
Environmental Modelling and Software 148 (2022) 105285

Available online 10 December 2021
1364-8152/© 2021 Elsevier Ltd. All rights reserved.

Application of image processing and convolutional neural networks for
flood image classification and semantic segmentation

R.J. Pally a, S. Samadi b,*

a School of Computing, Clemson University, Clemson, SC, USA
b Department of Agricultural Sciences, Clemson University, Clemson, SC, USA

A R T I C L E I N F O

Keywords:
Image processing
Convolutional neural networks
Flood label detection
Floodwater level and extend estimation
“FloodImageClassifier” package

A B S T R A C T

Deep learning algorithms are exceptionally valuable tools for collecting and analyzing the catastrophic readiness
and countless actionable flood data. Convolutional neural networks (CNNs) are one form of deep learning al-
gorithms widely used in computer vision which can be used to study flood images and assign learnable weights to
various objects in the image. Here, we leveraged and discussed how connected vision systems can be used to
embed cameras, image processing, CNNs, and data connectivity capabilities for flood label detection. We built a
training database service of >9000 images (image annotation service) including the image geolocation infor-
mation by streaming relevant images from social media platforms, Department of Transportation (DOT) 511
traffic cameras, the US Geological Survey (USGS) live river cameras, and images downloaded from search en-
gines. We then developed a new python package called “FloodImageClassifier” to classify and detect objects
within the collected flood images. “FloodImageClassifier” includes various CNNs architectures such as YOLOv3
(You look only once version 3), Fast R–CNN (Region-based CNN), Mask R–CNN, SSD MobileNet (Single Shot
MultiBox Detector MobileNet), and EfficientDet (Efficient Object Detection) to perform both object detection and
segmentation simultaneously. Canny Edge Detection and aspect ratio concepts are also included in the package
for flood water level estimation and classification. The pipeline is smartly designed to train a large number of
images and calculate flood water levels and inundation areas which can be used to identify flood depth, severity,
and risk. “FloodImageClassifier” can be embedded with the USGS live river cameras and 511 traffic cameras to
monitor river and road flooding conditions and provide early intelligence to emergency response authorities in
real-time.

1. Introduction

Floods are on the rise globally with the frequent recorded events
occurring during the past few years in the US alone. These extreme
events pose a considerable threat to human life and results in destructive
damage to property, critical infrastructure, and communities (Phillips
et al., 2018). During flooding events, citizens around the world
increasingly act as human sensors and collect and share millions of flood
images and videos on social media to record flood magnitude, damage,
and impacts. Multimedia images, videos, geotagged texts posted over
social media platforms such as Facebook, Twitter, YouTube, Flickr, and
other online forums can provide valuable real-time information about
flood situation. By using the content and user metadata from vol-
unteered geographic information shared online, we can identify poten-
tial at-risk neighborhoods around the inundation areas that have been

flooded. In addition, real time surveillance cameras have been installed
by several agencies such as the US Geological Survey (USGS) across
numerous river networks to meet the need for timely assessment of flood
situational awareness (Donratanapat et al., 2020). These real time vid-
eos/images can be used to track increasing water levels during a storm
and continuously monitor the potential impacts of flooding on nearby
locations. Videos and time lapse images can also be processed to extract
image frames and related information, which can be used to measure a
range of flood characteristics such as flood depth and inundation areas.
Indeed, accurate and efficient assessment of real time images is crucially
important to assess road and other critical infrastructure conditions
during storm. This information provides timely and useful details on the
hazards to avoid when flooding has occurred.

Various methods have recently been proposed to monitor floodwater
level and crowd sourced images have been recently implemented for

* Corresponding author.
E-mail address: samadi@clemson.edu (S. Samadi).

Contents lists available at ScienceDirect

Environmental Modelling and Software

journal homepage: www.elsevier.com/locate/envsoft

https://doi.org/10.1016/j.envsoft.2021.105285
Received 18 November 2021; Accepted 8 December 2021

mailto:samadi@clemson.edu
www.sciencedirect.com/science/journal/13648152
https://www.elsevier.com/locate/envsoft
https://doi.org/10.1016/j.envsoft.2021.105285
https://doi.org/10.1016/j.envsoft.2021.105285
https://doi.org/10.1016/j.envsoft.2021.105285
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2021.105285&domain=pdf

Environmental Modelling and Software 148 (2022) 105285

2

flood monitoring and label detection (e.g., Ning, 2019; Chaudhary et al.,
2019; Kharazi and Behzadan, 2021). While these studies provided sig-
nificant insights into the application of crowdsourced images in flood
detection and assessment, challenges are still presented by the over-
whelming amount of unlabeled, unfiltered data produces through social
media streams and extracting potentially useful information to manage
data streaming volumes. Computer Vision is the science of under-
standing and processing digital images and videos that can be used to
extract meaningful features and detect flood labels accurately from
massive number of crowd sourced images/videos generated and shared
during or after the event across various social media platforms. Com-
puter vision has proved to be useful in a number of applications with the
advent of deep learning (e.g., Nie et al., 2018; Bantupalli and Xie, 2018;
Brunetti et al., 2018). The use of deep learning in computer vision can be
categorized into various categories such as classification of images and
videos, segmentation, and detection within images and videos. Object
detection is a Computer Vision task that automatically localizes multiple
objects into categories of interest from images (e.g., Brunetti et al., 2018;
Redmon et al., 2016; Wang et al., 2014; Girshick et al., 2014). In addi-
tion to classifying images, object detection also tries to accurately
identify the location of objects contained within the image and label the
concepts to get a better understanding of the images.

However, detecting multiple objects that comprise of our visual
world within flooded images is a challenging task owing to the large
number of variations in object appearances due to pose, illumination
conditions, and scaling. The objects are often embedded within scenes in
clutter, sometimes alongside with other objects that are previously un-
seen. There are also a large number of object categories, with each
category having a wide variety of appearances. The above-mentioned
factors along with a lack of visual experience often fool recognition
systems, hence this field has gained much attention in the recent years.

Before the fast growth of deep learning techniques for image
recognition and classification, bag-of-words (BoW) was one of the most
popular technique for image classification (Sivic and Zisserman, 2003).
Descriptors such as Scale Invariant Feature Transform (SIFT; Lowe,
1999) and Speeded Up Robust Features (Bay et al., 2006) are used to
extract all the features from the images and form a vocabulary by
considering each individual feature as a word. But with the BoW
approach it was hard to keep track of the context and extract various
features from images. In recent years, deep neural networks have widely
used to perform many images processing tasks. The reason for the
popularity of deep learning models is TensorFlow-an open-sourced deep
learning framework which provides users the access to pre-trained deep
learning classification (and regression) models with flexible training on
users’s own dataset (or custom dataset).

Significant advancements were recently made with the development
of various Convolutional Neural Networks (CNNs) algorithms such as
R–CNN (Region-based CNN) features. The R-CNNs with deep architec-
tures follow a different approach compared to the shallow learnable
architectures that have the capacity to learn complex features and
informative object representations without having to design the features
manually (LeCun et al., 2015). Since the advent of R-CNNs, advanced
object detection models have been designed. This includes Fast R–CNN
which optimizes classification and bounding box regression tasks (Gir-
shick, 2015; Chemelil, 2021), by employing an additional sub-network
to generate regional features (Ren et al., 2015). Another good example
of such models is YOLOv3 (You Only Look Once version 3; Redmon
et al., 2016) model which performs object detection by making use of a
fixed-grid regression approach (Redmon et al., 2016). All these models
bring about significant performance improvements over the traditional
BoW model and make real-time flood object detection a more achievable
task.

While the field of image processing for flood label detection is
important, there is very few studies that focused on this topic thus far.
For example, Yang et al. (2014) implemented visual recognition method
to monitor water levels using a river camera to estimate flood depth due

to rising water levels. Other approaches such as Laplacian method (see
Vincent and Folorunso, 2009) and probabilistic Hough transform (Zhu
et al., 2009) were utilized in Yang et al. (2014) for different objects edge
detection and the straight waterline calculation. In another study, Pan
et al. (2018) computed flood level remotely by reading the length of a
measuring ruler in footage using CNNs. They found that CNNs out-
performed other traditional image processing algorithms with a stan-
dard deviation of 6.69 mm. Ning (2019) implemented CNNs to screen
flooding photos from social media and detect labels. More recently, Park
et al. (2021) estimated flood depth through detecting submerged vehi-
cles in flooded photos using Mask R–CNN (see He et al., 2017) and
compared calculated flood depth with the 3D rendered objects using
feature maps that are extracted by Visual Geometry Group Nets
(VGGNets; Simonyan and Zisserman, 2014). Their proposed approach
achieved absolute error values as low as 6.49 cm in flood depth calcu-
lation. Kharazia and Behzadan (2021) used image processing and deep
learning to study flood depth using traffic stop signs as ubiquitous
measurement benchmarks in flood photos. In their study, flood depth
was estimated with a mean absolute error of 12′′ in crowdsourced
photos.

