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Abstract Roles such as leading and following can emerge 1 Introduction

naturally in human groups. However, in human-robot
teams, such roles are often predefined due to the diffi-
culty of scalably learning and adapting to them. In this
work, we enable a robot to efficiently learn how group
dynamics emerge and evolve in human teams and we
leverage this understanding to plan for influencing ac-
tions for autonomous robots that guide the team toward
achieving a common goal. We first develop an effective
and concise representation of group dynamics, such as
leading and following, by enforcing a graph structure
while learning the weights of the edges corresponding
to one-to-one relationships between the agents. We then
develop an optimization-based robot policy that lever-
ages this graph representation to attain an objective
by influencing a human team. We apply our framework
to two types of group dynamics, leading-following and
predator-prey, and show that our structured represen-
tation is scalable with different human team sizes and
also generalizable across different tasks. We also show
that robots that utilize this representation are able to
successfully influence a group to achieve various goals
compared to robots that do not have access to these
graph representations.
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Humans are capable of seamlessly interacting and col-
laborating with each other. They can easily form teams
and decide if they should follow or lead to efficiently
complete a task as a group. This is apparent in sports
teams, human driving behavior, or simply having two
people move a table together. Similarly, humans and
robots are expected to seamlessly interact with each
other to achieve collaborative tasks. Examples include
collaborative manufacturing, search and rescue missions,
and in an implicit way, collaborating on roads shared
by autonomous and human-driven cars.

In these collaborative teamwork scenarios, an im-
portant challenge for robots is to understand and in-
teract with human agents seamlessly and even further
influence a human team to achieve a desired goal. For
instance, imagine a mixed human-robot search and res-
cue mission with no direct communication capabilities
similar to Fig. 1. When a quadcopter senses valuable in-
formation from the environment how should the quad-
copter direct the rest of its human teammates toward
the desired goal?

One common solution is to assign leading and fol-
lowing roles to the team a priori before starting the
search and rescue mission. Many current human-robot
interactions determine leader-follower roles beforehand
[29, 44, 55, 80, 84, 33, 72]. This include tasks that
require learning from demonstrations or preferences,
where the human is considered as the leader and the
robot is the follower [19, 3, 1, 87, 23, 62, 13, (8], or as-
sistive tasks where the robot teaches or assists human
users [70, 41, 57, 39, 51]. However, assigning leader-
ship roles a priori is not always feasible in dynamically
changing environments or long-term interactions.
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Autonomous drone senses extra
information and influences human team

Fig. 1: A search and rescue example, where a team of
humans intend to rescue people from two islands shown
in green. The quadcopter collects more information and
determines that the team should head towards the is-
land on the right. It guides the human team toward
the island on the right using a graph representation
that models the human team. We estimate leading and
following relationships in human teams (denoted by the
arrows), and use this to create influential robot policies.
The black arrows represent intended human leading and
following behaviors whereas the grey arrows represent
updated leading and following behaviors after the in-
fluencing robot action.

There has also been significant prior work on how
we can construct intelligent robot policies that induce
desired behaviors from people [76, 35, 63, 64, 12, 85, 56].
However, all of these works optimize for robot policies
that influence only a single human in one-on-one inter-
actions. These works are able to successfully produce
influencing behaviors by keeping an estimate of the hu-
man’s state and optimize for actions based on the esti-
mation, which is often computationally intractable with
larger groups of humans.

Instead of keeping track of each individual’s state in
a team, we propose a more scalable method that esti-
mates the collective team’s state. Similar to individuals,
teams exhibit behavioral patterns and structures that
robots can use to create intelligent influencing policies.
One particular feature of human teams we will focus on
in this work is leading and following relationships.

Our key insight is that there exists an underly-
ing graphical structure encoding the larger and
more complex interactions between humans in
team settings.

In this paper, we develop a scalable approach to
extract meaningful latent structures in teams of hu-
mans that represent their leading and following behav-

iors. We extract an underlying graph, leader-follower
graph (LFG), to represent the global pattern of leader-
follower dynamics using information from local, pair-
wise leader-follower interactions that we learn using su-
pervised learning techniques. This structure provides a
concise and informative representation of the current
state of the team and can be used in planning. We
then develop novel strategies for robots who join the
human team to efficiently estimate the leader-follower
graph and further influence this structure to more effi-
ciently achieve the team’s goals. For instance, as shown
in Fig. 1, there is an underlying team structure between
the humans who are collaboratively navigating towards
the left goal. However, a robot capable of estimating
this underlying structure through the leader-follower
graph can follow strategies that collectively influence
the team to instead navigate the team towards the right
goal, which could lead to a more desirable outcome.

We demonstrate the generalizability of our approach
by applying our framework to a second type of group
dynamics: predator-prey relationships. We show that
we are able to successfully model predator-prey rela-
tionships using leader-follower graphs (LFGs). We also
demonstrate that a robot using this LFG model is able
to influence predator-prey dynamics.

Our contributions in this paper are as follows:

— Formalizing and learning a graphical structure that
captures complex relationships between members in
human teams.

— Developing optimization-based robot strategies that
leverage the graph representation to influence the
team towards a more efficient objective.

— Providing simulation experiments in a pursuit-evasion
game demonstrating the robot’s influencing strate-
gies to reverse a leader-follower relationship, dis-
tract a team, and lead a team towards an optimal
goal based on its learned leader-follower graph.

— Generalizing our framework to a predator-prey do-
main and showing that our framework can still suc-
cessfully model group dynamics, scalably deal with
different group sizes, and can be used to design in-
fluencing policies.

In the rest of this paper, we first discuss relevant work
on modeling teams, influencing teams, and ad hoc team-
work in Section 2. We then describe our formalism and
algorithm for learning graphical representations of hu-
man teams in the leader-follower domain (Sections 3-5)
followed by the predator-prey domain(Sections 6-8). Fi-
nally, we describe our experiments in the leader-follower
domain (Section 9) and the predator-prey domain (Sec-
tion 10) followed by a discussion of limitations and fu-
ture works.
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2 Related Work
2.1 Modeling Teams

Finding computationally efficient ways to model human
teams is an important part of this work. These models
can be used to design intelligent policies that allow an
agent to influence or coordinate with the team. We re-
view ways in which prior works have modeled groups of
agents.

Flocks and Swarms. Many works model flocks and
swarms inspired by animal flocking behavior [32, 22, 71,

]. These models describe how groups reach consensus
in orientation when navigating a space. They generally
assume that all agents are homogenous and that they
follow the same, relatively simple, update rule. Impor-
tant components of this update rule include aligning
orientation with their neighbors, positional attraction
and repulsion towards neighbors, and some noise [32].
For example, Cristiani and Piccoli are able to replicate
many self-organized patterns found in nature by model-
ing long-range cohesion, short-range repulsion, and the
agents’ visual fields [22]. Rosenthal et al. show that all
agents are not equally susceptible to being influenced.
They show that individuals with relatively few strongly
connected neighbors are both more socially influential
and susceptible to being influenced [71]. While these
models are computationally efficient, they are too sim-
plistic to be able to capture social dynamics that occur
in human teams.

Attention and Graph Neural Networks. Recently,
graph neural networks that use attention have become
popular for modeling agent interactions [36, 52, 37,

]. Attention is generally used to learn edge weights
between agents. Vertex Attention Interaction Network
(VAIN) uses attention to capture local structure by
allowing the network to determine which agents will
share information [36]. Li et al. uses self-attention to
find structure in a coordination graph and then uses
graph neural networks to integrate information among
all agents [52]. Jiang et al. uses multi-head dot product
attention to extract relations among neighboring agents
in order to increase agents’ receptive fields. Latent fea-
tures are then extracted from these enlarged receptive
fields to learn cooperative policies [40]. Compared to
our approach, attention-based methods generally have
more parameters and thus require more data to train.
However, using attention-based methods to model hu-
man teams could be promising future work.

