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Abstract

Transport equations for electron thermal energy in the high-βe intracluster medium (ICM) are developed that
include scattering from both classical collisions and self-generated whistler waves. The calculation employs an
expansion of the kinetic electron equation along the ambient magnetic field in the limit of strong scattering and
assumes whistler waves with low phase speeds Vw∼ vte/βe= vte dominate the turbulent spectrum, with vte the
electron thermal speed and βe? 1 the ratio of electron thermal to magnetic pressure. We find: (1) temperature-
gradient-driven whistlers dominate classical scattering when Lc> L/βe, with Lc the classical electron mean free
path and L the electron temperature scale length, and (2) in the whistler-dominated regime the electron thermal flux
is controlled by both advection at Vw and a comparable diffusive term. The findings suggest whistlers limit electron
heat flux over large regions of the ICM, including locations unstable to isobaric condensation. Consequences
include: (1) the Field length decreases, extending the domain of thermal instability to smaller length scales, (2) the
heat flux temperature dependence changes from T Le

7 2 to V nT Tw e e
1 2~ , (3) the magneto-thermal- and heat-flux-

driven buoyancy instabilities are impaired or completely inhibited, and (4) sound waves in the ICM propagate
greater distances, as inferred from observations. This description of thermal transport can be used in macroscale
ICM models.

Unified Astronomy Thesaurus concepts: Galaxy clusters (584); Intracluster medium (858); Cooling flows (2028);
Magnetohydrodynamics (1964); Magnetohydrodynamical simulations (1966)

1. Introduction

Half of all baryons in the low-redshift universe are in a hot
phase, with temperatures in the range T= 105−8 K (Macquart
et al. 2020). Much of this matter exists as very diffuse plasma
in the filaments of the cosmic web, heated by photoionization
from stars and active galactic nuclei (AGNs; McQuinn 2016) as
well as electron–positron beam instabilities associated with
TeV blazars (Broderick et al. 2012; Lamberts et al. 2015). Of
more astrophysical significance are the hot baryons that have
passed through cosmic accretion shocks (Ryu et al. 2003;
Pfrommer et al. 2006; Schaal et al. 2016), which caused the
baryons to virialize in the dark matter halos of massive (>L

*

)
galaxies and galaxy clusters to form the hot circumgalactic
medium and hot intracluster medium (ICM), respectively.

The ICM is particularly well studied since it has typical
temperatures (T∼ 107–108 K) and emission measures that
make nearby galaxy clusters among the brightest objects in the
extragalactic X-ray sky. We now understand that the ICM
dominates the baryon budget of clusters (containing 80% of the
baryons) and forms an approximately hydrostatic atmosphere
in the dark matter potential. In relaxed clusters (i.e., those not
undergoing major mergers), the core regions of the ICM
develop short cooling times and, left unchecked, a cooling
catastrophe would occur resulting in significant star formation
events (100–1000Me) and bright central galaxies (BCGs) with

very massive (1013Me) stellar components (Sarazin 1986;
Fabian 1994). The fact that BCGs are significantly less massive
and never host such star-forming events demonstrates that the
ICM cooling must be balanced by a heat source (Peterson &
Fabian 2006). The current paradigm is that the jets from the
central radio-loud AGN hosted by the BCG provide that
heating (Churazov et al. 2000; Reynolds et al. 2002), although
the precise mechanisms involved in thermalizing the AGN
energy injection remain unclear (see the discussion in Bambic
& Reynolds 2019). Thus, studies of galaxy clusters and the
ICM give us a unique window on the AGN feedback processes
that shape the most massive galaxies in the universe. A key
ingredient needed to disentangle these complex systems is the
microphysics, and especially the transport properties, of the
hot ICM.
Thermal transport in the ICM is particularly important

(Binney & Cowie 1981). Thermal conduction into the cooling
ICM core from the hotter outer regions can reduce, but not
eliminate, the need for AGN heating (Stewart et al. 1984;
Bregman & David 1988; Zakamska & Narayan 2003; Voigt &
Fabian 2004). Thermal transport may be crucial in dissipating
weak shocks and acoustic modes driven by the AGN (Fabian
et al. 2005; Zweibel et al. 2018) thereby thermalizing the AGN-
injected energy. Thermal transport is also important for
modifying the local thermal instabilities responsible for the
condensation of cold gas that, ultimately, fuels the AGN (Yang
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& Reynolds 2016). But despite its importance, the basic
physics of thermal transport in ICM-like plasmas has yet to be
fully understood. At typical densities (ne∼ 10−3

–10−1 cm−3)
and temperatures, the electron mean free path to ion scattering
is Lc∼ 0.1–1 kpc and thus only 1–3 orders of magnitude
smaller than global scales. The ICM is magnetized with typical
fields B∼ 1–10 μG, giving rise to electron gyro-radii
ρe∼ 0.1–1 npc, many orders of magnitude smaller than Lc,
implying that the transport will be highly suppressed in the
cross-field direction and thus anisotropic. Most current
treatments of the ICM adopt a fluid description and take the
thermal transport parallel to the local magnetic field to be
described by the canonical theory of Spitzer (1956). However,
the Spitzer ansatz assumes a high degree of electron–ion
collisionality which is not obviously true for the ICM. The fact
that the ratio of thermal-to-magnetic pressure is large (β∼ 100)
further raises the specter of kinetic instabilities driven by
pressure anisotropies and heat fluxes (Gary & Li 2000;
Schekochihin et al. 2005; Kunz et al. 2014; Rincon et al.
2015; Komarov et al. 2016; Riquelme et al. 2016).

More recently the focus has shifted to the role of whistler
waves that are directly driven by electron heat flux in
suppressing transport (Levinson & Eichler 1992; Pistinner &
Eichler 1998; Roberg-Clark et al. 2016, 2018a; Komarov et al.
2018). Transport suppression is dominated by oblique waves
that can resonate with whistlers propagating in the direction of
the electron heat flux through the Landau (n= 0) and
“anomalous” (n=− 1, − 2, ...) resonances
ω− k∥V∥− nΩe= 0, where Ωe= eB/mec is the electron
cyclotron fRequency. Particle-in-cell (PIC) simulations carried
out in two dimensions revealed that the whistler fluctuations
reach large amplitude and are dominated by wavenumbers
with kρe∼ 1, where ρe= Vte/Ωe is the electron Larmor radius.
The dispersion relation for whistlers with wavelength
kde∼de/ρe= 1 is given by

k kd 1e e e
2 ( )w = W W

with de the collisionless skin depth. The parallel phase speed
Vw= ω/k∥ of whistlers in this regime therefore scales like
Vte/βe= Vte, where βe= 8πnTe/B

2 is the ratio of electron
thermal to magnetic field pressure. Note that in the definition of
βe, and in the remainder of this paper, the electron temperature
will be expressed in energy units. The simulations revealed that
electron scattering was strong enough that hot electrons were
constrained to move with the whistler phase speed down the
temperature gradient, reducing the heat flux well below the
free-streaming value Q0∼ nTeVte to a level that scaled as Q0/βe
(Pistinner & Eichler 1998; Komarov et al. 2018; Roberg-Clark
et al. 2018a). Interestingly, the inverse scaling of the electron
heat flux with βe has been documented in the solar wind (Tong
et al. 2018, 2019). Moreover, recent observations from the
Parker Solar Probe revealed large-amplitude, oblique whistler
waves embedded in regions of depressed magnetic field
intensity where the local βe was high (Agapitov et al. 2020;
Cattell et al. 2021b). The waves were associated with the
n=−1 anomalous resonance and scattered the field-aligned
strahl electrons into the halo population with a broad range of
pitch angles (Cattell et al. 2021a).

Due to computational constraints, PIC simulations exploring
heat flux suppression employ ambient temperature gradients

that are artificially large, with gradient scale lengths that are
only hundreds of electron Larmor radii. Thus, while the
simulations suggested that the scaling of the suppressed heat
flux was insensitive to the ambient gradient, the extrapolation
to physical systems requires that the results scale as expected
over many orders of magnitude. Further, simulations to date
have been carried out in the limit where classical collisions are
negligible so that their impact on the onset of the whistler
instability is uncertain. Thus, the transition from whistler-
limited to classical-collision-limited transport has not been
explored beyond the construction of ad hoc connection
formulas to bridge the two limits (Komarov et al. 2018).
The goal of the present work is to develop a set of transport

equations that treat macroscale systems while simultaneously
describing the transition from classical- to whistler-limited
transport. Two characteristics of scattering by whistler waves
make the calculation possible. First, whistlers scatter electrons
on constant energy surfaces in the frame moving with the
whistler phase speed Vw along the ambient magnetic field.
Hence, the whistler scattering can be formulated as a pitch-
angle scattering operator moving at Vw. Second, because
Vw= Vte/βe= Vte, the kinetic equation for electrons can be
solved by an ordering in which Vw/Vte= 1. At the same time,
the total scattering rate, ν(V )= νw(V )+ νei(V ) includes both
classical and whistler scattering and is ordered so that the mean
free path Lν= Vte/ν∼ L/βe is short compared with the ambient
temperature scale length along the magnetic field, L. To
simplify the calculation, the classical collisions are also treated
by a simple pitch-angle scattering operator which is, of course,
valid for electron–ion but not for electron–electron collisions.
The final transport equations for the electron thermal energy
result from solving the kinetic equation for the electron
distribution f (x, V, ζ, t) to second order in the small parameter
ò∼ Vw/Vte∼ Lc/L with no assumptions made about the
relative sizes of the classical and whistler scattering rates. Here,
ζ= V∥/V is the cosine of the pitch angle.
The calculation that follows is not without assumptions.

