (%local = Ei(el(Z)) + aiDKL(ﬂ'l(l) lI7g)
k2 1
0,” <~ 0,7 —nV
end for o @
= 3
Compute Lpc = 3 i7" [[F(d(st504)) — F(o(st;0;7))ll2
Compute loss Lgjobat = Lac + Lg(0y)
Oy < 04 — NV, Lylobal (until convergence)
end for

Gl(,i)ﬁlocal (until convergence)
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Fig. 3: Visualizations of the original demonstrations and the trained
local NDP on selected joints, for the real-world scooping task. The x-
axis is the timestep and y is the joint value. Each curve representations
a different demonstration. We can see that local NDPs can efficiently
capture the desired motion in a smooth manner.

NDP, as in Equation 4, and add to the local NDP training loss,
L;. Since we use Gaussian policies with learned variance, then
o+ (mi—pg)®
203

the output of wgl) is N(pi,07) and that of my is N (g, 02).
In practice, we found that setting «; to either O or a very low
value worked much better. An explanation for this phenomenon
is that NDPs already contain more structure via the embedded
dynamical system and hence do need KL-divergence constraint.
The DMP parameter space these policies are in is already a
lot more meaningful than the general neural network space.

we have that: DKL(wl(i) ||mg) = log Z¢ + — 1. Here

D. Advantages of H-NDPs for Real-World Robotics

Due to their search over a physically smooth space, H-NDPs
provide safer and more efficient learning. This can be a benefit
in the real world, where hardware setups can be brittle and
exploration can be dangerous. In fact, in Figure 3 we show
the trajectory for multiple joints of sampled demonstrations
and the output of the corresponding fitted local NDP, which
learns a much smoother version of the demonstration.

Secondly, since H-NDPs operate at a trajectory level, the
policy 7 is only used every k steps. Hence fewer forward
passes need to be taken by the policy network. With large
networks and computationally expensive hardware (such as
robot controllers and cameras), more forward passes can
actually be an impediment to the learning algorithm, as it cannot
execute the task at a high enough frequency. Additionally,
we can also sample trajectories at arbitrary lengths, and can
therefore output a more compact trajectory if needed.



Fig. 4: Sample trajectories for Scooping (top) and Pouring (bottom)
tasks, on the Franka Panda robot

IV. EXPERIMENTAL AND IMPLEMENTATION SETUP
A. Real Robot Tasks Setup

For all the real world tasks (scooping, pouring and writing),
we use visual inputs for the global NDP and state inputs for
the local NDP. We use a Franka Panda 7 DoF robot, controlled
by joint angle control. We use the robot control code from
Zhang et al. [44]. We run the controller at about 50 Hz for
both local and global policies. We are in fact bottlenecked by
the frequency of the image capture and processing software.
Note that a neural network policy which needs image inputs
every timestep would be significantly slower (5-10Hz). An
H-NDP predicts one trajectory of k steps, thus needs only one
forward pass per k steps allowing for a 50Hz controller. In
all of our experiments, we use k = 350. To mimic real world
conditions, we vary goal locations and intentionally change the
scene a little bit (slightly shift the robot, camera or the object
in the robots hand). For ease of use, we utilize the same initial
robot joint positions. In each of the real world tasks, a human
decides whether a trial is successful or failed. More details of
each task can be found in the supplementary material.

B. Simulated Tasks Setup

We also perform simulation experiments on dynamic tasks,
inspired from tasks performed by Ghosh et al. [10]. The
simulated robot is a 6 DoF Kinova Jaco, which we control in
joint angle space. All tasks are simulated in the MuJoCo [40]
framework. Throwing involves first grabbing then throwing a
cube inside a target box. To add diversity to the task, we vary
the location of the goal box. These constitute different regions
of the task space. For picking, the goal is to grasp a cube
and lift it as highly possible. Here the diversity comes from
varying the starting position of the block. Finally, we perform
the task of catching a ball being launched in the air. The goal
is for the robot to catch the ball and keep it in its hand till the
end of the episode. Here, we randomize the starting location
of the ball. Images of these tasks can be seen in Figure 5.