Modeling Humans. While there are many works that
model multiagent systems, the extent to which these
models can generalize to groups of humans remains un-
derexplored. Many works in cognitive science, psychol-

ogy, and behavioral economics have created predictive
models of humans by modeling their biases and sub-
optimalities. For instance, Ordonez and Benson III in-
vestigated how humans make decisions under time con-
straints [66]. Simon developed the concept of bounded
rationality to reflect limited humans’ limited cognitive
resources [77]. Tversky and Kahneman developed Cu-
mulative Prospect Theory to capture human-decision
making under risk and uncertainty [33]. In robotics,
being able to successfully predict human behavior has
shown to improve performance on tasks such as assistive
robotics [51, 57, 39, 25], autonomous driving [74, 75,
], collaborative games [01], and motion planning [38,
]. The noisy rational choice model has been an ex-
tremely popular choice due to its simplicity [14, 13, 11,
, 7]. Other models include the adoption of Cumula-
tive Prospect Theory for human-robot interaction [48],
models of human driving [34, 53], as well as learning-
based models [60, 67].

In addition to explicitly modeling human behav-
ior, robots have also been able to infer human pref-
erences through interactions using partially observable
Markov decision processes (POMDPs) which allow rea-
soning over uncertainty on the humans’ internal state
or intent [17, 24, 50, 58, 38, 75]. Human’s intent in-
ference has also been achieved through human-robot
cross-training [62] as well as various other approxima-
tions to POMDP solutions such as augmented MDPs,
belief space planning, approximating reachable belief
space, and decentralization [2, 15, 16, 65, 69, 73]. How-
ever, these methods usually focus on modeling a single
human agent and do not capture social dynamics that
occur among humans.

2.2 Influencing Teams

Given a model of a team, an important next question
is how a more informed agent can use this model to
coordinate with or influence the team.

Flocks and Swarms. Literature on influencing flocks
and swarms looks at how informed agents can guide the
group towards a preferred direction. This is similar to
some of our evaluation tasks where the robot agent at-
tempts to guide the human team towards a particular
goal. The homogeneity and simple nature of agents in
flocks and swarms allow for leader agents to implicitly
influence the group. More specifically, implicit leader-
ship algorithms allow a group of agents to reach con-
sensus where each agent can observe their neighbors’
states within a particular radius. As agents attempt to
align their orientation with their neighbors’, this em-
powers informed agents to lead [36, 31]. Prior work has
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also examined properties that make a swarm more sus-
ceptible to influence. Couzin et al. show that in groups
of animals, only a small proportion of informed agents
are required, and the larger the group, a smaller the
proportion of informed individuals are needed [21]. Ce-
likkanat et al. study the extent to which informed in-
dividuals can lead a flock by varying three factors: (1)
the weight of the direction of preference (2) the ratio
of informed individuals and (3) the size of the flock.
They find that a flock is easier to control when mod-
erate weight is put on the direction of preference (2)
larger flock sizes and (3) more agents attempt to align
their states with neighboring agents’ states [18]. It is
difficult to apply these findings to human teams due to
the simplicity of flock and swarm models.

Human-Swarm Interaction. There has also been con-
siderable work on how humans can influence flocks and
swarms. Tiwari et al. consider the problem of leader
placement when steering a large robot swarm [$2]. Robots
can either be controlled by a human or behave ac-
cording to a swarm model. The authors consider which
robots are positionally best equipped to influence the
swarm (front, middle, or periphery). Kerman et al. and
Brown et al. also consider how humans can influence
swarms by controlling a subset of them [413, 16]. They
show that humans are able to lead the swarm to switch
from torus to flock formations and vice versa. Our work
tackles the reverse problem where a robot agent must
influence a team of humans.

2.3 Ad Hoc Teaming

An autonomous ad hoc agent must both model and
influence a team that it has never seen before [79].
The ad hoc setting is similar to ours in that we ex-
pect our robot agent to influence a human team that
it has never worked with before. Ad hoc teaming has
been studied in the multi-armed bandit setting where a
teacher needs to trade off between teaching a new learn-
ing agent and exploitation [78, 10]. Role assignment in
ad hoc teams have also been studied [15, 30]. Typi-
cally, an ad hoc agent needs to select a role such that it
maximizes the team’s utility. For instance, in Bowling
and McCracken’s work, teammates assign a role to the
agent and the agent’s job is to infer its role by simulat-
ing plays and selecting the one that is most similar to
current teammate behavior [15]. Liemhetcharat models
how well agents work together in ad hoc teams using a
graph; nodes represent agents, their value represent the
agent’s capabilities, and agent synergy is determined
by their capabilities and how far apart they are located
from other agents in the graph [54]. Liemhetcharat de-

scribes how to learn this graph based on observations
of team performance and then use this model to plan
for creating effective ad hoc teams. Barrett et al. intro-
duce model-based and model-free algorithms that al-
lows ad hoc agents to collaborate with a variety of dif-
ferent teammates [9]. The algorithms either learn mod-
els about prior teammates or policies on how to collab-
orate with prior teammates, and uses this knowledge
to interact with current teammates. Albrecht assumes
that agents can be characterized into a set of policies
drawn from some unknown distribution [1]. The author
uses a Bayesian approach where agents update their
posterior beliefs about types of other agents which can
then be used for planning. While many of these ad hoc
teaming works focus on modeling different types of po-
tential teammates, in this work, we focus on modeling
a specific type of latent group dynamics — leading and
following graphs — in order to enable a robot to inter-
act with an unknown team.

3 Formalism for Modeling Leading and
Following in Human Teams

Running Example: Pursuit-Evasion Game. We
define a multi-player pursuit-evasion game on a 2D plane
as our main running example. In this game, each pur-
suer is an agent in the set of agents I that can take
actions in the 2D space to navigate. There are a num-
ber of stationary evaders, which we refer to as goals.
The objective of the pursuers is to collaboratively cap-
ture the evaders (goals). Fig. 2 shows an example of a
game with three pursuers, shown in orange, and three
goals, shown in green. The action space of each agent is
identical, A; = {move up, move down, move left, move
right, stay still}; the action spaces of all agents collec-
tively define the joint action space A. All pursuers must
jointly and implicitly agree on a goal to target, and a
goal will be captured when all pursuers collide with it
as shown in Fig. 2 (b).

Leaders and Followers. We define a set of goals g €
G, which abstracts the idea of the agents reaching a
set of states in order to fully optimize the joint reward
function. For instance, in a pursuit-evasion game, the
goals informally correspond to the evaders that need to
be captured by all the pursuers, i.e., all the agents (pur-
suers) need to reach a state corresponding to the goals
(evaders) being captured. A goal in G intuitively signi-
fies a way for the agents to coordinate strategies with
each other. For instance, in a pursuit-evasion game, the
agents should collaboratively plan on actions that cap-
ture the goals. To put this in the context of leading and
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Fig. 2: Pursuit-evasion game. (Left) we demonstrate a
pursuit-evasion game with three goals (green circles),
and three pursuers (orange circles). The pursuers must
jointly agree on moving toward a target. (Right) The
three pursuers move to g; to capture it.

following, when agents capture a goal, the goal can be
thought of as being followed.

Each agent ¢ € I follows a goal or another agent,
which we refer to as a leader. Formally we let [; € GUI,
where [; is either an agent or a fixed goal g who is the
leader of agent i (agent ¢ follows [;). This is shown in
Fig. 3 (a), where agent 2 follows goal g1 (Il = ¢1) and
agent 3 follows agent 2 (I3 = 2).

