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1 INTRODUCTION

One of the most fundamental problems in combinatorial optimiza-
tion is the traveling salesperson problem (TSP), formalized as early
as 1832 (c.f. [2, Ch 1]). In an instance of TSP we are given a set
of n cities V along with their pairwise symmetric distances, ¢ :
V XV — Ryxo. The goal is to find a Hamiltonian cycle of minimum
cost. In the metric TSP problem, which we study here, the distances
satisfy the triangle inequality. Therefore, the problem is equivalent
to finding a closed Eulerian connected walk of minimum cost.!

It is NP-hard to approximate TSP within a factor of % [34]. An
algorithm of Christofides-Serdyukov [14, 43] from four decades ago
givesa %—approximation for TSP (see [47] for a historical note about
TSP). This remains the best known approximation algorithm for
the general case of the problem despite significant work, e.g., [10-
13, 22, 24, 28, 29, 33, 40, 44, 438].

!Given such an Eulerian cycle, we can use the triangle inequality to shortcut vertices
visited more than once to get a Hamiltonian cycle.
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In contrast, there have been major improvements to this algo-
rithm for a number of special cases of TSP. For example, polynomial-
time approximation schemes (PTAS) have been found for Euclidean
[3, 36], planar [4, 25, 35], and low-genus metric [17] instances. In ad-
dition, the case of graph metrics has received significant attention.
In 2011, the third author, Saberi, and Singh [39] found a % — €p ap-
proximation for this case. Momke and Svensson [37] then obtained
a combinatorial algorithm for graphic TSP with an approximation
ratio of 1.461. This ratio was later improved by Mucha [38] to
1—93 ~ 1.444, and then by Seb6 and Vygen [42] to 1.4.

In this paper we prove? the following theorem:

Theorem 1.1. For some absolute constant ¢ > 10739, there is a
randomized algorithm that outputs a tour with expected cost at most
3 _ ¢ times the cost of the optimum solution.

2

We note that while the algorithm makes use of the Held-Karp re-
laxation, we do not prove that the integrality gap of this polytope is
bounded away from 3/2. We also remark that although our approx-
imation factor is only slightly better than Christofides-Serdyukov,
we are not aware of any example where the approximation ratio of
the algorithm we analyze exceeds 4/3 in expectation.

Following a new exciting result of Traub, Vygen, Zenklusen [46]
we also get the following theorem.

Theorem 1.2. For some absolute constant € > 0 there is a random-
ized algorithm that outputs a TSP path with expected cost at most
3 _ ¢ times the cost of the optimum solution.

2

1.1 Algorithm

First, we recall the classical Christofides-Serdyukov algorithm:
Given an instance of TSP, choose a minimum spanning tree and
then add the minimum cost matching on the odd degree vertices of
the tree. The algorithm we study is very similar, except we choose
a random spanning tree based on the standard linear programming
relaxation of TSP.

Let x° be an optimum solution of the following TSP linear pro-
gram relaxation [15, 31]:

min Z X(u, v)c(U, V)
u,o

s.t., ZX(u’v) =2 YoeV,
u (1)
D Xuwz2  VSCV,
uesS,vg¢S
X(u,v) 2 0 Yu,v e V.

?Due to space limitations, in this extended abstract we are only able to outline the
key technical tools and ideas of our proof. The full version can be found at https:
//arxiv.org/abs/2007.01409.
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Given x°, we pick an arbitrary node, u, split it into two nodes ug, vy

and set x(y,, o,) = 1, ¢(uo, vo) = 0 and we assign half of every edge
incident to u to uy and the other half to vg. This allows us to assume
without loss of generality that x° has an edge ey = (ug,vg) such
that x¢, = 1,c(ep) = 0.

Let Eg = EU{eg} be the support of x? and let x be x° restricted to
Eand G = (V, E). x° restricted to E is in the spanning tree polytope
(3)-

For a vector A : E — Ry, a A-uniform distribution p, over

spanning trees of G = (V,E) is a distribution where for every

spanning tree T C E, P, [T] = % Now, find a vector A
! LleeT’ Me

such that for every edge e € E, P, [e € T| = x¢(1+¢), for some € <
27", Such a vector A can be found using the multiplicative weight
update algorithm [5] or by applying interior point methods [42] or
the ellipsoid method [5]. (We note that the multiplicative weight
update method can only guarantee € < 1/poly(n) in polynomial
time.)

Theorem 1.3 ([5]). Let z be a point in the spanning tree polytope
(see (3)) of a graph G = (V,E). For any € > 0, a vector A : E — R
can be found such that the corresponding A-uniform spanning tree
distribution, y1), satisfies

Z Py, [T] < (1+6)ze, Ve€lk,
TeT:T>e

i.e., the marginals are approximately preserved. In the above T is the
set of all spanning trees of (V, E). The running time is polynomial in
n = |V|, —log minecfg z andlog(1/e).

Finally, we sample a tree T ~ u, and then add the minimum cost
matching on the odd degree vertices of T. The above algorithm is a

Algorithm 1 An Improved Approximation Algorithm for TSP

Find an optimum solution x° of Eq. (1), and let ey = (o, vo) be
an edge with xgo =1,c(eg) = 0.

Let Eg = E U {ey} be the support of x* and x be x° restricted to
Eand G = (V,E).

Find a vector A : E — Ry such that for any e € E, Py, [e] =
xe(1£277).

Sample a tree T ~ p.

Let M be the minimum cost matching on odd degree vertices of
T.

Output T U M.

slight modification of the algorithm proposed in [39]. We refer the
interested reader to exciting work of Genova and Williamson [23]
on the empirical performance of the max-entropy rounding algo-
rithm. We also remark that although the algorithm implemented in
[23] is slightly different from the above algorithm, we expect the
performance to be similar.

1.2 New Techniques

Here we discuss new machinery and technical tools that we devel-
oped for this result which could be of independent interest.
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1.2.1  Polygon Structure for Near Minimum Cuts Crossed on one
Side. Let G = (V,E,x) be an undirected graph equipped with a
weight function x : E — Ry¢ such that for any cut (S, S) such that
up,vg ¢ S, x(8(S)) > 2 (recall ugp, vy is the edge of fraction 1 which
appears in x° but not x).

