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A B S T R A C T   

Deep learning algorithms are exceptionally valuable tools for collecting and analyzing the catastrophic readiness 
and countless actionable flood data. Convolutional neural networks (CNNs) are one form of deep learning al-
gorithms widely used in computer vision which can be used to study flood images and assign learnable weights to 
various objects in the image. Here, we leveraged and discussed how connected vision systems can be used to 
embed cameras, image processing, CNNs, and data connectivity capabilities for flood label detection. We built a 
training database service of >9000 images (image annotation service) including the image geolocation infor-
mation by streaming relevant images from social media platforms, Department of Transportation (DOT) 511 
traffic cameras, the US Geological Survey (USGS) live river cameras, and images downloaded from search en-
gines. We then developed a new python package called “FloodImageClassifier” to classify and detect objects 
within the collected flood images. “FloodImageClassifier” includes various CNNs architectures such as YOLOv3 
(You look only once version 3), Fast R–CNN (Region-based CNN), Mask R–CNN, SSD MobileNet (Single Shot 
MultiBox Detector MobileNet), and EfficientDet (Efficient Object Detection) to perform both object detection and 
segmentation simultaneously. Canny Edge Detection and aspect ratio concepts are also included in the package 
for flood water level estimation and classification. The pipeline is smartly designed to train a large number of 
images and calculate flood water levels and inundation areas which can be used to identify flood depth, severity, 
and risk. “FloodImageClassifier” can be embedded with the USGS live river cameras and 511 traffic cameras to 
monitor river and road flooding conditions and provide early intelligence to emergency response authorities in 
real-time.   

1. Introduction 

Floods are on the rise globally with the frequent recorded events 
occurring during the past few years in the US alone. These extreme 
events pose a considerable threat to human life and results in destructive 
damage to property, critical infrastructure, and communities (Phillips 
et al., 2018). During flooding events, citizens around the world 
increasingly act as human sensors and collect and share millions of flood 
images and videos on social media to record flood magnitude, damage, 
and impacts. Multimedia images, videos, geotagged texts posted over 
social media platforms such as Facebook, Twitter, YouTube, Flickr, and 
other online forums can provide valuable real-time information about 
flood situation. By using the content and user metadata from vol-
unteered geographic information shared online, we can identify poten-
tial at-risk neighborhoods around the inundation areas that have been 

flooded. In addition, real time surveillance cameras have been installed 
by several agencies such as the US Geological Survey (USGS) across 
numerous river networks to meet the need for timely assessment of flood 
situational awareness (Donratanapat et al., 2020). These real time vid-
eos/images can be used to track increasing water levels during a storm 
and continuously monitor the potential impacts of flooding on nearby 
locations. Videos and time lapse images can also be processed to extract 
image frames and related information, which can be used to measure a 
range of flood characteristics such as flood depth and inundation areas. 
Indeed, accurate and efficient assessment of real time images is crucially 
important to assess road and other critical infrastructure conditions 
during storm. This information provides timely and useful details on the 
hazards to avoid when flooding has occurred. 

Various methods have recently been proposed to monitor floodwater 
level and crowd sourced images have been recently implemented for 
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flood monitoring and label detection (e.g., Ning, 2019; Chaudhary et al., 
2019; Kharazi and Behzadan, 2021). While these studies provided sig-
nificant insights into the application of crowdsourced images in flood 
detection and assessment, challenges are still presented by the over-
whelming amount of unlabeled, unfiltered data produces through social 
media streams and extracting potentially useful information to manage 
data streaming volumes. Computer Vision is the science of under-
standing and processing digital images and videos that can be used to 
extract meaningful features and detect flood labels accurately from 
massive number of crowd sourced images/videos generated and shared 
during or after the event across various social media platforms. Com-
puter vision has proved to be useful in a number of applications with the 
advent of deep learning (e.g., Nie et al., 2018; Bantupalli and Xie, 2018; 
Brunetti et al., 2018). The use of deep learning in computer vision can be 
categorized into various categories such as classification of images and 
videos, segmentation, and detection within images and videos. Object 
detection is a Computer Vision task that automatically localizes multiple 
objects into categories of interest from images (e.g., Brunetti et al., 2018; 
Redmon et al., 2016; Wang et al., 2014; Girshick et al., 2014). In addi-
tion to classifying images, object detection also tries to accurately 
identify the location of objects contained within the image and label the 
concepts to get a better understanding of the images. 

However, detecting multiple objects that comprise of our visual 
world within flooded images is a challenging task owing to the large 
number of variations in object appearances due to pose, illumination 
conditions, and scaling. The objects are often embedded within scenes in 
clutter, sometimes alongside with other objects that are previously un-
seen. There are also a large number of object categories, with each 
category having a wide variety of appearances. The above-mentioned 
factors along with a lack of visual experience often fool recognition 
systems, hence this field has gained much attention in the recent years. 

Before the fast growth of deep learning techniques for image 
recognition and classification, bag-of-words (BoW) was one of the most 
popular technique for image classification (Sivic and Zisserman, 2003). 
Descriptors such as Scale Invariant Feature Transform (SIFT; Lowe, 
1999) and Speeded Up Robust Features (Bay et al., 2006) are used to 
extract all the features from the images and form a vocabulary by 
considering each individual feature as a word. But with the BoW 
approach it was hard to keep track of the context and extract various 
features from images. In recent years, deep neural networks have widely 
used to perform many images processing tasks. The reason for the 
popularity of deep learning models is TensorFlow-an open-sourced deep 
learning framework which provides users the access to pre-trained deep 
learning classification (and regression) models with flexible training on 
users’s own dataset (or custom dataset). 

Significant advancements were recently made with the development 
of various Convolutional Neural Networks (CNNs) algorithms such as 
R–CNN (Region-based CNN) features. The R-CNNs with deep architec-
tures follow a different approach compared to the shallow learnable 
architectures that have the capacity to learn complex features and 
informative object representations without having to design the features 
manually (LeCun et al., 2015). Since the advent of R-CNNs, advanced 
object detection models have been designed. This includes Fast R–CNN 
which optimizes classification and bounding box regression tasks (Gir-
shick, 2015; Chemelil, 2021), by employing an additional sub-network 
to generate regional features (Ren et al., 2015). Another good example 
of such models is YOLOv3 (You Only Look Once version 3; Redmon 
et al., 2016) model which performs object detection by making use of a 
fixed-grid regression approach (Redmon et al., 2016). All these models 
bring about significant performance improvements over the traditional 
BoW model and make real-time flood object detection a more achievable 
task. 