Leader-Follower Graph. The set of leaders and fol-
lowers form a directed leader-follower graph as shown in
Fig. 3 (a). Each node represents an agent i € I or goal
g € G. The directed edges represent leading-following
relationships, where there is an outgoing edge from a
follower to its leader. The weights on the edges repre-
sent a leadership score, which is the probability that
the tail node is the head node’s leader. For instance,
in Fig. 3 (a), w32 represents the probability that 2 is
3’s leader. The leader-follower graph is dynamic in that
agents can decide to change their leaders at any time.
We assume that there could be an implicit transitivity
in a leader-follower graph, i.e., if an agent ¢ follows an
agent j, implicitly it could be following the agent j’s
believed ultimate goal.

Some patterns are not desirable in a leader-follower
graph. For instance, an agent would never follow it-
self, and we do not expect to observe cycling leading-
following behaviors (Fig. 3 b). Other patterns that are
likely include: chain patterns (Fig. 3 c¢) or patterns
with multiple teams where multiple agents directly fol-
low goals (Fig. 3 d). We describe how to construct a
leader-follower graph that is scalable with the number
of agents and avoids the undesirable patterns in Sec.

Partial Observability. The leader of each agent, [;, is
a latent variable. We assume that agents cannot directly
observe the leading and following dynamics of other
agents. Thus, constructing leader-follower graphs can

help robot teammates predict who will follow whom,
allowing them to strategically influence teammates to
adapt roles. We assume agents have full information
on the observations of themselves and all other agents.
(e.g. positions and velocities of agents).

4 Construction of a Leader-Follower Graph

In this section, we focus on constructing the leader-
follower graph that emerges in collaborative teams. We
will first focus on learning pairwise relationships be-
tween agents using a supervised learning approach. We
then generalize our dyadic scoring to multi-player set-
tings using graph theoretic algorithms. This combina-
tion of data-driven and graph-theoretic approaches al-
lows the leader-follower graph to efficiently scale up
with the number of agents. Our aim is to leverage this
leader-follower graph to enable robot teammates to pro-
duce helpful leading behaviors.

4.1 Pairwise Leadership Scores

We first focus on learning the probability of any agent
¢ following any goal or agent 5 € G U I. The pairwise
probabilities help us estimate the leadership score w; ;,
i.e., the weight of the edge (4,7) in the leader-follower
graph.

We develop a general framework of estimating the
leadership scores using a supervised learning approach.
Consider a two-player setting where I = {4, j}, we col-
lect labeled data where agent i is asked to follow j, and
agent j is asked to optimize for the joint reward func-
tion assuming it is leading i, i.e., following a fixed goal
g in the pursuit-evasion game (I; = j and [; = g). We
then train a LSTM network with a softmax layer to
predict each agent’s most likely leader.

Data Collection. We collect labeled human data by
asking participants to play a pursuit evasion game. We
recruited pairs of humans and randomly assigned lead-
ers l; to them (i.e., another agent or a goal). Partici-
pants played the game in a web browser using their ar-
row keys and were asked to move toward their assigned
leader, I;. In order to create a balanced dataset, we col-
lected data from all possible configurations of leaders
and followers in a two-player setting (the configurations
are shown in Fig. 7). We collected a total of 186 games.

Since human data is often noisy and difficult to col-
lect in large amounts; we further augmented our dataset
with synthetic data, where we had simulated humans
play the game. We simulated humans based on a po-
tential field path planner [8]. Agents at location ¢ plan
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Fig. 3: (a) Leader-follower graph. Green islands are the goals that need to be captured. Orange circles are the
pursuers. (b) Cyclic leader-follower graph. We design policies that avoid such cyclic behaviors. (¢) Chain behavior

in the leader-follower graph. (d) Multiple teams.

their path under the influence of an artificial poten-
tial field U(q), which is constructed to reflect the en-
vironment. Agents moved toward their leaders by fol-
lowing an attractive potential field. Other agents and
goals that are not their leaders are treated as obstacles
that emit a repulsive potential field. In our game set-
ting, the position of agent’s assigned leader [; is given
an attractive potential field. The rest of the goals and
agents are expressed as repulsive potentials.
Potential Field for Simulated Human Planning.
We denote the set of attractions as A, and the set of
repulsive obstacles as R. The overall potential field is
a weighted sum of potential fields from all attractive
and repulsive obstacles. 0; is the weight for attractive
potential field from ¢ € A, and 6; is the weight for
repulsive potential field from j € R.

q) = Zeantt + Z 0 rep (1)
i€ A JER

The optimal action a that an agent would take lies in
the direction of the potential field gradient.

== 0, VUL () = > 0;VUL(

i€EA JER

= -VU(q

In our implementation, the attractive potential field
increases as the distance to goal becomes larger to help
the agent reach the goal. On the other hand, the repul-
sive potential field has a fixed effective range, within
which the potential field increases as the distance to the
obstacle decreases. The attractive and repulsive poten-
tial fields are constructed in the same way for all attrac-
tive and repulsive obstacles. Specifically, the attractive
potential field of attraction 7, denoted as UZ, (q), is con-
structed as the square of the Euclidean distance p;(q)
between agent at location ¢ and attraction ¢ at location
q;- In this way, the attraction increases as the distance
to goal becomes larger. € is the hyper-parameter for con-
trolling how strong the attraction is and has consistent

value for all attractions.

ri(q) = llg — gl
Uii(q) = %epi(q)Q
—VUL:(q) = —epi(q)(Vpi(q))

The repulsive potential field U/, (¢) is used for obsta-
cle avoidance. It usually has a limited effective radius
since we do not want the obstacle to affect agents’ plan-
ning if they are far way from each other. Our choice
for UJ,,(¢) has a limited range 7o, where the value is
zero outside the range. Within distance -, the repul-
sive potential field increases as the agent approaches
the obstacle. Thus, to compute the repulsive potential
field to obstacle j at location ¢, we first identify the
minimum distance v;(g) between ¢ and the obstacle j
as in Eq.(2). Coefficient n and range 7y are the hyper-
parameters for controlling how conservative we want
our collision avoidance to be and is consistent for all
obstacles. Larger values of 77 and 7y mean that we are
more conservative with collision avoidance and want the

agent to keep a larger distance to obstacles.

7i(e) = min g =g
Ur]e ( ) %n('le(Q) 70) i (q) <Y
' 0 vi(q) > 0 (2)
vui (g = | 1GTT ~ 3 G V@) 1@ < o
p 0 7i(9) >0

In our experiments, we find that our simulations are
good approximations of human behavior. The simple
nature of the task given to humans (i.e., move directly
toward your assigned leader l;) is easily replicated in
simulation.

Training with a Scalable Network Architecture.
Our network architecture consists of two LSTM sub-
modules, one to predict player-player leader-follower
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Fig. 4: Scalable neural network architecture. This example predicts the probability of another agent j being agent
2’s leader, ws ;. There are three LSTM submodules used because there are two possible evaders and one possible
agent that could be agent 2’s leader. This architecture demonstrates how one can select P-P and P-E modules and
discover the leader-follower relationships in a more scalable and compositional manner.

relationships (P-P LSTM) and one to predict player-
evader relationships (P-E LSTM). We use a softmax
output layer with a cross-entropy loss function to get
a probability distribution over j and all goals g € G of
being i’s leader. We take the leader (an agent or a goal)
with the highest probability and assign this as the lead-
ership score. The P-P and P-E submodules allow us to
scale training to a game of any number of players and
evaders as we can add or remove P-P and P-E submod-
ules depending on the number of players and evaders in
a game. An example of our scalable network architec-
ture is illustrated in Fig.