C. Policy Architecture and Network Pretraining

In the RL setting, we use the same architecture as Bahl
et al. [2] (2 hidden layers of 100 neurons). In the imitation
learning setting, we use a very small fully connected neural
network (one hidden layer with 40 neurons) for our local
policies, and a similar Convolutional Neural Network (CNN)
architecture to that of GPS [19]. We also use a spatial softmax
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Fig. 5: Reinforcement Learning environments in MuJoCo [40].

layer [19], which for each channel ¢ f., = ZZ j ScijTij and
fey = Zij ScijYij» where 4, j are pixel coordinates, and s;; is
the spatial softmax function for pixel a.;;. We then concatenate
robot joint poses to this network, and pass them through two
fully connected layers and output desired joint angles.

In order to provide the global policy with basic visual
features, we pretrain the network to predict object pose data
(this form of pretraining is common in robotics, e.g. in Levine
et al. [19]). For our scooping and pouring task, we provide a
similar form of pretraining, although with approximate poses.
We do not use any AR markers for estimation. Instead we
sample and move the robot to a position, place the object
there and capture a training image. This naturally leads to
imprecision in the training data, but is more realistic. For the
digit writing task, we pretrain on an MNIST-like classification
task, where we use a few digits written on a board by a human.

V. RESULTS: H-NDPS FOR IMITATION LEARNING

We evaluate H-NDPs on three real world tasks for imitation
learning from images: Digit Writing, Scooping and Pouring.
Videos at https://shikharbahl.github.io/hierarchical-ndps/ and
in supplementary. One of the main focus of this work is
thorough scientific evaluation in the real world itself. This
experimentation involved hundreds of hours of interaction that
took several weeks on hardware to complete the real-world
evaluation shown in Table I and Figure 6. We clearly separate
training and testing scenarios for each of the tasks and describe
them in the following subsections as well as in the appendix.

The goal of this empirical study is to answer following
scientific questions across all the tasks:

o« How much does the structure of dynamical systems
contribute to the performance of H-NDPs?

o« How much does iterative refinement of global policy
contribute to the performance of H-NDPs?

« How much does the local-to-global structure contribute
to the performance of H-NDPs?

We attempt to answer these questions by running baseline
methods. Firstly, to understand the importance of dynamical
systems in H-NDPs, we run comparisons against a method
that uses iterative refinement as well as well as a local-to-
global structure, but with fully connected neural network layers
instead of embedded dynamical systems. This method is our
implementation of GPS [19]. For every other baseline, we also
design a version of that baseline with only fully connected
layers, calling it vanilla NN. Secondly, to address the question
of the effect of iterative refinement, we train H-NDPs and
GPS for only one iteration. To have a fair comparison, we
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train these baselines with 5x more demonstrations so as to
provide effectively the same amount of data. However, note
that these baselines have same number of interactions but have
S5x more supervision because H-NDPs does not need more
expert demonstrations after the first iteration. Finally, we test
the importance of the local-to-global structure by introducing
baselines that do not use it. NDP is the global policy that
just learns from demonstrations. which is very similar to the
method from Bahl et al. [2]. Vanilla NN is the fully connected
counterpart of NDP.

A. Task 1: Digit Writing on the Whiteboard from Image Input

The goal in this task is for the robot to draw a digit on
a whiteboard, given an image of the digit (ranging from 0
to 9). A dry-erase marker is attached to the robot hand. We
collect 10 kinesthetic demonstrations (one for each digit 0-9)
for training. We keep 10 digit images held-out which are not
shown to the robot during training on which we compute the
“test” success. We pretrain the global policy network using the
procedure discussed in Section IV-C.

Role of Dynamical System Structure: In Table I, we can see
that H-NDPs achieve the highest test success rate, 80%. Our
approach outperforms the GPS baseline by a large margin. We
show a sample of the test results in Figure 7. The picture on
the left is what the robot sees at test time, and the on the right
is the final output. Compared to all the other methods, H-NDPs
have the smoothest and most accurate result. Figure 7c shows a
much smoother output by our method compared to that of GPS
(Figure 7e). The major difference between the implementation
of the two approaches is that GPS uses fully connected layers
instead of dynamical-system based layers. Interestingly, when
comparing all other baselines (no local-to-global structure, no
iterative refinement, etc) the dynamical system based methods
(in Table I these are H-NDPs and NDP) all outperform their
fully connected counterparts. This clearly indicates that the

role of dynamical system-based structure is crucial for writing.