This paper is the first attempt known to the authors that used various
CNN-based models for flood image labeling, inundation area calcula-
tion, and flood level classification. We applied YOLOv3, Fast R–CNN
(Girshick, 2015), Mask R–CNN, SSD MobileNet (Single Shot MultiBox
Detector MobileNet; Liu et al., 2016a,b), and EfficientDet (efficient ob-
ject detection; Tan et al., 2020a,b) for generic object detection, flood
label detection and flood depth estimation. Based on the basic CNN
architectures, generic object detection and flood label detection were
achieved by classification and bounding box regressions whereas, flood
surveillance and flood label detection were achieved using pixel-level
segmentation techniques. We integrated these methods with a pro-
posed flood level classification approach (flood severity and risk) to
develop a new python package called “FloodImageClassifier”. “Flood-
ImageClassifier” has been tested for many images by streaming video-
s/images from various data providers and social media platforms.

This paper is organized as follows. In Section 2,the procedures, al-
gorithms, and the functionality of “FloodImageClassifier”.py are intro-
duced and discussed. Section 3 discusses the results of
“FloodImageClassifier”.py implementation. Conclusions and future
works are provided in Section 4.

2. Methodology

2.1. Flood database system and data collection modules

In this research, we built for the first time a flood dataset consisting
of >9000 flooding images collected from various sources. The primary
data sources are Twitter, US department of Transportation (DOT) 511
traffic cams, US Geological Survey (USGS) river cameras, YouTube, and
search engines videos. Extracting and downloading images from Twitter
is a tedious and time-consuming task since only about 10% of the tweets
have images attached to them (Francalanci et al., 2017; Ning et al.,
2020). Images can be programmatically collected in two ways i.e.,
Twitter Representational State Transfer Application Programming
Interface (REST API) or Streaming API. The Rest API enables user to
collect a list of tweets with images, user id, etc., whereas the Streaming
API allows users to collect tweets with images in real-time based on
search terms, user ids or locations. Streaming real-time tweets is rela-
tively simple but has some downsides, as well. For example, using the
Twitter API we can only access tweets from the past 7 days. We used a
group of keywords such as “floods”, “flood emergency”, “disaster risk”,
flooded roads”, etc., to collect Twitter images and to further filter the
queries geocode i.e., the latitude and longitude values of the images that
were passed to the API in order to stream geolocation information.

To collect real-time Twitter images, we used Streaming API through
the “tweepy” python package to download real-time tweets in JSON

R.J. Pally and S. Samadi

Environmental Modelling and Software 148 (2022) 105285

3

format that contained an URL for the corresponding images. To collect
flooding images for the US, we used the “country_code” attribute present
in geotagged tweets JSON to filter the tweets accordingly. Overall,
>1000 tweets were collected which were filtered further based on the
inclusion of certain features within the images such as houses, cars, or
trees. The presence of these features in flooded images is critical in
identifying appropriate images with geolocation information for label
detection and floodwater classification. Utilizing search engines such as
Google and Bing and existing flooding image datasets from other re-
sources included additional >4800 flooding images to enrich the data-
set. Technically, a sizeable number of videos were collected using feeds
from YouTube, DOT traffic surveillance cameras, the USGS river cam-
eras, and other online sources. These footages and images formed a
preliminary training dataset for the CNN algorithms, although, they
were collected from different sources. In this study, frames (i.e., flooding
images) were extracted from these footages using the “OpenCV”
PythonPython package. These live surveillance footages were then
broken frame by frame and after every 10 s a frame was labeled with the
camera location and time stamp was pushed into the image data store.

2.2. CNN classifier

Various CNNs were used in this research for the classification task
while “Keras” (Chollet et al., 2015) deep learning library was used to
build the CNNs classifier. The CNN model was trained for 27 epochs with
a batch size of 72. The images were partitioned into train and validation
sets in the ratio of 9:1. The images present within the training set were
resized by scaling the pixels prior to providing the images as input to the
CNNs. Our developed CNN is illustrated in Fig. 1 that consists of the
following layers:

Input layer: The first layer of the CNN is the input layer which takes
an image as input, resizes the image and passes the image onto the next
layer for feature extraction.

Convolutional Layers: Three convolutional layers were designed in
the model to apply small filters on each part of the image, match the
feature points within the image and extract features from the image.

Pooling Layer: The extracted features are passed onto the pooling
layer, which helps in reducing the special dimensions by shrinking the
images down while preserving the most important information within
them. It picks the highest values from each region that is retains the best
fits of each feature within that region.

Rectified Linear Unit Layer (ReLU): This layer normalizes the
obtained values by replacing the negative values obtained from the
pooling layer with zeros to help the CNN stay mathematically stable.

Fully Connected Layers: This is the final layer which takes the
filtered images as input and then divides them into categories along with
their respective labels and scores.

Based on this structure presented in Fig. 1, we implemented six CNN
algorithms in this research. Each algorithm along with its mathematical
structure is explained below.

2.2.1. Generic object detection
Generic object detection methods can be classified into two types.

One with the traditional object detection pipeline which involves the
generation of region proposals and then classifying each of these pro-
posals into different object categories. The models which can be created
under regional proposal method are R–CNN (see Girshick, 2015; He
et al., 2017 for more information), SPP-net (SPP-net modifies RCNN
with a Spatial Pyramid Pooling layer; He et al., 2017), Fast R–CNN
(Girshick, 2015), R–FCN (region-based fully convolutional networks;
Liu et al., 2016a,b), feature pyramid networks (FPN; Lin et al., 2017a,b)
Mask R–CNN (He et al., 2017), and some ensemble methods which are a
combination of the above-mentioned models. The second method in-
volves treating object detection as regression or classification problem
and make use of a unified architecture to obtain the result directly. The
models which fall under this category include MultiBox (see Erhan et al.,
2017), Attention Net (Yoo et al., 2015), G-CNN (grid-based CNN; Najibi
et al., 2016), YOLOv3, SSD (Single Shot Detector; Liu et al., 2016a,b),
DSSD (Deconvolutional Single Shot Detector; Fu et al., 2017), and DSOD
(Deeply Supervised Object Detectors; Shen et al., 2017).

2.2.1.1. Regional based networks for object detection. The regional
proposal-based framework follows a two-step process, which involves
scanning the entire image first and then identifying and focusing on the
regions of interest. To achieve this, a CNN is inserted into the sliding
window method, which predicts bounding boxes directly from locations
of the most important feature map after obtaining the confidence scores
of underlying object categories (e.g., Yiatrou et al., 2016). Each layer in
the CNN model is called a feature map, the feature map input layer is a
3D matrix which consists of pixel intensities for different color channels
(e.g., RGB). Different types of transformations can be applied to the
feature maps such as filtering and pooling. Filters convolute the filter
matrix containing the values of a receptive field of neurons and uses a
non-linear function such as sigmoid or ReLU to obtain the final response.
There are a variety of pooling operations such as max pooling, average
pooling, L2-pooling and local contrast normalization. The objective of
pooling operations is to summarize the responses of a receptive field (i.
e., set of neurons connected to a small portion of adjacent neurons from
the previous layer) into one value to produce more robust feature de-
scriptors. Next, we have the fully connected layers which are used to fine
tune the initial feature hierarchy in a supervised manner in order to
adapt to different visual tasks. Based on the visual tasks involved,
different activation functions are used to build the final layer and to get a

Fig. 1. The architecture of the CNN flood image classifier developed in this research.

R.J. Pally and S. Samadi

Environmental Modelling and Software 148 (2022) 105285

4

specific conditional probability for each output neuron (see Zhao et al.,
2019). Objective functions such as mean squared error or cross-entropy
loss are used to optimize the network via the SGD (Stochastic Gradient
Descent) method. The family of models selected for the object detection
task are described below:

Fast R–CNN: The architecture of Fast R–CNN processes the whole
image using convolutional layers and produces the feature maps. The
region of interest (RoI) pooling layers is then used to extract fixed-length
feature vectors from each RoI. The generated feature vectors are passed
on to the fully connected layers before inputting them to the output
layers (see Fig. 2). There are two output layers out of which one is
responsible for producing SoftMax probabilities for each of the cate-
gories and the second output layer is responsible for defining the
bounding boxes with four real-valued numbers which represent the
edges of bounding box. All the parameters excluding the generation of
regional proposals are optimized using multi-task loss. The multi-task
loss function is used to jointly train classification and bounding box
regression that is defined by Equation (1):

L(p, u, tu, v) = Lcls(p, u) + λ[u ≥ 1]Lloc(tu, v) (1)

Where, Lcls(p, u) = − log pu calculates the log loss for the classes u and pu
based on the probability distribution p = (p0, p1, … … … …., pc) over the
C+1 output generated from the FC layer. Lloc(t u, v) is defined over the
predicted offsets t u = (t

u
x, tu

y, tu
w, tu

h) and ground-truth bounding-box
regression targets v = (vx, vy, vw, vh), where x, y, w, and h denote the two
coordinates of the box center, width, and height, respectively. Each tu
adopts the parameter settings to specify an object proposal with a log-
space height/width shift and scale invariant translation (see Zhao
et al., 2019). The Iverson bracket indicator function [u ≥ 1] is employed
to omit all background RoIs. To provide more robustness against outliers
and eliminate the sensitivity in exploding gradients, a smooth L1 loss
was adopted to fit bounding box regressors (Zhao et al., 2019) using
Equations (2) and (3).