While the field of image processing for flood label detection is 
important, there is very few studies that focused on this topic thus far. 
For example, Yang et al. (2014) implemented visual recognition method 
to monitor water levels using a river camera to estimate flood depth due 

to rising water levels. Other approaches such as Laplacian method (see 
Vincent and Folorunso, 2009) and probabilistic Hough transform (Zhu 
et al., 2009) were utilized in Yang et al. (2014) for different objects edge 
detection and the straight waterline calculation. In another study, Pan 
et al. (2018) computed flood level remotely by reading the length of a 
measuring ruler in footage using CNNs. They found that CNNs out-
performed other traditional image processing algorithms with a stan-
dard deviation of 6.69 mm. Ning (2019) implemented CNNs to screen 
flooding photos from social media and detect labels. More recently, Park 
et al. (2021) estimated flood depth through detecting submerged vehi-
cles in flooded photos using Mask R–CNN (see He et al., 2017) and 
compared calculated flood depth with the 3D rendered objects using 
feature maps that are extracted by Visual Geometry Group Nets 
(VGGNets; Simonyan and Zisserman, 2014). Their proposed approach 
achieved absolute error values as low as 6.49 cm in flood depth calcu-
lation. Kharazia and Behzadan (2021) used image processing and deep 
learning to study flood depth using traffic stop signs as ubiquitous 
measurement benchmarks in flood photos. In their study, flood depth 
was estimated with a mean absolute error of 12′′ in crowdsourced 
photos. 

This paper is the first attempt known to the authors that used various 
CNN-based models for flood image labeling, inundation area calcula-
tion, and flood level classification. We applied YOLOv3, Fast R–CNN 
(Girshick, 2015), Mask R–CNN, SSD MobileNet (Single Shot MultiBox 
Detector MobileNet; Liu et al., 2016a,b), and EfficientDet (efficient ob-
ject detection; Tan et al., 2020a,b) for generic object detection, flood 
label detection and flood depth estimation. Based on the basic CNN 
architectures, generic object detection and flood label detection were 
achieved by classification and bounding box regressions whereas, flood 
surveillance and flood label detection were achieved using pixel-level 
segmentation techniques. We integrated these methods with a pro-
posed flood level classification approach (flood severity and risk) to 
develop a new python package called “FloodImageClassifier”. “Flood-
ImageClassifier” has been tested for many images by streaming video-
s/images from various data providers and social media platforms. 

This paper is organized as follows. In Section 2,the procedures, al-
gorithms, and the functionality of “FloodImageClassifier”.py are intro-
duced and discussed. Section 3 discusses the results of 
“FloodImageClassifier”.py implementation. Conclusions and future 
works are provided in Section 4. 

2. Methodology 

2.1. Flood database system and data collection modules 

In this research, we built for the first time a flood dataset consisting 
of >9000 flooding images collected from various sources. The primary 
data sources are Twitter, US department of Transportation (DOT) 511 
traffic cams, US Geological Survey (USGS) river cameras, YouTube, and 
search engines videos. Extracting and downloading images from Twitter 
is a tedious and time-consuming task since only about 10% of the tweets 
have images attached to them (Francalanci et al., 2017; Ning et al., 
2020). Images can be programmatically collected in two ways i.e., 
Twitter Representational State Transfer Application Programming 
Interface (REST API) or Streaming API. The Rest API enables user to 
collect a list of tweets with images, user id, etc., whereas the Streaming 
API allows users to collect tweets with images in real-time based on 
search terms, user ids or locations. Streaming real-time tweets is rela-
tively simple but has some downsides, as well. For example, using the 
Twitter API we can only access tweets from the past 7 days. We used a 
group of keywords such as “floods”, “flood emergency”, “disaster risk”, 
flooded roads”, etc., to collect Twitter images and to further filter the 
queries geocode i.e., the latitude and longitude values of the images that 
were passed to the API in order to stream geolocation information. 

To collect real-time Twitter images, we used Streaming API through 
the “tweepy” python package to download real-time tweets in JSON 
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format that contained an URL for the corresponding images. To collect 
flooding images for the US, we used the “country_code” attribute present 
in geotagged tweets JSON to filter the tweets accordingly. Overall, 
>1000 tweets were collected which were filtered further based on the 
inclusion of certain features within the images such as houses, cars, or 
trees. The presence of these features in flooded images is critical in 
identifying appropriate images with geolocation information for label 
detection and floodwater classification. Utilizing search engines such as 
Google and Bing and existing flooding image datasets from other re-
sources included additional >4800 flooding images to enrich the data-
set. Technically, a sizeable number of videos were collected using feeds 
from YouTube, DOT traffic surveillance cameras, the USGS river cam-
eras, and other online sources. These footages and images formed a 
preliminary training dataset for the CNN algorithms, although, they 
were collected from different sources. In this study, frames (i.e., flooding 
images) were extracted from these footages using the “OpenCV” 
PythonPython package. These live surveillance footages were then 
broken frame by frame and after every 10 s a frame was labeled with the 
camera location and time stamp was pushed into the image data store. 

2.2. CNN classifier 

Various CNNs were used in this research for the classification task 
while “Keras” (Chollet et al., 2015) deep learning library was used to 
build the CNNs classifier. The CNN model was trained for 27 epochs with 
a batch size of 72. The images were partitioned into train and validation 
sets in the ratio of 9:1. The images present within the training set were 
resized by scaling the pixels prior to providing the images as input to the 
CNNs. Our developed CNN is illustrated in Fig. 1 that consists of the 
following layers: 

Input layer: The first layer of the CNN is the input layer which takes 
an image as input, resizes the image and passes the image onto the next 
layer for feature extraction. 

Convolutional Layers: Three convolutional layers were designed in 
the model to apply small filters on each part of the image, match the 
feature points within the image and extract features from the image. 

Pooling Layer: The extracted features are passed onto the pooling 
layer, which helps in reducing the special dimensions by shrinking the 
images down while preserving the most important information within 
them. It picks the highest values from each region that is retains the best 
fits of each feature within that region. 

Rectified Linear Unit Layer (ReLU): This layer normalizes the 
obtained values by replacing the negative values obtained from the 
pooling layer with zeros to help the CNN stay mathematically stable. 

Fully Connected Layers: This is the final layer which takes the 
filtered images as input and then divides them into categories along with 
their respective labels and scores. 

Based on this structure presented in Fig. 1, we implemented six CNN 
algorithms in this research. Each algorithm along with its mathematical 
structure is explained below. 

2.2.1. Generic object detection 
Generic object detection methods can be classified into two types. 

One with the traditional object detection pipeline which involves the 
generation of region proposals and then classifying each of these pro-
posals into different object categories. The models which can be created 
under regional proposal method are R–CNN (see Girshick, 2015; He 
et al., 2017 for more information), SPP-net (SPP-net modifies RCNN 
with a Spatial Pyramid Pooling layer; He et al., 2017), Fast R–CNN 
(Girshick, 2015), R–FCN (region-based fully convolutional networks; 
Liu et al., 2016a,b), feature pyramid networks (FPN; Lin et al., 2017a,b) 
Mask R–CNN (He et al., 2017), and some ensemble methods which are a 
combination of the above-mentioned models. The second method in-
volves treating object detection as regression or classification problem 
and make use of a unified architecture to obtain the result directly. The 
models which fall under this category include MultiBox (see Erhan et al., 
2017), Attention Net (Yoo et al., 2015), G-CNN (grid-based CNN; Najibi 
et al., 2016), YOLOv3, SSD (Single Shot Detector; Liu et al., 2016a,b), 
DSSD (Deconvolutional Single Shot Detector; Fu et al., 2017), and DSOD 
(Deeply Supervised Object Detectors; Shen et al., 2017). 