Role of Iterative Refinement: We can see that in Table I that
performance of H-NDPs drops without iterative refinement
(with 5x more supervision performance still drops to about
50%). From Figure 6b, it is clear that our method benefits
from iterative refinement, as the test and train success rates
increase. Interestingly, at test time our method was able to
capture the 74" digit better than at training time. Despite a
drop in performance, H-NDPs without iterative refinement still
outperforms almost all other baselines.

Role of Local-to-Global: H-NDPs clearly outperform methods
that do not employ a local-to-global structure. Both the NDP
and Vanilla NN baselines perform significantly worse. This is
true for methods that use 1x the demos as H-NDPs as well
5x. In fact, methods that use 1x the demos tended to fit to one
demonstration and ignore the rest; i.e. Vanilla NN only output
8’s for all ten digits.

#Demos #lter Writing Scooping Pouring
No local-to-global structure:
NDP 1x 1 0.2 0.2 0.0
Vanilla NN 1x 1 0.1 0.0 0.0
No local-to-global structure with 5x Demos:
NDP 5x 1 0.5 0.3 0.0
Vanilla NN 5x 1 0.1 0.0 0.0
Local-to-global but no iterative refinement:
GPS 5x 1 0.1 0.0 0.0
H-NDPs (ours) 5x 1 04 0.3 0.0
Both local-to-global and iterative refinement:
GPS 1x 5 0.3 0.0 0.2
H-NDPs (ours) 1x 5 0.8 0.6 0.3

TABLE I: Final results on the three real world tasks. We average
the test success rate normalized to [0 — 1] over 10 trials on held-out
testing images/locations. We compare against vanilla NDP [2], vanilla
NN imitation, and we replace NDPs in our method with vanilla neural
networks (a similar method to GPS [19]). We can see that our method
outperforms all the baselines substantially.

B. Task 2: Scooping from Image Input

In the scooping task, the robot has a spoon attached to its
effector and its goal is to scoop almonds from a bowl. We
vary the bowl locations, and the robot must infer from only
from raw images where it should scoop. We have 18 distinct
locations on the table for training and 10 distinct locations kept
held-out for testing, shown in Figure 1 in the supplementary.
We collect kinesthetic demonstrations on training locations. We
provide the pretraining discussed in Section IV-C. Figure 4
shows a picture of this setup.

Role of Dynamical System Structure: Similarly to the
writing task, it is clear from Table I that H-NDPs drastically
outperforms all baselines without dynamical system-based
structure (GPS, vanilla NN, etc). In fact, all such baselines
ended up executing the mean trajectory. For example, wherever
the bowl would be placed, the networks would output the same
trajectory towards the center of table. This clearly shows that
trajectory level prediction is hard for traditional networks, and
that dynamical systems are important for this task.

Role of Iterative Refinement: In Figure 6a, we see that
both training and test success rates for H-NDPs go up as we
perform more iterations of refinement. For H-NDPs, iterative
refinement doubles the performance. However, even without
iterative refinement, H-NDPs still obtains a 30% success rate,
the highest of the baselines.

Role of Local-to-Global: We can see that H-NDPs obtains
a higher success rate at test time than any of the baselines
that do not use the local-to-global structure (1x and 5x demos
both). The performance gain from 5x to 1x demonstrations is
not very high. This indicates just adding more data is not as
important as the global-to-local framework. While H-NDP’s
success rate is 60%, even in case of failure it would go close
to the bowl but not actually scoop any almonds out.
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Fig. 6: Success rate for the three real-world tasks across iterations. Note that more iterations of the H-NDP method in fact does help in

learning, both in the train and test (held-out/unseen) scenarios.
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Fig. 7: Images showing the writing task setup. (a) shows the robot setup we used, a 7 DoF robot with a marker placed inside its end-effector,
controlled via joint angles. (b) shows the input image (unseen at training time). (c) shows the output of our method, (d) shows the output of
the local controller and (e) shows the final output of GPS [19]. We can see that our method produces a smooth and correct-looking 4.

C. Task 3: Pouring from Image Input

We perform experiments on a real world visual pouring task.