Lloc (tu, v) =
∑

i € x,y,w,h smooth (tiu – Vi) (2)

Where, smoothL1 (x) = (0.5 x2 if |x| < 1; |x| − 0.5 otherwise (3)

To further accelerate the pipeline detection speed, we programmed
the Fast R–CNN to sample the mini-batches in a hierarchical manner
where N images were sampled randomly. Also, the RoIs from the same
image share the computational power and memory in the forward and
backward passes (Clark, 2019). In the Fast R–CNN, all networks’ layers
were trained in a single step using a multi-task loss which significantly

improved the accuracy and efficiency of object detection task.
Mask R–CNN: Mask R–CNN is a simple extension of the Fast R–CNN

with a class label and a bounding-box offset. We included a third branch
for predicting the segmentation masks for each object instance. Mask
R–CNN object masks are different from the class and bounding-box
outputs produced by Fast R–CNN. The Mask R–CNN adopts a two-
stage approach. The first stage consists of a regional proposal network.
The second stage provides a binary mask for each RoI along with pre-
dicting the class labels and the bounding-box offsets (see He et al.,
2020). This approach does not align with most of the existing classifi-
cation systems where classification of objects depends on the mask
predictions. In this way it is similar to the Fast R–CNN approach which
performs bounding-box classification and regression together.

The loss of the entire multi-task approach for each RoI is defined as L
= Lclass + Lbox + Lmask where the classification loss and bounding-box loss
are defined as Freund and Schapire (1997). The mask branch has K m ×
m binary masks, one for each class. To design this algorithm, we added a
per-pixel sigmoid and defined the Lmask which is the average binary
cross-entropy loss. Due to this definition of Lmask, the network generates
masks for each class without competition among other classes. This
separates the mask and class prediction tasks. Specifically, we predicted
an m × m mask from each RoI using an FCN. This allowed each layer in
the mask branch to maintain an explicit m × m object spatial layout
without collapsing it into a vector representation that lacks spatial di-
mensions (see He et al., 2020). This kind of fully convolutional
arrangement requires fewer parameters and at the same time is more
accurate when compared with the other models. Certain amount of
misalignment is introduced between the RoI and features (e.g., Zhao
et al., 2019) due to the coarse spatial quantization performed by the RoI
pooling function. The Mask R–CNN solves this problem using a
quantization-free layer called RoIAlign, which helps in preserving the
per-pixel spatial correspondence. The RoIAlign layer replaces the RoI
pooling quantization layer with a bilinear interpolation function as
discussed by Jaderberg et al. (2015) which computes the values of input
features at the four regularly sampled locations in each RoI bin (also see
Zhao et al., 2019). These changes help Mask R–CNN to significantly
improve the accuracy and precision of object detection tasks. Mask
R–CNN is an accurate and flexible instance detection model which can
be used for a wide range of images.

2.2.1.2. Regression-based networks for object detection. The region-based
networks consist of several correlated layers, which include generating
regional proposals, feature extraction, classification and bounding box

Fig. 2. Fast R–CNN network architecture comprising of fully connected layers with Softmax probabilities.

R.J. Pally and S. Samadi

Environmental Modelling and Software 148 (2022) 105285

5

regressions (see Bouchakwa et al., 2020). On the other hand,
regression/classification-based frameworks directly perform mapping
from bounding box coordinates and class probabilities, thereby greatly
reducing the time spent to complete the task. Two significant frame-
works that make use of regression/classification-based networks for
object detection are SSD and YOLO.

SSD-Mobilenet: The SSD-Mobilenet is a combination of SSD
network and CNN MobileNet. SSD-MobileNet is a kind of regression
model, which makes use of the features from various convolutional
layers to build classification regression and bounding box regression (Ali
et al., 2019). Each feature map consists of k frames that contrast in size
and width-to-height ratio. These frames are called as default boxes, the
default boxes are then scaled to form feature maps that can be calculated
as:

SK = Smin +
Smax − Smin

(m − 1)

(

k − 1
)

,

(

kE
[

1, m
])

(4)

The m denotes the total number of feature maps and Smin, and Smax
are parameters that need to be set while configuring the training job.
Loss function is calculated as the sum of the confidence loss Lconf (s, c) of
the classification regression and the position loss Lloc(r, l, g) of the
bounding box regression (Ali et al., 2019). The function can be depicted
as:

L(s, r, c, l, g) =
1
N

(
Lconf (s, c) + αLloc(r, l, g)

)
(5)

Where α is a constraint to manipulate the confidence loss and position
loss; s and r are the eigenvectors representing the confidence loss and
position loss respectively; c is the confidence of classification; l is the
offset of predicted box which includes both translations offset and
scaling offset; g is the alignment box (ground-truth box) of the objective
genuine position; and N is the quantity of default boxes that coordinate
the alignment boxes of this classification (Ali et al., 2019).
SSD-MobileNet is consists of point wise layers and depth wise layers. The
depth wise layers are deep convolutional layers that utilizing 3 × 3
kernel while point wise layers are common convolutional layers utilizing
1 × 1 kernel (see Ali et al., 2019). Batch normalization and activation
function used to rectify linear unit 6 (ReLU6) that are applied on every
convolutional result.

EfficientDet-D1: EfficientDet-D1 is a neural network architecture
and one of the TensorFlow object detection API. EfficientDet-D1 runs
faster than other detectors largely follow the one-stage detectors para-
digm just like the SSD and YOLOv3 (YOLO version 3). The EfficientDet-
D1 architecture is split into two parts, the first part is the backbone
network which consists of pretrained EfficientNets and the second part is
a BiFPN feature network which takes features from the backbone
network and continuously applies top-down and bottom-up feature
fusion. Next, a box network takes these fused features as input and
produces the bounding boxes and class predictions, respectively.

EfficientDet-D1 has multiple state-of-the-art model variants, ranging
from D0-D7 with D0 being the lightweight model, therefore requires less
compute resources and D7 being the heavy weight model that requires
more computational support. EfficientDet-D1 is faster than other de-
tectors and it uniformly scales the resolution, depth, and width. We
linearly increased the BiFPN depth and the BiFPN width was exponen-
tially increased, as well. Basically, a grip search is performed, and the
best value is selected as the BiFPN width scaling factor (Tan et al.,
2020a,b). The depth and width are scaled according to the following
Equations:

WBiFPN = 64 . (1.35 φ); DBiFPN = 3+φ (6)

Where, φ is the compound coefficient which controls the scaling di-
mensions. For the prediction layers, the width is as same as the BiFPN
network, but the depth is linearly increased using the following
equation:

DBox = Dclass = 3+⌊φ/3⌋ (7)

Where DBox and Dclass represent the box and class prediction network,
respectively. BiFPN, box and class net, and input size are scaled up using
Equations (7) and (8), respectively (see Tan et al., 2020a,b for more
information). EfficientDet-D1 consistently achieves better accuracy and
efficiency than other models from the TensorFlow object detection API’s
model zoo.

YOLOv3: Redmon et al. (2016) proposed a novel object detection
framework called YOLOv3, which makes use of the whole topmost
feature map to predict both confidences for multiple categories and
bounding boxes (Zhao et al., 2019). YOLOv3 is an algorithm that
directly predicts the class probabilities and bounding box offsets by
applying a single feed forward neural network (originally a version of
GoogLeNet, later updated and called DarkNet based on VGG; Brownlee,
2019) for the entire image. YOLOv3 is one of the faster object detection
algorithms, it considers object detection as a regression problem and
eliminates region proposal generation and feature resampling by
encapsulating all stages in a single network to form a true end-to-end
detection system. The algorithm splits the input image into small grid
cells and each cell predicts a bounding box and the class label. The result
is a large number of candidates bounding boxes that are consolidated
into a final prediction by a post-processing step. We used a pre-trained
YOLOv3 model to perform object detection on unseen flood images.
We defined a Keras model that had the right number and type of layers to
match the pre-trained model weights (Brownlee, 2019). The model
predicted multiple candidates bounding boxes referring to the same
objects. The list of bounding boxes was filtered and those boxes that
overlapped and referred to the same object were merged by defining and
passing the amount of overlap as a configuration parameter (see
Brownlee, 2019 for more information). The number of boxes was further
reduced by retrieving only those that strongly predicted the presence of
an object.

As shown in Fig. 3, YOLOv3 mainly consists of two things, a feature
extraction layer called Darknet-53 (Yang et al., 2020) and the YOLOv3
convolutional layers. The convolutional layers output five basic pa-
rameters of the detection result (bx, by, bw, bh, and confidence). Where,
bx and by are coordinates representing the center of the object label and
bw, bh are the width and height of the object label and the confidence is
the prediction score for that particular object label (Yang et al., 2020).
Along with the prediction probability, YOLOv3 also weights the
bounding boxes. In the YOLOv3 model k-means clustering is used for
determining the bounding box priors. Compared to classification-based
systems, YOLOv3 has several advantages such as (i) it learns more
context information as it passes the entire image as input to the detec-
tion system, (ii) YOLOv3 is much faster when compared to the R–CNN
algorithm and it is about 100 times faster that Fast R–CNN. The feature

Fig. 3. Bounding box priors and bounding box predictions.