Evaluating Pairwise Scores. Our network trained
on two-player simulated data successfully captured the
pairwise leading-following relationship (training accu-
racy: 80%, validation accuracy: 83%). We also experi-
mented with training with three-player simulated data
as well as a combination of two-player simulated and
human data (two-player mixed data) resulting in (train-
ing accuracy: 97%, validation accuracy: 75%).

Validation results are shown in Fig. 5. Our model
trained with mixed two-player data was first trained on
simulated data and then trained on human data. For
this reason, we have represented the mixed-data model
as a horizontal line in Fig. 5 demonstrating the final
validation accuracy.

4.2 Maximum Likelihood Leader-Follower Graph

To build a leader-follower graph in settings with more
than two players, we compute pairwise weights w; ; of
leader-follower relationships between all possible pairs

08 e
>\046'
o
£
5 0.4 2P simulated
& 3P simulated
0.2: 2P human
== 2P mixed
0.0 ! . . .
0 20e3 40e3 60e3

steps

Fig. 5: Validation accuracy when calculating pairwise
leadership scores trained on simulated, human, and
mixed data (simulated & human), described in Sec.

of leaders 7 and followers j. The pairwise weights (lead-
ership scores) can be computed based on the supervised
learning approach described above, indicating the prob-
ability of one agent or goal being another agents’ leader.
After computing w; ; for all combinations of leaders and
followers, we can create a directed graph G = (V. E)
where V = TUG and E = {(i,5)|i € I,j € IUG,i # j},
and the weights on each edge (4, j) correspond to wj ;.
In addition, we add a special root node, where all the
goals ¢ € G have an outgoing edge to the root node.
This produces a fully connected graph with each edge
corresponding to the probability of one agent leading
another, as shown in Fig. 0 (a).

Our model builds the graph based on the the pair-
wise scores, and thus can generalize to groups with dif-
ferent sizes. The computation increases quadratically
with the size of the graph along with the number of
pairs.
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(a)
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Fig. 6: (a) Graph G. The directed edges represent pairwise likelihoods that the tail node is the head node’s leader.
(b) Maximum-likelihood leader-follower graph, G*. For each node, we select the outgoing edge that has the highest

weight as shown by the bold edges.

To create a more useful graph, we extract the max-
imum likelihood leader-follower graph G* by pruning
the edges of our constructed graph G. We prune the
graph by greedily selecting the outgoing edge with high-
est weight for each agent node. In other words, we select
the edge associated with the agent or goal that has the
highest probability of being agent i’s leader, where the
probabilities correspond to edge weights as in Fig. 6 (b).
When pruning, we make sure that no cycles are formed.
If we find a cycle, we will choose the next probable edge.
Our pruning approach is inspired by Edmonds’ algo-
rithm [26, 20], which finds a maximum weight arbores-
cence [42] in a graph. An arborescence is an acyclic
directed tree structure, where there is exactly one out-
going edge from a node to another. We use a modified
version of Edmonds’ algorithm since, compared to our
approach, a maximum weight arborescence is more re-
strictive; it requires the resulting graph to be a tree.

Evaluating the Leader-Follower Graph. We eval-
uate how accurate our leader-follower graph with three
or more agents is when trained on simulated two-player
and three-player data, as well as a combination of sim-
ulated and human two-player data (shown in Table 1).
We evaluated our leader-follower graph on simulated
three, four, and five-player games, as well as two and
three-player human games. In each of these multi-player
games, we extracted a leader-follower graph at each
timestep and compared our leader-follower graph’s pre-
dictions against the ground-truth labels. Our leader-
follower graph performs better than random guessing
by a large margin. The random policy selects a leader
l; € I UG for agent i at random, where [; # i. The
chance of being right is thus W We then take the
average of all success probabilities for all leader-follower
graph configurations to compute the overall accuracy.
As an example, for two-player games, there are in to-

Table 1: Generalization accuracy (Acc) of leader-
follower graph (LFG) trained and tested with various
data sources.

Training Testing Data LFG Random
Data Acc Acc
2 players, simulated 3 players, simulated 0.67 0.29
2 players, simulated 4 players, simulated 0.45 0.23
2 players, simulated 5 players, simulated 0.41 0.19
2 players, simulated 2 players, human 0.68 0.44
2 players, simulated 3 players, human 0.47 0.29
3 players, simulated 4 players, simulated 0.53 0.23
3 players, simulated 5 players, simulated 0.50 0.19
3 players, simulated 3 players, human 0.63 0.29
2 players, mixed 3 players, simulated  0.44 0.29
2 players, mixed 4 players, simulated 0.38 0.23
2 players, mixed 5 players, simulated  0.28 0.19
2 players, mixed 2 players, human 0.69 0.44
2 players, mixed 3 players, human 0.44 0.29
tal three possible configurations as shown in Fig. 7. We

compute the overall accuracy of the game by averaging
%, % and %, giving 0.44 (line 4, Table 1).

In all experiments shown in Table 1, our trained
model clearly outperforms the random policy. Most no-
tably, the models trained on simulated data scale natu-
rally to settings with large numbers of players as well as
human data. We use the model trained on three-player

simulated data for our experiments in Section

5 Planning based on Inference over
Leader-Follower Graphs

With a representation for latent leadership structures
in human teams, we use a leader-follower graph G* to
positively influence human teams, i.e., move the team
towards a more desirable outcome. We describe how a
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agent 1 since agents 2 and 3 are already targeting the optimal goal g .

robot can use the leader-follower graph to infer use-
ful team structures. We then describe how a robot can
leverage these inferences to plan for a desired outcome.

5.1 Inference Based on Leader-Follower Graph

Leader-follower graphs enable a robot to infer useful
information about a team such as agents’ goals or who
the most influential leader is. These pieces of informa-
tion allow the robot to identify key goals or agents that
are useful in achieving a desired outcome (e.g., iden-
tifying shared goals in a collaborative task). A robot
can then plan for a desired outcome by influencing or
following these key goals and agents. We begin by de-
scribing different inferences a robot can perform on the
leader-follower graph.

Goal Inference in Multiagent Settings. One way
a robot can use structure in the leader-follower graph
is to perform goal inference. An agent’s goal can be
inferred by the outgoing edges from agents to goals.
In the case where there is an outgoing edge from an
agent to another agent (i.e., agent i follows agent j),
we assume transitivity, where agent ¢ can be implicitly
following agent j’s believed ultimate goal. Being able

to quickly infer the goal of multiple agents enables the
robot to plan efficiently.

Influencing the Most Influential Leader. In order
to lead a team toward a desired goal, the robot can also
leverage the leader-follower graph to predict who the
most influential leader is. We define the most influen-
tial leader to be the agent i € I with the most number of
followers. Identifying the most influential leader allows
the robot to strategically influence a single teammate
that also indirectly influences the other teammates that
are following the most influential leader. For example,
in Fig. & (a) and (b), we show two examples of iden-
tifying the most influential leader from G*. In the case
where some of agents are already going for the preferred
goal, the one that has the most followers among the re-
maining players becomes the most influential leader, as
shown in Fig. 8 (b).

5.2 Optimization Based on Leader-Follower Graph

The leader-follower graph allows the robot to single out
key players and goals to follow or influence. A robot
can then use this information to directly optimize for
actions that help it achieve a desired outcome: Out-
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comes such as following the crowd or influencing the
crowd’s decision through utilizing the leader-follower
graph. For instance, the probability of the robot be-
coming an agent i’s leader can be expressed as w; .
The probability of the robot following a goal g is wy 4.
To select actions a € A that maximize an objective
involving weights w; ; in the leader-follower graph, we
generate graphs gf_’% that simulate what the leader-
follower graph would look like at timestep ¢ + k if the
robot takes an action a; at current timestep ¢. Over the
next k steps, we assume human agents will continue
along the current trajectory with constant velocity.
From each graph G;'t,, we can obtain the weights
wfjk corresponding to an objective that the robot is op-
timizing for (e.g., the robot becoming agent i’s leader).
We then optimize over the robot’s actions to find the

action a that maximizes a reward/outcome r that can
t+k> t+k>

be expressed in terms of w;"’s and w; "’s.
aj = argmax r ({w/5*(ar)}ijer, {w} " () }ier gec)

ar€A
3)

We describe three specific tasks that we will plan
for using the optimization described in Eqn. (3).