For some (small) 7 > 0, consider the family of 7-near min cuts
of G. Let C be a connected component of crossing g-near min cuts.
Given C we can partition vertices of G into sets ay, . . . , am—1 (called
atoms); this is the coarsest partition such that for each a;, and each
(S,§) € C, we have a; C S ora; C S. Here aq is the atom that
contains ug, vg.

There has been several works studying the structure of edges
between these atoms and the structure of cuts in C w.r.t. the a;’s.
The cactus structure (see [18]) shows that if n = 0, then we can
arrange the a;’s around a cycle, say ay, . .., am (after renaming),
such that x(E(a;, aj+1)) = 1 for all i.

Benczur and Goemans [6, 8] studied the case when < 6/5
and introduced the notion of polygon representation, in which case
atoms can be placed on the sides of an equilateral polygon and
some atoms placed inside the polygon, such that every cut in C can
be represented by a diagonal of this polygon. Later, [39] studied
the structure of edges of G in this polygon when n < 1/100.

In this paper, we show it suffices to study the structure of edges
in a special family of polygon representations:

Theorem 1.4 (Informal version of the polygon structure theorem).
Suppose we have a polygon representation for a connected component
C of n-near min cuts of G such that

o No atom is mapped inside,

o If we identify each cut (S,S) € C with the interval along the
polygon that does not contain ag, then any interval is only
crossed on one side (only on the left or only on the right).

Then, we have:
e For any atom a;, x(6(a;)) < 2 + O(9),
e For any pair of atoms a;, a;+1, x(E(ai, aj+1) = 1 — Q(n).

We expect to see further applications of our theorem in studying
variants of TSP.

1.2.2  Generalized Gurvits’ Lemma. Given a real stable polyno-

mial p € R>o[z1,...,2n] (with non-negative coefficients), Gurvits
proved the following inequality [26, 27]
n! Z1y.. .52 . Z1y.. .52
P g PR 2n) 0z, ... 0z,plz=0 < inf @t 7n)
n"z>0 z1...zZp z>0 Z1...2Zn

()
As an immediate consequence, one can prove the following
theorem about strongly Rayleigh (SR) distributions.

Theorem 1.5. Lety : olnl R>o beSRand A1, .. .,Am berandom
variables corresponding to the number of elements sampled in m
disjoint subsets of [n] such that E[A;] = n; foralli. Ifn; = 1 for all
1<i<n, thenP[Vi,A; =1] > 2.

One can ask what happens if the vector 7 = (ny, ..., ny,) in the
above theorem is not equal but close to the all ones vector, 1.
A related theorem was proved in [39].

Theorem 1.6. Let p : b L N R>o be SR and A, B be random
variables corresponding to the number of elements sampled in two



A (Slightly) Improved Approximation Algorithm for Metric TSP

disjoint sets. f P[A+B=2] > ¢, P[A<1],P[B<1] > a and
P[A>1],P[B=>1] > fthenP[A=B=1] > eaf/3.

We prove a generalization of both of the above statements;
roughly speaking, we show that as long as || — 1||; < 1 — € then
P[Vi,A; = 1] > f(e, m) where f(e, m) has no dependence on n, the
number of underlying elements in the support of p.

Theorem 1.7 (Informal version of the generalized Gurvits lemma).
Letp : 2lnl R>o be SR and let A1, ..., Am be random variables
corresponding to the number of elements sampled in m disjoint subsets
of [n]. Suppose that there are integers ny, ..., ny such that for any
setS C [m],P[Yies Ai = Xjes nil = €. Then,

P[Vi, A; = ni] = f(e, m).

The above statement is even stronger than Theorem 1.5 as we
only require P[};c5 Ai = Xjes ni] to be bounded away from 0 for
any set S C [m] and we don’t need a bound on the expectation. Our
proof of the above theorem has double exponential dependence on
€. We leave it an open problem to find the optimum dependency
on €. Furthermore, our proof of the above theorem is probabilistic
in nature; we expect that an algebraic proof based on the theory of
real stable polynomials will provide a significantly improved lower
bound. Unlike the above theorem, such a proof may possibly extend
to the more general class of completely log-concave distributions

[1].

1.2.3  Conditioning while Preserving Marginals. Consider a SR dis-
tribution p : 2lnl Rxo and let x : [n] — Rxg, where for all i,
xi = Py~ [i € T], be the marginals.

Let A, B C [n] be two disjoint sets such that E[A7],E[Br] ~ 1.
It follows from Theorem 1.7 that P[Ar = By = 1] > Q(1). Here,
however, we are interested in a stronger event; let v = p|Ar =
Br = 1andlet y; = Py, [i € T]. It turns out that the y vector can
be very different from the x vector, in particular, for some i’s we
can have |y; — x;| bounded away from 0. We show that there is an
event of non-negligible probability that is a subset of A7 = By =1
under which the marginals of elements in A, B are almost preserved.

Theorem 1.8 (Informal version of the max flow theorem). Let
e 2lnl R>¢ be a SR distribution and let A, B C [n] be two disjoint
subsets such that E[A7],E[Br] = 1. Forany a < 1 there is an event
&4, B such that P [SA,B] > Q(a?) and

e P[Ar =Br =184 8] = 1,
® YiealP[i] -P[i|E]] < a,
e YieglP[i]-P[il&E]] < a.

We remark that the quadratic lower bound on « is necessary in
the above theorem for a sufficiently small @ > 0. The above theorem
can be seen as a generalization of Theorem 1.5 in the special case
of two sets.

We leave it an open problem to extend the above theorem to
arbitrary k disjoint sets. We suspect that in such a case the ideal
event &4, .. a, occurs with probability Q((x)k and preserves all
marginals of elements in each of the sets Ay, ..., Ay up to a total
variation distance of a.
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2 PRELIMINARIES
2.1 Notation

We write [n] := {1,...,n} to denote the set of integers from 1 to n.
For a set of edges A C E and (a tree) T C E, we write
Ar = |ANT].

ForasetS C V, we write
E(S) ={(u,v) €E:u,v €S}
to denote the set of edges in S and we write
8(S) ={(u,v) € E: |[{u,v} NSl =1}

to denote the set of edges that leave S. For two disjoint sets of
vertices A, B C V, we write

E(A,B) = {(u,v) e E:u € A,v € B}.
For a set A C E and a function x : E — R we write

x(A) := Z Xe.

ecA
For two sets A, B C V, we say A crosses B if all of the following
sets are non-empty:
ANB,ANB,BNAAUB.