R.J. Pally and S. Samadi

Environmental Modelling and Software 148 (2022) 105285

6

extraction layer Darknet-53 is the same as mentioned above in the
YOLOv3 algorithm. The detection accuracy of YOLOv3 is similar to that
of SSD, but it is three times faster than SSD (Yang et al., 2020). Object
detection using YOLOv3 consists of four steps:

1) Predicting bounding boxes: YOLOv3 anchor boxes are obtained by
clustering (Liu et al., 2018). As shown in Fig. 3, an input image is
divided into s × s grid cells and for each bounding box, YOLOv3
predicts the four coordinate values (tx, ty, tw, th), for the predicted
cell, the width, and the height of bounding box prior pw, ph are
computed based on the coordinates of the upper left corner of the
image (cx, cy; See Yang et al., 2020).

The YOLOv3 algorithm makes use of logistic regression to predict the
bounding boxes which is different from the approach used by the Fast
R–CNN. Each ground truth object is assigned only one bounding box
prior and if a bounding box prior is not assigned then it does not incur
any lose due to coordinates or class predictions. YOLOv3 eliminates the
extraction of feature frames from each region and instead it divides the
image into S × S grids, and the size of the a priori frame is set to the size
of the object frame of the k-means clustering dataset (Yang et al., 2020).

2) Class prediction: Multilabel classification is used to predict the
classes that may be contained within the bounding box. YOLOv3
does not make use of a softmax layer but instead it employs an in-
dependent logistic classifier. Binary cross-entropy loss is then used
during training for class prediction.

3) Prediction across scales: Similar to the Fast R–CNN, YOLOv3 predicts
object at three different scales. In our experiment three different
boxes were predicted for each scale. In addition, YOLOv3 makes use
of a multi-scale detector. This connects the feature maps from three
different scales of 52 × 52, 26 × 26, and 13 × 13 from the feature
extraction layer for the detection and regression of the object by the
detector (e.g., Yang et al., 2020). The connection of the deep feature
map is beneficial to the learning of the large object feature infor-
mation, and the connection of the shallow feature map is more
conducive to the learning of the small target feature information
(Yang et al., 2020).

4) Feature extractor: The YOLOv3 uses Darknet-53 for feature extrac-
tion instead of the VGG16 network used by the Fast R–CNN. The
Darknet-53 comprises of 3 × 3 and 3 × 1 convolutional layers and
hopping connection layers to perform feature extraction, which is
more inclined towards learning of feature information of the previ-
ous item (see Yang et al., 2020 for more information).

In this research, we developed our own Keras YOLOv3 model and
then used it to make predictions on unseen flooding images. We
designed the Keras model (i.e., the number and type of layers) based on
the pretrained model weights. These weights were obtained by training
the Darknet-53 code based on the Microsoft COCO (MSCOCO) dataset
(Lin et al., 2014). Next, we loaded the model weights using the weight
reader class which was saved within the working directory. In order to
make predictions we loaded the input images and pre-processed the
images before feeding them to the model. The pre-processing involved
converting the images into a square shape of 416 × 416 sizes. To load
and resize the image, we converted the PIL (“Pillow” Python library)
image object into a NumPy array and then rescale the pixels from 0 to
255 to 0–1 floating point values (Brownlee, 2019). Once the image is
pre-processed, we fed the images to the model.

The model predicted a huge number of bounding boxes, we then
filtered these bounding boxes regions using a method known as non-
maximal suppression which merges bounding boxes that have a
certain amount of overlap and/or refer to the same object. This approach
reduced the bounding boxes considerably and left very few boxes of
interest. Next, these bounding boxes were rescaled to the original shape,
size and drawn around each detected object. Finally, the model

generated a plot of the original images with the bounding boxes drawn
for the detected objects along with the class labels for the objects and
their respective prediction scores.

2.3. Removal of detected objects and flood depth estimation

The results generated by each of the above -mentioned state-of-the
art object detection models were fed into an object removal system.
The object removal system helped in removing of detected objects and
reconstructing the image in a plausible manner by using exemplar-based
inpainting method (see Criminisi et al., 2003 for more information).
Image inpainting involves filling in the voids within an image, this is
used in a number of applications such as reconstruction of old images
and damaged videos, removal of unwanted image content such as
superimposed text, and removal of objects. This method uses partial
convolutions with an automatic mask update to achieve state-of-the-art
results. It substitutes convolutional layers with partial convolutions and
mask updates, as a result the links are not skipped in a U-Net (con-
volutional networks for fast and precise segmentation of images)
thereby, making it possible to achieve appropriate inpainting results.
The object removal system uses a combination of texture synthesis and
inpainting methods to identify the target region which needs to be filled
in and a source region which is used as a reference to fill in the target
regions. Our final object removal pipeline takes an image as input, de-
tects the location of various objects within the image and produces an
image with the detected objects that can be removed as the final output.
This task is performed in order to detect the edges of the water surface
using Canny Edge Detection (Zhao et al., 2014) as it calculates the
surface areas of water which in turn are used to determine the water
level. Canny Edge Detection (Canny, 1986) is a popular multi-stage edge
detection algorithm explained step by step below:

Noise Reduction: Edge detection is susceptible to noise, therefore in
the first step the algorithm tries to smooth the noise using a gaussian
filter.

Finding Intensity Gradient of the Image: A Sobel operator is used
to filter the smoothened image in order to obtain a derivative both in the
horizontal (Gx) as well as vertical (Gy) directions. With the help of these
images, it is possible to identify the edge gradient and the directions for
each pixel as shown below:

Edge_Gradient (G) = √G2x + G2y (8)

Angle(θ) = tan-1 (Gy/Gx) (9)

Gradient direction is always perpendicular to the edges. It is mostly
approximated to one of the four different angles that represent the
horizontal, vertical, and two diagonal directions.

Non-maximum Suppression: After obtaining the gradient direction
and magnitudes, the entire image is scanned to identify and remove
unwanted pixels that do not contribute towards the edge. The point is
checked to see if it forms a local maximum with the neighboring points,
in that case it is considered for the next stage, otherwise, it is suppressed.
This is done by checking each pixel and determining if it is a local
maximum in its neighborhood in the direction of the gradient.

Hysteresis Thresholding: In this step we decide which edges should
be taken into consideration (i.e., those that are the real edges vs. those
that are non-real ones). To do so, we used two threshold values, i.e.,
edges with intensity gradient values greater than the maxVal (sure
edges) and edges with intensity gradient values below minVal (non-
edges). The edges whose gradient intensity lies between the maxVal and
minVal are classified as edges or non-edges based on their connectivity.
If these edges are connected to a sure-edge then they are also considered
to be a part of the edge and if not they are considered as non-edges and
discarded. The output from the detection and inpainting pipeline is then
used to estimate the water depth. We identified the surface water edges
and calculated the water depth using the Canny Edge Detection algo-
rithm, the aspect ratio concept (Xu-kai et al., 2012), and the “OpenCV”

R.J. Pally and S. Samadi

Environmental Modelling and Software 148 (2022) 105285

7

package which includes powerful functions to handle computer vision
tasks such as smoothening and thresholding. First, we detected the edges
of the water surface, drew contours around the water surface and then
calculated the area of the contours (i.e., the area of the water surface).
Next, based on the aspect ratio which is calculated by taking into
consideration the area of the water surface detected within the image,
we estimated the water levels. We then categorized the water levels into
mild, moderate, and severe conditions to reflect flood severity and risk.

2.4. Performance metrics

Flood image object detection can be challenging since both the
probability of occurrence of a particular object and the position of the
object should be precisely predicted. Hence, standard metrics such as
accuracy and precision that are widely used for evaluating image clas-
sification models cannot be used for examining flood object detection
models. We used Mean Average Precision (MAP) which is a popular
performance metric to evaluate algorithms that involve predicting the
object location as well as classifying the probability of occurrence. MAP
evaluates the correctness of bounding box prediction using a metric
called Intersection over Union (IoU). IoU is a ratio between the inter-
section and the union of the predicted boxes, and the ground truth boxes
(see Fig. 4; Rezatofighi et al., 2019). This metrics is also called as the
Jaccard Index since it was first published by Paul Jaccard in the early
1900s.

True positive (TP) and true negative (TN) in Equations (10) and (11)
refer to the number of correct detections; TP represents positive (cor-
rect) detections while TN indicates negative (incorrect) detections (e.g.,
Kharazi and Behzadan, 2021). False positive (FP) and false negative
(FN), on the other hand, refer to the number of incorrect detections; FP
denotes positive detections while FN represents negative (incorrect)
detections (Powers, 2020). Next, average precision (AP) will be calcu-
lated by plotting precision as a function of recall and calculating the area
under the curve (Kharazi and Behzadan, 2021).

Precision = TP / (TP + FP) (10)

Recall = TP /(TP + FN) (11)

2.5. “FloodImageClassifier” system architecture

“FloodImageClassifier” workflow is illustrated in Fig. 5. It visually
describes different workflows of the “FloodImageClassifier” package
including (i) data collection module, (ii) classification of images using a
trained classifier, and (iii) object/label detection using object detection
models. In this tool, the position of the object in a flooded image is
defined by rectangular coordinates. The pipeline of object detection
models is primarily divided into three phases: (i) informative region
selection, (ii) feature extraction, and (iii) classification. In a flooded
image, different objects may appear at different locations of the image
that may have different sizes and aspect ratios. So it is important to scan
the entire image using a sliding window and select the regions of in-
terest. This would reflect the information region selection by object
detection models. The flood image classification, the object label
detection, and floodwater level classification are three main components
of the “FloodImageClassifier” package. These three components were
embedded within the same system architecture but were trained sepa-
rately to follow different workflows. The large training set built using
the data collection module helped in improving the performance of the
classifier as well as the object detector. To verify the extendibility of the
system, a pre-trained YOLOv3 model was also implemented using Keras
and TensorFlow that were included to the list of custom trained object
detection models. The test images go through the classifier as well as the
object detector (i.e., CNNs) and the inferences drawn of labels, flood
levels, and flood risk classification are displayed to the user.