Reversing a Leader-Follower Relationship. A robot
can directly influence team dynamics by changing leader-
follower relationships. Given a directed edge between
agents ¢ and j, the robot can use the optimization out-
lined in Eqn. (3) for actions that reverse an edge or
direct the edge to a different agent. For instance, to re-
verse the direction of the edge from agent i to agent 7,
the robot will select actions that maximize the proba-
bility of agent j following agent i:

aj = argmax wﬂk(at), i,j€l
at€A

The robot can also take actions to eliminate an edge
between agents i and j by minimizing w; ;. One might
want to modify edges in the leader-follower graph when
trying to change the leadership structure in a team.
For instance, in a setting where agents must collectively
decide on a goal, a robot can help unify a team with
sub-groups (an example is shown in Fig. 3 (d)) by re-
directing the edges of one sub-group to follow another.
On the other hand, the robot can also redirect edges
such that the team is dispersed, or reverse edges such
that the edges form a cycle as shown in Fig. 3 (b).

Distracting a Team. In adversarial settings, a robot
might want to prevent a team of humans from reach-
ing a collective goal g. In order to stall the team, a
robot can use the leader-follower graph to identify who

the current most influential leader ¢* is. The robot can
then select actions that maximize the probability of the
robot becoming the most influential leader’s leader and
minimize the probability of the most influential leader
following the collective goal g:

t+k

[
a; = argmax W;.,

(at) — wf:rgk(at), itel (4)
a€A

Distracting a team from reaching a collective goal can
be useful in cases where the team is an adversary. For
instance, a team of military drones masquerading as
enemy drones may want to prevent the enemy team

from reaching a joint goal.

Leading a Team Towards the Optimal Goal. In
collaborative settings where the team needs to agree on
a goal g € G, a robot that knows where the optimal
goal g* € G is should maximize joint utility by leading
all of its teammates to reach ¢g*. To influence the team,
the robot can use the leader-follower graph to infer who
the current most influential leader ¢* is. The robot can
then select actions that maximize the probability of the
most influential leader following the optimal goal g*:

a;y = argmax wffg’i (ar), i €T

at€A
Being able to lead a team of humans to a goal is useful
in many real-life scenarios. For instance, in search-and-
rescue missions, robots with more information about
the location of survivors should be able to lead the team
in the optimal direction.

6 Modeling Predator-Prey Relationships

We test the generalizability of our framework by mod-
eling a different type of group dynamics: predator-prey
relationships. Each agent has either a prey that they are
trying to capture, predators they are eluding, or both.
Predator-prey relationships are different from leader-
follower relationships in that agents are tasked with
eluding their predator. In some cases, agents must si-

multaneously capture their prey while eluding their preda-

tor, giving way to more complex dynamics than leading
and following. In human groups, predator-prey relation-
ships can be found in games such as capture-the-flag.
In capture-the flag, two teams guard regions that con-
tain each team’s flag. The goal of a team is to steal the
other team’s flag while protecting their own. Predator-
prey relationships emerge when team members attempt
to tag out members of the opposing team. An example
is shown in Fig. 9 (a), where members of the blue team
(agents 2 and 4) help their teammate (agent 1) escape
from the opposing team.
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Fig. 9: (a) Example of a predator-prey dynamic in capture the flag. Red and blue circles represent agents on
different teams. (b) Another example of a predator-prey dynamic between members of red and blue teams. (c)
Predator-prey graph where the most likely edges are bolded. (d) The robot joins the game as agent 2’s predator.

Predator-Prey Game. We modify the pursuit-evasion
game setup described in Sec. 3. In the modified ver-
sion, there are no stationary evaders (goals). Instead,
each agent in the set of agents I acts as either a preda-
tor, prey, or both. Predator agents are assigned a prey
and are required to capture it by colliding with them.
Likewise, prey agents have assigned predators and their
goal is to avoid being captured. The action space of each
agent ¢ € I is identical as in Sec. 3, A; = {move up,
move down, move left, move right, stay still}.

Predator-Prey Graph. Using the set of predators
and preys, we can form a directed predator-prey graph.
Each node represents an agent ¢ € I. The directed edges
represent predator-prey relationships where there is an
outgoing edge from a predator to its prey. The weights
on the edges represent the probability that the tail node
is the head node’s predator. Similar to leader-follower
graphs, there can be many configurations of predator-
prey graphs; two examples are shown in Figs. 9 (a) and
(b). In this work, we experiment with various configu-
rations of the predator-prey to validate that our frame-
work can effectively capture these relationships between
the agents in this predator-prey domain.

7 Construction of a Predator-Prey Graph

In this section, we describe how we learn these graphs.
Similar to our leader-follower graphs, we use a super-

vised learning approach where we collect pairwise predator-

prey data to train a predictive model. Like the leader-
follower graph, our aim is to use this model to scal-
ably construct a predator-prey graph for multi-agent
settings. Ultimately, we hope to use this graph to build
robot algorithms that can understand and influence
predator-prey dynamics.

7.1 Pairwise Prey Scores

Data Collection. We recruited dyads to play the predator-

prey game. We assumed a chain-structured predator-
prey relationship. Predator and prey roles were ran-
domly assigned to each partner. Participants played the
game in the web browser where predators tried to col-
lide with their prey as many times as possible within
the time limit. We collected a total of 1.5 hours of data
where we collected trajectories and scores of each par-
ticipant.

We also generated synthetic human data using the
same potential field simulator as described in Sec. 4.1).
At the beginning of each game, each agent was ran-
domly assigned one prey or no prey. Only configurations
that contain no loops are considered valid. By randomly
assigning preys, we effectively covered all possible valid
configurations. In our simulator, predators moved to-
wards their prey by following an attractive potential
field and prey moved away following a negative poten-
tial field. We simulated 1000 three-agent predator prey
games. We chose three-agent games for data collection
because to have agents that being both a predator and
a prey, the minimal number of agents in the game is
three.

Training the Model. To test the generalization of
our framework in this new domain, we use the same
LSTM submodules as in Sec. 4 to predict player-player
predator-prey relationships. For each agent ¢ € I in a
game, we train our model to predict agent i’s prey by
feeding their and their partner’s trajectory data into
our submodules. We add an additional submodule where
the agent i’s trajectories are fed in twice to represent
the event that the agent does not have prey. We use a
softmax output layer with a cross-entropy loss function
to compute a probability distribution over all agents of
being agent i’s prey. Before training, we pre-processed
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the data by normalizing it, shifting it to have a zero-
centered mean, and down-sampled it. When training
our network, we used the same hyperparameters as de-
scribed in Sec.

Evaluating Pairwise Scores. We evaluated the ac-
curacy of our model on held out test sets of simulated
and human data. Our network trained on three-player
data performed with a validation accuracy of 95.51% in
simulation with randomized predator-prey graph struc-
ture and 96.24% on human data with a chain structure.
Both results indicate that our framework can accurately
capture the predator-prey pairwise relationship.

7.2 Constructing and Evaluating the Predator-Prey
Graph

In settings with more than three players, we construct
a predator-prey graph based on the pairwise scores.
For each agent i, we compute pairwise weights between
agent ¢ and all of its possible preys j € I,j # ¢. In
this Predator-Prey domain, we also compute an addi-
tional weight for agent ¢ having no prey. With all of
these scores, we then construct the graph as described
in Sec.

