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ABSTRACT
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algorithm for metric TSP.
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1 INTRODUCTION
One of the most fundamental problems in combinatorial optimiza-

tion is the traveling salesperson problem (TSP), formalized as early

as 1832 (c.f. [2, Ch 1]). In an instance of TSP we are given a set

of n cities V along with their pairwise symmetric distances, c :

V ×V → R≥0. The goal is to find a Hamiltonian cycle of minimum

cost. In the metric TSP problem, which we study here, the distances

satisfy the triangle inequality. Therefore, the problem is equivalent

to finding a closed Eulerian connected walk of minimum cost.
1

It is NP-hard to approximate TSP within a factor of
123

122
[34]. An

algorithm of Christofides-Serdyukov [14, 43] from four decades ago

gives a
3

2
-approximation for TSP (see [47] for a historical note about

TSP). This remains the best known approximation algorithm for

the general case of the problem despite significant work, e.g., [10–

13, 22, 24, 28, 29, 33, 40, 44, 48].

1
Given such an Eulerian cycle, we can use the triangle inequality to shortcut vertices

visited more than once to get a Hamiltonian cycle.
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In contrast, there have been major improvements to this algo-

rithm for a number of special cases of TSP. For example, polynomial-

time approximation schemes (PTAS) have been found for Euclidean

[3, 36], planar [4, 25, 35], and low-genus metric [17] instances. In ad-

dition, the case of graph metrics has received significant attention.

In 2011, the third author, Saberi, and Singh [39] found a
3

2
− ϵ0 ap-

proximation for this case. Mömke and Svensson [37] then obtained

a combinatorial algorithm for graphic TSP with an approximation

ratio of 1.461. This ratio was later improved by Mucha [38] to

13

9
≈ 1.444, and then by Sebö and Vygen [42] to 1.4.

In this paper we prove
2
the following theorem:

Theorem 1.1. For some absolute constant ϵ > 10
−36, there is a

randomized algorithm that outputs a tour with expected cost at most
3

2
− ϵ times the cost of the optimum solution.

We note that while the algorithm makes use of the Held-Karp re-

laxation, we do not prove that the integrality gap of this polytope is

bounded away from 3/2. We also remark that although our approx-

imation factor is only slightly better than Christofides-Serdyukov,

we are not aware of any example where the approximation ratio of

the algorithm we analyze exceeds 4/3 in expectation.

Following a new exciting result of Traub, Vygen, Zenklusen [46]

we also get the following theorem.

Theorem 1.2. For some absolute constant ϵ > 0 there is a random-
ized algorithm that outputs a TSP path with expected cost at most
3

2
− ϵ times the cost of the optimum solution.

1.1 Algorithm
First, we recall the classical Christofides-Serdyukov algorithm:

Given an instance of TSP, choose a minimum spanning tree and

then add the minimum cost matching on the odd degree vertices of

the tree. The algorithm we study is very similar, except we choose

a random spanning tree based on the standard linear programming

relaxation of TSP.

Let x0 be an optimum solution of the following TSP linear pro-

gram relaxation [15, 31]:

min

∑
u,v

x(u,v)c(u,v)

s.t.,

∑
u

x(u,v) = 2 ∀v ∈ V ,∑
u ∈S,v<S

x(u,v) ≥ 2, ∀S ( V ,

x(u,v) ≥ 0 ∀u,v ∈ V .

(1)

2
Due to space limitations, in this extended abstract we are only able to outline the

key technical tools and ideas of our proof. The full version can be found at https:

//arxiv.org/abs/2007.01409.
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Given x0, we pick an arbitrary node, u, split it into two nodes u0,v0
and set x(u0,v0) = 1, c(u0,v0) = 0 and we assign half of every edge

incident tou tou0 and the other half tov0. This allows us to assume

without loss of generality that x0 has an edge e0 = (u0,v0) such
that xe0 = 1, c(e0) = 0.

Let E0 = E∪{e0} be the support of x
0
and let x be x0 restricted to

E andG = (V ,E). x0 restricted to E is in the spanning tree polytope

(3).

For a vector λ : E → R≥0, a λ-uniform distribution µλ over

spanning trees of G = (V ,E) is a distribution where for every

spanning tree T ⊆ E, Pµ [T ] =
∏

e∈T λe∑
T ′

∏
e∈T ′ λe

. Now, find a vector λ

such that for every edge e ∈ E, Pµλ [e ∈ T ] = xe (1±ϵ), for some ϵ <
2
−n

. Such a vector λ can be found using the multiplicative weight

update algorithm [5] or by applying interior point methods [42] or

the ellipsoid method [5]. (We note that the multiplicative weight

update method can only guarantee ϵ < 1/poly(n) in polynomial

time.)

Theorem 1.3 ([5]). Let z be a point in the spanning tree polytope
(see (3)) of a graph G = (V ,E). For any ϵ > 0, a vector λ : E → R≥0
can be found such that the corresponding λ-uniform spanning tree
distribution, µλ , satisfies∑

T ∈T:T 3e

Pµλ [T ] ≤ (1 + ε)ze , ∀e ∈ E,

i.e., the marginals are approximately preserved. In the above T is the
set of all spanning trees of (V ,E). The running time is polynomial in
n = |V |, − logmine ∈E ze and log(1/ϵ).

Finally, we sample a treeT ∼ µλ and then add the minimum cost

matching on the odd degree vertices of T . The above algorithm is a

Algorithm 1 An Improved Approximation Algorithm for TSP

Find an optimum solution x0 of Eq. (1), and let e0 = (u0,v0) be
an edge with x0e0 = 1, c(e0) = 0.

Let E0 = E ∪ {e0} be the support of x
0
and x be x0 restricted to

E and G = (V ,E).
Find a vector λ : E → R≥0 such that for any e ∈ E, Pµλ [e] =
xe (1 ± 2

−n ).

Sample a tree T ∼ µλ .
LetM be the minimum cost matching on odd degree vertices of

T .
Output T ∪M .

slight modification of the algorithm proposed in [39]. We refer the

interested reader to exciting work of Genova and Williamson [23]

on the empirical performance of the max-entropy rounding algo-

rithm. We also remark that although the algorithm implemented in

[23] is slightly different from the above algorithm, we expect the

performance to be similar.

1.2 New Techniques
Here we discuss new machinery and technical tools that we devel-

oped for this result which could be of independent interest.

1.2.1 Polygon Structure for Near Minimum Cuts Crossed on one
Side. Let G = (V ,E,x) be an undirected graph equipped with a

weight function x : E → R≥0 such that for any cut (S, S) such that

u0,v0 < S , x(δ (S)) ≥ 2 (recall u0,v0 is the edge of fraction 1 which

appears in x0 but not x ).
For some (small) η ≥ 0, consider the family of η-near min cuts

of G. Let C be a connected component of crossing η-near min cuts.

Given C we can partition vertices ofG into sets a0, . . . ,am−1 (called

atoms); this is the coarsest partition such that for each ai , and each

(S, S) ∈ C, we have ai ⊆ S or ai ⊆ S . Here a0 is the atom that

contains u0,v0.
There has been several works studying the structure of edges

between these atoms and the structure of cuts in C w.r.t. the ai ’s.
The cactus structure (see [18]) shows that if η = 0, then we can

arrange the ai ’s around a cycle, say a1, . . . ,am (after renaming),

such that x(E(ai ,ai+1)) = 1 for all i .
Benczúr and Goemans [6, 8] studied the case when η ≤ 6/5

and introduced the notion of polygon representation, in which case

atoms can be placed on the sides of an equilateral polygon and

some atoms placed inside the polygon, such that every cut in C can

be represented by a diagonal of this polygon. Later, [39] studied

the structure of edges of G in this polygon when η < 1/100.

In this paper, we show it suffices to study the structure of edges

in a special family of polygon representations:

Theorem 1.4 (Informal version of the polygon structure theorem).
Suppose we have a polygon representation for a connected component
C of η-near min cuts of G such that

• No atom is mapped inside,
• If we identify each cut (S, S) ∈ C with the interval along the
polygon that does not contain a0, then any interval is only
crossed on one side (only on the left or only on the right).

Then, we have:
• For any atom ai , x(δ (ai )) ≤ 2 +O(δ ),
• For any pair of atoms ai ,ai+1, x(E(ai ,ai+1) ≥ 1 − Ω(η).

We expect to see further applications of our theorem in studying

variants of TSP.

1.2.2 Generalized Gurvits’ Lemma. Given a real stable polyno-

mial p ∈ R≥0[z1, . . . , zn ] (with non-negative coefficients), Gurvits

proved the following inequality [26, 27]

n!

nn
inf

z>0

p(z1, . . . , zn )

z1 . . . zn
≤ ∂z1 . . . ∂znp |z=0 ≤ inf

z>0

p(z1, . . . , zn )

z1 . . . zn
.

