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Abstract. We study a dynamic non-bipartite matching problem. There
is a fixed set of agent types, and agents of a given type arrive and de-
part according to type-specific Poisson processes. The value of a match
is determined by the types of the matched agents. We present an on-
line algorithm that is (1/8)-competitive with respect to the value of the
optimal-in-hindsight policy, for arbitrary weighted graphs. This is the
first result to achieve a constant competitive ratio when both arrivals and
departures are random and unannounced. Our algorithm treats agents
heterogeneously, interpolating between immediate and delayed match-
ing in order to thicken the market while still matching valuable agents
opportunistically.

1 Introduction

Matching markets are ubiquitous in online platforms. Sponsored search auctions
like Google Adwords match ads and users, ridesharing systems like Uber and
Lyft match drivers and riders, online markets like Amazon and eBay match sell-
ers and buyers. In each case, the value of a match is a function of the types of
participating agents. In sponsored search auctions, a restaurant ad is more valu-
able when matched to a geographically co-located user. In ridesharing systems,
a driver and rider have higher utility for being matched to each other if they are
nearby. In an online market, buyers might have heterogeneous preferences over
service/product quality and price trade-offs which impact match quality.

The role of the platform is to find high-value matches. However, this task is
significantly complicated by the fact that agents arrive and depart dynamically
over time, and may fail to inform the platform of their departure. In this paper,
we mitigate this complication by assuming that agents have known Poisson ar-
rival and departure rates that are a function only of their type. This allows us
to characterize the optimal expected value from matches using a linear program.
This program bounds the rate at which each pair of types match to one-another
in the optimal solution. Our algorithm uses these LP-based estimates of the op-
timal rates as guidelines. When an agent arrives to the market, we attempt to
match it to each previous agent with a probability equal to a scaled-back ver-
sion of the corresponding rate. We prove the resulting algorithm is a constant
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approximation to the optimal-in-hindsight policy, with competitive ratio at most
8. While we motivate our problem in the context of bipartite matchings, we note
our solution holds for general non-bipartite graphs.

There is a significant body of prior literature on dynamic stochastic matching
in settings where agent departures are immediate or deterministic (and hence
predictable) [9,11,15,12,13], or where the platform is informed immediately
before an agent departs [1, 5,8, 19]. In such settings, it is natural for the platform
to delay matches until an agent is about to depart, in order to maximize the set
of available options. In contrast, when the platform cannot predict departures,
there is a tension between taking a guaranteed (but potentially suboptimal)
match now, or pushing one’s luck to see if a better match arrives later. The main
technical challenge in developing an online policy is navigating this tradeoff for
agents of different types.

Our LP-based approach is certainly not new in the context of stochastic
matching, but we find that our result has several interesting qualitative insights,
especially for settings where agent departures are random, heterogeneous, and
unannounced. First, our algorithm treats matches heterogeneously. For some
matches, the linear program suggests forming them at a high rate. Our algorithm
treats these matches as a greedy algorithm would, matching them (almost) im-
mediately upon arrival. For other matches, the linear program suggests forming
them at a low rate. Our algorithm treats these matches more like a periodic
clearing algorithm would, allowing the market to thicken before attempting the
matches.

This heterogeneous treatment is important for good approximations in our
setting. Consider, for example, an environment with two types of buyers, low and
high, and one type of seller. The low buyers arrive frequently to the market and
depart at a constant rate, whereas the sellers arrive less often. The high buyers
arrive much less frequently than the sellers, and depart immediately after they
arrive, but matches involving these high buyers account for almost all the value
of the optimal policy. In this case, it is important to greedily match the high
buyers and delay matches with the low buyers to thicken the market. A uniformly
greedy policy, that immediately matches all agents, will likely have no sellers in
the market when high buyers arrive, as there are always low buyers available to
match with them. A periodic clearing algorithm that attempts to thicken the
market by delaying all matches for a fixed period of time will likely have no
access to high buyers at match time, since high buyers depart immediately after
they arrive. See the full version of the paper for a more detailed description of
such an example.