Specifically we assume that once whistlers begin to grow they
are able to scatter electrons through the full range of pitch
angle. For oblique whistlers this is reasonable because of the
multiple anomalous resonances and if the spectrum of waves is
sufficiently broad. The assumption that the rate of scattering is
independent on the pitch angle is based on the idea that electron
pileup at a specific pitch angle would produce instabilities that
resonate with electrons at that pitch angle and therefore
facilitate scattering. Thus, the assumption is not that the
whistler amplitudes are large, which is not expected in a system
with very large ambient gradient scale lengths, but that
resonant overlap in the quasilinear sense is a consequence of
the broad wave spectrum—there are enough waves so that all
electrons can undergo resonant interactions. We emphasize also
that in the solar wind, where gradients scales are also large,
observations reveal that the strahl electrons are scattered over a
broad range of pitch angles (Cattell et al. 2021a). Finally, in the
present calculation we assume that heat-flux-driven whistlers
dominate electron scattering. Other scattering mechanisms
associated with, for example, pressure-anisotropy-driven mirror
modes have also been proposed (Komarov et al. 2016) but are
not included in the present calculation.
The ambient ion velocity Ui is included in the equations for

completeness with the ordering ò∼Ui/Vte. Transport is
described by coupled equations for the electron density n(x,

2
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t), the electron pressure Pe(x, t), and the energy density of
propagating whistler waves such that the total energy is
conserved. The calculation parallels that carried out by
Braginskii for the case of classical collisions (Braginskii 1965;
Hassam 1980) with functional characteristics that parallel the
equations describing cosmic ray transport limited by Alfvén
wave scattering (Kulsrud & Pearce 1969; Zweibel 2013;
Thomas & Pfrommer 2019).

A surprise is that the final equations describe both the drive
of the whistlers by the release of energy associated with particle
scattering by the waves and the saturation of the instability
when the scattering rate exceeds a threshold. The onset of
whistler growth is controlled by classical collisions and
requires Lc> L/βe with Lc= Vte/νei(Vte) the classical mean
free path. The saturation of the instability takes place when
Lw∼ L/βe with Lw∼ Vte/νw(Vte) the whistler scattering mean
free path. Thus, the scattering mean free path of electrons in a
high-βe medium is always much smaller than the ambient scale
length of the electron temperature even in the nominally
collisionless domain. A second surprise is that the electron heat
flux in the regime in which whistler scattering dominates
classical collisions is not simply given by advection at the
whistler phase speed Vw but is controlled by a combination of
advection and diffusion, which are of the same order. This
follows from the diffusive heat flux, which is of order

n
V

V

T

L
nT V

L

L
nT

V
nT V . 2te

w te

e
e te

w
e

te

e
e w

2

( )
( )

n b
~ ~ ~

That the electron heat flux has contributions from both advection
and diffusion was overlooked in earlier papers describing the
results of simulations (Komarov et al. 2018; Roberg-Clark et al.
2018a), but is consistent with the analogous equations for the
transport of cosmic rays (Thomas & Pfrommer 2019).

The paper is organized as follows: in Section 2 we present an
overview of the transport equations, including a description of
their basic properties; in Section 3 we present the derivation of
the transport equations with a discussion of the basic
assumptions of the model; in Section 4 we present the results
from computations of the propagation of an electron heat pulse
that contrasts the results of transport in a classical collisional-
dominated regime with one with whistler scattering; and in
Section 5 we discuss the implications of our results for the
ICM. Finally in the Appendix we present a set of equations that
combines the new description of electron thermal transport
with the conventional magnetohydrodynamic (MHD)
equations. The resulting whistler-regulated MHD equations
are suitable for describing the full dynamics of ICM plasma
over the full range of classical collisionality with none of the
conventional constraints on mean free path.

2. Overview of the Electron Transport Equations

Here we present an overview of the equations describing
electron transport. The scattering operator representing classi-
cal collisions is energy dependent but only scatters the
electrons in pitch angle and therefore only accurately models
electron–ion collisions. The whistler scattering operator is also
energy dependent and scatters in pitch angle in a frame moving
with a single velocity Vw= Vte. The energy dependence of the
whistler scattering rate is essential to correctly describe a finite
heat flux while at the same time maintaining zero net current.
Below we write three equations that describe the plasma

density, the electron energy, and the energy associated with
electron heat-flux-driven whistler waves. The continuity
equation is given by

t
n nU 0 3( )

¶
¶

+  =

with U the ion drift speed along the ambient large-scale
magnetic field (not including the whistler magnetic fluctua-
tions). Because of the zero net current condition U is also the
mean electron drift speed. The equation for the electron energy
is

t
nT Q U nT V n T F

3

2
4w

we

e
w10⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

( )  a
n
n

¶
¶

+  -  =  +

where the parallel heat flux Q is

Q U V nT T
5

2
. 5we

e
w e10⎜ ⎟

⎛
⎝

⎞
⎠

( )a
n
n

k= + - 

It includes the traditional advection of the enthalpy, 5nT/2,
with the fluid velocity U and contributions from advection by
the whistler waves (proportional to Vw) as well as from thermal
conduction with conductivity κe,

nT

m
. 6e

e e
12 ( )k a

n
=

In Equations (4)–(6) the αi parameters labeled with subscripts are
dimensionless and of order unity. They arise from averages of
combinations of the scattering rates and powers of the particle
velocity V over Maxwellian distributions. Explicit expressions are
given in Table 1. The total scattering rate e ei

e
wen n n= + is

evaluated at the electron thermal speed Vte and

e n

m V

4
and 0.1 . 7ei

e

e te
we e

w

B

4

2 3
( )n

p
n

e
e

=
L

= W

The whistler scattering rate νwe is given by the quasilinear form
with εw and εB the energy densities of the whistler waves and the
large scale magnetic field B, respectively (Lee 1982; Schlick-
eiser 1989), and Λ is the Coulomb logarithm. We note that because
we have discarded electron–electron collisions the parallel conduc-
tion in Equation (6) does not reduce to the Spitzer value (Hassam
1980). As discussed in the Appendix, the parameter α12 can be
corrected to produce the Spitzer value. In this overview of the
transport equations we assume that the temperature gradient is
everywhere negative so that only whistlers traveling in the positive
direction along B0 are unstable. The general equations presented in
the Appendix include waves propagating in both directions along
B0. In the absence of scattering by whistlers the equation for
nT reduces to the one-dimensional (1D) Braginskii equation
(Braginskii 1965).
The advection of electron energy associated with the whistler

wave propagation has been documented in PIC simulations
(Komarov et al. 2018; Roberg-Clark et al. 2018a). However,
the whistler-driven advective heat flux becomes small when
classical collisions dominate those associated with whistlers.
This behavior was not explored in PIC simulations since
classical collisions were not included. The thermal conduction
term takes the classical form, being inversely proportional to
the collision rate νe. The collision rate includes both classical
and whistler-driven scattering so that, even in the absence of

3
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classical collisions, whistler waves also produce diffusive
transport. This result is consistent with the measured parallel
diffusion of electrons scattered by heat-flux-driven whistlers in
simulations (Komarov et al. 2018; Roberg-Clark et al. 2018a).
However, the diffusive contributions to heat flux associated
with whistler scattering were missed in previous discussions of
these simulations. A wave-driven flux with a form similar to
that of Equation (5) also appears in equations describing the
transport of cosmic rays (Kulsrud & Pearce 1969; Zwei-
bel 2013; Thomas & Pfrommer 2019).

The two terms on the right side of Equation (4), which are
proportional to Vw, describe the extraction of electron thermal
energy by whistler waves and the heating of electrons associated
with whistler scattering. The energy extraction term is propor-
tional to the local temperature gradient and is negative for waves
propagating down the gradient, corresponding to energy extrac-
tion from the gradient by whistlers. The dimensionless coefficient
α10 leading the extraction term is only nonzero when the whistler
scattering rate νw depends on the electron energy. For a scattering
rate that has the power-law dependence, νw∝Vγ with γ> 0, α10

is proportional to γ in the limit of both strong and weak classical
scattering. The power-law form for the energy dependence of νw
results from a quasilinear model in which electrons with
higher energies resonate with longer-wavelength modes (see
Equation (1)) and longer-wavelength modes have larger ampli-
tudes in a system undergoing an energy cascade (Lee 1982;
Schlickeiser 1989; Schlickeiser & Miller 1998). Further discus-
sion of the appropriate value for γ is presented in Section 3. The
term proportional to Fw in Equation (4) arises from the drag force

between the whistlers and electrons and is given by

F m n V . 8w e we w11 ( )a n=

This is positive and drives electron heating. It is a consequence
of the linear resonant damping of whistlers, which heats the
electrons. This is discussed further below in the context of the
equation for the growth of whistlers by the ambient heat flux.
The balance between energy extraction from the temperature
gradient and from the damping of whistlers by electrons
describes both the onset of whistler wave growth in a medium
with classical collisions and the saturation of the whistler wave
energy.
An evolution equation for the whistler wave energy εw is

required to close Equation (4). The equation for εw includes
advection both by the plasma fluid with velocity U and by the
whistlers with velocity Vw∼ Vte/βe as well as drive and loss
contributions associated with the extraction and heating terms
on the right side of Equation (4). Balancing the energy gain of
the whistlers with the energy loss from electrons yields the
evolution equation

t
V U U

V n T F

2

, 9

w w w w

w
we

e
w10⎜ ⎟

⎛
⎝

⎞
⎠

( )

( )

 



e e e

a
n
n

¶
¶

+  + - 

= -  +

where the second term on the left side of the equation is the
Poynting flux and the third term is associated with the whistler
pressure acting on ions. There is a corresponding term in the

Table 1
Transport Parameters

Term Definition When ei
e

wen n When 0ei
en =

General
4

3
g = General

4

3
g =

(1) (2) (3) (4) (5) (6)