(2)

As an immediate consequence, one can prove the following

theorem about strongly Rayleigh (SR) distributions.

Theorem 1.5. Let µ : 2
[n] → R≥0 be SR andA1, . . . ,Am be random

variables corresponding to the number of elements sampled in m
disjoint subsets of [n] such that E [Ai ] = ni for all i . If ni = 1 for all
1 ≤ i ≤ n, then P [∀i,Ai = 1] ≥ m!

mm .

One can ask what happens if the vector ®n = (n1, . . . ,nm ) in the

above theorem is not equal but close to the all ones vector, 1.
A related theorem was proved in [39].

Theorem 1.6. Let µ : 2
[n] → R≥0 be SR and A,B be random

variables corresponding to the number of elements sampled in two
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disjoint sets. If P [A + B = 2] ≥ ϵ , P [A ≤ 1] ,P [B ≤ 1] ≥ α and
P [A ≥ 1] ,P [B ≥ 1] ≥ β then P [A = B = 1] ≥ ϵαβ/3.

We prove a generalization of both of the above statements;

roughly speaking, we show that as long as ‖®n − 1‖1 < 1 − ϵ then
P [∀i,Ai = 1] ≥ f (ϵ,m)where f (ϵ,m) has no dependence on n, the
number of underlying elements in the support of µ.

Theorem 1.7 (Informal version of the generalized Gurvits lemma).
Let µ : 2

[n] → R≥0 be SR and let A1, . . . ,Am be random variables
corresponding to the number of elements sampled inm disjoint subsets
of [n]. Suppose that there are integers n1, . . . ,nm such that for any
set S ⊆ [m], P [

∑
i ∈S Ai =

∑
i ∈S ni ] ≥ ϵ . Then,

P [∀i,Ai = ni ] ≥ f (ϵ,m).

The above statement is even stronger than Theorem 1.5 as we

only require P [
∑
i ∈S Ai =

∑
i ∈S ni ] to be bounded away from 0 for

any set S ⊆ [m] and we don’t need a bound on the expectation. Our

proof of the above theorem has double exponential dependence on

ϵ . We leave it an open problem to find the optimum dependency

on ϵ . Furthermore, our proof of the above theorem is probabilistic

in nature; we expect that an algebraic proof based on the theory of

real stable polynomials will provide a significantly improved lower

bound. Unlike the above theorem, such a proof may possibly extend

to the more general class of completely log-concave distributions

[1].

1.2.3 Conditioning while Preserving Marginals. Consider a SR dis-

tribution µ : 2
[n] → R≥0 and let x : [n] → R≥0, where for all i ,

xi = PT∼µ [i ∈ T ], be the marginals.

Let A,B ⊆ [n] be two disjoint sets such that E [AT ] ,E [BT ] ≈ 1.

It follows from Theorem 1.7 that P [AT = BT = 1] ≥ Ω(1). Here,
however, we are interested in a stronger event; let ν = µ |AT =
BT = 1 and let yi = PT∼µ [i ∈ T ]. It turns out that the y vector can

be very different from the x vector, in particular, for some i’s we
can have |yi − xi | bounded away from 0. We show that there is an

event of non-negligible probability that is a subset of AT = BT = 1

under which the marginals of elements inA,B are almost preserved.

Theorem 1.8 (Informal version of the max flow theorem). Let
µ : 2

[n] → R≥0 be a SR distribution and letA,B ⊆ [n] be two disjoint
subsets such that E [AT ] ,E [BT ] ≈ 1. For any α � 1 there is an event
EA,B such that P

[
EA,B

]
≥ Ω(α2) and

• P
[
AT = BT = 1|EA,B

]
= 1,

•
∑
i ∈A |P [i] − P [i |E] | ≤ α ,

•
∑
i ∈B |P [i] − P [i |E] | ≤ α .

We remark that the quadratic lower bound on α is necessary in

the above theorem for a sufficiently small α > 0. The above theorem

can be seen as a generalization of Theorem 1.5 in the special case

of two sets.

We leave it an open problem to extend the above theorem to

arbitrary k disjoint sets. We suspect that in such a case the ideal

event EA1, ...,Ak occurs with probability Ω(α)k and preserves all

marginals of elements in each of the sets A1, . . . ,Ak up to a total

variation distance of α .

2 PRELIMINARIES
2.1 Notation
We write [n] := {1, . . . ,n} to denote the set of integers from 1 to n.
For a set of edges A ⊆ E and (a tree) T ⊆ E, we write

AT = |A ∩T |.

For a set S ⊆ V , we write

E(S) = {(u,v) ∈ E : u,v ∈ S}

to denote the set of edges in S and we write

δ (S) = {(u,v) ∈ E : |{u,v} ∩ S | = 1}

to denote the set of edges that leave S . For two disjoint sets of
vertices A,B ⊆ V , we write

E(A,B) = {(u,v) ∈ E : u ∈ A,v ∈ B}.

For a set A ⊆ E and a function x : E → R we write

x(A) :=
∑
e ∈A

xe .

For two sets A,B ⊆ V , we say A crosses B if all of the following

sets are non-empty:

A ∩ B,Ar B,B rA,A ∪ B.

We write G = (V ,E,x) to denote an (undirected) graph G to-

gether with special vertices u0,v0 and a weight function x : E →

R≥0 such that

x(δ (S)) ≥ 2, ∀S ( V : u0,v0 < S .

For such a graph, we say a cut S ⊆ V is an η-near min cut w.r.t., x
(or simply η-near min cut when x is understood) if x(δ (S)) ≤ 2 + η.

Unless otherwise specified, in any statement about a cut (S, S) inG ,
we assume u0,v0 < S .

2.2 Polyhedral Background
For any graphG = (V ,E), Edmonds [19] gave the following descrip-

tion for the convex hull of spanning trees of a graph G = (V ,E),
known as the spanning tree polytope.

z(E) = |V | − 1

z(E(S)) ≤ |S | − 1 ∀S ⊆ V

ze ≥ 0 ∀e ∈ E.

(3)

Edmonds [19] proved that the extreme point solutions of this poly-

tope are the characteristic vectors of the spanning trees of G.

Fact 2.1. Let x0 be a feasible solution of (1) such that x0e0 = 1 with
support E0 = E ∪ {e0}. Let x be x0 restricted to E; then x is in the
spanning tree polytope of G = (V ,E).

Proof. For any set S ⊆ V such that u0,v0 < S , x(E(S)) =
2 |S |−x 0(δ (S ))

2
≤ |S | − 1. If u0 ∈ S,v0 < S , then

x(E(S)) =
2|S | − 1 − (x0(δ (S)) − 1)

2

≤ |S | − 1.

Finally, if u0,v0 ∈ S , then

x(E(S)) =
2|S | − 2 − x0(δ (S))

2

≤ |S | − 2

The claim follows because x(E) = x0(E0) − 1 = n − 1. �
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Since c(e0) = 0, the following fact is immediate.

Fact 2.2. Let G = (V ,E,x) where x is in the spanning tree polytope.
Let µ be any distribution of spanning trees with marginals x , then
ET∼µ [c(T ∪ e0)] = c(x).

To bound the cost of the min-cost matching on the set O of odd

degree vertices of the treeT , we use the following characterization,
which dominates theO-join polytope

3
due to Edmonds and Johnson

[20].

Proposition 2.3. For any graph G = (V ,E), cost function c : E →

R+, and a set O ⊆ V with an even number of vertices, the minimum
weight of anO-join equals the optimum value of the following integral
linear program.

min c(y)

s.t. y(δ (S)) ≥ 1 ∀S ⊆ V , |S ∩O | odd

ye ≥ 0 ∀e ∈ E

(4)

Definition 2.4 (Satisfied cuts). For a set S ⊆ V such that u0,v0 < S
and a spanning tree T ⊆ E we say a vector y : E → R≥0 satisfies S if
one of the following holds:

• δ (S)T is even, or
• y(δ (S)) ≥ 1.

To analyze our algorithm, we will see that the main challenge is

to construct a (random) vectory that satisfies all cuts and E [c(y)] ≤
(1/2 − ϵ)OPT .

2.3 Structure of Near Minimum Cuts
Lemma 2.5 ([39]). For G = (V ,E,x), let A,B ( V be two crossing
ϵA, ϵB near min cuts respectively. Then, A ∩ B,A ∪ B,Ar B,B rA
are ϵA + ϵB near min cuts.

Proof. We prove the lemma only for A∩B; the rest of the cases
can be proved similarly. By submodularity,

x(δ (A ∩ B)) + x(δ (A ∪ B)) ≤ x(δ (A)) + x(δ (B)) ≤ 4 + ϵA + ϵB .