Another qualitative insight of our result is the importance of being conserva-
tive in matching attempts. Our algorithm scales back the match-rate estimates
of the linear program by 50%. At first blush, this might seem incredibly wasteful.
However, this scaling is provably necessary: we show in the full version of the
paper that if the algorithm does not perform this scaling then it cannot achieve
any bounded approximation to the optimal matching. Intuitively, the issue is
that the matching policy must leave some slack in the system — by leaving a
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certain fraction of agents unmatched — in order to take advantage of unexpected
fortuitous events where a very valuable match becomes possible. Since an opti-
mal LP solution typically would leave no such slack, one can instead guarantee
it by being conservative when matching.

As is common in the dynamic stochastic matching literature, our approach is
to solve an LP relaxation of the offline optimal matching problem, then use this
solution as guidance for our online matching policy. We prove that the resulting
policy obtains a constant approximation to the LP benchmark, which is only
stronger than the offline optimal match value (and hence the optimal online
policy). The main technical hurdle is that the outcome of matching attempts is
determined by the state of which types of agents are present in the market, and
this introduces correlations across time. For instance, whether a certain type of
agent is present in the market is (negatively) correlated with the presence of
other agents that generate high value from matches with it. In principle, such
correlations could result in scenarios where a certain type is either not present
at all or is overabundant, impeding our ability to match the LP relaxation which
assumes smoothness across time. We address this issue by bounding the impact
of such correlations, by coupling the availability of agents in the system with
Poisson processes that dominate (or are dominated by) them.

1.1 Related Literature

There is a vast recent literature on algorithms for online matching (sometimes
called online task arrival). In a seminal paper, Karp et al. [14] consider an (un-
weighted) online bipartite matching problem where one side of the graph is static
and the vertices of the other side arrive online. They show that a randomized
greedy matching method obtains a (1—1/e) approximation and that this is tight.
This was later extended by Mehta et al. [17] to a generalized weighted matching
environment motivated by ad auctions, with budget constraints on the static
side of the market. Both of these results assume adversarial types.

Stochastic variants of the online bipartite matching problem have been stud-
ied as well. Feldman et al. [9] consider a stochastic variant in which vertex types
on the online side of the market are drawn i.i.d. from a fixed distribution. They
showed how to beat the adversarial bound of (1 —1/e) in this stochastic setting,
using an LP-based approach that solves for a fractional (expected) matching,
then rounds online using a flow decomposition. This led to a sequence of papers
that improved the approximation factors for both the weighted and unweighted
versions of the stochastic problem [11,15], including variants with stochastic
rewards [16, 18] and with capacities on the fixed side [2]. Gravin and Wang [10]
obtain a constant approximation for a related variant inspired by prophet in-
equalities, where edges (rather than nodes) arrive online and must be matched
immediately or lost.

Our model is closer in spirit to the literature on dynamic matching, where
agents on both sides of the market arrive and depart over time. An algorithm
proposes matches online between agents that are simultaneously present. Huang
et. al [12] study an unweighted model in which node arrivals and departures are
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adversarial, but nodes announce when they are about to depart. They derive
constant competitive online algorithms; in a later paper, Huang et al. [13] find
tight competitive ratios. Akbarpour et al. [1] similarly consider an unweighted
version in which agents depart at arbitrary times and inform the market when
they are about to depart, but arrivals are stochastic. In this case, it is approx-
imately optimal to match agents as they go critical. On the other hand, they
show that without departure warnings, greedily matching agents as they arrive
is nearly optimal. As the graph is unweighted in their model and agents are
homogenous, analysis can proceed by studying the limiting distribution of the
number of agents in the market.

The case of weighted matching with departure warnings was studied by Ash-
lagi et al. [5], and they obtain a constant approximation to the optimal weighted
matching. When agents on both sides arrive according to a known IID random
process, Dickerson et al. [8] provide constant competitive algorithms under the
assumption that one side (say workers) never depart until they are assigned,
and the other side (say tasks) depart immediately after arrival if unassigned.
Truong and Wang [19] consider a related weighted bipartite matching model
where agents arrive according to a general stochastic process, agents on one side
depart after a fixed deterministic amount of time, agents on the other side de-
part immediately after arrival if unassigned, and they likewise obtain constant
competitive algorithms. Importantly, in all of these works it is assumed that the
platform knows when an agent is about to leave the system, either because this
can be perfectly predicted or because the platform is explicitly notified, and the
platform can therefore wait until an agent “goes critical” before attempting a
match. In contrast to these works, we assume the platform is not notified of (and
cannot predict) impending departures.