2.2.1.1. Regional based networks for object detection. The regional 
proposal-based framework follows a two-step process, which involves 
scanning the entire image first and then identifying and focusing on the 
regions of interest. To achieve this, a CNN is inserted into the sliding 
window method, which predicts bounding boxes directly from locations 
of the most important feature map after obtaining the confidence scores 
of underlying object categories (e.g., Yiatrou et al., 2016). Each layer in 
the CNN model is called a feature map, the feature map input layer is a 
3D matrix which consists of pixel intensities for different color channels 
(e.g., RGB). Different types of transformations can be applied to the 
feature maps such as filtering and pooling. Filters convolute the filter 
matrix containing the values of a receptive field of neurons and uses a 
non-linear function such as sigmoid or ReLU to obtain the final response. 
There are a variety of pooling operations such as max pooling, average 
pooling, L2-pooling and local contrast normalization. The objective of 
pooling operations is to summarize the responses of a receptive field (i. 
e., set of neurons connected to a small portion of adjacent neurons from 
the previous layer) into one value to produce more robust feature de-
scriptors. Next, we have the fully connected layers which are used to fine 
tune the initial feature hierarchy in a supervised manner in order to 
adapt to different visual tasks. Based on the visual tasks involved, 
different activation functions are used to build the final layer and to get a 

Fig. 1. The architecture of the CNN flood image classifier developed in this research.  
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specific conditional probability for each output neuron (see Zhao et al., 
2019). Objective functions such as mean squared error or cross-entropy 
loss are used to optimize the network via the SGD (Stochastic Gradient 
Descent) method. The family of models selected for the object detection 
task are described below: 

Fast R–CNN: The architecture of Fast R–CNN processes the whole 
image using convolutional layers and produces the feature maps. The 
region of interest (RoI) pooling layers is then used to extract fixed-length 
feature vectors from each RoI. The generated feature vectors are passed 
on to the fully connected layers before inputting them to the output 
layers (see Fig. 2). There are two output layers out of which one is 
responsible for producing SoftMax probabilities for each of the cate-
gories and the second output layer is responsible for defining the 
bounding boxes with four real-valued numbers which represent the 
edges of bounding box. All the parameters excluding the generation of 
regional proposals are optimized using multi-task loss. The multi-task 
loss function is used to jointly train classification and bounding box 
regression that is defined by Equation (1):  

L(p, u, tu, v) = Lcls(p, u) + λ[u ≥ 1]Lloc(tu, v)                                      (1) 

Where, Lcls(p, u) = − log pu calculates the log loss for the classes u and pu 
based on the probability distribution p = (p0, p1, … … … …., pc) over the 
C+1 output generated from the FC layer. Lloc(t u, v) is defined over the 
predicted offsets t u = (t

u 
x, tu 

y, tu 
w, tu 

h) and ground-truth bounding-box 
regression targets v = (vx, vy, vw, vh), where x, y, w, and h denote the two 
coordinates of the box center, width, and height, respectively. Each tu 
adopts the parameter settings to specify an object proposal with a log- 
space height/width shift and scale invariant translation (see Zhao 
et al., 2019). The Iverson bracket indicator function [u ≥ 1] is employed 
to omit all background RoIs. To provide more robustness against outliers 
and eliminate the sensitivity in exploding gradients, a smooth L1 loss 
was adopted to fit bounding box regressors (Zhao et al., 2019) using 
Equations (2) and (3).  

Lloc (tu, v) =
∑

i € x,y,w,h smooth (tiu – Vi)                                             (2)  

Where, smoothL1 (x) = (0.5 x2 if |x| < 1; |x| − 0.5 otherwise                  (3) 

To further accelerate the pipeline detection speed, we programmed 
the Fast R–CNN to sample the mini-batches in a hierarchical manner 
where N images were sampled randomly. Also, the RoIs from the same 
image share the computational power and memory in the forward and 
backward passes (Clark, 2019). In the Fast R–CNN, all networks’ layers 
were trained in a single step using a multi-task loss which significantly 

improved the accuracy and efficiency of object detection task. 
Mask R–CNN: Mask R–CNN is a simple extension of the Fast R–CNN 

with a class label and a bounding-box offset. We included a third branch 
for predicting the segmentation masks for each object instance. Mask 
R–CNN object masks are different from the class and bounding-box 
outputs produced by Fast R–CNN. The Mask R–CNN adopts a two- 
stage approach. The first stage consists of a regional proposal network. 
The second stage provides a binary mask for each RoI along with pre-
dicting the class labels and the bounding-box offsets (see He et al., 
2020). This approach does not align with most of the existing classifi-
cation systems where classification of objects depends on the mask 
predictions. In this way it is similar to the Fast R–CNN approach which 
performs bounding-box classification and regression together. 

The loss of the entire multi-task approach for each RoI is defined as L 
= Lclass + Lbox + Lmask where the classification loss and bounding-box loss 
are defined as Freund and Schapire (1997). The mask branch has K m ×
m binary masks, one for each class. To design this algorithm, we added a 
per-pixel sigmoid and defined the Lmask which is the average binary 
cross-entropy loss. Due to this definition of Lmask, the network generates 
masks for each class without competition among other classes. This 
separates the mask and class prediction tasks. Specifically, we predicted 
an m × m mask from each RoI using an FCN. This allowed each layer in 
the mask branch to maintain an explicit m × m object spatial layout 
without collapsing it into a vector representation that lacks spatial di-
mensions (see He et al., 2020). This kind of fully convolutional 
arrangement requires fewer parameters and at the same time is more 
accurate when compared with the other models. Certain amount of 
misalignment is introduced between the RoI and features (e.g., Zhao 
et al., 2019) due to the coarse spatial quantization performed by the RoI 
pooling function. The Mask R–CNN solves this problem using a 
quantization-free layer called RoIAlign, which helps in preserving the 
per-pixel spatial correspondence. The RoIAlign layer replaces the RoI 
pooling quantization layer with a bilinear interpolation function as 
discussed by Jaderberg et al. (2015) which computes the values of input 
features at the four regularly sampled locations in each RoI bin (also see 
Zhao et al., 2019). These changes help Mask R–CNN to significantly 
improve the accuracy and precision of object detection tasks. Mask 
R–CNN is an accurate and flexible instance detection model which can 
be used for a wide range of images. 