Since x(δ (A ∪ B)) ≥ 2, we have x(δ (A ∩ B)) ≤ 2 + ϵA + ϵB , as
desired. �

The following lemma is proved in [7]:

Lemma 2.6 ([7, Lem 5.3.5]). For G = (V ,E,x), let A,B ( V be two
crossing ϵ-near minimum cuts. Then, x(E(A ∩ B,A − B)),x(E(A ∩

B,B −A)), x(E(A ∪ B,A − B)), and
x(E(A ∪ B,B −A)) are all at least (1 − ϵ/2).

Lemma 2.7. For G = (V ,E,x), let A,B ( V be two ϵ near min cuts
such that A ( B. Then

x(δ (A) ∩ δ (B)) = x(E(A,B)) ≤ 1 + ϵ, and

x(E(δ (A)r δ (B))) ≥ 1 − ϵ/2.

Proof. Notice

2 + ϵ ≥ x(δ (A)) = x(E(A,B rA)) + x(E(A,B))

2 + ϵ ≥ x(δ (B)) = x(E(B rA,B)) + x(E(A,B))

3
The standard name for this is theT -join polytope. Because we reserveT to represent

our tree, we call this the O -join polytope, where O represents the set of odd vertices

in the tree.

Summing these up, we get

2x(E(A,B)) + x(E(A,B rA)) + x(E(B rA,B))

= 2x(E(A,B)) + x(δ (B rA)) ≤ 4 + 2ϵ .

Since B rA is non-empty, x(δ (B rA)) ≥ 2, which implies the first

inequality. To see the second one, let C = B rA and note

4 ≤ x(δ (A)) + x(δ (C)) = 2x(E(A,C)) + x(δ (B))

≤ 2x(E(A,C)) + 2 + ϵ

which implies x(E(A,C)) ≥ 1 − ϵ/2. �

2.4 Strongly Rayleigh Distributions and
λ-uniform Spanning Tree Distributions

Let BE be the set of all probability measures on the Boolean algebra

2
E
. Let µ ∈ BE . The generating polynomial дµ : R[{ze }e ∈E ] of µ is

defined as follows:

дµ (z) :=
∑
S

µ(S)
∏
e ∈S

ze .

We say µ is a strongly Rayleigh distribution if дµ , 0 over all

{ye }e ∈E ∈ CE where Im(ze ) > 0 for all e ∈ E. We say µ is d-

homogenous if for any λ ∈ R, дµ (λz) = λdдµ (z). Strongly Rayleigh

(SR) distributions were defined in [9] where it was shown any λ-
uniform spanning tree distribution is strongly Rayleigh. In this

subsection we recall several properties of SR distributions proved

in [9, 39] which will be useful to us.

Closure Operations of SR Distributions. SR distributions are closed

under the following operations.

• Projection. For any µ ∈ BE , and any F ⊆ E, the projection
of µ onto F is the measure µF where for any A ⊆ F ,

µF (A) =
∑

S :S∩F=A
µ(S).

• Conditioning. For any e ∈ E, {µ |e out} and {µ |e in}.
• Truncation. For any integer k ≥ 0 and µ ∈ BE , truncation

of µ to k , is the measure µk where for any A ⊆ E,

µk (A) =

{ µ(A)∑
S :|S |=k µ(S ) if |A| = k

0 otherwise.

• Product. For any two disjoint sets E, F , and µE ∈ BE , µF ∈

BF the product measure µE×F is the measure where for any

A ⊆ E,B ⊆ F , µE×F (A ∪ B) = µE (A)µF (B).

Throughout this paper we will repeatedly apply the above opera-

tions. We remark that SR distributions are not necessarily closed

under truncation of a subset, i.e., if we require exactly k elements

from F ( E.
Since λ-uniform spanning tree distributions are special classes

of SR distributions, if we perform any of the above operations on

a λ-uniform spanning tree distribution µ we get another SR distri-

bution. Below, we see that by performing the following particular

operations we still have a λ-uniform spanning tree distribution

(perhaps with a different λ).
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Closure Operations of λ-uniform Spanning Tree Distributions.
• Conditioning. For any e ∈ E, {µ | e out}, {µ | e in}.
• Tree Conditioning. For G = (V ,E), a spanning tree distri-
bution µ ∈ BE , and S ⊆ V , {µ | S tree}.

Note that arbitrary spanning tree distributions are not necessarily

closed under truncation and projection. We remark that SR mea-

sures are also closed under an analogue of tree conditioning, i.e., for

a set F ⊆ E, let k = maxS ∈supp µ |S ∩ F |. Then, {µ | |S ∩ F | = k} is SR.
But if µ is a spanning tree distribution we get an extra independence
property. The following independence is crucial to several of our

proofs.

Fact 2.8. For a graph G = (V ,E), and a vector λ(G) : E → R≥0,
let µλ(G) be the corresponding λ-uniform spanning tree distribution.
Then for any S ( V ,

{µλ(G) | S tree} = µλ(G[S ]) × µλ(G/S ).

Proof. Intuitively, this holds because in the max entropy distri-

bution, conditioned on S being a tree, any tree chosen inside S can

be composed with any tree chosen on G/S to obtain a spanning

tree onG . So, to maximize the entropy these trees should be chosen

independently. More formally for any T1 ∈ G[S] and T2 ∈ G/S , we
have the following equality for P [T = T1 ∪T2 | S is a tree] :

=
λT1λT2∑

T ′
1
∈G[S ],T ′

2
∈G/S λ

T ′
1λT

′
2

=
λT1∑

T ′
1
∈G[S ] λ

T ′
1

·
λT2∑

T ′
2
∈G/S λ

T ′
2

= PT ′
1
∼G[S ]

[
T ′
1
= T1

]
PT ′

2
∼G/S

[
T ′
2
= T2

]
,

giving independence. �

Negative Dependence Properties. An upward event, A, on 2
E
is a

collection of subsets of E that is closed under upward containment,

i.e. if A ∈ A and A ⊆ B ⊆ E, then B ∈ A. Similarly, a downward
event is closed under downward containment. An increasing func-
tion f : 2

E → R, is a function where for any A ⊆ B ⊆ E, we have
f (A) ≤ f (B). We also say f : 2

E → R is a decreasing function if

−f is an increasing function. So, an indicator of an upward event

is an increasing function. For example, if E is the set of edges of a

graphG , then the existence of a Hamiltonian cycle is an increasing

function, and the 3-colorability of G is a decreasing function.

Definition 2.9 (Negative Association). A measure µ ∈ BE is nega-
tively associated if for any increasing functions f ,д : 2

E → R, that
depend on disjoint sets of edges,

Eµ [f ] · Eµ [д] ≥ Eµ [f · д]

It is shown in [9, 21] that strongly Rayleigh measures are nega-

tively associated.

Stochastic Dominance. For two measures µ,ν : 2
E → R≥0, we

say µ � ν if there exists a coupling ρ : 2
E × 2

E → R≥0 such that∑
B

ρ(A,B) = µ(A),∀A ∈ 2
E ,∑

A
ρ(A,B) = ν (B),∀B ∈ 2

E ,

and for all A,B such that ρ(A,B) > 0 we have A ⊆ B (coordinate-

wise).

Theorem 2.10 (BBL). If µ is strongly Rayleigh and µk , µk+1 are
well-defined, then µk � µk+1.

Note that in the above particular case the coupling ρ satisfies

the following: For any A,B ⊆ E where ρ(A,B) > 0, B ⊇ A and

|B rA| = 1, i.e., B has exactly one more element.

Let µ be a strongly Rayleigh measure on edges of G. Recall that
for a set A ⊆ E, we write AT = |A ∩ T | to denote the random

variable indicating the number of edges in A chosen in a random

sample T of µ. The following facts immediately follow from the

negative association and stochastic dominance properties. We will

use these facts repeatedly in this paper.

Fact 2.11. Let µ be any SR distribution on E, then for any F ⊂ E,
and any integer k

(1) (Negative Association) If e < F , then Pµ [e | FT ≥ k] ≤ Pµ [e]
and Pµ [e | FT ≤ k] ≥ Pµ [e]

(2) (Stochastic Dominance) If e ∈ F , then Pµ [e | FT ≥ k] ≥

Pµ [e] and Pµ [e | FT ≤ k] ≤ Pµ [e].