Independently and concurrently with our work, Aouad and Saritac [4] stud-
ied a similar model of dynamic matching with unannounced departures. They
likewise find that there is a tension between greedy matching and batching. They
develop an online algorithm guided by a quadratic program, and show that it
is (4e/(e — 1))-competitive for arbitrary compatibility graphs. In contrast, our
method is based on linear programming (rather than quadratic programming),
and our competitive ratio bound is weaker (8 versus 4e/(e—1)). They also study
a cost-minimization version of the problem, for which they develop an online al-
gorithm that they analyze theoretically and evaluate on empirical data. We leave
open the question of whether a combination of the ideas in these works could be
used to develop algorithms with improved competitive ratio.

Other papers consider the related problem of minimizing average waiting
time. Anderson et al. [3] find that matching agents as they arrive is nearly
optimal even with departure warnings. Ashlagi et al. [6] consider a model with
two agent types — hard-to-match and easy-to-match — and derive structural
insights about policies that miminize average waiting time. Baccara et al. [7]
consider a hybrid model with two agent types in which agents have varying
match values and also incur waiting costs (but never leave the system).
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2 Preliminaries

We consider a model with agents that arrive and depart over time. The type
space of agents is X. Agents of type x € X arrive according to a Poisson point
process of rate \;.* Each agent of type = that arrives then departs at Poisson
rate u,. For an agent ¢ of type x, we will write a; and d; for its realized arrival
and departure times, respectively. Throughout, we refer to types of agents with
letters x and y, and to specific agents with letters ¢ and j.

A matching is a set 7 of times and a pair of matched agents for each time
t € 7. A matching is feasible if, for all matching times ¢ € 7, the agents matched
at t a) have already arrived and not yet departed, and b) have not been matched
to anyone else at or before time ¢t. The value of matching an agent of type z € X
to an agent of type y € X is vgy. For convenience, we sometimes denote the total
value of all matches made at time ¢ by v;.

A matching policy chooses, at each time ¢, based only on the history up until
time ¢, whether to match a pair of agents or to make no match. A policy with
hindsight can revise past decisions, whereas for an online policy, all decisions are
irrevocable. For any policy and time T, let 7(T") be all times ¢t < T at which it
made a match,® and v; be the value of the matches made at time ¢, if any. Then
the value of the policy is:

|
thLlOI(l)f T -FE Z Vg
ter(T)

where the expectation is over the randomness in the arrival /departure process as
well as any randomness in the policy. That is, the policy’s value is the long-run
average value of matches made per unit of time.

2.1 Poisson Processes

We now describe Poisson processes more formally. A point process is a random
countable set of points Z = {z1, z2,... }. We restrict attention to the case Z C
R>, where we can interpret Z as a collection of event times. We refer to a point
process by its set of points Z, which we think of as a random variable.

For any T > 0, we’ll write nz(T) for the number of points in Z N [0,T]; we
think of this as the (random) number of events that occur before time T'. Given
two point processes Z and Y, we’ll say that Z stochastically dominates Y if
there is a coupling between Z and Y such that, for each T > 0, Pr[Y C Z] = 1.

A static Poisson point process of rate A > 0 is a point process such that

1. the set of points in any two disjoint intervals are independent, and

4 We discuss Poisson processes more formally in Section 2.1.
® Note for an online policy, 7(T) C 7(T’) whenever T < T’; however this need not
hold for a policy with hindsight.
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2. the number of points in any given interval of length T follows a Poisson
random variable with parameter (mean) AT

From this point onward we’ll refer to static Poisson point processes as just Pois-
son processes, for convenience. The following standard facts about Poisson pro-
cesses will be helpful in our analysis.

Fact 1 Given a Poisson process Z of rate A, write ngz(T) for the number of
events that occur before time T. Then Enz(T)] = TA. Moreover, limy_, o nz(T)/T
exists and equals A with probability 1.

Fact 2 Suppose we have Poisson processes Zi,...,Z, of rates Ai,..., A\, Te-
spectively. Then the probability that the earliest event (i.e., minimum point) in

UZ; lies in Z; is Nif (D g Ak)-

Fact 3 Suppose Z is a Poisson process of rate A, and Z' is a random set gen-
erated by adding each z € Z to Z' independently with probability p. Then Z' is
a Poisson process of rate Ap.