Evaluating the Predator-Prey Graph. We tested
the generalization accuracy of the predator-prey graph
by constructing the graph at each time step and com-
paring it against the ground truth labels. The results
for testing on real human data and simulated data are
demonstrated in Fig. respectively. We found that
the model trained with three agent data can success-
fully generalize to settings with more players with only
a minor decrease on the accuracy. Similar patterns to
Table | can also be observed here where the accuracy
drops with larger numbers of agents. This is because as
the number of agents increases, the task becomes more
challenging and it becomes more difficult for the model
to distinguish which agent is the prey.

8 Planning with the Predator-Prey Graphs

We now leverage the information from the predator-
prey graph to plan for robot behaviors that can influ-
ence group dynamics. In this work, we focus on the
task of becoming the only dominant predator among
the chain-structured predator-prey group. Accomplish-
ing this task requires two steps. First we need to identify
which agent is the top predator, and then we want the
robot to hunt for that identified top predator.

Inference Based on Predator-Prey Graph. One
direct way to identify which agent is the top predator

Collected Human Data
(chain structure)

Simulated Agents
(randomized structure)

S 100 100
= 80 80
& e 60
s
5 40 40
g 20 20
< 0
3 4 5 6 3 4
number of agents number of agents
3 agents M4 agents W5 agents 6 agents

Fig. 10: Generalization accuracy of the predator-prey
graph tested with simulated agents and human data.
Both models are trained with three-agent data and we
tested models in games that contain more agents.

is to identify the agent that has no predator based on
the estimated predator-prey graph. For example, as in
Fig. 9 (b), agent 1 is the top predator. In this work, we
experiment with a predator-prey chain, and therefore,
there is only one top predator among the group.

Optimization Based on Predator-Prey Graph.
After identifying the top predator, we can now again use
the predator-prey graph for optimization. At each time
step t, we infer the top predator X; based on the current
predator-prey graph. Then, similar to Sec. 5, we gener-
ate the predator-prey graph k time steps ahead gfg,ﬁ,
assuming the robot takes actions A; = (ay,...,ax) in
the next k time steps. We then extract the weight wfgé
representing robot j being the predator of the identified
top predator X; from the graph Qtﬁ_k. By maximizing
this weight, we can compute the optimal robot actions:

A= (at,...,ax) = argmax wj‘gft (5)

Ar=(at,...,ax)

We perform this optimization in a model predictive
control fashion [28], where we find the optimal sequence
of actions at time step ¢, and execute a;. We then replan
for a k time-step horizon at the next time step running
the same optimization.

Other Tasks. In this work, we only demonstrate how
to leverage the predator-prey graph for inference and
optimization for the task of becoming the dominant
predator in a chain-structured predator-prey group. How-
ever, like the leader-follower graph, we emphasize that
the predator-prey graph is a general representation that
can be combined with many other tasks as well, e.g., in
more complex settings where the relationship is not lim-
ited to a chain structure. For example, the robot can
help to protect another agent by identifying who its
predators are and interfere with their actions.
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Fig. 11: Adversarial game snapshots for a 300 second horizon. The orange circles are human agents. (a) Agents 1
and 2 start very close to g;. (b-¢) The robot prevents agent 2 from converging on g;. (d) The robot leads agent 2

to another goal, successfully extending the game time.

9 Experiments: Leading and Following

We first evaluate our framework in the leader and fol-
lower domain. Through our experiments, we demon-
strate the efficacy of the leader-follower graph in repre-
senting the agents and further in enabling better plan-
ning and optimization for the robot actions.

We evaluate our LFG on three different tasks that
involve influencing multiagent human teams. For each
task, we compare task performance of robot policies
that use the LFG against robot policies that do not have
access to the LFG. Across all tasks, we find that robot
policies that use the leader-follower graph perform bet-
ter, showing that our graph can easily be generalized
to different settings.

Task Setup. Our tasks take place in the pursuit-evasion
domain. Within each task, we conduct experiments with
simulated human behavior. Humans move along a po-
tential field as shown in Eqn. (1), where there are two
sources of attraction: the agent’s goal (a4) and the crowd
center (a.). We also specify weights associated with
these attractions to be §, = 0.6 and §. = 0.4. In this
way, a simulated human would trade off between fol-
lowing the crowd and moving toward a target goal.

In each iteration of the task, the initial position of
agents and goals are randomized. For all of our experi-
ments, game canvas is 500 x 500. At every time step, the
human can move 1 unit in one of the four directions:
up, down, left, right, or stay at its position. The robot’s
action space is the same but with larger move amount
5. We let the maximum game time limit be 1000.

Implementation Detail. We simulated 5000 games
of each possible configuration, totaling 15000 games for
the two-player setting (as shown in Fig. 7) and 35000
for the three-player setting. Each game stored the po-
sition of each agent and goal at all timesteps. Before

training, we pre-processed the data by normalizing it,
shifting it to have a zero-centered mean, and down-
sampled it. Each game was then fed into our network
as a sequence. Based on our experiments, hyperparame-
ters that worked well for our training were a batch size
of 250, learning rate of 0.0001 and hidden dimension
size of 64. In addition, we used gradient clipping and
layer normalization [5] to stabilize gradient updates.

9.1 Reversing a Leader Follower Relationship

We evaluate a robot’s ability to change an edge of a
leader-follower graph. In this task, the end goal of the
robot is not to affect the environment as some of the
other tasks we describe below (e.g., influence humans
toward a particular goal). Instead, this experiment serves
as a preliminary to others where we evaluate how well
a robot is able to manipulate the leader-follower graph.

Methods. Given a human agent ¢ who is predisposed
to following a goal with weights 0, = 0.6, 0. = 0.4,
we created a robot policy that encouraged the human
agent to follow the robot r instead. The robot optimized
for the probability w;, that it would become agent i’s
leader.

Metrics. We evaluated the performance of the robot
based on the leadership scores, i.e., probabilities w; ,,
computed by the leader-follower graph.

Results. We show that the robot can influence a hu-
man agent to follow it. Fig. 12 contains averaged prob-
abilities over ten tasks. The probability of the robot be-
ing the human agent’s leader w; , increases over time,
and averages to 73%, represented by the orange dashed
line. Our approach performs well compared to the ran-
dom method, which has an average performance of 26%,
represented by the grey dashed line.
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Fig. 12: Probabilities of a human agent following the
robot over 10 tasks. The robot is successfully able to
become the human agent’s leader as the task progresses.

9.2 Adversarial Task: Distracting a Team

We now consider a task where the robot is an adver-
sary that is trying to distract a team of humans from
reaching a goal.

In this task, there are m goals and n players in the
pursuit-evasion game. Among the n players, we have 1
robot agent and n—1 homogeneous human agents. n—2
human agents must collide with a goal at the same time
to capture it, allowing 1 human to be absent. The game
ends if all goals are captured or the game time exceeds
the limit.

The adversarial robot’s goal is to intentionally dis-
tract a team of human players so that they cannot con-
verge to the same goal quickly and thus extending the
game time. Note that simply blocking a single agent’s
way would not be a desirable solution, since we allow
for an agent to be absent when capturing the goal.

Methods. We test our optimization methods based on
the constructed leader-follower graph along with other
baseline models.

We experimented with 3 baseline strategies without
knowledge of LFG. In the Random strategy, the robot
picks an action at each time step with uniform proba-
bility. To One Pursuer strategy is that the robot agent
selects a random human agent and then goes towards
it trying to block its way. The To Farthest Goal strat-
egy selects the goal that the average distance to human
players are largest and then goes to that goal in the
hope that human agents would get influenced or may
further change their goal by observing that some play-
ers are heading for another goal.