3. Applications

We tested the aforementioned state-of-the-art approaches on flood
datasets which include a custom dataset (collected flood images) built
by collecting images from various sources as explained in section 2.1 and
MSCOCO that contain flood and non-flood images. This study used Mask
R–CNN, SSD MobileNet, YOLOv3, Fast R–CNN, and EfficientDet algo-
rithms that were pretrained and integrated into “FloodImageClassifier”
package. Test images were then passed to these object detection models
to draw inferences and outputs. This process helped detect object within
the images, create bounding boxes for the identified objects along with
their class labels and respective prediction scores.

3.1. Object detection

We split the image dataset into training and test sets and annotated
the images with our defined custom object categories. We considered
several object categories such as vehicle, forest, tree, traffic sign, water
vessels, residential areas, and bridges. Annotation of images involved
highlighting each of the objects within an image manually using
bounding boxes and labeling them appropriately. An image annotation
tool that supports YOLOv3 format (called LabelImg) was used to anno-
tate the images. Before passing these annotated images as input to the
object detection models for training, the.xml annotation files were
converted to the TensorFlow record files and passed as input for training
the models along with the images. Next, we trained the convolutional
based CNNs for image classification. Pretrained models from the Tensor-
Flow model zoo were used for object detection that were trained on
larger datasets such as ImageNet (Russakovsky et al., 2015) and
MSCOCO dataset (Lin et al., 2014). After the training was completed, we
extracted the newly trained custom object detection inference graphs,
exported, and saved them in a separate folder within the same directory.
These saved models were later used to perform object detection (i.e.,
perform inferences).

By default, the training process logs some of the basic performance
metrics which along with the test images were used to evaluate the
trained models and performance metrics. To view these basic perfor-
mance measures, we performed an evaluation process on the trained
models which used the checkpoint files (i.e., snapshot of the models at a
given step) generated during the training process and evaluated how
well the model detected the objects in the test dataset. These basic
evaluation metrics that were generated during the evaluation process
were used to compute the MAP value for each model.

The test dataset was consisted of many challenging images with most
of the images having more than one object. We used MAP which is a
popular performance metric to evaluate algorithms that involve pre-
dicting the object location as well as classifying the probability of
occurrence. We also used IoU to determine whether the detection was
correct or not. It was also observed that as the training dataset increased
the MAP value also improved considerably. This allowed us to further
increase the IoU threshold from 0.5 to 0.75. To evaluate the performance
of object detection algorithms, the IoUs were first detected, and the
ground-truth masks were then calculated by dividing the overlapping
area between the two masks by their union area (see Kharazi and Beh-
zadan, 2021). We first computed the true positives, false positives, true
negatives, and false negatives. IoU was then used to get the true positives
and false positives, that is whether the detection was correct or not was
determined by comparing the IoU with a threshold value. Generally, 0.5
is used as the threshold value and if the IoU is greater than 0.5 we
consider it as a true positive, otherwise it is considered as a false posi-
tive. Since the ground truth data already provided the information about
the actual number of objects within the image, we then calculated the
true negatives (i.e., part of the image where the object was not pre-
dicted) and false negatives (i.e., the objects that were missed out by our
model). Using these values and IoU thresholds, we calculated the
number of correct detections for each class in an image indicating the

R.J. Pally and S. Samadi

EnvironmentalModellingandSoftware148(2022)105285

8

Fig. 4. IoU calculation using the ground truth box and the predicted bounding box.

R.J. Pally and S. Sam
adi

EnvironmentalModellingandSoftware148(2022)105285

9

Fig. 5. The architecture of the “FloodImageClassifier” package.

R.J. Pally and S. Sam
adi

Environmental Modelling and Software 148 (2022) 105285

10

precision and recall values (Equations (11) and (12); see Table 1). Next,
we chose different confidence thresholds ranging from 0.3 to 0.7. From a
total of >9000 images, > 4000 were included in this analysis since some
images depicted partial visibility of the flooded areas.

Next, we used exported inference graph (i.e., saved custom object
detection models) to perform inference on some external flood images
that were not part of our collected flood image dataset to understand
how well each of these models detect the various object categories on
which they were trained. As illustrated in Figs. 6–10, it is evident that
the custom trained models were capable of detecting multiple objects
within a single image as they almost detected 90% of the objects pre-
cisely. However, object detection models produced different outcomes.
Segmentation models such as Mask R–CNN identified the foreground
shapes and highlighted the objects using bounding boxes by drawing a
mask on the object. This helped in clearly segmenting one object from
another one whereas other object detection models such as the Fast
R–CNN, YOLOv3, EfficientDet, and SSD MobileNet highlighted the
detected objects using only a single bounding box.

The prediction scores of different models were calculated for
different object categories namely vehicle, person, forest, tree, traffic
sign, residential area (i.e., houses), water vessels (i.e., boats, ships, etc.)
and bridges/dams by passing the same set of test images to each of these
models (Table 3). This approach determined which of these models was
the best object detection algorithm for flood image labeling and
detection.

We also tested MSCOCO dataset that consists of 300,000 fully
segmented images and each image on an average includes about 7 object
instances from a total of 80 different object categories. Object detection
results using MSCOCO are shown in Table 4.

Each of the above models pretrained on the MSCOCO dataset were
downloaded from the TensorFlow model zoo along with their corre-
sponding label files for this dataset. Next, we performed the inference on
the same set of test images which were used for the custom trained
models. Table 4 represents the detection scores obtained by running
inference on each of the models and it was observed that the models
trained on the COCO dataset were unable to detect certain object labels
such as trees, residential areas (i.e., houses) and critical infrastructures
such as bridges, dams, etc. On the other hand, each of these models when
trained on the custom dataset (our collected flood images) were capable
of detecting the above-mentioned object labels accurately. Several ob-
ject categories in flooded photos led to highly erroneous or misdetection.
The top four sources of errors include image background, darkness in
surface water, water reflection, and wavy surface water.

Once the detection results were generated by each of these models,
we attempted to remove each of the detected objects and reconstructed
the image by filling the void spaces in a plausible manner using exem-
plar based inpainting. Image inpainting involves filling in the voids
within an image, this is used in a number of applications such as
reconstruction of old images and damaged videos, removal of unwanted
image content such as superimposed text and removal of objects. We
used partial convolutions with an automatic mask update to achieve
state-of-the-art results. Image inpainting model substituted convolu-
tional layers with partial convolutions and masked the updates. This
algorithm successfully identified the target region which was filled using
the surrounding areas of the target region as reference.

The final output of the object detection and image inpainting pipe-
line was used to estimate the water depth using Canny Edge Detection
and aspect ratio concept as discussed in the methodology section. Given
an input image, first we resized the image and converted it into a
grayscale. Next, we identified and eliminated the skyline because both
water and skyline had the same color gradient, and it was possible that
the skyline could also be detected as a water surface. Once the skyline
was eliminated, only a portion of images consisting of the water surface
was taken into consideration. As shown in Fig. 11, we detected the edges
of the water surface (i.e., draw the contours) and then calculated the
area of the water surface that was printed on the original image. Having
identified the water surface correctly, a bounding box was then drawn
around the contour and its aspect ratio was calculated (i.e., the ratio
between the width and height of the water surface). This aspect ratio
value was then used to identify the water level and was printed on the
original image (see Table 5).

As shown in Figs. 12–14, the image was resized and converted into a
grayscale image before processing it. The image was firstly smoothened
using a gaussian kernel prior to the thresholding operation. This helped
remove the noise while kept the underlying structure of the image intact.
Next, we manually defined a threshold value of 9 and performed a
thresholding operation using OpenCV’s threshold() function. The result
of the thresholding operation was a binary image which well captured
the water surface along with a few other objects such as people, cars, and
trees with the help of masks. To isolate the water surface from the other
objects that were highlighted, we used the OpenCV’s findContours()
function to identify the foreground mask shapes and draw contours
around them. Next, we calculated the area of each contour, then sorted
the contour areas and only the largest contour was printed over the
original image. This allowed us to clearly segment the water surface.
After highlighting the water surface using contours, a bounding box was
illustrated around the contour to calculate the aspect ratio. The aspect
ratio value was used to determine the water level as shown in
Figs. 12–14. If the aspect ratio is in a range of 1.26–18, the water level is
then considered to be low (mild), if the aspect ratio is in a range of
0.54–1.26, the water level is considered to be moderate, and if the aspect
ratio is in a range of 0.18–0.54, the water level is considered to be high
(sever flood risk). Based on these classification, Fig. 12 showed a
floodwater level 4, 55703.6 pixels area with mild flood risk and severity
while Figs. 13 and 14 revealed moderate and severe flood risk conditions
with flood levels 6 and 11, respectively. These results reveled the
important of Canny Edge Detection and aspect ratio concept for flood
severity classification. However, due to the variation in appearances,
lighting conditions and backgrounds, it is difficult to manually design a
robust label descriptor to completely describe and classify all types of
objects, floodwater levels, and the inundation areas in a flooded image.