A corollary of Fact 3 is that if Z is a Poisson process of rate A and Z’ is
a Poisson process of rate X' < A, then Z stochastically dominates Z’. This is
because we can couple Z and Z’ by first realizing Z, then adding each element
of Z to Z' independently with probability A’/\.

3 An Upper Bound

We construct an online policy whose value is a constant fraction of the optimal-
in-hindsight policy. To do so, we develop a linear-programming upper bound on
the value of the optimal-in-hindsight policy for large time horizons.® The value
of the optimal solution is the expectation over the randomness in arrivals and de-
partures of instance-optimal solutions, and so can be written as the expectation
of the sum of match values.

In the following LP, the variable oy, is the fraction of nodes of type y which
match to preexisting nodes of type x, when considered over all arrivals of agents

of type y.

LP-UB: maximize Z Vgy Qgy Ay

z,yeX
Az
subject to gy < — Va,y € X (1)
[ha
Z Ozy Ay + Z Oyzrg <Ay Vo €X (2)
yeX yeX
oy € [0,1], Vr,ye X (3)

5 Taking the limit as the time horizon grows allows us to ignore lower-order terms.
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Constraint (1) bounds the fraction of the time that some node of type y
matches to some previously arrived node of type x by the probability that a
node of type z is present in the system at any given time. Constraint (2) bounds
the total rate at which a type can match by the total rate at which the type
arrives. On the left-hand-side, the first sum captures the rate at which a type
matches to those arriving after it; the second sum captures the rate at which a
type matches to those who arrived before it. Note that constraints (2) and (3)
together imply that ) _y @z, < 1 for all y. This makes intuitive sense: the
total fraction of the time that a node matches to any preexisting type cannot be
greater than 1.

We will first demonstrate that the value of LP-UB represents an upper bound
on the expected value of the max-weight offline matching. Then in Section 4 we
will provide a policy that garners a constant approximation of the LP value in
expectation, and thus of the max-weight offline expectation.

Lemma 1. Let v* be the optimal value of LP-UB. Then the value of any match-
ing policy, including policies with hindsight, is at most v*.

The proof of Lemma 1 is omitted due to space constraints and appears in
the full version of the paper. The idea of the proof is to consider the set of
agents who arrive up to some time 7', and interpret the constraints of LP-UB as
conditions on matchings in the induced graph of potential matches. These finite
conditions include lower order terms, but these disappear when taking the limit
as T grows large.

4 Online Matching Policy

We now present our online matching policy, ONLINEMATCH. Our policy first
solves LP-UB in advance of any arrivals, and then uses the solution to guide its
matching decisions. As demonstrated in the previous section, the solution to the
LP-UB should be thought of as describing the optimal matching rates between
types, subject to constraints that hold as time approaches infinity. Our goal is
to create a policy that approximately matches the value of this LP, which we
will achieve by obtaining a constant approximation to these matching rates.
Suppose that an agent, say agent i of type y, arrives at time ¢. The algorithm
will then iterate through all potential types (including y) in a random order
(line 3). For each considered type z, if there are any agents of type x present
and unmatched in the market, the algorithm will select one of them arbitrarily

and attempt to match it with agent ¢. With probability v - o, - max (1, ’;—’”) the

match occurs, in which case the algorithm completes and awaits the next agent
arrival. Otherwise, the algorithm moves on to the next type in X. If agent i is
not matched after every z € X has been considered, then we leave agent ¢ in the
market unmatched and await the next arrival.

The match probability on line 5 deserves some discussion. This probability
depends on the solution to LP-UB, and is the mechanism by which the algorithm
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ALGORITHM 1: Algorithm ONLINEMATCH
require: scaling parameter v € (0, 1]
input : Online arrivals of agents
(aey) := Solution to LP-UB;
for each agent i arriving at time t, say of type y € X do
for each type x € X in a uniformly random order do
if there is at least one unmatched agent j of type x in the market then