α1
mV

T

2

3 2
e

2

0

n
n
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3
( )G

p
4.51 4

3

5

2( )G
p

g- 0.708

α2 mV

T

mV

T

2

3 2 2

5

2
e

2

0

2

0( )- n
n

42 ( )G
p

6.77 2

3

5

2( )g- G
p

g- −0.472

α3
mV

T

2

3 2
e w

we

2

0

n
n

n
n

4

3

8

2( )G
p

g+ 11.1 1 1
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T

2

3 2

2
e

2
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n
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3
( )G

p
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3

7

2( )G
p
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T
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T

2

3 2

2

2

5

2
e

2

0

2
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n
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3
( )G

p
45.1 14

3 2

7

2( )( )- G
p

g g- 0.432

α6 mV

T

2

3 2

2
e w

we

2
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n

n
n

4

3
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2( )G
p
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2
2.5

α7 mV

T

2

3 2
e w

we

2

0

2

2
n
n

n

n
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3
( )gG +

p
30.2 4

3

5

2( )G
p
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α8 mV

T
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T

2

3 2 2

5

2
e w

we

2

0

2
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n

n
n
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3

8

2( )( )g+ G
p

g+ 24.0 0 0

α9
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T

2

3 2
w

we

2

0

n
n

4

3
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2( )G
p

g+ 1.76 4

3

5

2( )G
p

g+ 1.76

α10 8 6
3 2

1

3 4

1
a a- = -a a

a
a a
a

2

3

8

2( )g G
p

g+ 7.38
2

g
0.667

α11 9 7
we

e

3
2

1
⎛
⎝

⎞
⎠

a a+ -n
n

a

a

4

3

5

2( )G
p

g+ 1.76 5

2

5

2( )( )G G g- 1.41

α12 5
2

1
a - a

a
510

3

3

2
( )G -

p
43.6 1

2

7

2

5

2 2( ) ( )( )- G G +g g g- 1.10

α13 7
3
2

1
a -

a

a
4 64

3
2 8

2( )( )( )gG + - G
p

g+ 3.05 4

3

5

2

3

4
1 5

2( ) ( )G - G
p

g p g+ - - 0.351

Note. A table of the dimensionless parameters defining the electron transport equations. The brackets denote an average over a 3D Maxwellian distribution with
temperature T0. The parameters are evaluated in the limits when classical scattering dominates whistler scattering ( ei

e
wen n ) where ν ∝ V−3 and when whistler

scattering dominates classical scattering ( we ei
en n ) where ν ∝ V γ. Numerical values are given for the limits when γ = 4/3.
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ion kinetic energy equation (see Equation (A29)) so that the
ions and whistlers can exchange energy through this pressure.
Thus, the sum of Equations (4) and (9) plus the equation for ion
kinetic energy yields an equation for overall energy
conservation.

An important scientific goal is to establish the conditions
under which whistler waves in a high-βe system begin to grow
even when there are ambient classical collisions. The onset
condition for whistler amplification can be obtained from
Equation (9) by taking the limit in which the whistler wave
energy εw is small so that the whistler scattering rate νwe in
Equation (7) is much smaller than νei. The resulting equation
for the rate of growth γw of the wave energy is given by

nV
T

m V . 10w w
we

w ei
e e w10 11⎜ ⎟

⎛
⎝

⎞
⎠

( )g
n
e

a
n

a= -
¶
¶


+

The drive term proportional to ∇∥T extracts energy from
electrons (see Equation (4)) to destabilize the whistlers. The
damping term can be evaluated explicitly using Equation (7) to
evaluate νwe. The result for the whistler damping γwd is

V

V
0.1 , 11wd w

te
e

0
( )g

w
b~

where ω0=Ωe/βe is the characteristic whistler wave fre-
quency. This scaling for whistler wave damping is identical to
that obtained from the resonant interaction of electrons with
oblique whistlers from kinetic theory. The onset condition for
whistler growth is insensitive to the details of the scattering rate
and is given by

T m V 12e ei
e

w
11

10
( )

a
a

n- >

or βeLc/L> 1. A similar result came from a quasilinear
analysis of whistler stability (Pistinner & Eichler 1998). Above
threshold the growth rate γw of the whistler wave energy scales
as

L

L
0.1 . 13w e

c ( )g ~ W

A measure of the strength of whistler growth is given by a
comparison with the rate at which whistlers transit down the
temperature gradient Vw/L. The whistler growth rate exceeds
the transit rate for β> 10ρe/L, which is easily satisfied since ρe
is many orders of magnitude smaller than the macroscale L.
The implication is that once the threshold for whistler growth is
exceeded, the whistlers will rapidly reach finite amplitude.

The saturation of the whistler waves is controlled by the
balance between the drive and damping terms on the right side
of Equation (9). The drive term becomes independent of νwe
when νwe> νei while the dissipation term, which is propor-
tional to Fw and νwe, continues to increase as whistler growth
continues. Thus, whistler growth continues until the drive and
dissipation terms on the right side of Equation (9) balance. This
balance gives the rate of whistler scattering at saturation,

m V
T

1
, 14we

e w

10

11
( )n

a
a

= - 

which yields the scaling for the whistler scattering rate
νwe∼ βeVte/L and the whistler scattering mean free path
Lw= Vte/νwe∼ L/βe. Thus, even when classical electron–ion

collisions are weak, whistler-driven scattering reduces the
electron mean free path to a scale length that is small compared
with the ambient temperature scale length L. Further, the
saturated value of νwe is insensitive to the details of the whistler
growth rate in Equation (10). At saturation the whistler wave
energy density εw can be calculated by equating the expressions
for νwe in Equations (7) and (14), which yields
εw∼10(ρe/L)nT= nT. Thus, the whistler energy density
remains small compared with the electron thermal energy
density (Komarov et al. 2018).
The fast growth rate of whistlers compared with the transit

time of the waves across the system suggests that the whistlers
may reach an equilibrium even when the wave drive only
weakly exceeds the threshold for instability. This state can be
explored by discarding the time derivative in Equation (9) so
that the balance between the drive and dissipation terms on the
right side of the equation must scale as ∇∥Vwεw= VwnT/L.
Therefore, in steady state the drive and dissipation terms on the
right side of Equation (4) must balance and their difference
must be negligible compared with the contribution from the
heat flux since ∇∥Q∼ VwnT/L. The heat flux Q therefore
dominates the dynamics of the electron energy equation and νe
is given by the balance of the drive and dissipation terms,
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This expression for νe is valid as long as the onset condition for
whistler growth in Equation (12) is satisfied so that νwe is
positive. This expression for νe can then be inserted into the
expression for the heat flux in Equation (5), which yields
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This expression is valid above the threshold for whistler growth
and reveals that, in the regime dominated by whistlers, the
proportionality of the scattering rate to ∇∥T causes the
expected diffusive driven energy flux to become advective.
At marginal stability where νe= νei the first term in the heat
flux in Equation (16) is zero and the second term in the heat
flux reduces to the classical diffusive form. It remains to be
seen whether the form of the heat flux given in Equation (16) is
useful in a system where the whistler transitions from a stable
to unstable domain, which will happen in any system where the
electron temperature peaks so that ∇∥T is zero in a local region
and there is no whistler drive.

3. Derivation of the Electron Transport Equations

Having presented an overview of the electron transport
equations, we proceed to outline the assumptions, ordering, and
derivation. The focus here is on the electron distribution
function and resulting moments and the wave equation for the
whistler waves. Because the ion momentum and energy
equations are largely unchanged from the traditional MHD
description (barring a small force term associated with the
whistler pressure acting on the ions) the coupling to the ion
momentum and energy equations are deferred to the Appendix
where the complete set of MHD equations with coupled
whistler dynamics is presented.
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3.1. Chapman–Enskog Solution of the Electron Kinetic
Equation

We begin with an equation for the distribution function f (x,
V∥, V⊥, t), where x is the space variable parallel to the ambient
magnetic field B0 and V∥ and V⊥ are the velocities parallel and
perpendicular to B0. Since the whistler waves in a high βe
system have kρe∼ 1 so that the whistler wave frequency is well
below the electron cyclotron frequency (see Equation (1)), the
electrons remain gyrotropic. The kinetic equation for electrons
becomes

t
f v f

e

m
E

v
f C f , 17

e
( ) ( )  



¶
¶

+  -
¶
¶

=

where a parallel electric field E∥ has been included to maintain
zero net current. The zero current condition is valid even in a
system with complex 3D magnetic fields as long as the kinetic
scales are ordered out of the dynamics (Arnold et al. 2019;
Drake et al. 2019). The collision operator includes scattering by
both classical electron–ion collisions and whistler waves
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describing the respective types of scattering. To simplify the
derivation, we include here only whistlers propagating in the
positive direction, which is valid for a locally negative
temperature gradient. The generalization to counter-propagat-
ing whistlers is straightforward and the results are presented in
the Appendix. The collision operators in Equations (19) and
(20) describe scattering only in pitch angle—in the frame
moving with the net parallel plasma drift U in the case of Cei

and with respect to the whistler wave frame U+ Vw in the case
of whistler waves. Both scattering rates have energy depen-
dences with νei∝ V−3 and νw∝ V γ. It will follow from the
solutions to Equation (17) that the energy dependence of νw is
crucial for maintaining a net whistler-driven advective heat flux
while at the same time maintaining zero net current. An
important assumption in the model for whistler scattering is
that the scattering preserves energy in the whistler wave frame,
which follows from the fact that, for long-wavelength
oscillations in that frame, the electric field vanishes. An
additional assumption, however, is that νw is independent of
pitch angle. Such a model is supported by PIC simulations of
heat-flux-driven whistlers in which the particles were iso-
tropized in pitch angle. On the other hand, the amplitudes of
whistlers in a real system are likely to saturate at much lower
values than in the simulations because the temperature gradient