We write G = (V,E, x) to denote an (undirected) graph G to-
gether with special vertices ug, vg and a weight function x : E —
R>¢ such that

x(8(S)) = 2,

For such a graph, we say a cut S C V is an n-near min cut w.r.t., x
(or simply n-near min cut when x is understood) if x(6(S)) < 2 + 7.

VS CV:iug,v9 ¢S.

Unless otherwise specified, in any statement about a cut (S,g) in G,
we assume ug, vy € S.

2.2 Polyhedral Background

For any graph G = (V, E), Edmonds [19] gave the following descrip-
tion for the convex hull of spanning trees of a graph G = (V,E),
known as the spanning tree polytope.

zZ(E)=|V|-1
Z(E(S)) < |S| -1 VSCV 3)
Ze 20 Ve € E.

Edmonds [19] proved that the extreme point solutions of this poly-
tope are the characteristic vectors of the spanning trees of G.

Fact 2.1. Let x° be a feasible solution of (1) such thatxg0 =1 with
support Eg = E U {eo}. Let x be x° restricted to E; then x is in the
spanning tree polytope of G = (V,E).
Proor. For any set S € V such that up,vy9 ¢ S, x(E(S)) =
_0
w <|S|-1.Ifug € S,v9 ¢ S, then

25| -1 - (x"((s) - 1)

x(E(S)) = 5 < 8| - 1.
Finally, if ug, vy € S, then
2|S| -2 - x°
x(E(s)) = BIZ2=20O) gy

2
The claim follows because x(E) = x°(Eg) =1 =n— 1. O
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Since c(eg) = 0, the following fact is immediate.

Fact 2.2. Let G = (V,E, x) where x is in the spanning tree polytope.
Let u be any distribution of spanning trees with marginals x, then
Er~y [e(T U ep)] = c(x).

To bound the cost of the min-cost matching on the set O of odd
degree vertices of the tree T, we use the following characterization,
which dominates the O-join polytope® due to Edmonds and Johnson
[20].

Proposition 2.3. For any graph G = (V, E), cost functionc : E —
Ry, and a set O C V with an even number of vertices, the minimum
weight of an O-join equals the optimum value of the following integral
linear program.
min  c(y)
st y(8(S) =1
Ye =0

VS € V,|SN O] odd (4)
Ve € E
Definition 2.4 (Satisfied cuts). Fora setS C V such thatug,vy ¢ S

and a spanning tree T C E we say a vectory : E — Ry satisfies S if
one of the following holds:

e 5(S)T is even, or

e y(5(S)) > 1.

To analyze our algorithm, we will see that the main challenge is
to construct a (random) vector y that satisfies all cuts and E [c(y)] <
(1/2 — €)OPT.

2.3 Structure of Near Minimum Cuts

Lemma 2.5 ([39]). ForG = (V,E,x), let A,B C V be two crossing
€4, €p near min cuts respectively. Then, AN B,AUB, AN B,B\ A
are €4 + eg near min cuts.

ProOOF. We prove the lemma only for AN B; the rest of the cases
can be proved similarly. By submodularity,

x(6(AN B)) + x(6(AU B)) < x(6(A)) + x(6(B)) < 4 + €4 + €5.

Since x(6(A U B)) > 2, we have x(6(AN B)) < 2+ €4 + €, as
desired. O

The following lemma is proved in [7]:

Lemma 2.6 ([7, Lem 5.3.5]). ForG = (V,E,x), let A,B C V be two
crossing e-near minimum cuts. Then, x(E(AN B, A — B)),x(E(AN
B,B - A)), x(E(AU B, A — B)), and

x(E(AU B, B — A)) are all at least (1 — €/2).

Lemma 2.7. ForG = (V,E, x), let A, B C V be two € near min cuts
such that A C B. Then

x(8(A) N 8(B)) = x(E(A,B)) < 1+¢, and
x(E(5(A) ~ 8(B))) = 1 —¢€/2.
Proor. Notice
2+ € > x(8(A)) = x(E(A, B~ A)) + x(E(A, B))
2+ ¢ > x(6(B)) = x(E(B . A, B)) + x(E(A, B))

3The standard name for this is the T-join polytope. Because we reserve T to represent
our tree, we call this the O-join polytope, where O represents the set of odd vertices
in the tree.
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Summing these up, we get

2x(E(A, B)) + x(E(A, B~ A)) + x(E(B . A, B))
= 2x(E(A, B)) + x(8(B \ A)) < 4 + 2e.
Since B \ A is non-empty, x(§(B . A)) > 2, which implies the first
inequality. To see the second one, let C = B \\ A and note
4 < x(8(A)) + x(6(C)) = 2x(E(A, C)) + x(5(B))
< 2x(E(A,C)) +2+¢

which implies x(E(A,C)) > 1 —¢€/2. O

2.4 Strongly Rayleigh Distributions and
A-uniform Spanning Tree Distributions

Let BE be the set of all probability measures on the Boolean algebra
2E. Let y1 € Bg. The generating polynomial 9u R[{zeteep] of pis

defined as follows:
gu(2) = Y uS [ ] ze-
S

eeS

We say p is a strongly Rayleigh distribution if g, # 0 over all
{Ye}ecE € CE where Im(z,) > 0 forall e € E. We say p is d-
homogenous if for any A € R, g, (Az) = /ldgy(z). Strongly Rayleigh
(SR) distributions were defined in [9] where it was shown any A-
uniform spanning tree distribution is strongly Rayleigh. In this
subsection we recall several properties of SR distributions proved
in [9, 39] which will be useful to us.

Closure Operations of SR Distributions. SR distributions are closed
under the following operations.

e Projection. For any 1 € B, and any F C E, the projection
of i onto F is the measure yr where for any A C F,

)= D0 w(S).

S:SNF=A

Conditioning. For any e € E, {y|e out} and {yu|e in}.
Truncation. For any integer k > 0 and p € B, truncation
of yu to k, is the measure y; where for any A C E,

—HA pia =
e (A) = { Zsisi=k #(S) if |A] =k
0 otherwise.