‘ match ¢ and j with probability v - agy - max (1, L
end
end

attempts to follow the matching rates proposed by the LP. One might be tempted
to simply use a,, as the match probability. However, when constructing an online
policy we must consider the difference between unconditional match rates and
matching rates conditional on agent types being present in the market. It may
be that a particular type is extremely unlikely to be present to match during a
given attempt. Consider a problem instance that includes a type x with arrival
rate 1 and departure rate 1/¢, and a corresponding LP solution where oz, = €
for some y (note that this does not immediately violate any constraints, as the
upper bound on g, could be as high as €). The probability that any agent of
type x will be present when an agent of type y arrives is at most € (see Lemma 2).
Thus an online policy that attempts to match agents of type x to agents of type y
with probability e will actually generate such a match with probability no greater
than €2. In order to actually achieve the e fraction that we desire, we must scale
Qgy by 1/€, or ’;—: Intuitively, we have scaled up the match probability according
to the probability that x is present, in order to achieve the rate recommended
by LP-UB. This motivates our choice of scaling factor on line 5.

The algorithm actually scales the probability by an additional factor of =,
which is a tunable parameter of the algorithm; this is to ensure that each agent
has a constant probability of being available in the system unmatched when its
ideal match arrives. We will optimize v as part of our analysis of the algorithm.

Theorem 4. Algorithm 1 is an 8-approximation to the value of LP-UB.

4.1 Analysis

One challenge in the analysis of ONLINEMATCH is correlations across time:
whether a certain type of agent is available in the market to be matched at
time t depends on the types of other agents present in the market, as this in-
fluences matching probability. Thus, the availability of different types of agents
are correlated through the pool of agents waiting to be matched at any given
time. This correlation complicates the intuition that ONLINEMATCH will approx-
imately mirror the aggregate match probabilities from LP-UB at every moment
in time.
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We address this difficulty by showing that while the evolution of which agent
types are available in the market is dependent on the overall market state and
correlated across types, they can be coupled with independent Poisson processes
that are related via first-order stochastic dominance. That is, while agents in
the market are matched at rates that vary over time with the composition of
available agents, these rates are subject to uniform upper and lower bounds that
reflect maximum and minimum possible matching rates. By relating to these
extreme matching scenarios, we can derive uniform bounds on the success rate
of matching attempts under arbitrary market conditions.

We begin by introducing the notion of an agent being present in the market,
and bounding the probability that a node of a given type is present at any given
time. We will say an agent 7 is present at time ¢ if it has arrived but not yet
departed; that is, if a; <t < d;. We'll say the node is available at time t if it is
present and has not yet been matched to another node.

Importantly, an agent can be present but not available: even after an agent
has been matched, one could simulate the departure process for that agent as
though they had not matched, and we view the agent as being present until
they leave under that simulated process. The advantage of considering presence,
rather than availability, is that whether an agent is present at a given time
depends only on their arrival and departure times, and is independent of all
other agents in the market.

Lemma 2. Choose a type x € X and any time t > 0. Then over all randomness
i arrivals and departures, the probability that at least one agent of type x is
present at time t is at most min{A, /p,,1}.

Proof. Choose some interval of time of length T, and consider all agents of type
x that arrive during interval T'. In expectation A\, 7T agents arrive, and each stays
for an expected length of 1/u,, independently. The sum of times in market for
all such agents is therefore A, T/ .. By a union bound, the total fraction of time
during which such an agent is present in the market is at most +(A\,T/ps) =
Az/phz- As this fraction is also at most 1, we have that the probability that such
an agent is present at a given time is at most min(1, A\, /) as required.

We now wish to bound the probability that agents of a given type are present
in the market, but not available. A present agent becomes unavailable in two
ways: either they were matched immediately upon arriving to the market, or
they are matched to another agent who arrives later. We begin by bounding the
probability of the former, by showing that the occurrences of agents arriving
and not being immediately matched stochastically dominate a Poisson arrival
process with a reduced arrival rate.”

Lemma 3. In an execution of algorithm ONLINEMATCH, consider the set of
events that a node of type x arrives and is not immediately matched. The occur-

rence of such events stochastically dominates a Poisson arrival process of rate

Ae(l—7y Zyex Qi)

" Recall that if Z and Z' are two (random) point processes, then Z stochastically
dominates Z' if there is a coupling of Z and Z’ such that Pr[Z’ C Z] = 1.
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Proof. Agents of type = arrive at rate A;. Suppose agent i of type x arrives at
time t. By Lemma 2, for each y € X a node of type y is present at time ¢ with
probability at most min{\,/u,, 1}. Thus, given that Algorithm ONLINEMATCH
considers a match with type y, this match will be successful with probability at
least