The robot starts with a cup of almonds in its gripper, and must
pour the almonds into a target cup, without any falling out. Just
like scooping, the global policy must act from camera input

only, and the target cup moves around to different locations.

We collect kinesthetic demonstrations for 16 training locations
and keep 10 held-out locations for testing as in the case of
scooping, shown in the supplementary (Figure 1). Pretraining
is discussed in Section IV-C and the task setup in Figure 4.

Role of Dynamical System Structure: This task is inherently
more difficult than the others, possibly due to the size of
the cups and a lot more accuracy is needed for a successful
pour. H-NDPs, however, still outperforms every other baseline,
including GPS (30% vs 20%). During testing we observed that
in the failed trials robot would go close to the cup but miss
it marginally. On the other hand, GPS completely missed the
target most of the time. The other vanilla NN baselines which
do not perform iterative refinement would actually produce
infeasible and dangerous behavior. This shows that dynamical
system is important for the pouring task.

Role of Iterative Refinement: In Table I, we can see that all
of the baselines without iterative refinement have O success.
On the other hand, Figure 6¢ shows that H-NDPs also starts
with a 0% success rate, but improves via iterative refinement.
Additionally, most of the baselines produced the same trajectory
for every input. This shows that iterative refinement is very
helpful, especially in more challenging tasks.

Role of Local-to-Global: All the methods that do not use the
local-to-global framework have a success rate of 0%. Both
methods that do use the local-to-global structure (as well as
iterative refinement), H-NDPs and GPS, are the only ones that
achieve any success. Therefore, local-to-global structure is in
fact important for the pouring task.

VI. RESULTS: H-NDPsS FOR REINFORCEMENT LEARNING

In the RL setting, we compare our method against several
competing methods. We firstly test a similar method to Ghosh
et al. [10] which we call PPO-DnC. This is very similar to
the original method, however it uses PPO as a base algorithm,
so that it can be compared apples-to-apples with H-NDP. In
another baseline, we run the NDP algorithm [2], equivalent to
training the global NDP only. Additionally, we run our base
RL algorithm, vanilla PPO [35] as a comparison as well. To
have a fair comparison, we also consider the baselines used by
Bahl et al. [2], in fact using their provided code. We compare
against the multi-action PPO from Bahl et al. [2], Variable
Impedance Control in End-Effector Space (VICES) [22] and
Dynamics-Aware Embeddings (DYN-E) [43]. The latter two
methods provide alternative parameterizations for action space:
in VICES [22] the policy directly outputs parameters for a
PID controller, and in DYN-E [43] an action-based encoder is
learnt from environment interaction.

We can see in the RL results in Figure 8. We present
the result of 3 random seeds run on the same codebase. We
plot the success rate versus the number of environment steps
taken. H-NDP, our method, outperforms all the baselines
discussed above either in terms of sample efficiency or absolute
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Fig. 8: Success rate for the three simulated RL tasks: throwing, catching and picking. Note that all these tasks are stochastic. Our method

(red) outperforms all the baselines.

performance. This difference is especially stark for the catching
task (Figure 8b), since the randomness is the starting position
of the ball, and even a small perturbation can have a large
effect on the trajectory. H-NDPs are able to capture this high
level variation quite well, while the baselines cannot. In the
other two tasks, shown in Figure 8c and Figure 8a, H-NDPs are
still more sample efficient and have a better final performance,
even though the baselines get a relatively higher performance
compared to that of catching. This is likely due to the fact
that randomness in throwing and picking isn’t as drastic as
catching. However, overall, we can clearly see that H-NDPs
provide a strong performance boost, likely due to the embedded
dynamical system which allows for smooth trajectories and
efficient distillation of knowledge.

VII. RELATED WORK

Robot Learning for Dynamic Tasks Robot learning methods
have been successful for many real-world tasks. However, these
tasks have been performed in a controlled, and quasi-static
setting where the robot can take arbitrarily long gap between
subsequent actions [20, 1, 13, 29]. The real world, however,
is a lot more dynamic. When humans perform daily actions,
like cutting vegetables, they think at a trajectory level and
not at a discrete action level. To this end, seminal work in
robotics has proposed using dynamical systems to model actions
and trajectories, in a continuous space. Dynamic Movement
Primitives (DMPs) [12, 34, 30] have been widely used to
perform diverse, dynamic tasks such as table tennis [23],
panckake flipping [16] or tether-ball [26]. They are able to
model smooth, natural motions, and have in fact been used to
inspire many policy learning schemes [8, 5, 4, 41, 11, 7]. More
recent work [2, 25, 31, 6] has shown DMPs can be incorporated
in a differentiable, end-to-end deep learning setting, which is
an attribute that H-NDPs leverage.