Product. For any two disjoint sets E, F, and g € Bg, ur €
B the product measure ppxF is the measure where for any
ACEBCF, upxr(AUB) = up(A)ur(B).

Throughout this paper we will repeatedly apply the above opera-
tions. We remark that SR distributions are not necessarily closed
under truncation of a subset, i.e., if we require exactly k elements
from F C E.

Since A-uniform spanning tree distributions are special classes
of SR distributions, if we perform any of the above operations on
a A-uniform spanning tree distribution p we get another SR distri-
bution. Below, we see that by performing the following particular
operations we still have a A-uniform spanning tree distribution
(perhaps with a different A).
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Closure Operations of A-uniform Spanning Tree Distributions.
e Conditioning. For any e € E, {y | e out}, {y | e in}.
e Tree Conditioning. For G = (V, E), a spanning tree distri-
bution p € Bg,and S C V, {u | S tree}.

Note that arbitrary spanning tree distributions are not necessarily
closed under truncation and projection. We remark that SR mea-
sures are also closed under an analogue of tree conditioning, i.e., for
aset F C E, let k = maxgesupp u [SNF|. Then, {y|[SNF| = k} is SR.
But if y1 is a spanning tree distribution we get an extra independence
property. The following independence is crucial to several of our
proofs.

Fact 2.8. For a graph G = (V,E), and a vector A(G) : E — R,
let jip () be the corresponding A-uniform spanning tree distribution.
Then for any S C V,

{a) | 'S treed = pa(qls)) X BaG/s)-

Proor. Intuitively, this holds because in the max entropy distri-
bution, conditioned on S being a tree, any tree chosen inside S can
be composed with any tree chosen on G/S to obtain a spanning
tree on G. So, to maximize the entropy these trees should be chosen
independently. More formally for any T; € G[S] and Tz € G/S, we
have the following equality for P[T = T; U T, | S is a tree] :

AT T
- XT/eG[S), T;eG/S AT
AT 2T
B Srrecrsi AT . S1yecys A
=Pr.qgls) [T{ = 1] Pr.g/s [T, = T2].,

giving independence. o

Negative Dependence Properties. An upward event, A, on 2Fisa
collection of subsets of E that is closed under upward containment,
ie.if Ae Aand A C B C E, then B € A. Similarly, a downward
event is closed under downward containment. An increasing func-
tion f : 2F R, is a function where for any A C B C E, we have
f(A) < f(B). We also say f : 2F — R is a decreasing function if
—f is an increasing function. So, an indicator of an upward event
is an increasing function. For example, if E is the set of edges of a
graph G, then the existence of a Hamiltonian cycle is an increasing
function, and the 3-colorability of G is a decreasing function.

Definition 2.9 (Negative Association). A measure i € BE is nega-
tively associated if for any increasing functions f,g : 28 — R, that
depend on disjoint sets of edges,

E,u[f]'Eu[g]ZE,u[f'g]

It is shown in [9, 21] that strongly Rayleigh measures are nega-
tively associated.

Stochastic Dominance. For two measures p, v : 2F R>q, we
say i < v if there exists a coupling p : 2F x 2 — R such that

D, PA.B)
B

> paB) =
A

1(A),VA € 2F,

v(B),VB € 2F,
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and for all A, B such that p(A, B) > 0 we have A C B (coordinate-
wise).

Theorem 2.10 (BBL). If p is strongly Rayleigh and py, ., are
well-defined, then pp < pig1-

Note that in the above particular case the coupling p satisfies
the following: For any A,B C E where p(A,B) > 0, B 2 A and
|B\ A| = 1, i.e., B has exactly one more element.

Let u be a strongly Rayleigh measure on edges of G. Recall that
for a set A C E, we write AT = |[AN T| to denote the random
variable indicating the number of edges in A chosen in a random
sample T of p. The following facts immediately follow from the
negative association and stochastic dominance properties. We will
use these facts repeatedly in this paper.

Fact 2.11. Let u be any SR distribution on E, then for any F C E,
and any integer k
(1) (Negative Association) Ife ¢ F, then P, [e | FT > k] < P, [e]
andPy e | Fr < k] = Py [e]
(2) (Stochastic Dominance) If e € F, then P, [e| Fr 2 k] 2
Py, [e] and Py [e | Fr < k] <Py [e].

Fact 2.12. Let p be a homogenous SR distribution on E. Then,

o (Negative association with homogeneity) For any A C E, and
anyBC A

E, [Br | AT = 0] < E, [Br] + Ey [AT] ©)

o Suppose that 1 is a spanning tree distribution. For S C V, let
q:=|S|=1-E, [E(S)T]. We will say S is a tree if S = |S| -1,
as this implies E(S) is a spanning tree of the vertices in S. For
any A C E(S),B C E(S),

E, [Brl—-¢ < E, [BT | S is a tree] < Ey [BT]
(Negative association and homogeneity)

E [AT] < EL[AT | Sisatree] <E,[AT]+¢q
(Stochastic dominance and tree)

Rank Sequence. The rank sequence of 1 is the sequence
PIS| = o], P(IS| = 1],...,P[IS| = m],

where S ~ . Let g,(z) be the generating polynomial of y. The
diagonal specialization of y is the univariate polynomial

9u(2) = gu(z.2,...,2).

Observe that g(.) is the generating polynomial of the rank sequence
of p. It follows that if y is SR then g, is real rooted.

It is not hard to see that the rank sequence of y corresponds to
sum of independent Bernoullis iff g, is real rooted. It follows that
the rank sequence of an SR distributions has the law of a sum of
independent Bernoullis. As a consequence, it follows (see [9, 16, 30])
that the rank sequence of any strongly Rayleigh measure is log
concave (see below for the definition), unimodal, and its mode
differs from the mean by less than 1.

Definition 2.13 (Log-concavity [9, Definition 2.8]). A real sequence
{ag}iL, is log-concave ifai > ap_q-agyq foralll <k <m-1,
and it is said to have no internal zeros if the indices of its non-zero
terms form an interval (of non-negative integers).
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2.5 Sum of Bernoullis

In this section, we collect a number of properties of sums of Bernoulli
random variables, omitting many for brevity.