2.2.1.2. Regression-based networks for object detection. The region-based 
networks consist of several correlated layers, which include generating 
regional proposals, feature extraction, classification and bounding box 

Fig. 2. Fast R–CNN network architecture comprising of fully connected layers with Softmax probabilities.  
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regressions (see Bouchakwa et al., 2020). On the other hand, 
regression/classification-based frameworks directly perform mapping 
from bounding box coordinates and class probabilities, thereby greatly 
reducing the time spent to complete the task. Two significant frame-
works that make use of regression/classification-based networks for 
object detection are SSD and YOLO. 

SSD-Mobilenet: The SSD-Mobilenet is a combination of SSD 
network and CNN MobileNet. SSD-MobileNet is a kind of regression 
model, which makes use of the features from various convolutional 
layers to build classification regression and bounding box regression (Ali 
et al., 2019). Each feature map consists of k frames that contrast in size 
and width-to-height ratio. These frames are called as default boxes, the 
default boxes are then scaled to form feature maps that can be calculated 
as: 

SK = Smin +
Smax − Smin

(m − 1)

(

k − 1
)

,

(

kE
[

1, m
])

(4) 

The m denotes the total number of feature maps and Smin, and Smax 
are parameters that need to be set while configuring the training job. 
Loss function is calculated as the sum of the confidence loss Lconf (s, c) of 
the classification regression and the position loss Lloc(r, l, g) of the 
bounding box regression (Ali et al., 2019). The function can be depicted 
as: 

L(s, r, c, l, g) =
1
N

(
Lconf (s, c) + αLloc(r, l, g)

)
(5)  

Where α is a constraint to manipulate the confidence loss and position 
loss; s and r are the eigenvectors representing the confidence loss and 
position loss respectively; c is the confidence of classification; l is the 
offset of predicted box which includes both translations offset and 
scaling offset; g is the alignment box (ground-truth box) of the objective 
genuine position; and N is the quantity of default boxes that coordinate 
the alignment boxes of this classification (Ali et al., 2019). 
SSD-MobileNet is consists of point wise layers and depth wise layers. The 
depth wise layers are deep convolutional layers that utilizing 3 × 3 
kernel while point wise layers are common convolutional layers utilizing 
1 × 1 kernel (see Ali et al., 2019). Batch normalization and activation 
function used to rectify linear unit 6 (ReLU6) that are applied on every 
convolutional result. 

EfficientDet-D1: EfficientDet-D1 is a neural network architecture 
and one of the TensorFlow object detection API. EfficientDet-D1 runs 
faster than other detectors largely follow the one-stage detectors para-
digm just like the SSD and YOLOv3 (YOLO version 3). The EfficientDet- 
D1 architecture is split into two parts, the first part is the backbone 
network which consists of pretrained EfficientNets and the second part is 
a BiFPN feature network which takes features from the backbone 
network and continuously applies top-down and bottom-up feature 
fusion. Next, a box network takes these fused features as input and 
produces the bounding boxes and class predictions, respectively. 

EfficientDet-D1 has multiple state-of-the-art model variants, ranging 
from D0-D7 with D0 being the lightweight model, therefore requires less 
compute resources and D7 being the heavy weight model that requires 
more computational support. EfficientDet-D1 is faster than other de-
tectors and it uniformly scales the resolution, depth, and width. We 
linearly increased the BiFPN depth and the BiFPN width was exponen-
tially increased, as well. Basically, a grip search is performed, and the 
best value is selected as the BiFPN width scaling factor (Tan et al., 
2020a,b). The depth and width are scaled according to the following 
Equations:  

WBiFPN = 64 . (1.35 φ); DBiFPN = 3+φ                                            (6) 

Where, φ is the compound coefficient which controls the scaling di-
mensions. For the prediction layers, the width is as same as the BiFPN 
network, but the depth is linearly increased using the following 
equation:  

DBox = Dclass = 3+⌊φ/3⌋                                                               (7) 

Where DBox and Dclass represent the box and class prediction network, 
respectively. BiFPN, box and class net, and input size are scaled up using 
Equations (7) and (8), respectively (see Tan et al., 2020a,b for more 
information). EfficientDet-D1 consistently achieves better accuracy and 
efficiency than other models from the TensorFlow object detection API’s 
model zoo. 

YOLOv3: Redmon et al. (2016) proposed a novel object detection 
framework called YOLOv3, which makes use of the whole topmost 
feature map to predict both confidences for multiple categories and 
bounding boxes (Zhao et al., 2019). YOLOv3 is an algorithm that 
directly predicts the class probabilities and bounding box offsets by 
applying a single feed forward neural network (originally a version of 
GoogLeNet, later updated and called DarkNet based on VGG; Brownlee, 
2019) for the entire image. YOLOv3 is one of the faster object detection 
algorithms, it considers object detection as a regression problem and 
eliminates region proposal generation and feature resampling by 
encapsulating all stages in a single network to form a true end-to-end 
detection system. The algorithm splits the input image into small grid 
cells and each cell predicts a bounding box and the class label. The result 
is a large number of candidates bounding boxes that are consolidated 
into a final prediction by a post-processing step. We used a pre-trained 
YOLOv3 model to perform object detection on unseen flood images. 
We defined a Keras model that had the right number and type of layers to 
match the pre-trained model weights (Brownlee, 2019). The model 
predicted multiple candidates bounding boxes referring to the same 
objects. The list of bounding boxes was filtered and those boxes that 
overlapped and referred to the same object were merged by defining and 
passing the amount of overlap as a configuration parameter (see 
Brownlee, 2019 for more information). The number of boxes was further 
reduced by retrieving only those that strongly predicted the presence of 
an object. 

As shown in Fig. 3, YOLOv3 mainly consists of two things, a feature 
extraction layer called Darknet-53 (Yang et al., 2020) and the YOLOv3 
convolutional layers. The convolutional layers output five basic pa-
rameters of the detection result (bx, by, bw, bh, and confidence). Where, 
bx and by are coordinates representing the center of the object label and 
bw, bh are the width and height of the object label and the confidence is 
the prediction score for that particular object label (Yang et al., 2020). 
Along with the prediction probability, YOLOv3 also weights the 
bounding boxes. In the YOLOv3 model k-means clustering is used for 
determining the bounding box priors. Compared to classification-based 
systems, YOLOv3 has several advantages such as (i) it learns more 
context information as it passes the entire image as input to the detec-
tion system, (ii) YOLOv3 is much faster when compared to the R–CNN 
algorithm and it is about 100 times faster that Fast R–CNN. The feature 

Fig. 3. Bounding box priors and bounding box predictions.  
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extraction layer Darknet-53 is the same as mentioned above in the 
YOLOv3 algorithm. The detection accuracy of YOLOv3 is similar to that 
of SSD, but it is three times faster than SSD (Yang et al., 2020). Object 
detection using YOLOv3 consists of four steps:  

1) Predicting bounding boxes: YOLOv3 anchor boxes are obtained by 
clustering (Liu et al., 2018). As shown in Fig. 3, an input image is 
divided into s × s grid cells and for each bounding box, YOLOv3 
predicts the four coordinate values (tx, ty, tw, th), for the predicted 
cell, the width, and the height of bounding box prior pw, ph are 
computed based on the coordinates of the upper left corner of the 
image (cx, cy; See Yang et al., 2020). 