4. Conclusion and future work

This research examined various CNNs algorithms for flood label
detection. We used YOLOv3, Fast R–CNN, Mask R–CNN, SSD MobileNet,
and EfficientDet algorithms to label flood objects, classify flood levels,
and estimate inundation areas. A training dataset of >9000 flooded
images was first built by streaming relevant images from social media
platforms and various data providers and online sources. These photos
were then used to train the CNN architectures for flood label detection.
Once all the images were collected, labelImg was used to annotate these
images with eight pre-defined object categories namely vehicle, person,
forest, tree, traffic sign, residential area (i.e., houses), water vessels (i.e.,
boats, ships, etc.) and critical infrastructure (bridges, dams, etc.). Next,
these images were split into train and test sets in a 9:1 ratio i.e., 90% for
training and 10% for testing along with their respective.xml files. We
first employed pretrained TensorFlow object detection models trained on
the MSCOCO dataset and pretrained YOLOv3 as label detection and
instance segmentation model. We first trained YOLOv3 on two sets of
data, i.e., our customized flood data and MSCOCO dataset and then

Table 1
The performance of each detection model using our customized flood images.

Models IoU
(%)

Precision
(%)

Recall
(%)

AP
(%)

Processing Time
(s)

Mask RCNN 75 69.9 79 63.7 1.55
Fast RCNN 75 71 76 62.9 2.52
SSD

MobileNet
75 61 59.7 48 1.22

EfficientDet 75 65.4 63 58 1.21

R.J. Pally and S. Samadi

Environmental Modelling and Software 148 (2022) 105285

11

segment the centroid-pixel annotated mitosis ground truths and pro-
duced the mitosis mask and the bounding box labels. Among different
algorithms used in this study, Mask RCNN showed promising results.
The Mask R–CNN was able to perform both detection and instance
segmentation of surface water within the images. This allowed us to use
the MASK R-CNN results to perform other tasks such as water level
classification and inundation area calculation. Specifically, the ability of
Mask R–CNN for flood depth detection was found to be crucial for real-
time monitoring of water level rising that can provide early intelligence
to decision makers and emergency response authorities.

The Mask R–CNN detection performance was found to be affected by
the IoU threshold where the higher threshold led to multiple predicted
(flooded) regions within a single image and the lower threshold resulted

in lacking predicted flooded region (also reported in Xu et al., 2020). It
was observed that as the size of training dataset increased the MAP value
also improved. This allowed us to further increase the IoU threshold
from 0.5 to 0.75. The results indicated that the threshold at 0.75 per-
forms superior with the precision of >89%. Although, this optimal
threshold may vary application by application (see Papandreou et al.,
2017; Schneider et al., 2018) while could be properly adjusted
depending on the types of images and labels (Xu et al., 2020).

Regardless of the rapid advancements and promising progress in the
object detection domain, there are still several challenges that could be
addressed in future works. One important challenge is the detection of
small objects in the images. CNN-based detection algorithms have a
number of combinations of convolutions followed by a pooling layer.

Fig. 6. The Fast RCNN detection results with bounding boxes.

Fig. 7. The Mask RCNN detection results with bounding boxes.

Fig. 8. YOLOv3 detection results with bounding boxes.

R.J. Pally and S. Samadi

Environmental Modelling and Software 148 (2022) 105285

12

This allows the network to resize the images from ~600 × 600 resolu-
tion down to ~30 × 30. Due to this fact, small object features extracted
on the first layers may disappear somewhere in the middle of the
network and never actually count for detection and classification steps.
This is also the reason why CNNs struggle with detecting small objects.
Capturing high resolution images, using focal loss in the process of
training a neural network and employing Feature Pyramid Networks
(FPN; see Lin et al., 2017a,b) may improve small object detection in the

images. Another important key finding to be considered while modi-
fying the network architecture is scaling. Similar kind of objects present
within images can be found in different scales. To make the model robust
to such scale changes, the model can be trained on multi-scale or
scale-invariant detectors. The scale-invariant detectors could make use
of powerful backbone architectures such as negative-sample mining and
sub-category modeling. For multi-scale detectors, General Adversarial
Networks (GAN; Kong et al., 2017) which typically narrows down the

Fig. 9. SSD MobileNet detection results with bounding boxes.

Fig. 10. EfficientDet detection results with bounding boxes.

Table 3
The prediction score of different object detection models using collected flood dataset. N/A= Not applicable.

Models/Object
Categories

Vehicle Forest Traffic
Sign

Tree Residential
Area

Person Water
Vessels

Critical Infrastructure (bridge, dam, road, storm water
facilities, railroad)

SSD MobileNet 92% N/A 60% 97% 51% 74% 98% 95%
Fast R–CNN 99% 56% 99% 89% 100% 99% 48% 100%
Mask R–CNN 85% 70% 87% 73% 96% 91% 67% 89%
YOLOv3 99.9% N/A N/A N/A N/A 98.3% 95% N/A
EfficientDet 62% 35% 42% 51% 69% 59% 43% 59%

Table 4
The prediction score of different object detection models using MSCOCO dataset.

Models/Object
Categories

vehicle Forest Traffic
Sign

Tree Residential
area

Person water
vessels

Critical Infrastructure (bridge, dam, road, storm water
facilities, railroad)

SSD MobileNet 70% N/A 36% N/A N/A 41% 30% N/A
Fast R–CNN 99% N/A 95.9% N/A N/A 98 45% N/A
Mask R–CNN 98% N/A 94% N/A N/A 99% 99% N/A
YOLOv3 99.4% N/A 99.96% N/A N/A 96.9% 94.9% N/A
EfficientDet 81% N/A 87% N/A N/A 86% 45% N/A

R.J. Pally and S. Samadi

Environmental Modelling and Software 148 (2022) 105285

13

representational differences between small object and large objects with
a low-cost architecture is an effective way to improve the detection
accuracy of small objects.

The second challenge to be addressed here is the computational
burden. It is a tedious and time-consuming task to manually draw the
bounding boxes for each object present within the image. To address
this, unsupervised object detection (Croitoru et al., 2017), multiple
instance learning (Wang et al., 2014) and object prediction using deep
neural networks can be integrated into an existing network architecture
and use image-level supervision to detect objects and assign appropriate
class labels to them. Another approach is to use pre-trained models (Li
et al., 2017a,b) with an optimal network architecture. The third chal-
lenge is the extension of 2D object detection methods for object detec-
tion within videos (in case of the USGS river cam videos). There is a
noticeable drop in the network detection accuracy due to the corrupt
object appearances caused by the motion blur and changes of focus in
videos. To resolve this, several techniques such as spatiotemporal
tubelets (Kang et al., 2017) and LSTM (Long Short-Term Memory;
Hochreiter and Schmidhuber, 1997) can be employed to establish ob-
jects associations between consecutive frames.

From flood monitoring and management perspective, this paper
demonstrates the development of a key software component for real-
time flood risk assessment. The pipeline is smartly designed to train a
large number of images and calculate flood water levels and inundation
areas which can be used to identify flood depth, severity, and risk.
“FloodImageClassifier” can be embedded with the USGS live river
cameras or 511 traffic cameras to monitor river and road flooding
conditions and provide early intelligence to decision makers and
emergency response authorities in real-time. In future work, we will
concentrate on assessing flood risk and severity more quantitively and
further explore the importance of video footage in real time road
flooding assessment and monitoring.

Software and data availability

FloodImageClassifier.py: Various Scripts as they apply to image
processing and flood label detection development.

Description: Image processing algorithms designed for flood image
label detection and floodwater level estimation.

Developer: J. R. Pally and S. Samadi.
Contact: jpally@clemson.edu and samadi@clemson.edu.
Software Access: https://github.com/HHRClemson/FloodImageC

lassifier.
Year First Available: November 2021; Operating systems supported:

Windows, Linux, MacOS.
Hardware required: Intel i5 or mid-performance PC with multicore

processor and SSD main drive, 4 Gb memory recommended.
Cost: Free. Software and source code are released under the Massa-

chusetts Institute of Technology License.

Fi
g.

 1
1.

D
et

ec
tio

n
an

d
in

pa
in

tin
g

pi
pe

lin
e.

Table 5
Water levels with associated aspect ratios and flood severity and risk estimation.

Water Level Aspect Ratio Flood Severity and Risk

Level 1 >1.8 Mild
Level 2 1.62–1.8
Level 3 1.44–1.62
Level 4 1.26–1.44
Level 5 1.08–1.25 Moderate
Level 6 0.90–1.08
Level 7 0.72–0.90
Level 8 0.54–0.72
Level 9 0.36–0.53 Severe
Level 10 0.18–0.36
Level 11 <0.18

R.J. Pally and S. Samadi

mailto:jpally@clemson.edu
mailto:samadi@clemson.edu
https://github.com/HHRClemson/FloodImageClassifier
https://github.com/HHRClemson/FloodImageClassifier

Environmental Modelling and Software 148 (2022) 105285

14

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This work is supported by the U.S. National Science Foundation
(NSF) Directorate for Engineering under grant CBET 1901646. Any
opinions, findings, and discussions expressed in this study are those of
the authors and do not necessarily reflect the views of the NSF. Clemson
University is acknowledged for generous allotment of compute time on
the Palmetto cluster. The USGS and DOT are acknowledged for
providing free of charge live river and road flooding images.