Fact 2.12. Let µ be a homogenous SR distribution on E. Then,

• (Negative association with homogeneity) For any A ⊆ E, and
any B ⊆ A

Eµ [BT | AT = 0] ≤ Eµ [BT ] + Eµ [AT ] (5)

• Suppose that µ is a spanning tree distribution. For S ⊆ V , let
q := |S | −1−Eµ [E(S)T ]. We will say S is a tree if ST = |S | −1,
as this implies E(S) is a spanning tree of the vertices in S . For
any A ⊆ E(S),B ⊆ E(S),

Eµ [BT ] − q ≤ Eµ [BT | S is a tree] ≤ Eµ [BT ]
(Negative association and homogeneity)

Eµ [AT ] ≤ Eµ [AT | S is a tree] ≤ Eµ [AT ] + q
(Stochastic dominance and tree)

Rank Sequence. The rank sequence of µ is the sequence

P [|S | = 0] ,P [|S | = 1] , . . . ,P [|S | =m] ,

where S ∼ µ. Let дµ (z) be the generating polynomial of µ. The
diagonal specialization of µ is the univariate polynomial

д̄µ (z) := дµ (z, z, . . . , z).

Observe that д̄(.) is the generating polynomial of the rank sequence

of µ. It follows that if µ is SR then д̄µ is real rooted.

It is not hard to see that the rank sequence of µ corresponds to

sum of independent Bernoullis iff д̄µ is real rooted. It follows that

the rank sequence of an SR distributions has the law of a sum of

independent Bernoullis. As a consequence, it follows (see [9, 16, 30])

that the rank sequence of any strongly Rayleigh measure is log

concave (see below for the definition), unimodal, and its mode

differs from the mean by less than 1.

Definition 2.13 (Log-concavity [9, Definition 2.8]). A real sequence
{ak }

m
k=0 is log-concave if a

2

k ≥ ak−1 · ak+1 for all 1 ≤ k ≤ m − 1,
and it is said to have no internal zeros if the indices of its non-zero
terms form an interval (of non-negative integers).
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2.5 Sum of Bernoullis
In this section, we collect a number of properties of sums of Bernoulli

random variables, omitting many for brevity.

Definition 2.14 (Bernoulli Sum Random Variable). We say BS(q)
is a Bernoulli-Sum random variable if it has the law of a sum of
independent Bernoulli random variables, say B1 + B2 + . . . + Bn for
some n ≥ 1, with E [B1 + · · · + Bn ] = q.

We start with the following theorem of Hoeffding.

Theorem 2.15 ([32, Corollary 2.1]). Let д : {0, 1, . . . ,n} → R and
0 ≤ q ≤ n for some integer n ≥ 0. Let B1, . . . ,Bn be n indepen-
dent Bernoulli random variables with success probabilities p1, . . . ,pn ,
where

∑n
i=1 pn = q that minimizes (or maximizes)

E [д(B1 + · · · + Bn )]

over all such distributions. Then, p1, . . . ,pn ∈ {0,x , 1} for some
0 < x < 1. In particular, if onlym of pi ’s are nonzero and ` of pi ’s
are 1, then the rest of them − ` are q−`

m−` .

Fact 2.16. Let B1, . . . ,Bn be independent Bernoulli random variables
each with expectation 0 ≤ p ≤ 1. Then

P

[∑
i
Bi even

]
=

1

2

(1 + (1 − 2p)n )

Proof. Note that

(p + (1 − p))n =
n∑

k=0

pk (1 − p)n−k
(
n

k

)
((1 − p) − p)n =

n∑
k=0

(−p)k (1 − p)n−k
(
n

k

)
Summing them up we get,

1 + (1 − 2p)n =
∑

0≤k≤n,k even

2pk (1 − p)n−k
(
n

k

)
.

�

Corollary 2.17. Given a BS(q) random variable with 0 < q ≤ 1.2,
then

P [BS(q) even] ≤
1

2

(1 + e−2q )

Proof. First, if q ≤ 1, then by Hoeffding’s theorem we can write

BS(q) as sum of n Bernoullis with success probability p = q/n.
If n = 1, then the statement obviously holds. Otherwise, by the

previous fact, we have (for some n),

P [BS(q) even] ≤
1

2

(1 + (1 − 2p)n )) ≤
1

2

(1 + e−2q )

where we used that |1 − 2p | ≤ e−2p for p ≤ 1/2.

So, now assume q > 1. Write BS(q) as the sum of n Bernoullis,

each with success probabilities 1 or p. First assume we have no ones.

Then, either we only have two non-zero Bernoullis with success

probability q/2 in which case P [BS(q) even] ≤ 0.62 + 0.42 and we

are done. Otherwise, n ≥ 3 so p ≤ 1/2 and similar to the previous

case we get P [BS(q) even] ≤ 1

2
(1 + e−2q ).

Finally, if q > 1 and one of the Bernoullis is always 1, i.e. BS(q) =
BS(q − 1) + 1, then we get

P [BS(q) even] = P [BS(q − 1) odd]

=
1

2

(1 − (1 − 2p)n−1)

≤
1

2

(1 − e−4(q−1)) ≤ 0.3

where we used that 1 − x ≥ e−2x for 0 ≤ x ≤ 0.2. �

2.6 Random Spanning Trees
Lemma 2.18. Let G = (V ,E,x), and let µ be any distribution over
spanning trees with marginals x . For any ϵ-near min cut S ⊆ V (such
that none of the endpoints of e0 = (u0,v0) are in S), we have

PT∼µ [T ∩ E(S) is a tree] ≥ 1 − ϵ/2.

Moreover, if µ is a max-entropy distribution with marginals x , then
for any set of edges A ⊆ E(S) and B ⊆ E r E(S),

E [AT ] ≤ E [AT | S is a tree] ≤ E [AT ] + ϵ/2,

E [BT ] − ϵ/2 ≤ E [BT | S is a tree] ≤ E [BT ] .

Proof. First, observe that

E [E(S)T ] = x(E(S)) ≥
2|S | − x(δ (S))

2

≥ |S | − 1 − ϵ/2,

where we used that since u0,v0 < S , and that for any v ∈ S ,
E [δ (v)T )] = x(δ (v)) = 2.

Let pS = P [S is tree]. Then, we must have

|S | − 1 − (1 − pS ) = pS (|S | − 1) + (1 − pS )(|S | − 2)

≥ E [E(S)T ] ≥ |S | − 1 − ϵ/2.

Therefore, pS ≥ 1 − ϵ/2.
The second part of the claim follows from Fact 2.12. �

Corollary 2.19. LetA,B ⊆ V be disjoint sets such thatA,B,A∪B are
ϵA, ϵB , ϵA∪B -near minimum cuts w.r.t., x respectively, where none of
them contain endpoints of e0. Then for any distribution µ of spanning
trees on E with marginals x ,

PT∼µ [E(A,B)T = 1] ≥ 1 − (ϵA + ϵB + ϵA∪B )/2.

Proof. By the union bound, with probability at least 1 − (ϵA +
ϵB + ϵA∪B )/2, A,B, and A ∪ B are trees. But this implies that we

must have exactly one edge between A,B. �

The following simple fact also holds by the union bound.

Fact 2.20. LetG = (V ,E,x) and let µ be a distribution over spanning
trees with marginals x . For any set A ⊆ E , we have

PT∼µ [T ∩A = ∅] ≥ 1 − x(A).

For brevity omit the remaining facts about random spanning

trees.
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3 OVERVIEW OF PROOF
In the remainder of this extended abstract we will sketch the main

ideas of the proof.

As alluded to earlier, the crux of the proof of Theorem 1.1 is to

show that the expected cost of the minimum cost matching on the

odd degree vertices of the sampled tree is at mostOPT (1/2−ϵ). We

do this by showing the existence of a cheap feasibleO-join solution

to (4).

First, recall that if we only wanted to get an O-join solution of

value at mostOPT /2, to satisfy all cuts, it is enough to setye := xe/2
for each edge [48]. To do better, we want to take advantage of the

fact that we only need to satisfy a constraint in the O-join for S
when δ (S)T is odd. Here, we are aided by the fact that the sampled

tree is likely to have many even cuts because it is drawn from a

Strong Rayleigh distribution.

If an edge e is exclusively on even cuts then ye can be reduced

below xe/2. This, more or less, was the approach in [39] for graphic

TSP, where it was shown that a constant fraction of LP edges will

be exclusively on even near min cuts with constant probability.

The difficulty in implementing this approach in the metric case

comes from the fact that a high cost edge can be on many cuts and

it may be exceedingly unlikely that all of these cuts will be even
simultaneously. Overall, our approach to addressing this is to start

with ye := xe/2 and then modify it with a random
4 slack vector

s : E → R: When certain special (few) cuts that e is on are even

we let se = −xeη/8 (for a carefully chosen constant η > 0); for

other cuts that contain e , whenever they are odd, we will increase

the slack of other edges on that cut to satisfy them. The bulk of

our effort is to show that we can do this while guaranteeing that

E [se ] < −ϵηxe for some ϵ > 0.

One thing we do not need to worry about if we perform the

reduction just described is any cut S such that x(δ (S)) > 2(1 + η).
Since we always have se ≥ −xeη/8, any such cut is always satisfied,

even if every edge in δ (S) is decreased and no edge is increased.