Definition 2.14 (Bernoulli Sum Random Variable). We say BS(q)
is a Bernoulli-Sum random variable if it has the law of a sum of
independent Bernoulli random variables, say By + By + ... + By, for
somen > 1, withE[By +--- + Bp] = q.

We start with the following theorem of Hoeffding.

Theorem 2.15 ([32, Corollary 2.1]). Letg:{0,1,...,n} — R and
0 < q < n for some integer n > 0. Let By, ...,By, be n indepen-
dent Bernoulli random variables with success probabilities p1, . . ., pn,
where 3.7, pn = q that minimizes (or maximizes)

E[g(By + -+ Bp)]

over all such distributions. Then, p1,...,pn € {0,x,1} for some
0 < x < 1. In particular, if only m of p;’s are nonzero and € of p;’s
are 1, then the rest of the m — { are gl;f;.

Fact2.16. Let By, ..., By beindependent Bernoulli random variables
each with expectation 0 < p < 1. Then

P

1
ZB,- even} = E(l +(1-2p)")
i
Proor. Note that

n N n—k [T
(b +(-p) =1§p"<1—p> "(k)

__n:n_k_n—kn
((1=p)=p) kZ:o( p)(1-p) (k)

Summing them up we get,

1+(1-2p)" = Z Zpk(l —p)”_k (Z)
0<k<n,k even
m}

Corollary 2.17. Given a BS(q) random variable with0 < q < 1.2,
then

P[BS(q) even] < %(l +e729)

Proor. First, if g < 1, then by Hoeffding’s theorem we can write
BS(gq) as sum of n Bernoullis with success probability p = g/n.
If n = 1, then the statement obviously holds. Otherwise, by the
previous fact, we have (for some n),

P[BS(q) even] < %(1 +(1-2p)") < %(1 +e7%9)

where we used that |1 — 2p| < ™% for p < 1/2.

So, now assume q > 1. Write BS(q) as the sum of n Bernoullis,
each with success probabilities 1 or p. First assume we have no ones.
Then, either we only have two non-zero Bernoullis with success
probability /2 in which case P [BS(q) even] < 0.6% + 0.4? and we
are done. Otherwise, n > 3 so p < 1/2 and similar to the previous
case we get P[BS(q) even| < %(1 + e729),
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Finally, if ¢ > 1 and one of the Bernoullis is always 1, i.e. BS(q) =
BS(g — 1) + 1, then we get
P[BS(gq) even] = P[BS(q — 1) odd]
1
=;-(-2p)")

1
<= ey <03
where we used that 1 — x > ¢™2* for 0 < x < 0.2. ]

2.6 Random Spanning Trees

Lemma 2.18. Let G = (V,E, x), and let u be any distribution over
spanning trees with marginals x. For any e-near min cut S C V (such
that none of the endpoints of ey = (up,vo) are in S), we have

Py [T NE(S) isa tree] > 1—¢/2.

Moreover, if u is a max-entropy distribution with marginals x, then
for any set of edges A C E(S) and B C E ~\ E(S),
E[AT] <E[A7 | Sisatree] <E[AT] +€/2,
E[Br]—€/2 <E[Br | Sisatree] <E[Br].

Proor. First, observe that

E[E(S)T] = x(E(S)) > w

> |S| - 1-¢/2,

where we used that since ug,v9 ¢ S, and that for any v € S,
E[6(v)1)] = x(6(v)) = 2.
Let ps = P[S is tree]. Then, we must have

IS|=1-(@1-ps)=ps(ISI = 1) + (1 = ps)(IS| - 2)
>E[ES)T] = |S|-1-¢€¢/2.
Therefore, ps > 1 —€/2.

The second part of the claim follows from Fact 2.12. O

Corollary 2.19. Let A, B C V be disjoint sets such that A, B, AUB are
€A, €EB, EAUB-Near minimum cuts w.r.t., x respectively, where none of
them contain endpoints of ey. Then for any distribution u of spanning
trees on E with marginals x,

Pry [E(A,B)r = 1] > 1~ (ea + €B + €4uB)/2.

ProoF. By the union bound, with probability at least 1 — (e4 +
€B + €4uB)/2, A, B, and A U B are trees. But this implies that we
must have exactly one edge between A, B. O

The following simple fact also holds by the union bound.

Fact 2.20. LetG = (V, E, x) and let u be a distribution over spanning
trees with marginals x. For any set A C E , we have

Pro, [TNA=0]>1-xA).

For brevity omit the remaining facts about random spanning
trees.
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3 OVERVIEW OF PROOF

In the remainder of this extended abstract we will sketch the main
ideas of the proof.

As alluded to earlier, the crux of the proof of Theorem 1.1 is to
show that the expected cost of the minimum cost matching on the
odd degree vertices of the sampled tree is at most OPT(1/2 —¢€). We
do this by showing the existence of a cheap feasible O-join solution
to (4).

First, recall that if we only wanted to get an O-join solution of
value at most OPT /2, to satisfy all cuts, it is enough to set y¢ := x,/2
for each edge [48]. To do better, we want to take advantage of the
fact that we only need to satisfy a constraint in the O-join for S
when §(S)r is odd. Here, we are aided by the fact that the sampled
tree is likely to have many even cuts because it is drawn from a
Strong Rayleigh distribution.

If an edge e is exclusively on even cuts then y, can be reduced
below x /2. This, more or less, was the approach in [39] for graphic
TSP, where it was shown that a constant fraction of LP edges will
be exclusively on even near min cuts with constant probability.
The difficulty in implementing this approach in the metric case
comes from the fact that a high cost edge can be on many cuts and
it may be exceedingly unlikely that all of these cuts will be even
simultaneously. Overall, our approach to addressing this is to start
with ye := x¢/2 and then modify it with a random* slack vector
s : E —> R: When certain special (few) cuts that e is on are even
we let se = —xe1n/8 (for a carefully chosen constant > 0); for
other cuts that contain e, whenever they are odd, we will increase
the slack of other edges on that cut to satisfy them. The bulk of
our effort is to show that we can do this while guaranteeing that
E[se] < —enxe for some € > 0.

One thing we do not need to worry about if we perform the
reduction just described is any cut S such that x(5(S)) > 2(1 + n).
Since we always have s, > —x,1/8, any such cut is always satisfied,
even if every edge in §(S) is decreased and no edge is increased.