Hierarchical Frameworks for robot learning While DMPs
have been used in previous works for building hierarchical
policies [9, 37, 14, 28], these have mostly been constrained to
discrete primitives [9, 28] and relatively simple settings from
a perception standpoint. Previous works have also attempted
to share knowledge between DMPs; for example Riickert and
d’Avella [32] leverages shared basis functions for controlling

multidimensional systems. To our knowledge, our work is the
first to use a hierarchical local-to-global structure using DMPs.

Hierarchical frameworks are popular for deep imitation
learning setups. One prominent example is Guided Policy
Search (GPS [18, 19]) which uses a bottom-up approach by
learning “expert” local controllers from state observations and
then distill them into a image-based policy. While H-NDPs
uses a similar bottom-up framework, we employ the structure
of dynamical systems within our policy architecture, allowing
us to perform more dynamic tasks than GPS. Furthermore, our
local controllers are learnt from a few (10— 15) demonstrations,
which are a lot easier to obtain than assuming fully observable
environment and hand-engineering required for GPS.

Hierarchical learning has also long been explored in the
context of RL from both top-down [42] as well as bottom-
up [36, 24] perspective. Ghosh et al. [10] and Teh et al. [39]
propose a hierarchical local-to-global framework to perform
more complex, diverse tasks. Ghosh et al. [10] takes advantage
of local RL policies trained via policy gradients and a
global policy which imitates the former. The local-to-global
interactions between neural networks can lead to suboptimal
behavior, especially for more difficult dynamic tasks. On
the other hand, the local-to-global interactions taking place
within H-NDPs are in a much more structured space (the
space of physically plausible trajectories), leading to a stronger
performance by H-NDPs.

VIII. CONCLUSION

The main contributions of this paper are:

o We propose Hierarchical Neural Dynamic Policies (H-
NDPs) that embed the structure of dynamical systems in
a hierarchical framework for end-to-end policy learning.
H-NDPs facilitate reasoning at the trajectory level while
learning from high-dimensional image inputs.

o We show that H-NDPs are easily integrated with standard
imitation as well as reinforcement learning and achieve
state-of-the-art performance across dynamic tasks in both
the real world and simulation.

o We perform thorough scientific evaluation of held-out gen-
eralization on real-world tasks involving several hundred
hours of robot interaction.



In this paper, we consider generalization only across different
configurations of same objects and leave the generalization
across different objects types for future work.
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APPENDIX

A. Videos

Videos of our results and comparison with baselines are
available at https://shikharbahl.github.io/hierarchical-ndps/. For
every task, we show the original demonstration, results of
GPS [19] baseline as well as H-NDPs results. For each of
these tasks, we can see that our method is not only much more
accurate than the baseline but also smoother and thus safer to
operate. The video shows that the MLP based GPS baseline
policy produces very shaky trajectories.

B. Implementation Details

1) Hyper-parameters and Design Choices

Architectures: In the imitation learning case, we use the
same image and network sizes as Levine et al. [19], everything
up to the NDP layer, which is from Bahl et al. [2]. Our global
policies have 3 convolutional layers, of kernel sizes 7, 5 and
5, have 64, 32 and 32 output channels. After the convolutional
layers, just like Levine et al. [19], we employ a spacial softmax,
where we take the expected features in the x and y axis and
concatenate them. We then get a flattened vector of size 64.
Similarly to Levine et al. [19] we concatenate the robot joint
positions and 3D end-effector pose into these features. We
then have 2 fully connected layers of hidden size 40. We use
ReLU non-linearities. For the rest of the network, we use the
exact architecture from Bahl et al. [2]. Our local NDPs are
similar to those provided by Bahl et al. [2], but use a smaller
hidden layer size (40 instead of 100). All images are 224 x
224, except for the ones used in the writing which are 100 x
100.