Let OPT be the optimum TSP tour, i.e., a Hamiltonian cycle, with

set of edges E∗; throughout the paper, we write e∗ to denote an

edge in E∗. To bound the expected cost of the O-join for a random

spanning tree T ∼ µλ , we also construct a random slack vector

s∗ : E∗ → R≥0 such that (x +OPT )/4+s +s∗ is a feasible for Eq. (4)
with probability 1. In Section 3.1 we explain how to use s∗ to satisfy
all but a linear number of near mincuts.

Theorem 3.1 (Main Technical Theorem). Let x0 be a solution of
LP (1) with support E0 = E ∪ {e0}, and x be x0 restricted to E. Let
z := (x+OPT )/2,η ≤ 10

−12 and let µ be the max-entropy distribution
with marginals x . Also, let E∗ denote the support of OPT. There are
two functions s : E0 → R and s∗ : E∗ → R≥0 (as functions ofT ∼ µ),
, such that

i) For each edge e ∈ E, se ≥ −xeη/8.
ii) For each η-near-min-cut S of z, if δ (S)T is odd, then s(δ (S)) +

s∗(δ (S)) ≥ 0.

iii) For every OPT edge e∗, E
[
s∗e∗

]
≤ 45η2 and for every LP edge

e , e0, E [se ] ≤ −xeϵPη/2 for some small ϵP .

4
where the randomness comes from the random sampling of the tree

In the next subsection, we explain the main ideas needed to prove

this technical theorem. But first, we show how our main theorem

follows readily from Theorem 3.1.

Proof of Theorem 1.1. Let x0 be an extreme point solution of

LP (1), with support E0 and let x be x0 restricted to E. By Fact 2.1 x
is in spanning tree polytope. Let µ = µλ∗ be the max entropy distri-

bution with marginals x , and let s, s∗ be as defined in Theorem 3.1.

We will define y : E0 → R≥0 and y
∗
: E∗ → R≥0. Let

ye =

{
xe/4 + se if e ∈ E

∞ if e = e0

we also let y∗e∗ = 1/4 + s∗e∗ for any edge e∗ ∈ E∗. We will show

that y + y∗ is a feasible solution5 to (4). First, observe that for any

S where e0 ∈ δ (S), we have y(δ (S)) + y∗(δ (S)) ≥ 1. Otherwise, we

assume u0,v0 < S . If S is an η-near min cut w.r.t., z and δ (S)T is

odd, then by property (ii) of Theorem 3.1, we have

y(δ (S)) + y∗(δ (S)) =
z(δ (S))

2

+ s(δ (S)) + s∗(δ (S)) ≥ 1.

On the other hand, if S is not an η-near min cut (w.r.t., z),

y(δ (S)) + y∗(δ (S)) ≥
z(δ (S))

2

−
η

8

x(δ (S))

≥
z(δ (S))

2

−
η

8

2(z(δ (S)) − 1)

≥ z(δ (S))(1/2 − η/4) + η/4

≥ (2 + η)(1/2 − η/4) + η/4 ≥ 1.

where in the first inequality we used property (i) of Theorem 3.1

which says that se ≥ xeη/8 with probability 1 for all LP edges

and that s∗e∗ ≥ 0 with probability 1. In the second inequality we

used that z = (x + OPT )/2, so, since OPT ≥ 2 across any cut,

x(δ (S)) ≤ 2(z(δ (S)) − 1). Therefore, y + y∗ is a feasible O-join
solution.

Finally, using c(e0) = 0 and part (iii) of Theorem 3.1,

E
[
c(y) + c(y∗)

]
= OPT /4 + c(x)/4 + E

[
c(s) + c(s∗)

]
≤ OPT /4 + c(x)/4 + 45η2OPT − ϵPηc(x)/2

≤ (1/2 − ϵPη/4)OPT

choosing η such that 45η = ϵP /4.1 and that c(x) ≤ OPT .
Now, we are ready to bound approximation factor of our algo-

rithm. First, sincex0 is an extreme point solution of (1),mine ∈E0 x
0

e ≥
1

n! . So, by Theorem 1.3, in polynomial time we can find λ : E → R≥0
such that for any e ∈ E, Pµλ [e] ≤ xe (1 + δ ) for some δ that we fix

later. It follows that∑
e ∈E

| Pµ [e] − Pµλ [e] |≤ nδ .

By stability of maximum entropy distributions (see [45, Thm 4]

and references therein), we have that ‖µ − µλ ‖1 ≤ O(n4δ ) =: q.
Therefore, for some δ � n−4 we get ‖µ − µλ ‖1 = q ≤

ϵPη
100

. That

5
Recall that we merely need to prove the existence of a cheap O-join solution. The

actual optimal O-join solution can be found in polynomial time.
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means that

ET∼µλ [min cost matching] ≤ ET∼µ
[
c(y) + c(y∗)

]
+ q(OPT /2)

≤

(
1

2

−
ϵPη

4

+
ϵPη

100

)
OPT ,

where we used that for any spanning tree the cost of the minimum

cost matching on odd degree vertices is at most OPT /2. Finally,
since ET∼µλ [c(T )] ≤ OPT (1 + δ ) and ϵP = 3.9 · 10−17 we get a

3/2 − 2 · 10−36 approximation algorithm for TSP. �

3.1 Ideas Underlying the Proof of Theorem 3.1
The first step of the proof is to show that it suffices to construct a

slack vector s for a “cactus-like” structure of near min-cuts that we

call a hierarchy. Informally, a hierarchy H is a laminar family of

mincuts
6
, consisting of two types of cuts: triangle cuts and degree

cuts. A triangle S is the union of two min-cuts X and Y in H such

that x(E(X ,Y )) = 1. See Fig. 1 for an example of a hierarchy with

three triangles.

a

b

c

d

u1 u2

u3

a b

u1

c d

u2

u3

Figure 1: An example of part of a hierarchy with three trian-
gles. The graph on the left shows part of a feasible LP solu-
tion where dashed (and sometimes colored) edges have frac-
tion 1/2 and solid edges have fraction 1. The dotted ellipses
on the left show the min-cuts u1,u2,u3 in the graph. (Each
vertex is also a min-cut). On the right is a representation
of the corresponding hierarchy. Triangle u1 corresponds to
the cut {a,b}, u2 corresponds to {c,d} and u3 corresponds to
{a,b, c,d}. Note that, for example, the edge (a, c), represented
in green, is in δ (u1), δ (u3), and inside u3. For triangle u1, we
have A = δ (a)r (a,b) and B = δ (b)r (b,d).

We will refer to the set of edges E(X , S) (resp. E(Y , S)) as A (re-

spectively B) for a triangle cut S . In addition, we say a triangle cut S
is happy if AT and BT are both odd. All other cuts are called degree

cuts. A degree cut S is happy if δ (S)T is even.

6
This is really a family of near-min-cuts, but for the purpose of this overview, assume

η = 0

Theorem3.2 (Main Payment Theorem (informal)). LetG = (V ,E,x)
for LP solution x and let µ be the max-entropy distribution with
marginals x . Given a hierarchy H , there is a slack vector s : E → R
such that

i) For each edge e ∈ E, se ≥ −xeη/8.
ii) For each cut S ∈ H if δ (S)T is not happy, then s(δ (S)) ≥ 0.

iii) For every LP edge e , e0, E [se ] ≤ −ηϵPxe for ϵP > 0.

In the following subsection, we discuss how to prove this theo-

rem. Here we explain at a high level how to define the hierarchy

and reduce Theorem 3.1 to this theorem.

First, observe that, given Theorem 3.2, cuts inH will automati-

cally satisfy (ii) of Theorem 3.1. The approach we take to satisfying

all other cuts is to introduce additional slack, the vector s∗, onOPT
edges.

Consider the set of all near-min-cuts of z, where z := (x+OPT )/2.
Starting with z rather than x allows us to restrict attention to a

significantly more structured collection of near-min-cuts. The key

observation here is that in OPT , all min-cuts have value 2, and

any non-min-cut has value at least 4. Therefore averaging x with

OPT guarantees that every η-near min-cut of z must consist of

a contiguous sequence of vertices (an interval) along the OPT cycle.
Moreover, each of these cuts is a 2η-near min-cut of x . Arranging
the vertices in the OPT cycle around a circle, we identify every

such cut with the interval of vertices that does not contain (u0,v0).
Also, we say that a cut is crossed on both sides if it is crossed on

the left and on the right.