The YOLOv3 algorithm makes use of logistic regression to predict the 
bounding boxes which is different from the approach used by the Fast 
R–CNN. Each ground truth object is assigned only one bounding box 
prior and if a bounding box prior is not assigned then it does not incur 
any lose due to coordinates or class predictions. YOLOv3 eliminates the 
extraction of feature frames from each region and instead it divides the 
image into S × S grids, and the size of the a priori frame is set to the size 
of the object frame of the k-means clustering dataset (Yang et al., 2020).  

2) Class prediction: Multilabel classification is used to predict the 
classes that may be contained within the bounding box. YOLOv3 
does not make use of a softmax layer but instead it employs an in-
dependent logistic classifier. Binary cross-entropy loss is then used 
during training for class prediction.  

3) Prediction across scales: Similar to the Fast R–CNN, YOLOv3 predicts 
object at three different scales. In our experiment three different 
boxes were predicted for each scale. In addition, YOLOv3 makes use 
of a multi-scale detector. This connects the feature maps from three 
different scales of 52 × 52, 26 × 26, and 13 × 13 from the feature 
extraction layer for the detection and regression of the object by the 
detector (e.g., Yang et al., 2020). The connection of the deep feature 
map is beneficial to the learning of the large object feature infor-
mation, and the connection of the shallow feature map is more 
conducive to the learning of the small target feature information 
(Yang et al., 2020). 

4) Feature extractor: The YOLOv3 uses Darknet-53 for feature extrac-
tion instead of the VGG16 network used by the Fast R–CNN. The 
Darknet-53 comprises of 3 × 3 and 3 × 1 convolutional layers and 
hopping connection layers to perform feature extraction, which is 
more inclined towards learning of feature information of the previ-
ous item (see Yang et al., 2020 for more information). 

In this research, we developed our own Keras YOLOv3 model and 
then used it to make predictions on unseen flooding images. We 
designed the Keras model (i.e., the number and type of layers) based on 
the pretrained model weights. These weights were obtained by training 
the Darknet-53 code based on the Microsoft COCO (MSCOCO) dataset 
(Lin et al., 2014). Next, we loaded the model weights using the weight 
reader class which was saved within the working directory. In order to 
make predictions we loaded the input images and pre-processed the 
images before feeding them to the model. The pre-processing involved 
converting the images into a square shape of 416 × 416 sizes. To load 
and resize the image, we converted the PIL (“Pillow” Python library) 
image object into a NumPy array and then rescale the pixels from 0 to 
255 to 0–1 floating point values (Brownlee, 2019). Once the image is 
pre-processed, we fed the images to the model. 

The model predicted a huge number of bounding boxes, we then 
filtered these bounding boxes regions using a method known as non- 
maximal suppression which merges bounding boxes that have a 
certain amount of overlap and/or refer to the same object. This approach 
reduced the bounding boxes considerably and left very few boxes of 
interest. Next, these bounding boxes were rescaled to the original shape, 
size and drawn around each detected object. Finally, the model 

generated a plot of the original images with the bounding boxes drawn 
for the detected objects along with the class labels for the objects and 
their respective prediction scores. 

2.3. Removal of detected objects and flood depth estimation 

The results generated by each of the above -mentioned state-of-the 
art object detection models were fed into an object removal system. 
The object removal system helped in removing of detected objects and 
reconstructing the image in a plausible manner by using exemplar-based 
inpainting method (see Criminisi et al., 2003 for more information). 
Image inpainting involves filling in the voids within an image, this is 
used in a number of applications such as reconstruction of old images 
and damaged videos, removal of unwanted image content such as 
superimposed text, and removal of objects. This method uses partial 
convolutions with an automatic mask update to achieve state-of-the-art 
results. It substitutes convolutional layers with partial convolutions and 
mask updates, as a result the links are not skipped in a U-Net (con-
volutional networks for fast and precise segmentation of images) 
thereby, making it possible to achieve appropriate inpainting results. 
The object removal system uses a combination of texture synthesis and 
inpainting methods to identify the target region which needs to be filled 
in and a source region which is used as a reference to fill in the target 
regions. Our final object removal pipeline takes an image as input, de-
tects the location of various objects within the image and produces an 
image with the detected objects that can be removed as the final output. 
This task is performed in order to detect the edges of the water surface 
using Canny Edge Detection (Zhao et al., 2014) as it calculates the 
surface areas of water which in turn are used to determine the water 
level. Canny Edge Detection (Canny, 1986) is a popular multi-stage edge 
detection algorithm explained step by step below: 

Noise Reduction: Edge detection is susceptible to noise, therefore in 
the first step the algorithm tries to smooth the noise using a gaussian 
filter. 

Finding Intensity Gradient of the Image: A Sobel operator is used 
to filter the smoothened image in order to obtain a derivative both in the 
horizontal (Gx) as well as vertical (Gy) directions. With the help of these 
images, it is possible to identify the edge gradient and the directions for 
each pixel as shown below:  

Edge_Gradient (G) = √G2x + G2y                                                   (8)  

Angle(θ) = tan-1 (Gy/Gx)                                                                 (9) 

Gradient direction is always perpendicular to the edges. It is mostly 
approximated to one of the four different angles that represent the 
horizontal, vertical, and two diagonal directions. 

Non-maximum Suppression: After obtaining the gradient direction 
and magnitudes, the entire image is scanned to identify and remove 
unwanted pixels that do not contribute towards the edge. The point is 
checked to see if it forms a local maximum with the neighboring points, 
in that case it is considered for the next stage, otherwise, it is suppressed. 
This is done by checking each pixel and determining if it is a local 
maximum in its neighborhood in the direction of the gradient. 

Hysteresis Thresholding: In this step we decide which edges should 
be taken into consideration (i.e., those that are the real edges vs. those 
that are non-real ones). To do so, we used two threshold values, i.e., 
edges with intensity gradient values greater than the maxVal (sure 
edges) and edges with intensity gradient values below minVal (non- 
edges). The edges whose gradient intensity lies between the maxVal and 
minVal are classified as edges or non-edges based on their connectivity. 
If these edges are connected to a sure-edge then they are also considered 
to be a part of the edge and if not they are considered as non-edges and 
discarded. The output from the detection and inpainting pipeline is then 
used to estimate the water depth. We identified the surface water edges 
and calculated the water depth using the Canny Edge Detection algo-
rithm, the aspect ratio concept (Xu-kai et al., 2012), and the “OpenCV” 
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package which includes powerful functions to handle computer vision 
tasks such as smoothening and thresholding. First, we detected the edges 
of the water surface, drew contours around the water surface and then 
calculated the area of the contours (i.e., the area of the water surface). 
Next, based on the aspect ratio which is calculated by taking into 
consideration the area of the water surface detected within the image, 
we estimated the water levels. We then categorized the water levels into 
mild, moderate, and severe conditions to reflect flood severity and risk. 