Pretraining: For the scooping and pouring tasks, we collect
data from about 150-200 goal locations. We move the object
to these 250 locations, and then randomly sample 5 actions
for the robot take. We use all the layers of the global policy
described above, save for the last layer, which we replace with
a layer of output 3. We train the network to output the pose of
the object. This is a similar pre-training procedure as Levine
et al. [19].

Training: In our imitation learning experiments, we use
the parameter o to weigh the contributions of the original
demonstrations to the IL loss function, in the outer loop. For
writing we use o = 1, for pour and scooping we use o = 0.5.
In the inner loop, we use 8 = 0.1 to weigh the contributions
of the outputs of the global policy. Training such networks
takes about 2 hours.

RL: For the RL experiments, we use the same exact
architectures and hyperparameters for every method as Bahl
et al. [2], which is built on the PPO [35] implementation from
Kostrikov [17]. All networks use hidden layer sizes [100, 100]
with tanh non linearities. We use the code from Zhu et al. [45]
for VICES [22] and from Whitney et al. [43] for DYN-E.

We present the hyperparameters we used for the RL experi-
ments in Table II.

Hyperparameter Value
Learning Rate 0.00025
Discount Factor (v) 0.99
GAE Discount Factor 0.95

Entropy Coefficient 0

Normalized Observations True
Normalized Returns True
Value Loss Coefficient 0.5
Maximum Gradient Norm 0.5
PPO Mini-Batches 32
PPO Epochs 10
Clip Parameter 0.1
Optimizer Adam
Batch Size 2048
RMSprop optimizer epsilon 10-°

TABLE II: Hyperparameters used by H-NDPs for RL

2) Real Robot Setup

We run all of the robot experiments in the Franka Panda 7
DoF robot. We use joint angle control, and use the controller
package provided by Zhang et al. [44]. We run the global
policy at 50 Hz. Each of our trajectories are 15-17s in length
and about 350 timesteps. We constrain our method to run at
50 Hz due to our perception system. We use a webcam for all
of our images and a ROS communication pootocol. Writing:
The writing task consists of taping a dry-erase whiteboard
marker to the robot-endeffector, and placing the robot near
a whiteboard. We collect 10 demonstrations - one for each
digit by kinesthetic teaching. After fitting the local policies,
the webcam is used to take a picture of the digit. Since the
pen is red and the whiteboard is white, we use OpenCV to
process the image and invert the colors so that it resembles
an MNIST image. It is then resized to be 100x100. The 10
test images are processed in the same way but are unseen at
training time.

Scooping: The scooping task consists of a metal serving
spoon attached to the end-effector. The goal is to scoop almonds
from medium sized bowl. Demonstrations are collected via
kinesthetic teaching, one for each table location. We collect
18 demonstrations for 18 locations each. We use 10 different
test locations, which are different from the training locations.
Figure 9a shows the training and testing locations. The images
collected by the webcam are 224 x 224.

Pouring: The pouring task consists of a 100ml paper cup
attached to the end-effector. The goal is to pour the almonds in
the cup into another 100ml paper cup on the table. Similarly to
scooping, demonstrations are collected via kinesthetic teaching.
We use 16 of the 18 training locations as the scooping task and
the same test locations. Figure 9b shows these locations on the
table. Similarly to scooping, the images we use are 224x224.

3) Simulated Environments

Our simulated environments use MuJoCo [40]. We adapted
tasks our tasks from Ghosh et al. [10] (https://github.com/
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(a) Scooping

Fig. 9: Here, we show the training (red) and testing (black) locations on the table for the pouring and scooping tasks.

dibyaghosh/dnc). The original tasks use torque control, however
we modified the environments since our method uses joint angle
control.

4) Codebases

Our RL and imitation learning experiments build

upon the NDP code from https://shikharbahl.github.

io/neural-dynamic-policies/, which is based on the
PPO [35] implementation https://github.com/ikostrikov/
pytorch-a2c-ppo-acktr-gail [17]. Our DnC implementation is
based on top of the NDP code and is inspired by the code

from Ghosh et al. [10] (https://github.com/dibyaghosh/dnc).

The VICES [22] implementation we use is from
https://github.com/ARISE-Initiative/robosuite and the DYN-E
[43] implementation from https://github.com/willwhitney/
dynamics-aware-embeddings.

(b) Pouring
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