Yoye max{l, puy /Ay } - min{Ay /py, 1} = yoy,.
The total probability that agent ¢ matches to any other agent at time ¢ is there-

fore at most
Ty
yeX

and hence the probability that agent ¢ is not immediately matched is at least

1—'yZayz.

yeX

We have argued that the event that a node of type x arrives and is not
immediately matched is determined by an arrival process of rate A,, followed by
a (state-dependent) random event of probability at least 1 —~v_ -y ay,. This
stochastically dominates an alternative event that simply takes this probability
to be exactly 1 — 'szex oy in all cases. But, by Fact 3, this latter process is
equivalent to a Poisson arrival process of rate A\ (1 —~ Zye  Qyg), as required

We next consider the occurrence of events in which an agent that is currently
available® in the market is matched to some other agent who arrives. We again
connect this with a Poisson arrival process with a reduced rate.

Lemma 4. In an execution of algorithm ONLINEMATCH, consider the event
that an agent of any type arrives to the market and would match to an agent
of type x if any such agent is available. The occurrence of such events is stochasti-

cally dominated by a Poisson arrival process of rate v}, « x AyQzy max(1, pz/Az).

Proof. Suppose that an agent of type x is present in the market. Agents of type
y arrive at rate A,. Consider an agent ¢ of type y that arrives at time ¢. The
probability that agent ¢ matches to a node of type x is dependent on which other
agents are available in the market, but is maximized when no other agents of
other types are available. In the event that no other types are available, agent %
will certainly consider matching to type x, in which case the match occurs with
probability yo, max(1, gz /Az).

We have argued that a node of type y arrives at rate A,, and then matches to
an agent of type = with a state-dependent probability that is at most ya,, max(1, gy /As).
This process is stochastically dominated by one in which the match occurs with
probability exactly yoy, max(1, 1t /A;) upon each arrival. But, by Fact 3, this is
equivalent to a Poisson arrival process of rate A\,yogy max(1, ttz/A;). Summing
over all types y € X completes the proof.

8 Recall by the definition of available, such an agent is also present.
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Having related availability events to independent Poisson processes, we are
now ready to bound the match probabilities of ONLINEMATCH.

Lemma 5. Choose any x,y € X, and suppose that an agent i of type y € X
arrives at time t. Then ONLINEMATCH will match © to a node of type x at
time t with probability at least (1 — 7/2)5:—10@‘,!, where the probability is over
any randomness in the algorithm and in the arrivals and departures of all other

agents.

Proof. Fix some z,y € X. Suppose an agent i of type y arrives at time ¢, and
consider the evaluation of ONLINEMATCH on this agent 7. Some terminology:
we’ll say that agent ¢ considers matching to an agent of type z if we enter an
iteration of the loop on line 3 with type = chosen. We’ll say that the agent
attempts to match to an agent of type x if, in addition, the probabilistic match
on line 5 would occur (regardless of whether or not the condition on line 4
evaluates to true). In other word, we can imagine pre-evaluating the probabilistic
check on line 5 before checking the condition on line 4, and an attempted match
corresponds to iterations in which the probabilistic check passes.

We will first bound the probability that agent ¢ considers matching to an
agent of type xz. By Lemma 2, for each z € X a node of type z is present at
time ¢ with probability at most min{\,/u,,1}. Thus, given that our algorithm
considers a match with type z, this match will be successful with probability at
most

Yoy max{l, /A } - min{\,/p, 1} = ya,.
The total probability that agent ¢ matches to any other agent at time t is there-

fore at most
D vy <
ze€X

where we used (2) from LP-UB. If we consider only half of the types z € X
uniformly at random, the probability of a match is then at most /2 (where the
expectation is over randomness in algorithm and over which types are chosen).
This is a bound on the probability that the algorithm matches to some other
type before type x is considered. So a match to type x will be considered by the
algorithm with probability at least (1 — v/2).

Assuming it is considered, the match will be attempted with probability - -
0uzy-max(1, piz /Ag). Note that the conditional attempt probability is independent
of whether the match is considered. Thus the unconditional probability that the
match is attempted is at least

V(L = 7/2)0gy - max(1, pa/Az).