References

Ali, Hashir, Mahrukh, Khursheed, Syeda Kulsoom, Fatima, Muhammad, Shuja Syed,
Shaheena, Noor, 2019. Object recognition for dental instruments using SSD-
MobileNet. In: International Conference on Information Science and Communication
Technology. ICISCT), 2019.

Bantupalli, K., Xie, Y., 2018. December. American sign language recognition using deep
learning and computer vision. In: 2018 IEEE International Conference on Big Data
(Big Data). IEEE, pp. 4896–4899.

Bay, H., Tuytelaars, T., Van Gool, L., 2006. Surf: Speeded up robust features. In:
European Conference on Computer Vision. Springer, Berlin, Heidelberg,
pp. 404–417.

Bouchakwa, M., Ayadi, Y., Amous, I., 2020. A review on visual content-based and users’
tags-based image annotation: methods and techniques. Multimed. Tool. Appl. 79
(29), 21679–21741.

Brownlee, J., 2019. How to Perform Object Detection with YOLOv3 in Keras. Available
at: https://machinelearningmastery.com/how-to-perform-object-detection-with-
yolov3-in-keras/. accessed on November 11, 20.

Brunetti, A., Buongiorno, D., Trotta, G.F., Bevilacqua, V., 2018. Computer vision and
deep learning techniques for pedestrian detection and tracking: a survey.
Neurocomputing 300, 17–33.

Canny, J., 1986. A computational approach to edge detection. IEEE Trans. Pattern Anal.
Mach. Intell. (6), 679–698.

Fig. 12. Mild water depth estimation (level 4, see Table 5) using Canny Edge Detection and aspect ratio approaches along with calculated area which was
55073.6 pixels.

Fig. 13. Moderate water depth estimation using Canny Edge Detection and aspect ratio approaches along with calculated area which was 42621 pixels.

Fig. 14. Sever water depth estimation using Canny Edge Detection and aspect ratio approaches along with calculated area which was 77308 pixels.

R.J. Pally and S. Samadi

http://refhub.elsevier.com/S1364-8152(21)00327-3/sref1
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref1
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref1
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref1
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref2
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref2
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref2
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref3
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref3
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref3
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref4
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref4
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref4
https://machinelearningmastery.com/how-to-perform-object-detection-with-yolov3-in-keras/
https://machinelearningmastery.com/how-to-perform-object-detection-with-yolov3-in-keras/
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref6
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref6
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref6
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref7
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref7

Environmental Modelling and Software 148 (2022) 105285

15

Chaudhary, P., D’Aronco, S., Moy de Vitry, M., Leitão, J.P., Wegner, J.D., 2019. Flood-
water level estimation from social media images. ISPRS Ann. Photogram. Rem. Sens.
Spatial Inform. Sci. 4 (2/W5), 5–12.

Chemelil, P.K., 2021. Single Shot Multi Box Detector Approach to Autonomous Vision-
Based Pick and Place Robotic Arm in the Presence of Uncertainties. Doctoral
dissertation, JKUAT-COETEC.

Chollet, F., et al., 2015. Keras. GitHub. Retrieved from. https://github.com/fcholl
et/keras.

Clark, S., 2019. The Design and Prototyping of Innovative Sustainable Material Solutions
for Automotive Interiors. Royal College of Art (United Kingdom).

Criminisi, A., Perez, P., Toyama, K., 2003. June. Object removal by exemplar-based
inpainting. In: 2003 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2003. Proceedings, Vol. 2. IEEE, p. II.

Croitoru, I., Bogolin, S.V., Leordeanu, M., 2017. Unsupervised learning from video to
detect foreground objects in single images. In: Proceedings of the IEEE International
Conference on Computer Vision, pp. 4335–4343.

Donratanapat, N., Samadi, S., Vidal, M.J., Sadeghi Tabas, S., 2020. A national-scale big
data prototype for real-time flood emergency response and management. Environ.
Model. Softw. https://doi.org/10.1016/j.envsoft.2020.104828.

Erhan, D., Szegedy, C., Toshev, A., Anguelov, D., 2014. Scalable object detection using
deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2147–2154.

Francalanci, C., Guglielmino, P., Montalcini, M., Scalia, G., Pernici, B., 2017. May.
IMEXT: a method and system to extract geolocated images from Tweets—analysis of
a case study. In: 2017 11th International Conference on Research Challenges in
Information Science (RCIS), pp. 382–390. IEEE. [17] [15] Freund, Y. and Schapire,
R.E., 1997. A decision-theoretic generalization of on-line learning and an application
to boosting. Journal of computer and system sciences, 55(1), pp.119–139.

Fu, C.Y., Liu, W., Ranga, A., Tyagi, A., Berg, A.C., 2017. Dssd: Deconvolutional Single
Shot Detector arXiv preprint arXiv:1701.06659.

Girshick, R., 2015. Fast r-cnn. In: Proceedings of the IEEE International Conference on
Computer Vision. https://doi.org/10.1109/ICCV.2015.169.

Girshick, R., Donahue, J., Darrell, T., Malik, J., 2014. Rich feature hierarchies for
accurate object detection and semantic segmentation. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 580–587.

He, K., Gkioxari, G., Dollár, P., Girshick, R., 2017. Mask r-cnn. In: Proceedings of the
IEEE International Conference on Computer Vision, pp. 2961–2969.

He, Kaiming, Gkioxari, Georgia, Dollar, Piotr, Girshick, Ross, 2020. Mask R-CNN. IEEE
Trans. Pattern Anal. Mach. Intell.

Hochreiter, S., Schmidhuber, J., 1997. LSTM can solve hard long time lag problems. Adv.
Neural Inf. Process. Syst. 473–479.

Jaderberg, M., Simonyan, K., Zisserman, A., 2015. Spatial transformer networks. Adv.
Neural Inf. Process. Syst. 28, 2017–2025.

Kang, K., Li, H., Xiao, T., Ouyang, W., Yan, J., Liu, X., Wang, X., 2017. Object detection in
videos with tubelet proposal networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 727–735.

Kharazi, B.A., Behzadan, A.H., 2021. Flood depth mapping in street photos with image
processing and deep neural networks. Comput. Environ. Urban Syst. 88, 101628.

Kharazi, B.A., Behzadan, A.H., 2021. Flood depth mapping in street photos with image
processing and deep neural networks. Comput. Environ. Urban Syst. 88, 101628.

Kong, T., Sun, F., Yao, A., Liu, H., Lu, M., Chen, Y., 2017. Ron: reverse connection with
objectness prior networks for object detection. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 5936–5944.

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521 (7553), 436–444.
Li, J., Huang, Y., Xu, Z., Wang, J., Chen, M., 2017a. July. Path planning of UAV based on

hierarchical genetic algorithm with optimized search region. In: 2017 13th IEEE
International Conference on Control & Automation (ICCA), pp. 1033–1038.

Li, Q., Jin, S., Yan, J., 2017b. Mimicking very efficient network for object detection. In:
Proceedings of the Ieee Conference on Computer Vision and Pattern Recognition,
pp. 6356–6364.

Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.
L., 2014. September. Microsoft coco: common objects in context. In: European
Conference on Computer Vision. Springer, Cham, pp. 740–755.

Lin, T., Goyal, P., Girshick, R., He, K., Dollár, P., 2017a. Focal loss for dense object
detection. In: IEEE International Conference on Computer Vision, pp. 2999–3007.

Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S., 2017b. Feature
pyramid networks for object detection. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2117–2125.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C., 2016a.
October. Ssd: single shot multibox detector. In: European Conference on Computer
Vision. Springer, Cham, pp. 21–37.

Liu, Wei, Anguelov, Dragomir, Erhan, Dumitru, Szegedy, Christian, Scott, Reed,
Fu, Cheng-Yang, 2016b. SSD: Single Shot MultiBox Detector” arXiv:1512.02325.

Liu, P., Hongbo, Y.A.N.G., Hu, Y., Fu, J., 2018. November. Research on target recognition
of underwater robot. In: 2018 IEEE International Conference on Advanced
Manufacturing (ICAM). IEEE, pp. 463–466.

Lowe, D.G., 1999. Object recognition from local scale-invariant features. Proceedings of
the Seventh IEEE International Conference on Computer Vision.

Najibi, M., Rastegari, M., Davis, L.S., 2016. G-cnn: an iterative grid-based object detector.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2369–2377.

Nie, S., Zheng, M., Ji, Q., 2018. The deep regression bayesian network and its
applications: probabilistic deep learning for computer vision. IEEE Signal Process.
Mag. 35 (1), 101–111.

Ning, H., 2019. Prototyping a Social Media Flooding Photo Screening System Based on
Deep Learning and Crowdsourcing.

Ning, H., Li, Z., Hodgson, M.E., Wang, C.S., 2020. Prototyping a social media flooding
photo screening system based on deep learning. ISPRS Int. J. Geo-Inf. 9 (2), 104.