scale lengths in real systems are far larger. As discussed in
Section 2, the saturation amplitude of the whistler fluctuations
εw scales as nTρe/L= nT. Quasilinear models of electron
scattering based on an assumed spectrum of waves yield
scattering rates that depend on the pitch angle through
ζ= V∥/V. However, we argue that the spectrum of heat-flux-
driven waves will evolve so that the scattering rate is
insensitive to ζ since any pileup of the distribution function
with pitch angle would lead to local growth of whistlers which
would enhance the local scattering. For this reason, the whistler
scattering rate is taken to be independent of pitch angle.
Equation (17) is solved to second order in the parameter ò

discussed at the end of Section 1. Fundamental to the ordering
is the assumption that the collisional mean free path is short
compared with the parallel system scale length L and that both
the mean drift speed U and the whistler phase speed Vw are
small compared with the thermal speed so that the collision
operators as well as f can be expanded in powers of
ò∼ Vw/Vte∼U/Vte. Thus, we begin by writing Equation (17)
to lowest order,
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whose solution is a Maxwellian with zero drift,
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Technically, C0 only scatters in pitch angle so f0 could be
written as any function of V2. However, we take f0 to be a
Maxwellian. To first order, the derivatives on the left side of
Equation (17) need to be included,
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Both C0 and C1 preserve the number density and the kinetic
energy when averaged over velocity and the mean drift of f0 is
zero so

n

t

P

t
0,
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2
0 260 0 ( )¶

¶
=

¶
¶

=

with P0= n0T0. Thus, the time derivative of f0 in Equation (24)
can be neglected. The various derivatives acting on f0 (from
∇∥, ∂/∂V and C0) can be readily evaluated. The inversion of
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C0( f1) is simplified by noting that f1= f1(x, V, ζ, t) so that
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which is then readily inverted to yield the solution for f1,
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The first-order electron drift velocity U1 can then be evaluated
by multiplying f1 by V∥= Vζ and integrating over velocity. The
result is Ohm’s law,
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where we have invoked the zero current condition to require
U1=U. This equation then determines E∥. The dimensionless
parameters α1, α2, and α3 are given in Table 1. The collision
rates in Equation (29) are evaluated at the electron thermal
speed, e we ei

en n n= + with νwe= νw(Vte) and Vei
e

ei te( )n n= . The
term proportional to ∇∥T0 in Equation (29) is the thermal force
and is only nonzero when the velocity dependence of the
scattering rate is included. The first-order electron heat flux Q1

can also be evaluated by multiplying f1 by meV
2V∥/2 and

averaging over velocity. After eliminating E∥ using
Equation (29), the result for Q1 is given by
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with κe given in Equation (6). When the whistler scattering rate
is small, the heat flux reduces to the classical form, which
includes advection as well as parallel thermal conduction.

To obtain the evolution equations for the electron density
and temperature, it is necessary to write Equation (17) to
second order. It takes the form
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where C0 and C1 are given in Equations (22) and (25). There
are terms from the second-order collision operator C2 that arise
from the velocity dependence of the collision rates νei and νw.
However, these terms all cancel when computing the continuity
and energy moments of Equation (31) so the minimal required
expression for C2 is given by
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The evolution equation for the plasma density is obtained by
integrating Equation (31) over the velocity. All of the collision

terms on the right side of the equation as well as the E∥ term
integrate to zero, leaving the continuity equation as written in
Equation (3). Note that it is not necessary to evaluate f2 to obtain
the density evolution equation since C0( f2) integrates to zero. The
equation for the evolution of the electron energy is obtained by
multiplying Equation (31) by meV

2/2 and integrating over the
velocity. As in the continuity equation, f2 drops out since in a
stationary frame where C0 is evaluated the scattering does not
change the particle energy. The electron energy evolution
equation takes the form presented in Equation (4).
As discussed in Section 3, the temperature gradient drive of

the whistlers is only nonzero if the whistler scattering rate is
energy dependent. The energy dependence of the whistler-
driven scattering rate was not evaluated in PIC simulations of
heat flux driven whistlers (Roberg-Clark et al. 2016, 2018a;
Komarov et al. 2018) but the bounce frequency of electrons
trapped in large-amplitude whistlers as seen in the simulations
increases with the particle energy (Karimabadi et al. 1990).
However, in real systems in which the temperature gradient
scale length is large, the whistler wave amplitude will be small
(see the discussion in Section 3) and with a broader spectrum of
waves than documented in the PIC simulations. The quasilinear
scattering rate for an assumed spectrum of low-frequency
Alfvén waves has been calculated previously (Lee 1982;
Schlickeiser 1989; Schlickeiser & Miller 1998). The velocity
dependence of the scattering rate takes the form of a power law
V γ where γ= q− 1 and where the wave energy spectrum was
assumed to have a power-law form k− q. Since the whistler
waves of interest in electron scattering are also sub-cyclotron,
these earlier quasilinear results also apply to the electrons’
response to whistlers. The spectrum of whistler waves in PIC
simulations of heat-flux-driven whistlers fell off steeply
(Roberg-Clark et al. 2018a) but the limited spectral range of
the simulations likely impacted the results. The cascade of
electron–MHD turbulence has also been explored (Biskamp
et al. 1999) and yielded power-law spectra that scaled like
k−7/3 so that γ∼ 4/3. Thus, we take the whistler scattering rate
to take the quasilinear form with a power-law dependence on
velocity:

V V0.1 , 33w e
w

B
te( ) ( )/n

e
e

= W g

with γ∼ 4/3. The numerical factor of 0.1 in Equation (33) is
based on the results of PIC simulations (Roberg-Clark et al.
2018a) rather than a detailed quasilinear calculation. However,
as shown in Section 2, while this factor impacts the rate of
growth of whistlers, it does not control their saturation and the
associated saturated value of νwe. Since the timescale for
whistler growth is short compared with dynamical timescales,
which vary as L/Vw, the details of the whistler growth rate are
not important. More important is the onset criterion for whistler
growth which, as shown in Section 2, is independent of the
factors appearing in Equation (33).

3.2. Whistler Wave Equation

Finally, we present a derivation of Equation (9), which
describes the whistler energy transport. The extraction and
heating terms follow from the transfer of energy between the
electrons and whistlers through the scattering process. The
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calculation that leads to the advection terms on the left side of
the equation, which are important in describing the propagation
of the whistlers and evaluating their interaction with the bulk
fluid, is presented here. However, to simplify the equations we
limit the calculation to a simple system with straight magnetic
field lines. The more general case is presented in the Appendix.
We start with Faraday’s law for the perturbed whistler magnetic
field,

B E
t

c 0, 34w w ( )d d
¶
¶

+  ´ =

where δBw and δEw are the transverse magnetic and electric
field of the whistler wave. Although the scattering of electrons
by the whistlers requires that the waves be oblique with respect
to the ambient magnetic field, here we explore only the
transport along the ambient magnetic field and therefore
consider a simple 1D model of the wave dynamics. Since the
full 3D MHD equations will be displayed in the Appendix, the
convection velocity U of the MHD fluid is taken as a general
vector. Taking the dot product of Equation (34) with δBw and
completing some vector algebra, we obtain an equation for the
wave energy εw= |δBw|

2/8π:
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where we have used Ampère’s law without the displacement
current and have included the scattering terms on the right side.
To evaluate δJw · δEw, we first note that δJw=− neδvw. An
equation for the whistler electric field Ew is obtained from the
linearized electron equation of motion with no inertia:

V B U BE
c c

0
1 1

, 36w w w ( )d d d= + ´ + ´

where the electron streaming velocity U is equal to that of the
ions because of the current in an MHD system is zero unless
the Hall terms in Ohm’s law are retained (Arnold et al. 2019;
Drake et al. 2019). In the Poynting flux the whistler electric
field δEw takes the form

E U V B
c

1
. 37w w w( ) ( )d d= - + ´

This is equivalent to transforming from the whistler wave
frame, where the electric field is zero, into the laboratory frame.
The Poynting flux takes the form

S E B b U
c

U V
4

2 . 38w w w( ( ) ) ( )
p
d d e= ´ = + + ^

Using Equation (36) to calculate δEW, the heating term can be
written as δJ · δEw=U ·Fpw where Fpw is the whistler
ponderomotive force acting on the electrons, which is given by

F V B
ne

c
. 39pw w w ( )d d= - ´

The right side is easily evaluated using Ampère’s law for δVw

and carrying out some vector algebra. The resulting expression

for the ponderomotive force is

F bb . 40pw w· ( )e= -

Inserting Fpw and Sw into Equation (35) yields the transport
equation for εw given in Equation (9). The interaction between
the whistler radiation pressure and the ions through the last
term on the left side of the whistler transport equation requires
a corresponding term in the ion momentum equation. This
arises when the individual electron and ion momentum
equations are added to produce the one-fluid momentum
equation. For completeness the full set of MHD equations
along with the whistler-constrained electron energy transport
equations are presented in the Appendix. The results in the
Appendix generalize the ponderomotive force to the case when
magnetic fields have curvature.