We also experimented with two optimization mod-
els based on the LFG. LFG Closest Pursuer involves
the robot selecting the closest pursuer and choosing an
action to maximize the probability of the pursuer fol-
lowing it (as predicted by the LFG). Similarly, LFG
Influential Pursuer strategy involves the robot target-
ing the most influential human agent predicted by the

LFG described in Sec. 5 and then conducting the same
optimization of maximizing the following probability,
as shown in Eqn. (1).

Metrics. We evaluated the performance of the robot
with game time as metric. Longer game time indicates
that the robot does well in distracting human players.

Results. We conduct experiments with different game
settings by varying n (number of players) and m (num-
ber of goals). For each specified game setting, we run
the same 50 randomly initialized games for different
robot strategy and compute the mean and standard
deviation for game time over the 50 games. Across all
the game settings we experimented with, our models
based on LFG consistently outperforms methods with-
out knowledge of LFG. The experimental results with
varying number of players are summarized in Table
We also visualized the results of Table 2 in Fig.

As shown in Fig. 13, average game time goes up as
the number of players increases. This is because it is
more challenging for more players to reach agreement
on which goal to capture and thus takes longer time.
The consistent advantageous performance suggests the
effectiveness of LFG for inference and optimization in

this scenario.
6
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Fig. 13: Visualization of results in Table 2 For adversar-
ial task, average game time over 50 games with 2 goals
(as in Fig. 11) with different number of players across

all baseline methods and our model.

To demonstrate robot behavior in the adversarial
game, we also took snapshots of one game as in Fig.
. Player 1 and player 2 started very close to goal g;
and thus it’s very easy for them to capture it. The robot
approached agent 2 and tried to block its way, leading
it to another goal go. In this way, the robot successfully
extended the game time.
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Table 2: Average game time over 50 adversarial games with varying number of players

number of goals (m=2)

Model n=3 n=4 n=»5 n=6

233.04+51.82 305.08+49.48 461.18+55.73 550.88+51.67
201.94£45.15 286.44+48.54 414.784+50.98 515.92+48.80

LFG Closest Pursuer (ours)
LFG Influential Pursuer (ours)

129.2+32.66
215.04£50.00
132.844+34.22

209.40£39.86
231.42£44.69
198.5+36.14

388.924+53.24
455.16458.35
382.08+52.59

437.161+43.17
472.361+49.75
445.644+46.77

Random
To One pursuer
To Farthest Goal

Table 3: Average game time over 50 adversarial games with varying number of goals

number of players (n=4)

Model m=1 m=2 m=3 m=4

210.94+33.23 305.08+49.48 289.22+52.99 343.00+55.90
239.04+39.73 286.44£48.54 219.56£41.00 301.80£52.00

LFG Closest Pursuer (ours)
LFG Influential Pursuer (ours)

155.94+21.42 205.74£43.05
123.584+9.56 225.52+41.47

209.40£39.86
231.42+44.69

294.62£54.01
317.92+£54.75

Random
To One Pursuer

to Farthest Goal 213.36+34.83 198.54+36.14 218.68+43.67 258.30+50.64
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Fig. 14: Collaborative game snapshots for a 60 second horizon. The orange circles are human agents. The robot
moves towards agent 3 in order to help all the agents converge on ¢;.

9.3 Cooperative Task: Leading a Team toward the
Optimal Goal

Finally, we evaluate the robot in a cooperative setting
where the robot tries to be helpful for human teams.
The goal of the robot is to lead its teammates so that
everyone can reach the target goal that gives the team
the largest joint reward g* € G. g* is not immediately
observable to all teammates. We assume a setting where
only the robot knows where g* is (e.g. due to its better
sensing capabilities as in Fig. 1).

The experiment setting is the same as the Adver-
sarial Task where n — 2 human agents need to collide
with a goal to capture it. In this scenario, the task is
considered successfully completed if the goal with the
largest joint reward g* is captured, and it is considered
failed if any other suboptimal goal is captured or the
game time exceeds the maximum limit.

Methods. Similar to the case in Adversarial Task, we
explore two models where the robot chooses to influence
its closest human agent or the most influential agent
predicted by the LFG. Different from the Adversarial
Task, here, the robot is optimizing the probability of
the target agent following itself and the probability of
them going to the desired goal.

We also experimented with three baseline methods.
Random strategy is taking random actions. To Tar-
get Goal strategy is that the robot agent goes directly
to the optimal goal ¢g* and then stays there trying to
attract other human agents. To Goal Farthest Player
strategy is that the robot goes to the player that is far-
thest away from ¢g* in the hope that it can influence the
target back to g*.

Metrics. We evaluated the performance of the robot
strategy using the game success rate over 100 games.
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Results. We experimented with varying number of goals
and the results are summarized in Table 4. In this sce-
nario, going directly to the desired goal is a very strong
method since it already conveys the message to other
players that the robot is going for a specific goal. This
method is especially effective when the game is not com-
plex, i.e., the number of goals is small. However, our
model based on the LFG still demonstrates competitive
performance compared to it. Specially when the num-
ber of goal increases, the advantage of LFG gradually
becomes dominant. This indicates that, in complex sce-
narios, brute force methods that do not have knowledge
of human team hidden structure do not suffice. High-
level understanding of human teams are necessary for
better human-robot teaming in complex systems. An-
other thing to note is that the difference between all of
the methods becomes smaller as the number of goals
increases. This is because the game difficulty increases
for all methods, and thus whether a game would suc-
ceed depends more on the game’s initial conditions. We

Table 4: Success rate over 100 collaborative games with
varying number of goals m.

number of players (n=4)

Model m=2 m=3 m=4 m=5 m=6

LFG Closest Pursuer 0.59 0.38 0.29 0.27 0.22
LFG Influential Pursuer  0.57 0.36 0.32 0.24 0.19
Random 0.55 0.35 0.24 0.21 0.20

To Target Goal 0.60 0.42 0.28 0.24 0.21

To Goal Farthest Player 0.47  0.29 0.17 0.19 0.21

took snapshots of one game as in Fig. 14. In this game,
the robot approaches other agents and the desired goal
in the collaborative pattern, trying to help catch the
goal g1.

10 Experiments: Predator-Prey

We next evaluate our framework in the predator-prey
domain. We investigate whether our robot can utilize
the predator-prey graph to insert itself into the game
as the top predator.

Task Setup. We evaluate our approach with both sim-
ulated and real human agents in the modified pursuit
evasion environment. In all of our experiments, agents
follow a chain structure as shown in Fig. 15. We ref-
erence each (simulated and real) human agent by their
ids 1...n, where n is the number of human agents.
Each agent is instructed to capture the agent above it
and run away from the agent below it. Thus agent 1

will always be the top predator and agent n will be the
bottom-most prey. The robot’s task is to join the game
and become the top predator, i.e., capture agent 1.

An example of a 4 player game is shown in Fig.
Agent 1 is the top predator that tries to capture agent 2.
Agent 2 aims to capture agent 3 but also tries to avoid
being captured by agent 1. Agent 3 is at the bottom
of the predator-prey chain and simply tries to avoid
being captured. The robot joins and tries to become
the top predator by capturing agent 1. Importantly,
we do not inform the robot that its goal is to capture
agent 1. The robot has to figure this out by relying
on the learned graph structure. Similarly, we also do
not explicitly inform the other agents about the robot’s
goal, i.e. the other agents will treat the robot neither
as its predator nor prey.

The initial position of all agents are randomized.
Our experiments are conducted on a canvas of size 500
x 500. At each time step, each agent can move 3 units
in one of the cardinal directions or choose to stay in
place.