Let OPT be the optimum TSP tour, i.e., a Hamiltonian cycle, with
set of edges E*; throughout the paper, we write e* to denote an
edge in E*. To bound the expected cost of the O-join for a random
spanning tree T ~ p,, we also construct a random slack vector
s* 1 E* — Ry such that (x + OPT)/4+s +s" is a feasible for Eq. (4)
with probability 1. In Section 3.1 we explain how to use s* to satisfy
all but a linear number of near mincuts.

Theorem 3.1 (Main Technical Theorem). Let x° be a solution of
LP (1) with support Ey = E U {eo}, and x be x° restricted to E. Let
z:= (x+OPT)/2,n < 1072 and let 1 be the max-entropy distribution
with marginals x. Also, let E* denote the support of OPT. There are
two functions s : Eg — R ands* : E* — Ry (as functions of T ~ p),
, such that

i) For each edgee € E, s¢ > —x.1/8.
ii) For each n-near-min-cut S of z, if §(S)T is odd, then s(5(S)) +
s*(8(S)) = 0.
iii) For every OPT edge e*, E [s:*] < 4552 and for every LP edge
e # eg, E[se] < —xe€epn/2 for some small ep.

4where the randomness comes from the random sampling of the tree
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In the next subsection, we explain the main ideas needed to prove
this technical theorem. But first, we show how our main theorem
follows readily from Theorem 3.1.

PROOF OF THEOREM 1.1. Let x° be an extreme point solution of
LP (1), with support Eg and let x be x° restricted to E. By Fact 2.1 x
is in spanning tree polytope. Let = i3+ be the max entropy distri-
bution with marginals x, and let s, s* be as defined in Theorem 3.1.
We will define y : Eg — Ryg and y* : E* — Rx¢. Let

{xe/4+se ife € E
Ye = .
00 ife =eg

we also let y7. = 1/4 + s}, for any edge e* € E*. We will show
that y + y* is a feasible solution® to (4). First, observe that for any
S where ey € §(S), we have y(5(S)) + y*(6(S)) > 1. Otherwise, we
assume ug, vy ¢ S.If S is an n-near min cut w.r.t.,, z and §(S)r is
odd, then by property (ii) of Theorem 3.1, we have

yo) + 5 0) = 22 4 605 + 535 2 1.
On the other hand, if S is not an n-near min cut (w.r.t., z),
005 + 565 2 20 (s
> @ - gZ(Z(S(S)) —1)

> 2(8(S))1/2 —n/4) +n/4
>(2+n)(1/2-n/4)+n/4>1.

where in the first inequality we used property (i) of Theorem 3.1
which says that s > x.1/8 with probability 1 for all LP edges
and that s7. > 0 with probability 1. In the second inequality we
used that z = (x + OPT)/2, so, since OPT > 2 across any cut,
x(8(S)) < 2(z(8(S)) — 1). Therefore, y + y* is a feasible O-join
solution.

Finally, using c(ep) = 0 and part (iii) of Theorem 3.1,

E [c(y) + c(y*)] =OPT/4+c(x)/4+E [c(s) + c(s*)]

< OPT/4 + ¢(x)/4 + 45n°OPT — epne(x)/2
< (1/2 — epn/4)OPT

choosing 7 such that 457 = ep/4.1 and that ¢(x) < OPT.
Now, we are ready to bound approximation factor of our algo-

0 is an extreme point solution of (1), min, ¢ Eo xg >

rithm. First, since x
%. So, by Theorem 1.3, in polynomial time we canfind A : E — R3¢
such that for any e € E, P, [e] < x¢(1 + &) for some § that we fix

later. It follows that

> 1By le] =By, el |< ns.

ecE

By stability of maximum entropy distributions (see [45, Thm 4]
and references therein), we have that ||z — 3|l < 0(n*8) =: q.

Therefore, for some § < n™* we get ||p — palli = g < %. That

SRecall that we merely need to prove the existence of a cheap O-join solution. The
actual optimal O-join solution can be found in polynomial time.
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means that
Er~y, [min cost matching] < Er., [c(y) + c(y*)] + q(OPT/2)

1
<[z -1, ) opr,
2 4 100

where we used that for any spanning tree the cost of the minimum
cost matching on odd degree vertices is at most OPT /2. Finally,
since E7y, [¢(T)] < OPT(1 + 5) and ep = 3.9 - 10717 we get a
3/2 — 2 - 1073% approximation algorithm for TSP. O

3.1 Ideas Underlying the Proof of Theorem 3.1

The first step of the proof is to show that it suffices to construct a
slack vector s for a “cactus-like” structure of near min-cuts that we
call a hierarchy. Informally, a hierarchy H is a laminar family of
mincuts®, consisting of two types of cuts: triangle cuts and degree
cuts. A triangle S is the union of two min-cuts X and Y in H such
that x(E(X,Y)) = 1. See Fig. 1 for an example of a hierarchy with
three triangles.

Figure 1: An example of part of a hierarchy with three trian-
gles. The graph on the left shows part of a feasible LP solu-
tion where dashed (and sometimes colored) edges have frac-
tion 1/2 and solid edges have fraction 1. The dotted ellipses
on the left show the min-cuts u;,u2,u3 in the graph. (Each
vertex is also a min-cut). On the right is a representation
of the corresponding hierarchy. Triangle u; corresponds to
the cut {a, b}, up corresponds to {c,d} and u3 corresponds to
{a, b, c,d}. Note that, for example, the edge (g, c), represented
in green, is in §(u1), 8(u3), and inside us. For triangle u;, we
have A = §(a) \ (a,b) and B = §(b) \ (b,d).

We will refer to the set of edges E(X, S) (resp. E(Y, S)) as A (re-
spectively B) for a triangle cut S. In addition, we say a triangle cut S
is happy if AT and Bt are both odd. All other cuts are called degree
cuts. A degree cut S is happy if 5(S)t is even.

©This is really a family of near-min-cuts, but for the purpose of this overview, assume
n=0
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Theorem 3.2 (Main Payment Theorem (informal)). LetG = (V, E, x)
for LP solution x and let i be the max-entropy distribution with
marginals x. Given a hierarchy H, there is a slack vectors : E — R
such that
i) For each edgee € E, s¢ > —x.1/8.
ii) Foreach cutS € H if 5(S)T is not happy, then s(6(S)) > 0.
iii) For every LP edge e # ey, E [se] < —nepxe forep > 0.