2.4. Performance metrics 

Flood image object detection can be challenging since both the 
probability of occurrence of a particular object and the position of the 
object should be precisely predicted. Hence, standard metrics such as 
accuracy and precision that are widely used for evaluating image clas-
sification models cannot be used for examining flood object detection 
models. We used Mean Average Precision (MAP) which is a popular 
performance metric to evaluate algorithms that involve predicting the 
object location as well as classifying the probability of occurrence. MAP 
evaluates the correctness of bounding box prediction using a metric 
called Intersection over Union (IoU). IoU is a ratio between the inter-
section and the union of the predicted boxes, and the ground truth boxes 
(see Fig. 4; Rezatofighi et al., 2019). This metrics is also called as the 
Jaccard Index since it was first published by Paul Jaccard in the early 
1900s. 

True positive (TP) and true negative (TN) in Equations (10) and (11) 
refer to the number of correct detections; TP represents positive (cor-
rect) detections while TN indicates negative (incorrect) detections (e.g., 
Kharazi and Behzadan, 2021). False positive (FP) and false negative 
(FN), on the other hand, refer to the number of incorrect detections; FP 
denotes positive detections while FN represents negative (incorrect) 
detections (Powers, 2020). Next, average precision (AP) will be calcu-
lated by plotting precision as a function of recall and calculating the area 
under the curve (Kharazi and Behzadan, 2021).  

Precision = TP / (TP + FP)                                                            (10)  

Recall = TP /(TP + FN)                                                                 (11)  

2.5. “FloodImageClassifier” system architecture 

“FloodImageClassifier” workflow is illustrated in Fig. 5. It visually 
describes different workflows of the “FloodImageClassifier” package 
including (i) data collection module, (ii) classification of images using a 
trained classifier, and (iii) object/label detection using object detection 
models. In this tool, the position of the object in a flooded image is 
defined by rectangular coordinates. The pipeline of object detection 
models is primarily divided into three phases: (i) informative region 
selection, (ii) feature extraction, and (iii) classification. In a flooded 
image, different objects may appear at different locations of the image 
that may have different sizes and aspect ratios. So it is important to scan 
the entire image using a sliding window and select the regions of in-
terest. This would reflect the information region selection by object 
detection models. The flood image classification, the object label 
detection, and floodwater level classification are three main components 
of the “FloodImageClassifier” package. These three components were 
embedded within the same system architecture but were trained sepa-
rately to follow different workflows. The large training set built using 
the data collection module helped in improving the performance of the 
classifier as well as the object detector. To verify the extendibility of the 
system, a pre-trained YOLOv3 model was also implemented using Keras 
and TensorFlow that were included to the list of custom trained object 
detection models. The test images go through the classifier as well as the 
object detector (i.e., CNNs) and the inferences drawn of labels, flood 
levels, and flood risk classification are displayed to the user. 

3. Applications 

We tested the aforementioned state-of-the-art approaches on flood 
datasets which include a custom dataset (collected flood images) built 
by collecting images from various sources as explained in section 2.1 and 
MSCOCO that contain flood and non-flood images. This study used Mask 
R–CNN, SSD MobileNet, YOLOv3, Fast R–CNN, and EfficientDet algo-
rithms that were pretrained and integrated into “FloodImageClassifier” 
package. Test images were then passed to these object detection models 
to draw inferences and outputs. This process helped detect object within 
the images, create bounding boxes for the identified objects along with 
their class labels and respective prediction scores. 

3.1. Object detection 

We split the image dataset into training and test sets and annotated 
the images with our defined custom object categories. We considered 
several object categories such as vehicle, forest, tree, traffic sign, water 
vessels, residential areas, and bridges. Annotation of images involved 
highlighting each of the objects within an image manually using 
bounding boxes and labeling them appropriately. An image annotation 
tool that supports YOLOv3 format (called LabelImg) was used to anno-
tate the images. Before passing these annotated images as input to the 
object detection models for training, the.xml annotation files were 
converted to the TensorFlow record files and passed as input for training 
the models along with the images. Next, we trained the convolutional 
based CNNs for image classification. Pretrained models from the Tensor- 
Flow model zoo were used for object detection that were trained on 
larger datasets such as ImageNet (Russakovsky et al., 2015) and 
MSCOCO dataset (Lin et al., 2014). After the training was completed, we 
extracted the newly trained custom object detection inference graphs, 
exported, and saved them in a separate folder within the same directory. 
These saved models were later used to perform object detection (i.e., 
perform inferences). 

By default, the training process logs some of the basic performance 
metrics which along with the test images were used to evaluate the 
trained models and performance metrics. To view these basic perfor-
mance measures, we performed an evaluation process on the trained 
models which used the checkpoint files (i.e., snapshot of the models at a 
given step) generated during the training process and evaluated how 
well the model detected the objects in the test dataset. These basic 
evaluation metrics that were generated during the evaluation process 
were used to compute the MAP value for each model. 

The test dataset was consisted of many challenging images with most 
of the images having more than one object. We used MAP which is a 
popular performance metric to evaluate algorithms that involve pre-
dicting the object location as well as classifying the probability of 
occurrence. We also used IoU to determine whether the detection was 
correct or not. It was also observed that as the training dataset increased 
the MAP value also improved considerably. This allowed us to further 
increase the IoU threshold from 0.5 to 0.75. To evaluate the performance 
of object detection algorithms, the IoUs were first detected, and the 
ground-truth masks were then calculated by dividing the overlapping 
area between the two masks by their union area (see Kharazi and Beh-
zadan, 2021). We first computed the true positives, false positives, true 
negatives, and false negatives. IoU was then used to get the true positives 
and false positives, that is whether the detection was correct or not was 
determined by comparing the IoU with a threshold value. Generally, 0.5 
is used as the threshold value and if the IoU is greater than 0.5 we 
consider it as a true positive, otherwise it is considered as a false posi-
tive. Since the ground truth data already provided the information about 
the actual number of objects within the image, we then calculated the 
true negatives (i.e., part of the image where the object was not pre-
dicted) and false negatives (i.e., the objects that were missed out by our 
model). Using these values and IoU thresholds, we calculated the 
number of correct detections for each class in an image indicating the 
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Fig. 4. IoU calculation using the ground truth box and the predicted bounding box.  
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Fig. 5. The architecture of the “FloodImageClassifier” package.  
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precision and recall values (Equations (11) and (12); see Table 1). Next, 
we chose different confidence thresholds ranging from 0.3 to 0.7. From a 
total of >9000 images, > 4000 were included in this analysis since some 
images depicted partial visibility of the flooded areas. 