To ensure that any cut S that is crossed on both sides is satisfied,
we first observe that S is odd with probability O(η). To see this,

let SL and SR be the cuts crossing S on the left and right with

minimum intersection with S and consider the two (bad) events

{E(S∩SL , SLrS))T , 1} and {E(S∩SR , SRrS))T , 1}. Recall that

ifA,B andA∪B are all near-min-cuts, then P [E(A,B)T , 1] = O(η)
(see Corollary 2.19). Applying this fact to the two aforementioned

bad events implies that each of them has probabilityO(η). Therefore,
we will let the two OPT edges in δ (S) be responsible for these

two events, i.e., we will increase the slack s∗ on these two OPT
edges by O(η) when the respective bad events happens. This gives

E [s∗(e∗)] = O(η2) for each OPT edge e∗. As we will see, this simple

step will reduce the number of near-min-cuts of z that we need to

worry about satisfying to O(n).
Next, we consider the set of near-min-cuts of z that are crossed

on at most one side. Partition these into maximal connected com-

ponents of crossing cuts. Each such component corresponds to an

interval along the OPT cycle and, by definition, these intervals form

a laminar family.

A single connected component C of at least two crossing cuts is

called a polygon. We prove the following structural theorem about

the polygons induced by z:

Theorem 3.3 (Polygons look like cycles (Informal version of poly-

gon structure theorem)). Given a connected component C of near-
min-cuts of z that are crossed on one side, consider the coarsest par-
tition of vertices of the OPT cycle into a sequence a1, . . . ,am−1 of
sets called atoms (together with a0 which is the set of vertices not
contained in any cut of C). Then

• Every cut in C is the union of some number of consecutive
atoms in a1, . . . ,am−1.
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• For each i such that 0 ≤ i < m − 1, x(E(ai ,ai+1)) ≈ 1 and
similarly x(E(am−1,a0)) ≈ 1.

• For each i > 0, x(δ (ai )) ≈ 2.

The main observation used to prove Theorem 3.3 is that the

cuts in C crossed on one side can be partitioned into two laminar

families L and R, where L (resp. R) is the set of cuts crossed on

the left (resp. right). This immediately implies that |C| is linear in

m. Since cuts in L cannot cross each other (and similarly for R),

the proof boils down to understanding the interaction between L

and R.

The approximations in Theorem 3.3 are correct up toO(η). Using
additional slack in OPT , at the cost of an additional O(η2) for edge,
we can treat these approximate equations as if they are exact. Ob-

serve that if x(E(ai ,ai+1)) = 1, and x(δ (ai )) = x(δ (ai+1)) = 2 for

1 ≤ i ≤ m − 2, then with probability 1, E(ai ,ai+1)T = 1. Therefore,

any cut in C which doesn’t include a1 or am−1 is even with prob-

ability 1. The cuts in C that contain a1 are even precisely
7
when

E(a0,a1)T = 1 and similarly the cuts in C that contain am−1 are

even when E(a0,am−1)T = 1. These observations are what allow

us to imagine that each polygon is a triangle, i.e., assumem = 3.

The hierarchyH is the set of all η-near mincuts of z that are not
crossed at all (these will be the degree cuts), together with a triangle

for every polygon. In particular, for a connected component C of

size more than 1, the corresponding triangle cut is a1 ∪ . . . ∪ am−1,

with A = E(a0,a1) and B = E(a0,am−1). Observe that from the

discussion above, when a triangle cut is happy, then all of the cuts

in the corresponding polygon C are even.

Summarizing, we show that if we can construct a good slack

vector s for a hierarchy of degree cuts and triangles, then there is a

nonnegative slack vector s∗, that satisfies all near-minimum cuts

of z not represented in the hierarchy, while maintaining slack for

each OPT edge e∗ such that E [s∗(e∗)] = O(η2).

Remarks: The reduction that we sketched above only uses the

fact that µ is an arbitrary distribution of spanning treeswithmarginals

x and not necessarily a maximum-entropy distribution.

We also observe that to prove Theorem 1.1, we crucially used

that 45η � ϵ . This forces us to take η very small, which is why we

get only a “very slightly” improved approximation algorithm for

TSP. Furthermore, since we use OPT edges in our construction, we

don’t get a new upper bound on the integrality gap. We leave it as

an open problem to find a reduction to the “cactus” case that does

not involve using a slack vector for OPT (or a completely different

approach).

3.2 Proof Ideas for Theorem 3.2
We now address the problem of constructing a good slack vector

s for a hierarchy of degree cuts and triangle cuts. For each LP

edge f , consider the lowest cut in the hierarchy, that contains both

endpoints of f . We call this cut p(f ). If p(f ) is a degree cut, then
we call f a top edge and otherwise, it is a bottom edge8. We will see

that bottom edges are easier to deal with, so we start by discussing

the slack vector s for top edges.

7
Roughly, this corresponds to the definition of the polygon being left-happy.

8
For example, in Fig. 1, p(a, c) = u3 , and (a, c) is a bottom edge.

Let S be a degree cut and let e = (u,v) (whereu andv are children

of S in H ) be the set of all top edges f = (u ′,v ′) such that u ′ ∈ u
and v ′ ∈ v . We call e a top edge bundle and say that u and v are the

top cuts of each f ∈ e. We will also sometimes say that e ∈ S .
Ideally, our plan is to reduce the slack of every edge f ∈ e

when it is happy, that is, both of its top cuts are even in T . Specif-
ically, we will set sf := −ηxf when δ (u)T and δ (v)T are even.

When this happens, we say that f is reduced, and refer to the event

{δ (u)T ,δ (v)T even} as the reduction event for f . Since this latter
event doesn’t depend on the actual endpoints of f , we view this as

a simultaneous reduction of se.
Now consider the situation from the perspective of the degree

cut u (where p(u) = S) and consider any incident edge bundle in S ,
e.g., e = (u,v). Either its top cuts are both even and se := −ηxe, or
they aren’t even, because, for example, δ (u)T is odd. In this latter

situation, edges in δ ↑(u) := δ (u) ∩ δ (S) might have been reduced

(because their top two cuts are even), which a priori could leave

δ (u) unsatisfied. In such a case, we increase se for edge bundles

in δ→(u) := δ (u) r δ (S) to compensate for this reduction. Our

main goal is then to prove is that for any edge bundle its expected

reduction is greater than its expected increase. The next example

shows this analysis in an ideal setting.

Example 3.4 (Simple case). Fix a top edge bundle e = (u,v) with

p(e) = S . Let xu := x(δ ↑(u)) and let xv := x(δ ↑(v)). Suppose we
have constructed a (fractional) matching between edges whose top

two cuts are children of S in H and the edges in δ (S), and this

matching satisfies the following three conditions: (a) e = (u,v) ∈ S
is matched (only) to edges going higher from its top two cuts (i.e.,

to edges in δ ↑(u) and δ ↑(v)), (b) e is matched to anme,u fraction of

every edge in δ ↑(u) and to anme,v fraction of each edge in δ ↑(v),
where

me,u +me,v = xe,

and (c) the fractional value of edges in δ→(u) := δ (u) r δ ↑(u)

matched to edges in δ ↑(u) is equal to xu . That is, for each u ∈ S ,∑
f ∈δ→(u)mf,u = xu .

u v
e

xu xv

S

The plan is for e ∈ S to be tasked with part of the responsibility

for fixing the cuts δ (u) and δ (v) when they are odd and edges going

higher are reduced. Specifically, se is increased to compensate for

anme,u fraction of the reductions in edges in δ ↑(u) when δ (u)T is

odd. (And similarly for reductions in v .) Thus, we may compute
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E [se] as:

− P [e reduced]ηxe (6)

+me,u
∑

д∈δ ↑(u)

P [δ (u)T odd | д reduced]P [д reduced]η
xд

x(δ ↑(u))

+me,v
∑

д∈δ ↑(v)

P [δ (v)T odd | д reduced]P [д reduced]η
xд

x(δ ↑(v))

(7)

We will lower bound P [δ (u)T even | д reduced]. We can write this

as

P
[
δ→(u)T and δ ↑(u)T have same parity | д reduced

]
.

Unfortunately, we do not currently have a good handle on the

parity of δ ↑(u)T conditioned on д reduced. However, we can use

the following simple but crucial property: Since x(δ (S)) = 2, by

Lemma 2.18,T consists of two independent trees, one on S and one

on V r S , each with the corresponding marginals of x . Therefore,
we can write

P [δ (u)T even | д reduced]

≥ min(P
[
(δ→(u))T even

]
,P

[
(δ→(u))T odd

]
).

This gives us a reasonable bound when ϵ ≤ xu ,xv ≤ 1 − ϵ since,

because x(δ (u)) = x(δ (v)) = 2, by the SR property, (δ→(u))T (and

similarly (δ→(v))T ) is the sum of Bernoulis with expectation in

[1 + ϵ, 2 − ϵ]. From this it follows that

min(P
[
(δ→(u))T even

]
,P

[
(δ→(u))T odd

]
) = Ω(ϵ).