4. Simulations of Electron Thermal Transport with
Whistler Scattering

While the basic characteristics of whistler-limited transport
have been discussed in Section 2, here we show the results of
numerical solutions of the coupled equations for the electron
temperature Te and the whistler energy density we

. For
simplicity, we freeze the ions so that the bulk flow U is zero
and the plasma density remains constant. In the first test
case we consider a system with an initial temperature profile
and temperatures at the boundaries specified such that
the temperature gradient is negative. We assume zero slope
boundary conditions so that the boundary temperatures can
float. The whistler waves are assumed to have small amplitude
at t= 0 so that classical scattering dominates the early
evolution. Because the temperature gradient is zero at the
boundaries, the threshold for whistler growth in Equation (12)
is not satisfied close to the boundaries so the whistler wave
amplitude remains small there. As a consequence, there is
little heat flux through the boundaries and the integrated total
energy (electron plus whistlers) in the system is conserved.
Because the gradient of the temperature in the system is zero
or negative everywhere, only rightward-propagating waves
are included since leftward-propagating waves are damped.
It is convenient to normalize the equations to reduce the

number of free parameters. The temperature is normalized to its
value on the left boundary, T0, and the whistler wave energy to
n0T0. Lengths are normalized to the length of the computational
domain L and time to the transit time of the whistler across the
system L/Vw0 with Vw0 based on the parameters T0 and β0 of
the left boundary. The scattering rate νe is normalized to the
nominal saturated whistler scattering rate β0Vte0/L written
below Equation (14). The resulting normalized coupled
equations for T and we

 take the simple form

t
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where for notational simplicity we have not relabeled the
variables (e.g., T/T0⇒ T). In Equation (41)
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The streaming velocities Vst
˜ are defined as
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and Vw= T−1/2. The heating functions take the form
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The equation for the whistler wave energy ( n Twe w0 0e e ) is

t
V V T H2 . 46w w w wst
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The equations have two important free parameters, the
collisionality parameter L/β0Lc0, which for values less than
unity leads to whistler growth, and the Larmor radius parameter
L/ρe0 which controls the rate of growth of whistlers compared
with the whistler transit time across the domain—a large value
of 0.1L/ρe0 indicates that in the unstable domain the whistlers
will reach large amplitude in a time that is short compared with
the global evolution of the system. For simplicity, we have set
the various parameters αi to unity since their values do not
significantly impact the dynamics.

For computational reasons we do not actually evolve the
whistler wave energy as written in Equation (46). The equation
leads to numerical problems in spatial locations where 0we 

because the time step can cause εw to become negative.
However, both of the terms on the right side of the equation are
proportional to wen and therefore to we

. Thus, the equation can
be divided by we

 and the equation can be written as an
evolution equation for ln we

. This is in effect a stretching
transformation for we

 around zero. The coupled Equations (41)

and (46) are solved with the 1D Galerkin/Petrov–Galerkin
method (Skeel & Berzins 1990) using MATLAB.
In Figure 1 we show cuts of (a) the temperature profile, (c) the

whistler wave energy profile we
+ and associated whistler

scattering rate wen+ and (d) the profile of the ratio of e ei
en n= +

wen+ to ei
en at several times during the growth phase of the whistler

waves (tä (0.0, 0.15)). The leftward-propagating whistler is
stable for this simulation since ∇∥T is never positive. The
parameters for this simulation were L/β0Lc0= 0.05, L/ρe=
1500 with the initial temperature profile given by 1.5-

x0.5 tanh 2.5( )- . At the beginning of the evolution when wen+

is small, νe= νei∼ L/β0Lc0= 0.05 so κe∼ 20. The initial
temperature evolution is rapid. However, the whistlers also
grow rapidly until νe∼ 1 and the evolution of the temperature
slows dramatically. For comparison, the evolution of the
temperature is shown in (b) with the whistler wave energy set
to zero, corresponding to classical transport. The flattening of the
temperature takes place much more rapidly in the absence of the
suppression of transport by whistlers.
The time evolution of the temperature during the phase when

whistler growth has saturated (t ä (0, 1.5)) is shown in
Figure 2(a). The plots in (a), (b), and (c) are as in Figure 1.
During this time the profiles of the whistler wave amplitude and
scattering rate νwe evolve slowly, remaining in the saturated
state defined by Equation (14). That the temperature is
advected by the whistlers can be seen by the trajectories of
the location of the peak of the temperature gradient and of the
whistler energy spectrum shown in (d). Both peaks propagate
together because the whistlers rapidly reach equilibrium with
the local temperature gradient as given in Equation (14). The
peaks propagates with nearly constant velocity of order unity,
which corresponds to Vw in our normalized system.
We now consider a more complex initial temperature profile

with regions of positive and negative temperature gradient so

Figure 1. Results of a simulation of electron thermal transport in a regime with unstable whistlers (L/βeLc = 0.05). At several times (t ä (0, 0.15)) during the growth
phase of whistlers, cuts of the electron temperature T with whistler scattering included (a) and with whistler scattering eliminated (b). From the simulation in (a) are
shown cuts of the energy density of rightward-propagating whistlers we

+ and the associated whistler scattering rate wen+ in (c) and the ratio of the total electron scattering
rate e ei wen n n= + + to the electron–ion scattering rate νei in (d).
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that whistlers propagating to the left and right we
 must be

included. The parameters for this simulation were the same as
in Figure 1 but with an initial temperature profile given by

x x2.0 tanh 5 3 0.5 tanh 10 3 0.5( ) (( ) )- - + - . As in the
simulation of Figure 1, we show in Figure 3 cuts of (a) the
temperature profile, (c) the whistler wave energy profiles we



and associated whistler scattering rates wen and (d) the profile
of the ratio of e ei

e
we wen n n n= + ++ - to ei

en at several times
during the growth phase of the whistler waves (tä (0.0, 0.1)).
As in the previous simulation, the temperature evolution is
initially rapid. However, the whistlers grow rapidly with
rightward-propagating whistlers growing in the region of
negative temperature gradient and the leftward-propagating
whistlers on the positive temperature gradient. Once νe∼ 1 the
evolution of the temperature slows dramatically. For compar-
ison, the evolution of the temperature is shown in (b) with the
whistler wave energy set to zero, corresponding to classical
transport. Again the flattening of the temperature takes place
much more rapidly in the absence of the suppression of
transport by whistlers. An important result from the simulation
with bidirectional whistlers is the absence of a region of
significant overlap of the oppositely propagating waves. This is
a consequence of the threshold for whistler growth given in
Equation (12). For a shallow temperature gradient classical
collisions prevent whistler onset so there is always a stable
band between the regions where the right- and left-going waves
are unstable. The consequence is that two classes of waves
develop in spatially distinct regions of space. This differs from
the case of cosmic ray transport limited by Alfvén waves where
counter-streaming waves can develop provided the wave
damping rate is sufficiently low.

In Figure 4 we show the late time evolution of the profile
shown in Figure 3. In (a) is the whistler-limited profile
evolution and in (b) the classical transport result. In the case of
whistler-limited transport the temperature minimum fills in as
the temperature gradients on the left and right propagate toward

the middle to fill in the temperature dip. This behavior is
perhaps even more evident in (c), which displays the evolution
of the whistler energy spectra. The peaks of the spectra move
toward the temperature minimum, following the location of the
maximum temperature gradient. we

+ moves to the right and we
-

moves to the left. In Figure 5, the trajectory of the peak of the
spectrum of we

+ is shown in (a) and that of we
- is shown in (b).

Again, the propagation velocities are of order unity and reflect
the motion of the location of the maximum temperature
gradient.

5. Discussion and Conclusions

A set of transport equations for electron energy that includes
both classical electron–ion collisions and self-consistent
scattering by whistler waves has been developed. The whistlers
are driven unstable by the electron temperature gradient along
the ambient magnetic field. For temperature scale lengths
below the critical value L= βeLc, with Lc the classical electron
mean free path and βe the ratio of electron to magnetic
pressure, whistler waves will rapidly grow and reduce electron
transport below that based on the classical Spitzer conductivity.
For typical values of Lc in the ICM ranging from 0.1 to 1 kpc
and βe∼ 100, large regions of the ICM are likely to be
controlled by whistler-limited thermal transport.
While the impact of whistler-constrained thermal transport

on the dynamics of the ICM will require detailed calculations
beyond the scope of the present paper, simple scaling
arguments suggest the broad importance of the results for the
ICM. In the following, we will show that (1) the suppression of
thermal conduction decreases the characteristic length below
which thermal instability is suppressed (Field 1965), (2) the
temperature dependence of heat flux transitions from T Le

7 2 to
V nT Tw e e

1 2~ as a system transitions to the regime where
classical collisions are weak, (3) the magneto-thermal and heat-
flux-driven buoyancy instabilities (MTIs and HBIs) are

Figure 2. Results of the simulation of Figure 1 over a longer time interval (t ä (0, 1.5)). Cuts in (a), (b), and (c) as in Figure 1. The trajectories of the location of the
peak of we

+ (blue) and the maximum temperature gradient (orange) are shown in (d).
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Figure 3. Results of a simulation of electron thermal transport in a system with a bidirectional temperature gradient and unstable whistlers propagating in the positive
and negative directions. At several times (t ä (0, 0.1)) during the growth phase of whistlers, cuts of the electron temperature T with whistler scattering included in (a)
and with whistler scattering eliminated in (b). From the simulation in (a) cuts of the energy density of rightward-, we

+, and leftward-, we
-, propagating whistlers are

shown, with the associated whistler scattering rates wen in (c). In (d) the ratio of the total electron scattering rate e ei we wen n n n= + ++ - to the electron–ion scattering
rate νei is shown.

Figure 4. Results of the simulation of Figure 3 over a longer time interval (t ä (0, 0.5)). Cuts in (a)–(d) as in Figure 3.
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impaired or completely inhibited by whistler-limited heat flux,
and (4) the heat flux constraint allows sound waves, which are
significant players in heating the cool cores of the ICM plasma,
to propagate greater distances from the central black hole,
consistent with observations. Finally, we discuss the potential
of direct measurements in the high-β solar wind to validate the
new model.