Methods. In order to become the dominant predator,
the robot first identifies the top predator. It then opti-
mizes for the probability that it becomes that agent’s
predator, as described in Sec. 8. We compare against
two methods with our predator-prey graph: a random
agent (Random) and an agent that optimizes for mov-
ing towards the center of the other three agents (Cen-
ter). Center encourages the robot agent to stay closer
to the group without knowing which agent is the top
predator. By including the Center method, we hope to
verify that the robot is actually following agent 1 and
not following other agents.

Metrics. We evaluated the performance of the robot
based on the average number of time steps that the
robot agent is in collision with agent 2. Longer collision
time indicates that the robot performs well by captur-
ing the top predator among the other agents.

Results with Simulated Humans. We conduct ex-
periments with different settings by varying the num-
ber of agents. For each specified game setting, we run
the same 100 randomly initialized games and compute
the mean and standard error for the time the robot
agent is capturing the top predator. The experimental
results are summarized in Fig. 16. Across all the set-
tings, the predator-prey graph that our method used
was trained only with three-player data. We leverage
this graph to optimize robot behavior in various multi-
agent games. We can see that our method captures
prey for a longer amount of time compared to both
Random and Center methods in the three-agent and
four-agent settings. When the number of agents gets
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Fig. 15: Predator-prey game snapshots. The different colored circles represent agents in different teams. (a) Agents
follow a chain structure in the predator-prey game. (b) As agent 2 attempts to capture agent 3, agent 1 intervenes
and attempts to capture agent 2. (¢) Agent 2 flees. (d) Agent 2 attempts to capture agent 3 again.

larger, e.g. when we have five agents, the performance
degrades. This is because as the number of agents in-
creases, the task becomes more challenging and corre-
spondingly, the predator-prey generalization error also
accumulates both in the inference and the optimization
process.
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Fig. 16: Average time the robot agent capturing (in
collision with) the top predator over 100 games with
varying number of agents.

Results with Human Participants. To evaluate the
effectiveness of our framework against real human users,
We recruited human participants to play 3 player and
4 player versions of the game. We conducted 6 games
with different groups of participants. Each group played
the game three times with a robot following our algo-
rithm as well as the Center and Random methods in a
randomized order. Results are shown in Table 5.

In the 3 player setting, we report the mean time
the robot and agent 1 were in collision with their prey

as well as the ratio of the two means. We do not re-
port agent 2’s score because they had no assigned prey.
The ratio highlights the effectiveness of the robot over
the other human predator, and thus acts as a good
metric for assessing the robot policy. Looking at the
results, our method achieves a higher ratio than Ran-
dom demonstrating the effectiveness of the robot pol-
icy when interacting with real humans. In 3 player set-
tings, Center places the robot in between the two hu-
man agents, making it impossible for agent 1 to cap-
ture agent 2 without being captured by the robot. This
makes the robot’s job as a predator trivial. Center is
therefore a special case of the 3 player setting. In prac-
tice, this often leads to stalemates where all agents re-
mained far apart from each other, as shown by agent
1’s 0 mean in Table 5. However, in two out of the six
games, agent 1 came close enough to the robot, which
explains the robot’s large average and standard devia-
tion for Center.

In the 4 player setting, we report the mean time
the robot were in collision with their prey. With larger
number of agents, our method demonstrates its advan-
tage of capturing the group structure more and achieves
highest performance. Compared to the special case in
3 player settings, the crowd’s center was less correlated
with its prey’s position and thus Center demonstrates
inferior performance compared to our method.

11 Discussion

Summary. We propose an approach for modeling group
behavior in multi-agent human teams. We use a combi-
nation of data-driven and graph-theoretic techniques to
learn a graph-based representation for leading-following
and predator-prey dynamics. This graph representa-
tion encoding human team hidden structure is scal-
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Table 5: Average number of time steps an agent is in collision with its prey over 6 games with 2 and 3 human

participants.
Game Agent Ours Center Random
3 player game Robot 229.67 £+ 164.4 657.44 £+ 1365.04 103.78 £ 100.94
Human Agent 1 132.17 4+ 265.9 0 438.89.83 + 858.63
Robot/Human Agent 1 1.74 N/A 0.24
4 player game Robot 230.83 + 93.32 136.64+ 102.26 7.13 £ 44.59

able with the team size (number of agents) since we
base the model on local, pairwise relationship predic-
tion and combine them to create a global model. We
demonstrate the effectiveness of our graph structure by
testing optimization-based robot policies that leverage
the graph to influence human teams in different scenar-
ios. Our policies are general and perform well across all
tasks compared to other high-performing task-specific
policies.

There are several ways in which our framework can
be applied to more complex real-world settings. First,
we can extend our approach to partially observable set-
tings. When human agent positions are partially ob-
servable (i.e., the robot can only access the positions
of its nearest neighbors), our framework can still be
applied locally. For instance, the robot can determine
local leader-follower structures that can be updated as
the robot moves around and gathers more information.

We include preliminary results on what running our
framework on real robots might look like in Fig. 17. We
use Zooids robots for our experiment, which is a collec-
tion of custom-designed wheeled micro tabletop robots
and can be used for various tasks including swarm draw-
ing, interactive swarm visualization [19]. Users control
the movement of Zooids through a GUI on computers
by dragging the zooids icons to the intended moving
directions from the interface. The video can be found
here:
lighted in blue) was controlled by our framework and
the rest were controlled by human users. In this coop-
erative task, the team would only receive reward if all
agents go to the same goal within the maximum game
time limit. There are two goals in the game, goal 1 in
the bottom right and goal 2 in the upper left as shown in
Fig. 17. The robot agent knows that goal 1 has largest
reward and tries to lead the team towards the optimal
goal.

Limitations and Future Work. We view our work
as a first step into modeling latent, dynamic human
team structures. Although our framework is general to
different group dynamics and can scale to various team
sizes, we do recognize that the performance degrades
when the task complexity increases. Examples include
when the number of goals or number of agents becomes

. One robot (high-

too large, as shown in Fig. 16. We observe that when
increasing the number of agents, the assumption that
group dynamics can be explained through local pair-
wise interactions weakens due to the complexity of in-
teractions. For instance, when we recruited 5 humans
to play the predator-prey game, “alliances“ emerged
where agents that were non-adjacent in the predator-
prey chain would team up. These types of dynamics
were not observed in two-player games. These types of
scenarios are challenging for our models, and the predic-
tion error also accumulates both in the inference process
and the optimization process. Further exploration in
these complex scenarios is needed to enable our model
to be self-aware and corrective.

Another limitation is the reliance on simulated hu-
man behavior to test our framework. Further experi-
ments with large-scale human data are needed to sup-
port our framework’s effectiveness for understanding of
noisier human behavior.

Finally, the robot policies that use the graph rep-
resentation are fairly simple. Although this may be a
limitation, it is also promising that simple policies were
able to perform well using the proposed graph struc-
tures.

For future work, we plan to test our model on large
scale human-robot experiments in both simulation and
on real robot platforms. Specifically, we plan on using
navigation platforms of robot swarms to further im-
prove our model’s generalization capacity. We also plan
on experimenting with combining the graph representa-
tion with more advanced policy learning methods such
as reinforcement learning. We think our graph repre-
sentation could contribute to multi-agent reinforcement
learning in various ways such as reward design and more
effective state representation.
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Fig. 17: (a) The Zooids robots. (b) Cooperative Zooids robot game snapshots for a 25 second horizon. The
highlighted blue robot is controlled by our framework, the rest were controlled by human users. There are two
goals in the game, goal 1 in the bottom right and goal 2 in the upper left. The robot tries to aggressively to lead
the human team towards the more optimal goal 1.
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