We can therefore conclude that P [δ (u)T odd | д reduced] ≤ 1 −

O(ϵ).
The rest of the analysis of this special case follows from (a) the

fact that our construction will guarantee that for all edges д, the
probability that д is reduced is exactly p, i.e., it is the same for all

edges, and (b) the fact thatme,uxu +me,vxv = xe. Plugging these
facts back into (7), gives

E [se] ≤ −pηxe +me,u (1 − ϵ)pη +me,v (1 − ϵ)pη

≤ −pηxe + (1 − ϵ)pηxe = −ϵpηxe. (8)

If we could prove (8) for every edge f in the support of x , that would
complete the proof that the expected cost of the min O-join for a

random spanning tree T ∼ µ is at most (1/2 − ϵ)OPT .

Remark: Throughout this paper, we repeatedly use a mild gen-

eralization of the above "independent trees fact": that if S is a cut

with x(δ (S)) ≤ 2+ϵ , then ST is very likely to be a tree. Conditioned

on this fact, marginals inside S and outside S are nearly preserved

and the trees inside S and outside S are sampled independently (see

Lemma 2.18).

Ideal reduction: In the example, we were able to show that the

quantity P [δ (u)T odd | д reduced] was bounded away from 1 for

every edge д ∈ δ ↑(u), and this is how we proved that the expected

reduction for each edge was greater than the expected increase on

each edge, yielding negative expected slack.

This motivates the following definition: A reduction for an edge

д is k-ideal if, conditioned onд reduced, every cut S that is in the top
k levels of cuts containing д is odd with probability that is bounded

away from 1.

Moving away from an idealized setting: In Example 3.4, we over-

simplified in four ways:

(a) We assumed that it would be possible to show that each top

edge is good. That is, that its top two cuts are even simulta-
neously with constant probability.

(b) We considered only top edge bundles (i.e., edges whose top

cuts were inside a degree cut).

(c) We assumed that xu ,xv ∈ [ϵ, 1 − ϵ].
(d) We assumed the existence of a nice matching between edges

whose top two cuts were children of S and the edges in δ (S).

Our proof needs to address all four anomalies that result from

deviating from these assumptions.

a

u0

b

c

v0

e0

d

Figure 2: An Example with Bad Edges. A feasible solution of
(1) is shown; dashed edges have fraction 1/2 and solid edges
have fraction 1.Writing E = E0r{e0} as amaximum entropy
distribution µ we get the following: Edges (a,b), (c,d) must
be completely negatively correlated (and independent of all
other edges). So, (b,u0), (a,u0) are also completely negatively
correlated. This implies (a,b) is a bad edge.

Bad edges. Consider first (a). Unfortunately, it is not the case that
all top edges are good. Indeed, some are bad. However, it turns out
that bad edges are rare in the following senses: First, for an edge to

be bad, it must be a half edge, where we say that an edge e is a half
edge if xe ∈ 1/2 ± ϵ

1/2 for a suitably chosen constant ϵ
1/2. Second,

of any two half edge bundles sharing a common endpoint in the

hierarchy, at least one is good. For example, in Fig. 2, (a,u0) and
(b,u0) are good half-edge bundles. We advise the reader to ignore

half edges in the first reading of the paper. Correspondingly, we note

that our proofs would be much simpler if half-edge bundles never

showed up in the hierarchy. It may not be a coincidence that half

edges are hard to deal with, as it is conjectured that TSP instances

with half-integral LP solutions are the hardest to round [40, 41].

Our solution is to never reduce bad edges. But this in turn poses

two problems. First, it means that we need to address the possibility

that the bad edges constitute most of the cost of the LP solution.

Second, our objective is to get negative expected slack on each good

edge and non-positive expected slack on bad edges. Therefore, if

we never reduce bad edges, we can’t increase them either, which

means that the responsibility for fixing an odd cut with reduced

edges going higher will have to be split amongst fewer edges (the

incident good ones).

We deal with the first problem by showing that in every cut u
in the hierarchy at least 3/4 of the fractional mass in δ (u) is good
and these edges suffice to compensate for reductions on the edges

going higher. Moreover, because there are sufficiently many good

edges incident to each cut, we can show that either using the slack
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a1 a2
f

u

A B

a3 a4g

v
e

A′ B′

Figure 3: In the triangle u corresponding to the cut δ (a1∪a2),
when AT and BT are odd, all 3 cuts (δ (a1)T ,δ (a2)T and δ (a1 ∪
a2)T = δ (u)T are odd (since fT is always 1). (Recall also that
the edges in the bundle emust have one endpoint in {a1∪a2}
and one endpoint in {a3 ∪ a4}, as was the case, e.g., for the
edge (a, c) in Fig. 1.)

vector {se } gives us a low-cost O-join, or we can average it out

with another O-join solution concentrated on bad edges to obtain a

reduced cost matching of odd degree vertices.

We deal with the second problem by proving there is a matching

between good edge bundles e = (u,v) and fractions me,u ,me,v
of edges in δ ↑(u),δ ↑(v) such that, roughly, me,u +me,v = (1 +

O(ϵ
1/2))xe.

Dealing with triangles. Turning to (b), consider a triangle cut S ,
for example δ (a1 ∪ a2) in Fig. 3. Recall that in a triangle, we can

assume that there is an edge of fractional value 1 connecting a1
and a2 in the tree, and this is why we defined the cut to be happy

when AT and BT are odd: this guarantees that all 3 cuts defined by

the triangle (δ (a1),δ (a2),δ (a1 ∪ a2) are even.
Now suppose that e = (u,v) is a top edge bundle, where u

and v are both triangles, as shown in Fig. 3. Then we’d like to re-

duce se when both cuts u and v are happy. But this would require

more than simply both cuts being even. This would require all of
AT ,BT ,A

′
T ,B

′
T to be odd. Note that if, for whatever reason, e is re-

duced only when δ (u1)T and δ (u2)T are both even, then it could be,

for example, that this only happens whenAT and BT are both even.

In this case, both δ (a1)T and δ (a2)T will be odd with probability 1

(recalling that fT = 1), which would then necessitate an increase

in sf whenever e is reduced. In other words, the reduction will not

even be 1-ideal.

It turns out to be easier for us to get a 1-ideal reduction rule for

e as follows: Say that e is 2-1-1 happy with respect to u if δ (u)T is

even and both A′
T ,B

′
T are odd. We reduce e with probability p/2

when it is 2-1-1 happy with respect to u and with probability p/2
when it is 2-1-1 happy with respect to v . This means that when e
is reduced, half of the time no increase in sf is needed since u is

happy. Similarly for v .
The 2-1-1 criterion for reduction introduces a new kind of bad

edge: a half edge that is good, but not 2-1-1 good. We are able to

show that non-half-edge bundles are 2-1-1 good, and that if there

are two half edges which are both in A or are both in B, then at

least one of them is 2-1-1 good. Finally, we show that if there are

two half edges, where one is in A and the other is in B, and neither

is 2-1-1 good, then we can apply a different reduction criterion that

we call 2-2-2 good. When the latter applies, we are guaranteed to

decrease both of the half edge bundles simultaneously. All together,

the various considerations discussed in this paragraph force us

to come up with a relatively more complicated set of rules under

which we reduce se for a top edge bundle e whose children are

triangle cuts.

Bottom edge reduction. Next, consider a bottom edge bundle f =
(a1,a2) where p(a1) = p(a2) is a triangle. Our plan is to reduce sf
(i.e., set it to −ηxf ) when the triangle is happy, that is,AT = BT = 1.

The good news here is that every triangle is happy with constant

probability. However, when a triangle is not happy, sf may need to

increase to make sure that the O-join constraint for δ (a1) and δ (a2)
are satisfied, if edges in A and B going higher are reduced. Since

xf = x(A) = x(B) = 1, this means that f may need to compensate

at twice the rate at which it is getting reduced. This would result in

E [sf ] > 0, which is the opposite of what we seek.

We use two key ideas to address this problem. First, we reduce

top edges and bottom edges by different amounts: Specifically, when

the relevant reduction event occurs, we reduce a bottom edge f by
βxf and top edges e by τxe, where β > τ (and τ is a multiple of η).

Thus, the expected reduction in sf is pβxf = pβ , whereas the
expected increase (due to compensation of, say, top edges going

higher) is pτ (x(A) + x(B))q = pτ2q, where

q = P [ triangle happy | reductions in A and B] .

Thus, so long as 2τq < β − ϵ , we get the expected reduction in sf
that we seek.

The discussion so far suggests that we need to take τ smaller

than β/2q, which is β/2 if q is 1, for example. On the other hand, if

τ = β/2, then when a top edge needs to fix a cut due to reductions

on bottom edges, we have the opposite problem – their expected

increase will be greater than their expected reduction, and we are

back to square one.