5.1. The Impact on Thermal Condensation

Further constraints on electron thermal transport from whistler
scattering will make it even less likely that heat conduction from
the outer regions of the ICM to the cool core can limit the
radiative collapse at the largest scales. On the other hand, an
important question is whether the local dynamics of radiative
instabilities that are likely to develop within the cool core will be
altered compared with the classical model. In the case of an
isobaric perturbation about an equilibrium in which radiative
cooling is balanced by some local heat source, the suppression of
thermal transport relative to the classical Spitzer value will
decrease the Field length (Field 1965), thereby extending the
domain of thermal instability down to smaller spatial scales.
Further, the significant consequences of whistler-limited trans-
port can be more clearly identified by considering a state in
which radiative cooling is balanced by a nonzero divergence of
the heat flux. In the simplest 1D model of an isobaric
condensation, the heat flux in the classical model scales as
T7/2/L with L the ambient temperature scale length. To maintain
a constant heat flux into the condensing region where the
temperature is dropping requires the local temperature gradient
to increase or L to decrease. The reduction in L pushes the
system toward the whistler unstable domain. Specifically, the
heat flux Q scales as

Q
L

L
nT V 47c

e te ( )~

so the whistler instability criterion can be written as

L

L

nT V

Q

B

Q
V

8
1. 48

e c

e te

e
te

2
( )

b b p
~ ~ <

Thus, in a 1D system where B is a constant, the threshold for
whistler onset will be crossed when the temperature is low
enough. At that point the scaling of the heat flux will change
from T7/2/L to V nT Tw e e

1 2~ . Thus, the dynamics of
condensation is likely be substantially changed in light of the
new transport model.
The temperature gradients across cold fronts can be quite large

and, depending on the strength of the locally draped magnetic
field, are likely to drive whistlers that in turn can control transport
and the structure of these fronts. The equations developed here
provide a fully self-consistent framework for exploring the
dynamics and structure of cold fronts with no constraints on the
possible breakdown of the classical model of thermal transport.

5.2. The Impact of Heat Flux Suppression on Anisotropic
Transport Instabilities

A pure hydrodynamic and gravitationally stratified plasma
is unstable to perturbations that cause convective motions if
the entropy is a decreasing function of radius, i.e., if

K rln ln 0¶ ¶ < (Schwarzschild 1906), where K= Pρ−Γ is
the entropic function labeling an adiabatic curve, ρ is the mass
density, and Γ= 5/3 is the ratio of specific heats. The entropy
profiles of all observed galaxy clusters are increasing functions
of radius, which should render them convectively stable
(Cavagnolo et al. 2008). If a fluid element in a stably stratified
atmosphere is adiabatically displaced in radius from its
equilibrium position by δr, it experiences a buoyant restoring

Figure 5. Results from the simulation of Figure 4, the trajectories of the peaks of the wave energy of the (a) rightward- and (b) leftward-propagating whistlers.
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force per unit volume (Ruszkowski & Oh 2010)

F r
g K

r
r

ln
, 49adiab ̈ ( )r

r
d= = -

G
¶
¶

where g is the gravitational acceleration, that causes oscilla-
tions around its equilibrium position at the classical Brunt–
Väisälä frequency N where

N
g

r

K

r

ln

ln
. 502 ( )=

G
¶
¶

More fundamentally, the Brunt–Väisälä frequency is the
limiting frequency of linear internal gravity waves (which
have frequency k N khgw

2 2 2 2∣ ∣w = where kh is the component of
the wavenumber orthogonal to the gravity gradient), so real N
translates into linear stability of the atmosphere. However, if an
external turbulent driving force is larger than the buoyant
restoring force then it can overcome the stable equilibrium and
induce mixing.

This paradigm experiences a fundamental change in the
weakly collisional, magnetized plasma of a galaxy cluster
because it changes the response of the plasma to perturbations.
Provided there is a radial temperature gradient, ∂Te/∂r≠ 0,
anisotropic thermal conduction along the mean magnetic field
causes the ICM to be almost always buoyantly unstable
regardless of the sign of the temperature and entropy gradients.
If ∂Te/∂r> 0 (which applies to the central cooling regions in
cool core clusters) the ICM is unstable to the HBI
(Quataert 2008) provided that there are regions where the
magnetic field is mostly radially aligned. If ∂Te/∂r< 0 (which
applies to all clusters on large scales and is a consequence of
hydrostatic rearrangement in the presence of the universal dark
matter potential) the ICM is unstable to the MTI (Balbus 2000)
provided that there are regions where the magnetic field is
mostly horizontally aligned. Using a linear stability analysis
(Kunz 2011) and nonlinear simulations (Kunz et al. 2012) it
was shown that anisotropic viscosity (i.e., Braginskii pressure
anisotropy) affects the MTI and HBI growth rates by stifling
the convergence/divergence of magnetic field lines, but cannot
suppress it. When field geometries are chosen to stabilize the
HBI/MTI, the system is still subject to related overstabilities
(Balbus & Reynolds 2010). In consequence, any perturbation
will be convectively unstable and cause instant mixing of the
thermal plasma because it lacks a restoring force that provides
an energy penalty (Sharma et al. 2009) which facilitates
advection and turbulent mixing of AGN-injected energy
(Kannan et al. 2017). In the saturated state of these anisotropic
transport instabilities, the buoyant restoring force is altered to
F g T r rln econd∣ ∣ ( )r d~ ¶ ¶ , and replaces the restoring force of
Equation (49) that is based on the classic Schwarzschild
criterion (Sharma et al. 2009).

Kinetic plasma physics and finite Larmor-radius effects can
however significantly impact those HBIs/MTIs, which have
been found using a magnetofluid (i.e., Braginskii) description.
While at long wavelengths (the “drift-kinetic” limit), a kinetic
analysis reinforces the MTI and its Alfvénic counterpart, at
sub-ion-Larmor scales, there is an overstability driven by the
electron-temperature gradient of kinetic-Alfvén drift waves
whose growth rate is even larger than the standard MTI (Xu &
Kunz 2016). While the effective heat conductivity can locally
be suppressed by the ion-scale mirror instability (Komarov
et al. 2016; Riquelme et al. 2016), recent work found that the
nonlinear saturation of the MTI is not significantly modified

(Berlok et al. 2021). Given that the predicted reduction in
parallel thermal transport can be significant in our picture of
whistler-mediated thermal conduction, an important question is
whether this reduction might affect these large-scale fluid MTIs
and HBIs. Formally, the current treatments of MTIs and HBIs
explicitly assume diffusive parallel heat transport and so would
need to be reworked with our modified scheme that highlights
the importance of advective transport. However, as a first
approach, it is possible to argue physically. The MTIs/HBIs
rely on three properties: (i) the presence of a radial temperature
gradient, ∂Te/∂r≠ 0, (ii) the large ratio of electron thermal
transport along to that across the ambient magnetic field and
(iii) a short conduction time in comparison to the buoyancy and
advection timescales on the length scales considered.10

The perpendicular thermal transport arising from the whistler
instability has not been explored in detail. The invariance of the
canonical momentum in the symmetry direction of a 2D PIC
model constrains particle motion perpendicular to B so that the
exploration of perpendicular transport requires the PIC
modeling to be carried out in a more computationally
challenging 3D system. On the other hand, based on the basic
characteristics of the heat-flux-driven whistler, we can estimate
the perpendicular transport. The characteristic transverse scale
of the whistler turbulence is the electron Larmor radius ρe so
that a reasonable estimate of the cross-field diffusion is

D . 51e we
2 ( )r n~^

The parallel transport is given by

D
V
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Thus, the ratio Rtrans of the parallel to perpendicular transport is
given by
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where we have used the saturated whistler scattering rate
νwe= βeVte/L given in Equation (14). Thus, the anisotropy
ratio remains extreme, in spite of the factor βe in the
denominator of Equation (53).
While whistler wave scattering does not qualitatively change

the anisotropic character of heat transport and hence the
physical basis for the MTIs and HBIs, the scale ℓ that can go
unstable is modified. Assuming a hydrostatic atmosphere, these
instabilities only grow at interesting rates provided the
characteristic timescale at which conduction acts on a given
perturbation is much shorter than the buoyancy timescale,
which we identify with the inverse Brunt–Väisälä frequency, N,

10 As noted by our referee, there is an additional property: the viscous time
cannot be too short in comparison to the buoyancy time. Because the
conduction time and the viscous time are related (in Braginskii’s MHD), one
cannot take the limit of fast conduction while neglecting the anisotropic viscous
stress (Kunz 2011), which also suppresses the HBI by stifling the convergence/
divergence of magnetic field lines which is responsible for generating the
buoyant motions.
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and obtain the condition
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This timescale ordering is the basis for the excitation of the
MTIs and HBIs and ensures quasi-isothermality along a given
field line (Quataert 2008). Because tangled magnetic field lines
have a significant portion of azimuthal components not aligned
with the vertical buoyancy direction, this adds furthermore to
the large separation of timescales. We assume a Navarro–
Frenk–White dark matter density profile (Navarro et al. 1997)
which is characterized by a scale radius, rs, and a mass density
at the scale radius, ρs, so that the gravitational acceleration in
the inner regions at radii r< rs is given by

g
GM r

r
G r2 const ., 55s s0 2

( ) ( )p r=
<

= =

where G is Newton’s constant. We furthermore assume an
exponentially stratified atmosphere where the pressure scale
height is given by h V gtp

2
0/= (where Vtp is the isothermal

sound speed) so that the critical length scale for instability is
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On larger length scales, conduction is slower than buoyancy
and the system transitions to obey the classical Schwarzschild
criterion for convective instability, K rln ln 0¶ ¶ < . How-
ever, on scales smaller than ℓ, there is no restoring force
associated with the entropy gradient and passive scalars such as
metals should get easily mixed with the surrounding ICM as
explained above. This picture is predicated upon the formal
applicability of the MTIs and HBIs but, for realistic magnetic
field strengths in clusters with βe∼ 100, magnetic tension
provides an additional restoring force and can suppress a
significant fraction of HBI-unstable modes, thus either
impairing or completely inhibiting the HBIs on scales smaller
than ∼50–70 kpc, depending on the unknown magnetic field
coherence length and the fraction of volume partitioned with
these intermittent strong magnetic fields (Yang & Rey-
nolds 2016). These considerations strongly constrain the
applicability of the MTIs and HBIs and call for a careful
assessment as to whether they are excited in linear theory at all
in the presence of whistler-mediated thermal conduction.