Next, we used exported inference graph (i.e., saved custom object 
detection models) to perform inference on some external flood images 
that were not part of our collected flood image dataset to understand 
how well each of these models detect the various object categories on 
which they were trained. As illustrated in Figs. 6–10, it is evident that 
the custom trained models were capable of detecting multiple objects 
within a single image as they almost detected 90% of the objects pre-
cisely. However, object detection models produced different outcomes. 
Segmentation models such as Mask R–CNN identified the foreground 
shapes and highlighted the objects using bounding boxes by drawing a 
mask on the object. This helped in clearly segmenting one object from 
another one whereas other object detection models such as the Fast 
R–CNN, YOLOv3, EfficientDet, and SSD MobileNet highlighted the 
detected objects using only a single bounding box. 

The prediction scores of different models were calculated for 
different object categories namely vehicle, person, forest, tree, traffic 
sign, residential area (i.e., houses), water vessels (i.e., boats, ships, etc.) 
and bridges/dams by passing the same set of test images to each of these 
models (Table 3). This approach determined which of these models was 
the best object detection algorithm for flood image labeling and 
detection. 

We also tested MSCOCO dataset that consists of 300,000 fully 
segmented images and each image on an average includes about 7 object 
instances from a total of 80 different object categories. Object detection 
results using MSCOCO are shown in Table 4. 

Each of the above models pretrained on the MSCOCO dataset were 
downloaded from the TensorFlow model zoo along with their corre-
sponding label files for this dataset. Next, we performed the inference on 
the same set of test images which were used for the custom trained 
models. Table 4 represents the detection scores obtained by running 
inference on each of the models and it was observed that the models 
trained on the COCO dataset were unable to detect certain object labels 
such as trees, residential areas (i.e., houses) and critical infrastructures 
such as bridges, dams, etc. On the other hand, each of these models when 
trained on the custom dataset (our collected flood images) were capable 
of detecting the above-mentioned object labels accurately. Several ob-
ject categories in flooded photos led to highly erroneous or misdetection. 
The top four sources of errors include image background, darkness in 
surface water, water reflection, and wavy surface water. 

Once the detection results were generated by each of these models, 
we attempted to remove each of the detected objects and reconstructed 
the image by filling the void spaces in a plausible manner using exem-
plar based inpainting. Image inpainting involves filling in the voids 
within an image, this is used in a number of applications such as 
reconstruction of old images and damaged videos, removal of unwanted 
image content such as superimposed text and removal of objects. We 
used partial convolutions with an automatic mask update to achieve 
state-of-the-art results. Image inpainting model substituted convolu-
tional layers with partial convolutions and masked the updates. This 
algorithm successfully identified the target region which was filled using 
the surrounding areas of the target region as reference. 

The final output of the object detection and image inpainting pipe-
line was used to estimate the water depth using Canny Edge Detection 
and aspect ratio concept as discussed in the methodology section. Given 
an input image, first we resized the image and converted it into a 
grayscale. Next, we identified and eliminated the skyline because both 
water and skyline had the same color gradient, and it was possible that 
the skyline could also be detected as a water surface. Once the skyline 
was eliminated, only a portion of images consisting of the water surface 
was taken into consideration. As shown in Fig. 11, we detected the edges 
of the water surface (i.e., draw the contours) and then calculated the 
area of the water surface that was printed on the original image. Having 
identified the water surface correctly, a bounding box was then drawn 
around the contour and its aspect ratio was calculated (i.e., the ratio 
between the width and height of the water surface). This aspect ratio 
value was then used to identify the water level and was printed on the 
original image (see Table 5). 

As shown in Figs. 12–14, the image was resized and converted into a 
grayscale image before processing it. The image was firstly smoothened 
using a gaussian kernel prior to the thresholding operation. This helped 
remove the noise while kept the underlying structure of the image intact. 
Next, we manually defined a threshold value of 9 and performed a 
thresholding operation using OpenCV’s threshold() function. The result 
of the thresholding operation was a binary image which well captured 
the water surface along with a few other objects such as people, cars, and 
trees with the help of masks. To isolate the water surface from the other 
objects that were highlighted, we used the OpenCV’s findContours() 
function to identify the foreground mask shapes and draw contours 
around them. Next, we calculated the area of each contour, then sorted 
the contour areas and only the largest contour was printed over the 
original image. This allowed us to clearly segment the water surface. 
After highlighting the water surface using contours, a bounding box was 
illustrated around the contour to calculate the aspect ratio. The aspect 
ratio value was used to determine the water level as shown in 
Figs. 12–14. If the aspect ratio is in a range of 1.26–18, the water level is 
then considered to be low (mild), if the aspect ratio is in a range of 
0.54–1.26, the water level is considered to be moderate, and if the aspect 
ratio is in a range of 0.18–0.54, the water level is considered to be high 
(sever flood risk). Based on these classification, Fig. 12 showed a 
floodwater level 4, 55703.6 pixels area with mild flood risk and severity 
while Figs. 13 and 14 revealed moderate and severe flood risk conditions 
with flood levels 6 and 11, respectively. These results reveled the 
important of Canny Edge Detection and aspect ratio concept for flood 
severity classification. However, due to the variation in appearances, 
lighting conditions and backgrounds, it is difficult to manually design a 
robust label descriptor to completely describe and classify all types of 
objects, floodwater levels, and the inundation areas in a flooded image. 

4. Conclusion and future work 

This research examined various CNNs algorithms for flood label 
detection. We used YOLOv3, Fast R–CNN, Mask R–CNN, SSD MobileNet, 
and EfficientDet algorithms to label flood objects, classify flood levels, 
and estimate inundation areas. A training dataset of >9000 flooded 
images was first built by streaming relevant images from social media 
platforms and various data providers and online sources. These photos 
were then used to train the CNN architectures for flood label detection. 
Once all the images were collected, labelImg was used to annotate these 
images with eight pre-defined object categories namely vehicle, person, 
forest, tree, traffic sign, residential area (i.e., houses), water vessels (i.e., 
boats, ships, etc.) and critical infrastructure (bridges, dams, etc.). Next, 
these images were split into train and test sets in a 9:1 ratio i.e., 90% for 
training and 10% for testing along with their respective.xml files. We 
first employed pretrained TensorFlow object detection models trained on 
the MSCOCO dataset and pretrained YOLOv3 as label detection and 
instance segmentation model. We first trained YOLOv3 on two sets of 
data, i.e., our customized flood data and MSCOCO dataset and then 

Table 1 
The performance of each detection model using our customized flood images.  

Models IoU 
(%) 

Precision 
(%) 

Recall 
(%) 

AP 
(%) 

Processing Time 
(s) 

Mask RCNN 75 69.9 79 63.7 1.55 
Fast RCNN 75 71 76 62.9 2.52 
SSD 

MobileNet 
75 61 59.7 48 1.22 

EfficientDet 75 65.4 63 58 1.21  
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segment the centroid-pixel annotated mitosis ground truths and pro-
duced the mitosis mask and the bounding box labels. Among different 
algorithms used in this study, Mask RCNN showed promising results. 
The Mask R–CNN was able to perform both detection and instance 
segmentation of surface water within the images. This allowed us to use 
the MASK R-CNN results to perform other tasks such as water level 
classification and inundation area calculation. Specifically, the ability of 
Mask R–CNN for flood depth detection was found to be crucial for real- 
time monitoring of water level rising that can provide early intelligence 
to decision makers and emergency response authorities. 