Coming to our aid is the second key idea, already discussed in

Section 1.2.3. We reduce bottom edges only when AT = BT = 1

and the marginals of edges in A,B are approximately preserved

(conditioned on AT = BT = 1). This allows us to get much stronger

upper bounds on the probability that a lower cut a bottom edge is

on is odd, given that the bottom edge is reduced, and enables us to

show that bottom edge reduction is ∞-ideal.

It turns out that the combined effects of (a) choosing τ = 0.571β ,
and (b) getting better bounds on the probability that a lower cut is

even given that a bottom edge is reduced, suffice to deal with the

interaction between the reductions and the increases in slack for

top and bottom edges.

Example 3.5. [Bottom-bottom case] To see howpreservingmarginals

helps us handle the interaction between bottom edges at consec-

utive levels, consider a triangle cut a′
1
= {a1,a2} whose parent

cut Ŝ = {a′
1
,a′

2
} is also a triangle cut (as shown in Fig. 4). Let’s

analyze E [sf ] where f = (a1,a2). Observe first that A
→ ∪ B→ is a

bottom edge bundle in the triangle Ŝ and all edges in this bundle

are reduced simultaneously when ÂT = B̂T = 1 and marginals

of all edges in Â ∪ B̂ are approximately preserved. (For the pur-

poses of this overview, we’ll assume they are preserved exactly).

Let x(A↑) = α . Then since A = A↑ ∪ A→
and x(A) = 1, we have

x(A→) = 1− α . Moreover, since Â = A↑ ∪ B↑
and x(Â) = 1, we also

have x(B↑) = 1 − α and x(B→) = α .
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a1 a2
f

Ŝ

Â B̂

a′
1

a′
2

A→
1 − α

B→ α

A↑ α B↑
1 − α

Figure 4: Setting of Example 3.5. Note that the setA = δ (a1)∩

δ (a′
1
) decomposes into two sets of edges, A↑, those that are

also in δ (S), and the rest, which we call A→. Similarly for B.

Therefore, using the fact that whenA→ ∪B→ is reduced, exactly

one edge inA↑∪B↑
is selected (and also exactly one edge inA→∪B→

is selected since it is a bottom edge bundle), and marginals are

preserved given the reduction, we conclude that

P
[
a′
1
happy | A→ ∪ B→ reduced

]
= P

[
AT = BT = 1 | A→ ∪ B→ reduced

]
= α2 + (1 − α)2.

Now, we calculate E [sf ]. First, note that f may have to increase to

compensate either for reduced edges in A↑ ∪ B ↑ or in A→ ∪ B→.

For the sake of this discussion, suppose that A↑ ∪ B↑
is a set of

top edges. Then, in the worst case we need to increase f by pτ in

expectation to fix the cuts a1,a2 due to the reduction in A↑ ∪ B↑
.

Now, we calculate the expected increase due to the reduction in

A→ ∪ B→. The crucial observation is that edges in A→ ∪ B→ are

reduced simultaneously, so both cuts δ (a1) and δ (a2) can be fixed

simultaneously by an increase in sf . Therefore, when they are both

odd, it suffices for f to increase by

max{x(A→),x(B→)}β = max{α , 1 − α }β ,

to fix cuts a1,a2. Putting this together, we get

E [sf ] = −pβ + E
[
increase due to A→ ∪ B→

]
+ E

[
increase due to A↑ ∪ B↑

]
≤ −pβ + pβ max

α ∈[1/2,1]
α[1 − α2 − (1 − α)2] + pτ

which, sincemaxα ∈[1/2,1] α[1−α
2−(1−α)2] = 8/27 and τ = 0.571β

is

= pβ(−1 +
8

27

+ 0.571) = −0.13pβ .

Dealing with xu close to 1. 9 Now, suppose that e = (u,v) is a top

edge bundle with xu := x(δ ↑(u)) is close to 1. Then, the analysis in

Example 3.4, bounding r := P [δ (u)T odd | д reduced] away from 1

for an edge д ∈ δ ↑(u) doesn’t hold. To address this, we consider two

cases: The first case, is that the edges in δ ↑(u) break up into many

groups that end at different levels in the hierarchy. In this case, we

can analyze r separately for the edges that end at any given level,

9
Some portions of this discussion might be easier to understand after reading the rest

of the paper.

taking advantage of the independence between the trees chosen at

different levels of the hierarchy.

The second case is when nearly all of the edges in δ ↑(u) end
at the same level, for example, they are all in δ→(u ′) where p(u ′)
is a degree cut. In this case, we introduce a more complex (2-1-1)

reduction rule for these edges. The observation is that from the

perspective of these edges u ′ is a "pseudo-triangle". That is, it looks
like a triangle cut, with atoms u and u ′ r u where δ (u) ∩ δ (u ′)
corresponds to the “A”-side of the triangle.

Now, we define this more complex 2-1-1 reduction rule: Con-

sider a top edge f = (u ′,v ′) ∈ δ→(u ′). So far, we only considered

the following reduction rule for f : If both u ′,v ′
are degree cuts,

f reduces when they are both even in the tree; otherwise if say

u ′ is a triangle cut, f reduces when it is 2-1-1 good w.r.t., u ′ (and
similarly for v ′

). But clearly these rules ignore the pseudo trian-

gle. The simplest adjustment is, if u ′ is a pseudo triangle with

partition (u,u ′ r u), to require f to reduce when AT = BT = 1

and v ′
is happy. However, as stated, it is not clear that the sets

A and B are well-defined. For example, u ′ could be an actual tri-

angle or there could be multiple ways to see u ′ as a pseudo tri-

angle only one of which is (u,u ′ r u). Our solution is to find the

smallest disjoint pair of cuts a,b ⊂ u ′ in the hierarchy such that

x(δ (a) ∩ δ (u ′)),x(δ (b) ∩ δ (u ′)) ≥ 1 − ϵ
1/1, where ϵ1/1 is a fixed

universal constant, and then let A = δ (a) ∩ δ (u ′),B = δ (b) ∩ δ (u ′)
and C = δ (u ′)rAr B (see Fig. 5 for an example). Then, we say f
is 2-1-1 happy w.r.t., u ′ if AT = BT = 1 and CT = 0.

A few observations are in order:

• Since u is a candidate for, say a, it must be that a is a descen-

dent ofu in the hierarchy (or equal tou). In addition,b cannot
simultaneously be inu, sincea∩b = ∅ and x(δ (u)∩δ (u ′)) ≤ 1

by Lemma 2.7. So, when f is 2-1-1 happy w.r.t. u ′ we get

(δ (u) ∩ δ (u ′))T = 1.

• If u ′ = (X ,Y ) is a actual triangle cut, then we must have

a ⊆ X ,b ⊆ Y . So, when f is 2-1-1 happy w.r.t. u ′, we know
that u ′ is a happy triangle, i.e., (δ (X ) ∩ δ (u ′))T = 1 and

(δ (Y ) ∩ δ (u ′))T = 1.

Now, suppose for simplicity that all top edges in δ (u ′) are 2-1-1
good w.r.t. u ′. Then, when an edge д ∈ δ (u) ∩ δ (u ′) is reduced,
(δ (u) ∩ δ (u ′))T = 1, so P [δ (u)T odd | д reduced] is at most

≤ P
[
E(u,u ′ r u)T even | д reduced

]
≤ 0.57,

since edges in E(u,u ′ ru) are in the tree independent of the reduc-

tion and E [E(u,u ′ r u)T ] ≈ 1.

Dealing with xu close to 0 and the matching. We already dis-

cussed how the matching is modified to handle the existence of

bad edges. We now observe that we can handle the case xu ≈ 0

by further modifying the matching. The key observation is that in

this case, x(δ→(u)) � x(δ ↑(u)). Roughly speaking, this enables

us to find a matching in which each edge in δ→(u) has to in-

crease about half as much as would normally be expected to fix the

cut of u. This eliminates the need to prove a nontrivial bound on

P [δ (u)T odd | д reduced].

This completes the proof sketch.
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Figure 5: Part of the hierarchy of the graph is shown on top. Edges
of the same color have the same fraction and ϵ � η is a small con-
stant. u1 corresponds to the degree cut {a1, a2, a3 }, u2 corresponds
to the triangle cut {u1, a4 } and u corresponds to the degree cut con-
taining all of the vertices shown.Observe that edges in δ ↑(a1) are top
edges in the degree cut u . If ϵ < 1

2
ϵ
1/1 then the (A, B, C)-degree par-

titioning of edges in δ (u2) is as follows:A = δ (a1)∩δ (u2) are the blue
highlighted edges each of fractional value 1/2 − ϵ , B = δ (a4) ∩ δ (u2)
are the green highlighted edges of total fractional value 1, andC are
the red highlighted edges each of fractional value ϵ . The cuts that
contain edge (a1, c1) are highlighted in the hierarchy at the bottom.
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