If there are bulk flows in the ICM, the condition of
Equation (56) is modified and we require that the conductive
timescale be much shorter than the advective timescale for the
MTIs and HBIs to be excited, which can be rewritten into a
condition for the advection velocity,
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Both conditions of Equations (56) and (57) are constraining
and may severely limit the applicability of the MTI and HBI in
galaxy clusters.

5.3. Acoustic Wave Dissipation and Thermalization of AGN
Energy in Cool Cores

Intermittent activity of bipolar AGN jets at the centers of
cool core clusters is expected to generate sound waves in the
ICM. Concentric ripples in the X-ray emissivity have been
detected in the Perseus (Fabian et al. 2003) and Virgo clusters
(Forman et al. 2005) and have been interpreted as sound waves
generated by central supermassive black holes. These arcs have
characteristic widths (or wavelengths) λ of order ∼1 to 10 kpc
and are seen up to several tens of kiloparsecs away from cluster
centers, suggesting that the waves propagate over substantial
fractions of cool core radii before completely dissipating. The
recent investigation of Bambic & Reynolds (2019) showed that
up to 25%–30% of the energy injected as fast jets by the AGN
can end up as sound waves, highlighting the relevance of this
physics to the question of AGN feedback.
The above argument suggests that sound waves could be a

promising agent responsible for converting the mechanical
energy of the AGN to the thermal energy of the ICM.
Appealing features of this mode of heating are that the waves
provide a natural mechanism to: (i) quickly deliver AGN
energy to the ICM (i.e., on sound crossing timescales that are
typically shorter than radiative cooling timescales), and (ii)
distribute the energy over a large fraction of the cool core
volume (rather than dissipating the energy close to the AGN jet
axis). These are desirable features of the model because they
can help to explain why cool cores remain globally thermally
stable over times comparable to the Hubble time. Furthermore,
ICM heating via sound wave thermalization is a gentle process
involving very subsonic velocity fluctuations. This is a
particularly appealing feature of this mode of heating given
recent Hitomi observations (Hitomi Collaboration et al. 2016;
Fabian et al. 2017) that suggest that the ICM in the Perseus
cluster is very calm.
Tapping of sound wave energy can occur via a number of

mechanisms. Hydrodynamical simulations of AGN outbursts
invoking Spitzer ion viscosity demonstrated that sound wave
dissipation can offset radiative cooling losses and that the
waves can propagate significant distances away from cluster
centers (Ruszkowski et al. 2004a, 2004b). However, the central
cool core regions tend to be somewhat overheated in this
model. This problem is further exacerbated by the fact that
classical Spitzer conduction is m mp e

1 2( ) more effective than
Spitzer viscosity in dissipating waves. This suggests that
transport processes need to be substantially suppressed in the
ICM in order to eliminate tension with the observations. The
necessary level of suppression was quantified using linear
theory by Fabian et al. (2005), and this work was further
extended by Zweibel et al. (2018), who included the self-
limiting nature of dissipation by electron thermal conduction,
electron–ion non-equilibration effects, and provided estimates
of kinetic effects by comparing to a semi-collisionless theory.
One of the main limitations of the above investigations was

that the level of transport was quantified by specifying ad hoc
Spitzer suppression factors. Our model allows one to relax
these assumptions and it can be applied to make physically
motivated predictions for the evolution of the dissipating sound
waves. In particular, our model self-consistently bridges the
transition from the collisional to whistler-mediated transport
regimes. Properly accounting for this transition may prove
crucial for our understanding of the thermalization of the AGN-
induced sound waves—while the sound wave dissipation at the
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very centers of cool cores may occur via collisional processes,
collisionless processes are likely to dominate over a wide range
of distances away from cool core centers where Lcβ> λ. For
example, the Coulomb mean free path is Lc∼ 2× 10−3 kpc
and ∼ 4× 10−2 kpc at the centers of the Virgo and Perseus
clusters, respectively; and at the distance of ∼50 kpc from the
center, the corresponding values are Lc∼ 0.4 and ∼0.2 kpc
(see, e.g., Zhuravleva et al. 2014 for density and temperature
profiles in these clusters). Given typical plasma β∼ 102 in the
ICM and sound wave λ∼ 1 to 10 kpc (e.g., Fabian et al. 2006),
both the collisional and whistler regimes are expected to play a
role in sound wave dissipation and propagation. Furthermore,
the suppression of conduction expected in the whistler-
dominated scattering regime may offer a natural explanation
for the observed large propagation lengths of sound waves in
the ICM. Interestingly, Kunz et al. (2020) demonstrated that
suppression of collisionless Landau damping of ion acoustic
waves is expected when the relative wave amplitudes exceed
2/β. Such waves could then be self-sustaining and propagate
over large distances in a manner resembling sound wave
propagation in a weakly collisional ICM.

An investigation of the consequences of whistler-mediated
transport for the evolution of the AGN-induced waves
represents an interesting future research direction, and we
intend to report on the results of this investigation in future
publications.

5.4. Comparison with Observations in the Solar Wind

The solar wind is diffuse plasma flowing at high Mach
number outward in the heliosphere from the Sun. In situ
satellite observations have produced enormous amounts of data
on its properties and the Parker Solar Probe mission will
facilitate measurements as close as 10Re with Re the solar
radius. The electron temperature falls slowly with radial
distance, from around 30 eV at 35Re to 10 eV at 120 Re
(Moncuquet et al. 2020). The collisionality of the solar wind
depends on the plasma density and varies over a wide range,
including a transition from collisional to collisionless behavior
as the collisional mean free path Lc varies from smaller than to
larger than the scale length of the electron temperature gradient
L. Measurements from the large Wind spacecraft data set
revealed that the electron heat flux rolls over to a value below
the collisionless heat flux Q0 as Lc/L increases and the ambient
plasma becomes more collisionless (Bale et al. 2013). While βe
of the solar wind is nominally of order unity around 1 au, this
value is actually highly variable. The Wind data set revealed
more than 12k measurements of βe in the range from 5 to 100.
An important conclusion from this data set in light of the
threshold for whistler growth in Equation (48) is that the value
of Lc/L above which the electron heat flux rolled over to a
constant value decreased with higher βe. An important
development was the confirmation from the Wind (Tong
et al. 2018) and ARTEMIS (Tong et al. 2019) data sets that the
ratio of Q/Q0 scales like e

1b- at high βe, consistent with
whistler-limited heat flux. Further, the measured amplitude of
whistler waves increased both with heat flux and with βe (Tong
et al. 2019), consistent with the heat flux as the whistler drive
mechanism.

While the general features of the whistler wave activity and
the associated heat flux measurements support the idea that
heat-flux-driven whistlers play a role in limiting electron heat
flux in the solar wind, significant uncertainties remain. The

ARTEMIS observations have been interpreted as “quasi-
parallel” whistler waves (Tong et al. 2019). The PIC
simulations as well as analytic analysis, however, have
established that parallel whistlers are not capable of signifi-
cantly limiting electron heat flux since the electrons carrying
the dominant heat flux do not resonate with parallel whistlers
(Roberg-Clark et al. 2016; Komarov et al. 2018). On the other
hand, the magnetic field measurements are limited to the spin
plane of the spacecraft so no direct measurements of the
direction of the wavevectors of the whistlers was possible. The
amplitude of measured whistlers in the solar wind was small,
around 2% of the ambient magnetic field, leading to concern
that the whistler waves were too small in amplitude to limit
electron thermal transport. On the other hand, the saturated
level of fluctuations given below Equation (14),
εw∼10(ρe/L)nT, is very small for the realistic values of ρe/L
of the solar wind. For Te∼ 10 eV and B0∼ 10−4 G, ρe∼ 1 km.
Taking a temperature scale length of around 100Re∼ 105 km
and βe∼ 10, the predicted whistler fluctuation level
δB/B0∼ 1%, which is in the range of the observations. The
scalingQ Q e0

1b~ - at high βe is now firmly established (Tong
et al. 2018, 2019). There has been no mechanism other than
heat-flux-limited whistlers proposed to explain this scaling.
The more recent measurements from the Parker Solar Probe

mission have further established the role of whistlers in limiting
the heat flux in the solar wind and specifically scattering the
field-aligned electron strahl, which has energies in the range of
100 eV–1 keV, into the more isotropic halo distribution
(Agapitov et al. 2020; Cattell et al. 2021a, 2021b). The
presence of large-amplitude whistlers was correlated with local
regions of increased plasma β (Agapitov et al. 2020; Cattell
et al. 2021b). The presence of whistlers also correlated well
with thresholds of fan instability, which is an oblique whistler
driven by the n=−1 resonance (Vasko et al. 2019; Cattell
et al. 2021b). Further, the pitch angle width of the measured
strahl electrons was also linked to the presence or absence of
large-amplitude whistlers, with the pitch angle width increasing
with the strength of whistler wave activity, establishing that
strahl scattering is caused by resonant interactions with
whistlers.
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Appendix
Global Coupled MHD and Electron Transport Equations

The transport equations presented in Section 2 provide a
suitable framework when combined with an MHD description
to describe the large-scale dynamics of the ICM system.
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However, for simplicity the equations were discussed in the
context of a unidirectional temperature gradient with whistler
waves propagating in a single direction down the gradient. In a
real system the temperature will develop complex structure that
will produce whistlers propagating in both directions with
respect to the magnetic field. Thus, a set of equations that can
be used to describe the full dynamics of a system with an
arbitrary temperature structure must include bidirectional
whistler waves and their interaction with the ambient
temperature gradient. We therefore generalize the equations
presented in Section 2 to describe whistlers propagating in both
directions with respect to the local magnetic field in 3D space.
The generalization is straightforward except for the addition of
a cross-term arising from C1( f1) in Equation (31). The cross-
term describes electron heating associated with the interaction
of counter-streaming whistler waves. This has been interpreted
as second-order Fermi acceleration in the case of cosmic ray
transport (Thomas & Pfrommer 2019). The generalized
equations when combined with MHD are suitable for
describing the dynamics of a system with arbitrary gradients
and arbitrary classical collision rates. We use the Lorentz–
Heaviside system of units throughout this Appendix and denote
the dyadic product of any two vectors P and Q by PQ.