In the following subsection, we discuss how to prove this theo-
rem. Here we explain at a high level how to define the hierarchy
and reduce Theorem 3.1 to this theorem.

First, observe that, given Theorem 3.2, cuts in H will automati-
cally satisfy (ii) of Theorem 3.1. The approach we take to satisfying
all other cuts is to introduce additional slack, the vector s*, on OPT
edges.

Consider the set of all near-min-cuts of z, where z := (x+OPT)/2.
Starting with z rather than x allows us to restrict attention to a
significantly more structured collection of near-min-cuts. The key
observation here is that in OPT, all min-cuts have value 2, and
any non-min-cut has value at least 4. Therefore averaging x with
OPT guarantees that every p-near min-cut of z must consist of
a contiguous sequence of vertices (an interval) along the OPT cycle.
Moreover, each of these cuts is a 2y-near min-cut of x. Arranging
the vertices in the OPT cycle around a circle, we identify every
such cut with the interval of vertices that does not contain (ug, vg).
Also, we say that a cut is crossed on both sides if it is crossed on
the left and on the right.

To ensure that any cut S that is crossed on both sides is satisfied,
we first observe that S is odd with probability O(n). To see this,
let S; and Sk be the cuts crossing S on the left and right with
minimum intersection with S and consider the two (bad) events
{E(SNSg,SL. \S))T # 1} and {E(SNSR, Sk \S))T # 1}. Recall that
if A, Band AU B are all near-min-cuts, then P [E(A, B)T # 1] = O(n)
(see Corollary 2.19). Applying this fact to the two aforementioned
bad events implies that each of them has probability O(r). Therefore,
we will let the two OPT edges in &(S) be responsible for these
two events, i.e., we will increase the slack s* on these two OPT
edges by O(n) when the respective bad events happens. This gives
E[s*(e*)] = O(n?) for each OPT edge e*. As we will see, this simple
step will reduce the number of near-min-cuts of z that we need to
worry about satisfying to O(n).

Next, we consider the set of near-min-cuts of z that are crossed
on at most one side. Partition these into maximal connected com-
ponents of crossing cuts. Each such component corresponds to an
interval along the OPT cycle and, by definition, these intervals form
a laminar family.

A single connected component C of at least two crossing cuts is
called a polygon. We prove the following structural theorem about
the polygons induced by z:

Theorem 3.3 (Polygons look like cycles (Informal version of poly-
gon structure theorem)). Given a connected component C of near-
min-cuts of z that are crossed on one side, consider the coarsest par-
tition of vertices of the OPT cycle into a sequence ay, . ..,am—-1 of
sets called atoms (together with ay which is the set of vertices not
contained in any cut of C). Then

e Every cut in C is the union of some number of consecutive

atomsinai,...,am—1.
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e For each i such that0 < i < m— 1, x(E(aj,aj+1)) = 1 and
similarly x(E(am-1, a0)) ~ 1.
e Foreachi > 0, x(8(a;)) = 2.

The main observation used to prove Theorem 3.3 is that the
cuts in C crossed on one side can be partitioned into two laminar
families £ and R, where L (resp. R) is the set of cuts crossed on
the left (resp. right). This immediately implies that |C]| is linear in
m. Since cuts in £ cannot cross each other (and similarly for R),
the proof boils down to understanding the interaction between £
and R.

The approximations in Theorem 3.3 are correct up to O(5). Using
additional slack in OPT, at the cost of an additional O(?) for edge,
we can treat these approximate equations as if they are exact. Ob-
serve that if x(E(aj, ai+1)) = 1, and x(5(a;)) = x(5(aj+1)) = 2 for
1 < i £ m - 2, then with probability 1, E(a;, aj+1)T = 1. Therefore,
any cut in C which doesn’t include a; or ap,—1 is even with prob-
ability 1. The cuts in C that contain a; are even precisely’ when
E(ap,a1)T = 1 and similarly the cuts in C that contain a,,—1 are
even when E(ag, am-1)T = 1. These observations are what allow
us to imagine that each polygon is a triangle, i.e., assume m = 3.

The hierarchy H is the set of all n-near mincuts of z that are not
crossed at all (these will be the degree cuts), together with a triangle
for every polygon. In particular, for a connected component C of
size more than 1, the corresponding triangle cutis a; U ... U ap-1,
with A = E(ag,a1) and B = E(ag, am-1). Observe that from the
discussion above, when a triangle cut is happy, then all of the cuts
in the corresponding polygon C are even.

Summarizing, we show that if we can construct a good slack
vector s for a hierarchy of degree cuts and triangles, then there is a
nonnegative slack vector s*, that satisfies all near-minimum cuts
of z not represented in the hierarchy, while maintaining slack for
each OPT edge e* such that E [s*(e*)] = O(7?).

Remarks: The reduction that we sketched above only uses the
fact that p is an arbitrary distribution of spanning trees with marginals
x and not necessarily a maximum-entropy distribution.

We also observe that to prove Theorem 1.1, we crucially used
that 457 < e. This forces us to take n very small, which is why we
get only a “very slightly” improved approximation algorithm for
TSP. Furthermore, since we use OPT edges in our construction, we
don’t get a new upper bound on the integrality gap. We leave it as
an open problem to find a reduction to the “cactus” case that does
not involve using a slack vector for OPT (or a completely different
approach).

3.2 ProofIdeas for Theorem 3.2

We now address the problem of constructing a good slack vector
s for a hierarchy of degree cuts and triangle cuts. For each LP
edge f, consider the lowest cut in the hierarchy, that contains both
endpoints of f. We call this cut p(f). If p(f) is a degree cut, then
we call f a top edge and otherwise, it is a bottom edge®. We will see
that bottom edges are easier to deal with, so we start by discussing
the slack vector s for top edges.

"Roughly, this corresponds to the definition of the polygon being left-happy.
8For example, in Fig. 1, p(a, ¢) = u3, and (a, ¢) is a bottom edge.
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Let S be a degree cut and let e = (u, v) (where u and v are children
of S in H) be the set of all top edges f = (u’,v’) such that u’ € u
and v’ € v. We call e a top edge bundle and say that u and v are the
top cuts of each f € e. We will also sometimes say that e € S.