The Mask R–CNN detection performance was found to be affected by 
the IoU threshold where the higher threshold led to multiple predicted 
(flooded) regions within a single image and the lower threshold resulted 

in lacking predicted flooded region (also reported in Xu et al., 2020). It 
was observed that as the size of training dataset increased the MAP value 
also improved. This allowed us to further increase the IoU threshold 
from 0.5 to 0.75. The results indicated that the threshold at 0.75 per-
forms superior with the precision of >89%. Although, this optimal 
threshold may vary application by application (see Papandreou et al., 
2017; Schneider et al., 2018) while could be properly adjusted 
depending on the types of images and labels (Xu et al., 2020). 

Regardless of the rapid advancements and promising progress in the 
object detection domain, there are still several challenges that could be 
addressed in future works. One important challenge is the detection of 
small objects in the images. CNN-based detection algorithms have a 
number of combinations of convolutions followed by a pooling layer. 

Fig. 6. The Fast RCNN detection results with bounding boxes.  

Fig. 7. The Mask RCNN detection results with bounding boxes.  

Fig. 8. YOLOv3 detection results with bounding boxes.  
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This allows the network to resize the images from ~600 × 600 resolu-
tion down to ~30 × 30. Due to this fact, small object features extracted 
on the first layers may disappear somewhere in the middle of the 
network and never actually count for detection and classification steps. 
This is also the reason why CNNs struggle with detecting small objects. 
Capturing high resolution images, using focal loss in the process of 
training a neural network and employing Feature Pyramid Networks 
(FPN; see Lin et al., 2017a,b) may improve small object detection in the 

images. Another important key finding to be considered while modi-
fying the network architecture is scaling. Similar kind of objects present 
within images can be found in different scales. To make the model robust 
to such scale changes, the model can be trained on multi-scale or 
scale-invariant detectors. The scale-invariant detectors could make use 
of powerful backbone architectures such as negative-sample mining and 
sub-category modeling. For multi-scale detectors, General Adversarial 
Networks (GAN; Kong et al., 2017) which typically narrows down the 

Fig. 9. SSD MobileNet detection results with bounding boxes.  

Fig. 10. EfficientDet detection results with bounding boxes.  

Table 3 
The prediction score of different object detection models using collected flood dataset. N/A= Not applicable.  

Models/Object 
Categories 

Vehicle Forest Traffic 
Sign 

Tree Residential 
Area 

Person Water 
Vessels 

Critical Infrastructure (bridge, dam, road, storm water 
facilities, railroad) 

SSD MobileNet 92% N/A 60% 97% 51% 74% 98% 95% 
Fast R–CNN 99% 56% 99% 89% 100% 99% 48% 100% 
Mask R–CNN 85% 70% 87% 73% 96% 91% 67% 89% 
YOLOv3 99.9% N/A N/A N/A N/A 98.3% 95% N/A 
EfficientDet 62% 35% 42% 51% 69% 59% 43% 59%  

Table 4 
The prediction score of different object detection models using MSCOCO dataset.  

Models/Object 
Categories 

vehicle Forest Traffic 
Sign 

Tree Residential 
area 

Person water 
vessels 

Critical Infrastructure (bridge, dam, road, storm water 
facilities, railroad) 

SSD MobileNet 70% N/A 36% N/A N/A 41% 30% N/A 
Fast R–CNN 99% N/A 95.9% N/A N/A 98 45% N/A 
Mask R–CNN 98% N/A 94% N/A N/A 99% 99% N/A 
YOLOv3 99.4% N/A 99.96% N/A N/A 96.9% 94.9% N/A 
EfficientDet 81% N/A 87% N/A N/A 86% 45% N/A  
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representational differences between small object and large objects with 
a low-cost architecture is an effective way to improve the detection 
accuracy of small objects. 

The second challenge to be addressed here is the computational 
burden. It is a tedious and time-consuming task to manually draw the 
bounding boxes for each object present within the image. To address 
this, unsupervised object detection (Croitoru et al., 2017), multiple 
instance learning (Wang et al., 2014) and object prediction using deep 
neural networks can be integrated into an existing network architecture 
and use image-level supervision to detect objects and assign appropriate 
class labels to them. Another approach is to use pre-trained models (Li 
et al., 2017a,b) with an optimal network architecture. The third chal-
lenge is the extension of 2D object detection methods for object detec-
tion within videos (in case of the USGS river cam videos). There is a 
noticeable drop in the network detection accuracy due to the corrupt 
object appearances caused by the motion blur and changes of focus in 
videos. To resolve this, several techniques such as spatiotemporal 
tubelets (Kang et al., 2017) and LSTM (Long Short-Term Memory; 
Hochreiter and Schmidhuber, 1997) can be employed to establish ob-
jects associations between consecutive frames. 

From flood monitoring and management perspective, this paper 
demonstrates the development of a key software component for real- 
time flood risk assessment. The pipeline is smartly designed to train a 
large number of images and calculate flood water levels and inundation 
areas which can be used to identify flood depth, severity, and risk. 
“FloodImageClassifier” can be embedded with the USGS live river 
cameras or 511 traffic cameras to monitor river and road flooding 
conditions and provide early intelligence to decision makers and 
emergency response authorities in real-time. In future work, we will 
concentrate on assessing flood risk and severity more quantitively and 
further explore the importance of video footage in real time road 
flooding assessment and monitoring. 

Software and data availability 

FloodImageClassifier.py: Various Scripts as they apply to image 
processing and flood label detection development. 

Description: Image processing algorithms designed for flood image 
label detection and floodwater level estimation. 

Developer: J. R. Pally and S. Samadi. 
Contact: jpally@clemson.edu and samadi@clemson.edu. 
Software Access: https://github.com/HHRClemson/FloodImageC 

lassifier. 
Year First Available: November 2021; Operating systems supported: 

Windows, Linux, MacOS. 
Hardware required: Intel i5 or mid-performance PC with multicore 

processor and SSD main drive, 4 Gb memory recommended. 
Cost: Free. Software and source code are released under the Massa-

chusetts Institute of Technology License. 
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Table 5 
Water levels with associated aspect ratios and flood severity and risk estimation.  

Water Level Aspect Ratio Flood Severity and Risk 

Level 1 >1.8 Mild 
Level 2 1.62–1.8 
Level 3 1.44–1.62 
Level 4 1.26–1.44 
Level 5 1.08–1.25 Moderate 
Level 6 0.90–1.08 
Level 7 0.72–0.90 
Level 8 0.54–0.72 
Level 9 0.36–0.53 Severe 
Level 10 0.18–0.36 
Level 11 <0.18  
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