We now want to bound the probability that the attempted match to an agent
of type x is successful, given that one was attempted. Consider three different
events, which will occur repeatedly over time:

— Event Eq: An agent of type z arrives and is not immediately matched.
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— Event Fs: An agent of any type arrives and attempts to match to an agent
of type .
— Event FEj3: There is exactly one agent of type x, and that agent departs.

Suppose that the agent i of type y attempts to match to an agent of type x
at time ¢. That match will be successful if the most recent event that occurred
before t, from among events of type F1, Fo, and Ej3, is an event of type Ej.

We now consider two cases, based on the relationship between p, and A,.

Case 1: p; < A;. Then max{l,u,/A;} = 1. By Lemma 3, the occur-
rences of event F, stochastically dominate a Poisson arrival process of rate
A=A (1—v Zye « Qye). By Lemma 4, the occurrences of event E5 are stochas-
tically dominated by a Poisson arrival process of rate Ay := fyzy OzyAy. And
finally, occurrences of event E3 are stochastically dominated by a Poisson arrival
process of rate A3 := i, as this is the rate of the event when there is exactly one
agent of type x present in the market (and otherwise the event cannot occur).
Thus, by Fact 2, the probability that the most recent event before time ¢ was an
event of type FEj is at least

)\1 B >\:L‘ (1 - ,‘YZyEX Oéyr)
MAEX 5 an Ayt A (127 Spex age) + e

Write ¢ = >°, c x @y By constraint (3) of LP-UB, we have that >° v azyAy +
qAs < Az, which implies 3 v agyAy < Ay(1—g), so in particular ¢ € [0, 1]. We
also have p, < A\, by assumption for this case analysis. The probability (4) is
therefore at least

(4)

: I —q o L —q
min = min ———. (5)
gc0]Y(1=q)+ (1 —vg) +1 0112 —27¢+7~
The expression in (5) is weakly decreasing in ¢ for all v € (0,1), so it achieves
its minimum at ¢ = 1, which is (1 — v)/(2 — 7). Moreover, recall that this
probability is a uniform bound independent of which agents are available in
the market. Thus, recalling the probability that agent ¢ attempts to match to
an agent of type x, the total unconditional probability that node i successfully
matches to an agent of type x is at least
11 =9/2)amy max(L e/ A = =11~ 7/2) e,

Case 2: p, > A;. Then max{1, p,/ s} = pz/Az. As in case 1, Lemma 3
implies that the occurrences of event F; stochastically dominate a Poisson ar-
rival process of rate Az (1 — v, ¢y aya). And occurrences of event Ej are still
stochastically dominated by a Poisson arrival process of rate p,. By Lemma 4,
the occurrences of event Fy are stochastically dominated by a Poisson arrival
process of rate v, auyAy(pz/Az). Thus the probability that the most recent
event before time ¢ was an event of type FE is at least

Ao (1-7 % ex aue)

szex O‘xyAy(:ufx/)‘x) + Az (1 - FYZyEX ayz) + Uy

(6)
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As in case 1, write ¢ = ZyeX Qizy, SO that Zyex agyAy < Az(1 — ¢q). Then
> yex QaoyAy(ta/As) < pz(l —q). Also, since A\, < i, by assumption for this
case analysis, Ay (1 — YD yex ozyx> < g (1=7q). The probability (6) is therefore
at most

Az (1 —vq) A 1—q

min = min

0e0.1] 1Y (1 = q) + pa(1 —70) + fte q€l0) o 2—27q+ 7

(7)

As in case 1, the expression in (7) achieves its minimum when ¢ = 1, which

is 2—” . é:—:’/ Thus the total unconditional probability that node i successfully

matches to an agent of type x is at least

Ag 1 —7y 1—7
Y(1 —v/2)ay, max(1, gy /Ag) ——— = Y(1 —7/2) —— gy
(1= /2y max(L e /A) 3 5= = (1 = 9/2) 5o,

Optimizing over the choice of v, we have that (1 — 7/2);:—:: takes on its

maximum value at v = 1/2, in which case (1 —7/2);:—1 = 1/8. Thus, by setting
~v = 1/2 in ONLINEMATCH, Lemma 5 implies that agents of type y arrive and
match to agents of type x at rate at least a,yA,/8. The total value obtained
by ONLINEMATCH is therefore at least & >z yex VayQayAy, which is 1/8 of the
value of LP-UB. We conclude that ONLINEMATCH is an 8-approximation, as
required.
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