A.1. Derivation of the Wave Energy Equation

For the sake of transparency of this derivation, we suppress
the source terms in the whistler wave equation, namely the
whistler wave growth and loss terms (due to drag and second-
order Fermi acceleration). Moreover, in this derivation we only
consider whistler waves that move in one direction and
generalize the result at the end of this section to also account
for backward-moving whistlers.

The energy equation for electromagnetic fields is

E B
E B J E

t
c

2 2
0, A1

2 2( ) · ( ) · ( )/ / ¶ +
¶

+ ´ + =

where the electric field in Hall-MHD (which is the appropriate
limit) is given by

E
U J Bne

c
0. A2

[ ( )] ( )+
- ´

=

The Hall term, which is proportional to J/(ne), is assumed to
be zero in standard MHD. This term does not do any work on
the electromagnetic field as can be shown:

J E J
U J B

J
U B

U
J B
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c

c c
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⎞
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⎤
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· [( ) ] · · ( ) = ´ ´ = - -

where we use vector identities in the last step and assume a
divergence-free magnetic field.

We are interested in the energy transport of small-amplitude
whistler waves. To this end, we perturb the energy equation in
Equation (A1) assuming small deviations of the electric and
magnetic fields from its mean values. Carrying out a
perturbation analysis and neglecting the energy density of the

electric field in the energy equation yields

B
E B J E

t
c

2
0, A5

2
· ( ) · ( )/d
d d d d¶

¶
+ ´ + =

and the perturbed electric field for whistler waves is given by

E
U V B

c
0, A6w( ) ( )d

d
+

+ ´
=

where Vw is the whistler wave velocity. Inserting the perturbed
electric field into the divergence terms and expanding the
double-cross product yields

B
U V B B B U V

J E
t
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0.

A7w w

2
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·
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d d d

d d

¶
¶

- + - +

+ =

The magnetic field tensor is given by

B B
B B B B

B B B B
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0 0 0
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x y y y
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⎣

⎢
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⎥

( )d d
d d d d
d d d d=

where we assumed that the whistler waves are propagating
quasi-parallel to the mean magnetic field and evaluated the
tensor in a coordinate system where this mean magnetic field is
locally aligned with the z-axis. In general the whistler wave has
some phase. As we have no a priori information about this
phase, we take an average of the magnetic field tensor over all
possible phases and assume an equal probability for all phases.
This results in

B B
B

B
B

bb1
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0 2 0
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2
, A9
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where 〈〉 denotes the ensemble average, BB cosx ∣ ∣ ( )d d f= ,
BB siny ∣ ∣ ( )d d f=  , b= B/|B| is the unit vector along B, and

we applied the ergodic theorem so that we effectively replace
ergodic averaging by phase averaging.11 Taking the ensemble
average of Equation (A7) and inserting the result of
Equation (A9) yields
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B
bb U V

B
B U V

J E

t
1

2

2

0.

w w

2 2
2

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

( )

· ( ) · ( ) ( )

⟨ · ⟩

/d d
d

d d

¶
¶

- - + - +

+ =

After noting that (1− bb) ·Vw= 0 we get

B
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The work done on the perturbed electromagnetic field is

J E U
B

B B1
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11 Note that d d1 2 sin 1 2 cos 1 22 2( ) ( ) ( ) ( )/ / /ò òp f f p f f= =
p

p
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p

- -
.
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or, after taking the ensemble average (using Equation (A9)),
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B

bb
2

. A13
2

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⟨ · ⟩ · · ( )d d
d= -

Inserting this expression into Equation (A11) yields

B B
U

B
bb U B V

U B bb

t

2

2 2

1

2
.

A14
w

2 2 2
2

2

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣

⎛
⎝

⎞
⎠

⎤
⎦

· ·

· ·
( )

/d d d
d

d





¶
¶

+ + +

=

Defining the energy density and pressure tensor of whistler
waves, respectively,

B
2

, and A15w

2
( )e

d
=

B
bb

2
A16w
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Equation (A14) takes the simpler form:
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In order to generalize this result to forward- and backward-
propagating whistlers, we define the corresponding energy
densities, we

, and wave pressure tensor, w
P , add the whistler

source terms to the right side, and obtain12
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U
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The superscript± denotes waves propagating down and up the
temperature gradient, respectively. The whistler energy density
and pressure tensor are given by

B

2
, and A20w
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The whistler growth term, Gw
, and the whistler loss term, Hw

,
are given by
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where kB is Boltzmann’s constant. The first term in the whistler
loss term Hw

 is associated with the wave drag on the electrons
that causes them to be heated and includes contributions from
whistlers propagating in both directions. The term proportional
to the product of the scattering rates of bi-direction whistlers

corresponds to second-order Fermi acceleration. The general-
ized electron streaming velocities Vst

 with the forward- and
backward-propagating whistler waves are defined as

V V , A24w
we

e
st 10 ( )a

n
n

=


where Vw= Vw · b= Vte/βe is the non-directional whistler
phase speed.

A.2. Momentum Conservation and Kinetic Energy Equation

Analogously, it is possible to perturb the momentum
equation to account for the forces exerted by the whistler
waves. We start with the momentum equation for the
composite ion–electron fluid, which is given by

U J B
B B

B
BB

d

dt
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where d/dt= ∂/∂t+U ·∇ is the Lagrangian derivative,
Pth= Pe+ Pi is the total (ion plus electron) pressure, and we
used J= c∇×B (neglecting the displacement current in the
Hall-MHD approximation). Introducing the perturbations in the
magnetic field while neglecting linear contributions due to
ensemble averaging yields
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which can be simplified using Equation (A9) to yield
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Using the definitions for the wave energy and wave pressure
while accounting for the two wave types and inserting the
continuity equation yields the final conservative form of the
momentum equation in the presence of whistler waves:
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Multiplying this equation by U and using the continuity
equation yields the kinetic energy equation
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where εkin= ρU2/2.

A.3. Magnetic Energy Equation

The magnetic induction law is given by

B
BU UB

t
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12 Using the identity U U U:w w w· [ · ] · [ · ]  - =  P P P , this equation
can also be written
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Multiplying this equation by B yields the equation for the
magnetic energy

U
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where εB= B2/2.

A.4. Ion and Electron Energy Equations

The ion and electron energy equations are
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where εi= 3/2nkBTi and εe= 3/2nkBTe are the energy
densities of ions and electrons, respectively, and the electron
streaming and diffusion fluxes are given by

Q bV V P , A34e e,st st st( ) ( )= -+ -

Q bb T . A35e e e,dif · ( )k = -

While the ion energy equation is standard, the equation for the
electron energy density is the same as given in Equation (4) but
generalized for the general fluid velocity U and the whistler
streaming velocitiesVst

. The energy equilibration time between
electrons and ions is denoted by τeq, which is typically longer
by m mi e than the classical electron–ion scattering time. The
whistler waves can also transfer energy between electrons and
ions but the detailed scaling behavior for this transfer has not
been established (Roberg-Clark et al. 2018b). Viscous terms
could also be included in the momentum and ion pressure
equations. The parallel conductivity κe is

nk T

m
. A36e

e

e e
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The total scattering rate e ei
e

we wen n n n= + ++ - is the sum of ei
en ,

the classical electron–ion scattering rate, and the scattering
rates wen from the forward- and backward-propagating
whistlers, all evaluated at the electron thermal velocity Vte,
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where we
 and εB= B2/8π are the whistler and magnetic energy

densities and Λ is the Coulomb logarithm.
The total electron heat flux Qe=U(εe+ Pe)+Qe,st+Qe,dif

is composed of the flux due to advection of electron enthalpy,
the effective streaming flux due to electron–whistler wave
scattering, as well as the diffusive flux. In Equation (A33), the
forward- and backward-propagating whistlers try to carry the
electron energy in opposite directions along B. The wave with
the dominant scattering rate wins out and as a result the
direction of advection can change sign with the ambient
parallel temperature gradient.

A.5. Full Set of Equations of Whistler MHD

For completeness, here we summarize the complete set of
equations for whistler MHD that constitute a complete
description of plasma dynamics in the high β ICM (to which
a description of anisotropic viscosity can be added):
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where Pth= Pi+ Pe and the equations of state are given by
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where Γ= 5/3. The whistler growth term, Gw
, and the whistler

loss terms, Hw
, (due to drag and second-order Fermi

acceleration) are given by
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The whistler energy density and pressure tensor are given by
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The parameters αi with various subscripts in Equations
(A42)–(A47) are given in Table 1. As shown in the table these
parameters have simple analytic forms in the limit of large or
small classical collisions but no simple analytic form for
arbitrary we ei

en n . The parameter γ in the table controls the
dependence of νw on velocity, V Vw we te( )/n n= g , where, as
discussed in Section 3, our best estimate is that γ= 4/3. The
values of the parameters αi in the two collisionality limits have
been explicitly evaluated for γ= 4/3. A connection formula for
the two collisionality limits could be constructed in a numerical
implementation of the transport equations. Further, as men-
tioned previously the thermal conduction in Equation (A36)
does not reduce to the Spitzer value because we have discarded
electron–electron collisions. The correct Spitzer value is
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obtained by setting α12 to 4.25 rather than the value given in
Table 1.

Finally, we note that in a large-scale system in which the
transport timescale L/Vw is long compared the electron–ion
energy exchange time τeq, Equations (A41) and (A41) can be
combined into a single energy equation for electrons and ions.

A.6. Energy Conservation

Adding up Equations (A19), (A29), (A31), (A32), and
(A33), we obtain total energy conservation

U U B B
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t
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2 0 A50w w w e e
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are the total energy density and the pressure tensor,
respectively.
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