Pan, J., Yin, Y., Xiong, J., Luo, W., Gui, G., Sari, H., 2018. Deep learning-based
unmanned surveillance systems for observing water levels. Ieee Access 6,
73561–73571.

Papandreou, G., Zhu, T., Kanazawa, N., Toshev, A., Tompson, J., Bregler, C., Murphy, K.,
2017. Towards accurate multi-person pose estimation in the wild. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4903–4911.

Park, S., Baek, F., Sohn, J., Kim, H., 2021. Computer vision–based estimation of flood
depth in flooded-vehicle images. J. Comput. Civ. Eng. 35 (2), 04020072.

Phillips, R.C., Samadi, S.Z., Meadows, M.E., 2018. How extreme was the October 2015
flood in the Carolinas? An assessment of flood frequency analysis and distribution
tails. J. Hydrol. 562, 648–663.

Powers, D.M., 2020. Evaluation: from Precision, Recall and F-Measure to ROC,
Informedness, Markedness and Correlation arXiv preprint arXiv:2010.16061.

Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You only look once: unified, real-
time object detection. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 779–788.

Ren, S., He, K., Girshick, R., Sun, J., 2015. Faster r-cnn: Towards real-time object
detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28, 91–99.

Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S., 2019.
Generalized intersection over union: a metric and a loss for bounding box regression.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 658–666.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., 2015. Imagenet large scale visual
recognition challenge. Int. J. Comput. Vis. 115 (3), 211–252.

Schneider, S., Taylor, G.W., Kremer, S., 2018. May. Deep learning object detection
methods for ecological camera trap data. In: 2018 15th Conference on Computer and
Robot Vision. CRV), pp. 321–328.

Shen, Z., Liu, Z., Li, J., Jiang, Y.G., Chen, Y., Xue, X., 2017. In: Dsod: learning Deeply
Supervised Object Detectors from Scratch. ICCV.

Simonyan, K., Zisserman, A., 2014. Very Deep Convolutional Networks for Large-Scale
Image Recognition arXiv preprint arXiv:1409.1556.

Sivic, J., Zisserman, A., 2003. October. Video Google: a text retrieval approach to object
matching in videos. In: Computer Vision, IEEE International Conference on, vol. 3.
IEEE Computer Society, p. 1470.

Tan, M., Pang, R., Le, Q.V., 2020a. Efficientdet: scalable and efficient object detection.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10781–10790.

Tan, Mingxing, Pang, Ruoming, Le Quoc, V., 2020b. EfficientDet: scalable and efficient
object detection. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).

Vincent, O.R., Folorunso, O., 2009. June. A descriptive algorithm for sobel image edge
detection. In: Proceedings of Informing Science & IT Education Conference (InSITE),
vol. 40, pp. 97–107.

Wang, C., Ren, W., Huang, K., Tan, T., 2014. September. Weakly supervised object
localization with latent category learning. In: European Conference on Computer
Vision. Springer, Cham, pp. 431–445.

Xu, Beibei, Wang, Wensheng, Greg, Falzon, Paul, Kwan, Guo, Leifeng, Chen, Guipeng,
Amy, Tait, Schneider, Derek, 2020. Automated cattle counting using Mask R-CNN in
quadcopter vision system. Comput. Electron. Agric. 171, 105300.

Xu-kai, Z., Qiong-qiong, L., Baig, M.H.A., 2012. June. Automated detection of coastline
using Landsat TM based on water index and edge detection methods. In: 2012
Second International Workshop on Earth Observation and Remote Sensing
Applications. IEEE, pp. 153–156.

Yang, H.C., Wang, C.Y., Yang, J.X., 2014. Applying image recording and identification
for measuring water stages to prevent flood hazards. Nat. Hazards 74 (2), 737–754.

Yang, Hongbo, Liu, Ping, Hu, YuZhen, Fu, JingNan, 2020. Research on underwater object
recognition based on YOLOv3. Microsyst. Technol. 27, 1837–1844.

Yiatrou, P., Polycarpou, I., Read, J.C., Zeniou, M., 2016. September. The synthesis of a
unified pedagogy for the design and evaluation of e-learning software for high-
school computing. In: 2016 Federated Conference on Computer Science and
Information Systems (FedCSIS). IEEE, pp. 927–931.

Yoo, D., Park, S., Lee, J.Y., Paek, A.S., So Kweon, I., 2015. Attentionnet: aggregating
weak directions for accurate object detection. In: Proceedings of the IEEE
International Conference on Computer Vision, pp. 2659–2667.

Zhao, Z.Q., Xie, B.J., Cheung, Y.M., Wu, X., 2014. November. Plant leaf identification via
a growing convolution neural network with progressive sample learning. In: Asian
Conference on Computer Vision, pp. 348–361.

Zhao, Z.Q., Zheng, P., Xu, S.T., Wu, X., 2019. Object detection with deep learning: a
review. IEEE Trans. Neural Network. Learn. Syst. 30 (11), 3212–3232.

Zhu, Z., Brilakis, I., Parra-Montesinos, G., 2009. Real-time concrete damage visual
assessment for first responders. Construction Research Congress 2009: Building a
Sustainable Future 1204–1213.

R.J. Pally and S. Samadi

http://refhub.elsevier.com/S1364-8152(21)00327-3/sref8
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref8
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref8
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref9
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref9
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref9
https://github.com/fchollet/keras
https://github.com/fchollet/keras
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref11
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref11
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref12
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref12
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref12
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref13
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref13
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref13
https://doi.org/10.1016/j.envsoft.2020.104828
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref16
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref16
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref16
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref20
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref20
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref20
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref20
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref20
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref20
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref21
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref21
https://doi.org/10.1109/ICCV.2015.169
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref23
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref23
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref23
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref25
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref25
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref26
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref26
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref27
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref27
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref28
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref28
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref30
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref30
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref30
http://refhub.elsevier.com/S1364-8152(21)00327-3/optmfKzuZLhV1
http://refhub.elsevier.com/S1364-8152(21)00327-3/optmfKzuZLhV1
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref32
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref32
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref33
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref33
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref33
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref35
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref36
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref36
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref36
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref37
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref37
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref37
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref38
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref38
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref38
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref39
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref39
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref40
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref40
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref40
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref41
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref41
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref41
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref42
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref42
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref43
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref43
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref43
http://refhub.elsevier.com/S1364-8152(21)00327-3/optYry0WxWAT9
http://refhub.elsevier.com/S1364-8152(21)00327-3/optYry0WxWAT9
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref44
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref44
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref44
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref46
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref46
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref46
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref47
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref47
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref48
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref48
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref49
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref49
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref49
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref50
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref50
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref50
http://refhub.elsevier.com/S1364-8152(21)00327-3/optQJEgJfvj2g
http://refhub.elsevier.com/S1364-8152(21)00327-3/optQJEgJfvj2g
http://refhub.elsevier.com/S1364-8152(21)00327-3/opteSb8BOfxaC
http://refhub.elsevier.com/S1364-8152(21)00327-3/opteSb8BOfxaC
http://refhub.elsevier.com/S1364-8152(21)00327-3/opteSb8BOfxaC
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref51
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref51
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref54
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref54
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref54
http://refhub.elsevier.com/S1364-8152(21)00327-3/opthoMp9eFddf
http://refhub.elsevier.com/S1364-8152(21)00327-3/opthoMp9eFddf
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref55
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref55
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref55
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref55
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref56
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref56
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref56
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref57
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref57
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref57
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref58
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref58
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref59
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref59
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref60
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref60
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref60
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref61
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref61
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref61
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref62
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref62
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref62
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref63
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref63
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref63
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref64
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref64
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref64
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref65
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref65
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref65
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref66
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref66
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref66
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref66
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref68
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref68
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref69
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref69
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref70
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref70
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref70
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref70
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref71
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref71
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref71
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref72
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref72
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref72
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref73
http://refhub.elsevier.com/S1364-8152(21)00327-3/sref73
http://refhub.elsevier.com/S1364-8152(21)00327-3/opt2pTO6oYeRj
http://refhub.elsevier.com/S1364-8152(21)00327-3/opt2pTO6oYeRj
http://refhub.elsevier.com/S1364-8152(21)00327-3/opt2pTO6oYeRj

	Application of image processing and convolutional neural networks for flood image classification and semantic segmentation
	1 Introduction
	2 Methodology
	2.1 Flood database system and data collection modules
	2.2 CNN classifier
	2.2.1 Generic object detection
	2.2.1.1 Regional based networks for object detection
	2.2.1.2 Regression-based networks for object detection

	2.3 Removal of detected objects and flood depth estimation
	2.4 Performance metrics
	2.5 “FloodImageClassifier” system architecture

	3 Applications
	3.1 Object detection

	4 Conclusion and future work
	Software and data availability
	Declaration of competing interest
	Acknowledgements
	References