Ideally, our plan is to reduce the slack of every edge f € e
when it is happy, that is, both of its top cuts are even in T. Specif-
ically, we will set s¢ := —nxy when 8(u)r and 8(v)T are even.
When this happens, we say that f is reduced, and refer to the event
{6(u)T,6(v)T even} as the reduction event for f. Since this latter
event doesn’t depend on the actual endpoints of f, we view this as
a simultaneous reduction of se.

Now consider the situation from the perspective of the degree
cut u (where p(u) = S) and consider any incident edge bundle in S,
e.g., € = (u,v). Either its top cuts are both even and se := —nxe, or
they aren’t even, because, for example, §(u)7 is odd. In this latter
situation, edges in 8T(w) = 8(u) N 5(S) might have been reduced
(because their top two cuts are even), which a priori could leave
d(u) unsatisfied. In such a case, we increase se for edge bundles
in 67 (u) := 6(u) \ 8(S) to compensate for this reduction. Our
main goal is then to prove is that for any edge bundle its expected
reduction is greater than its expected increase. The next example
shows this analysis in an ideal setting.

Example 3.4 (Simple case). Fix a top edge bundle e = (u, v) with
p(e) = S. Let xy, := x(8T()) and let x5, := x(8T(v)). Suppose we
have constructed a (fractional) matching between edges whose top
two cuts are children of S in H and the edges in §(S), and this
matching satisfies the following three conditions: (a) e = (u,v) € §
is matched (only) to edges going higher from its top two cuts (i.e.,
to edges in 57(u) and 57(v)), (b) e is matched to an me, y, fraction of
every edge in 57(u) and to an me, » fraction of each edge in 5T(v),
where

Me y + Me, v = Xe,

and (c) the fractional value of edges in 6 (u) := &(u) \ 5T(w)
matched to edges in ST(u) is equal to x,. That is, for each u € S,
Xfes=(u) Mf,u = Xu-

The plan is for e € S to be tasked with part of the responsibility
for fixing the cuts §(u) and §(v) when they are odd and edges going
higher are reduced. Specifically, se is increased to compensate for
an me,y, fraction of the reductions in edges in § T(u) when 8(u)7 is
odd. (And similarly for reductions in v.) Thus, we may compute
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E [se] as:
— P [e reduced] nxe (6)

X
+ me, P[8(u)T odd | g reduced] P [g reduced] n J
o geazw x(61(w)

X
+ me, P[8(v)T odd | g reduced] P [g reduced] J

“ 96;(0) x(81())

(7

We will lower bound P [§(u)T even | g reduced]. We can write this
as

P [5_’(14)7 and 5T(u)T have same parity | g reduced| .

Unfortunately, we do not currently have a good handle on the
parity of § T(u) conditioned on g reduced. However, we can use
the following simple but crucial property: Since x(5(S)) = 2, by
Lemma 2.18, T consists of two independent trees, one on S and one
onV \ S, each with the corresponding marginals of x. Therefore,
we can write

P[8(u)T even | g reduced]
> min(P [(§ 7 (u))T even]| ,P [(67 (w))r odd]).

This gives us a reasonable bound when € < x,x, < 1 — € since,
because x(6(u)) = x(8(v)) = 2, by the SR property, (6 (u))T (and
similarly (67 (v))T) is the sum of Bernoulis with expectation in
[1+€,2 — €]. From this it follows that

min(P [(§7(w))7 even| ,P [(§7(u))T odd]) = Q(e).

We can therefore conclude that P[§(u)T odd | g reduced] < 1 -
O(e).

The rest of the analysis of this special case follows from (a) the
fact that our construction will guarantee that for all edges g, the
probability that g is reduced is exactly p, i.e., it is the same for all
edges, and (b) the fact that me, Xy, + Me, Xy = Xe. Plugging these
facts back into (7), gives

E[se] < —pnxe + me,u(1— €)pn + me,o(1 - €)py
< —pnxe + (1 — €)pnxe = —€pnxe. (8)
If we could prove (8) for every edge f in the support of x, that would

complete the proof that the expected cost of the min O-join for a
random spanning tree T ~ p is at most (1/2 — €)OPT.

Remark: Throughout this paper, we repeatedly use a mild gen-
eralization of the above "independent trees fact": that if S is a cut
with x(6(S)) < 2+¢, then St is very likely to be a tree. Conditioned
on this fact, marginals inside S and outside S are nearly preserved
and the trees inside S and outside S are sampled independently (see
Lemma 2.18).

Ideal reduction: In the example, we were able to show that the
quantity P [(u)T odd | g reduced] was bounded away from 1 for
every edge g € 57(u), and this is how we proved that the expected
reduction for each edge was greater than the expected increase on
each edge, yielding negative expected slack.

This motivates the following definition: A reduction for an edge
g is k-ideal if, conditioned on g reduced, every cut S that is in the top
k levels of cuts containing g is odd with probability that is bounded
away from 1.
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Moving away from an idealized setting: In Example 3.4, we over-

simplified in four ways:

(a) We assumed that it would be possible to show that each top
edge is good. That is, that its top two cuts are even simulta-
neously with constant probability.

(b) We considered only top edge bundles (i.e., edges whose top
cuts were inside a degree cut).

(c) We assumed that x,, x,, € [€,1—€].

(d) We assumed the existence of a nice matching between edges
whose top two cuts were children of S and the edges in §(S).

Our proof needs to address all four anomalies that result from
deviating from these assumptions.

Figure 2: An Example with Bad Edges. A feasible solution of
(1) is shown; dashed edges have fraction 1/2 and solid edges
have fraction 1. Writing E = Ey \ {ep} as a maximum entropy
distribution y we get the following: Edges (a, b), (c,d) must
be completely negatively correlated (and independent of all
other edges). So, (b, up), (a, up) are also completely negatively
correlated. This implies (a, b) is a bad edge.

Bad edges. Consider first (a). Unfortunately, it is not the case that
all top edges are good. Indeed, some are bad. However, it turns out
that bad edges are rare in the following senses: First, for an edge to
be bad, it must be a half edge, where we say that an edge e is a half
edge if xe € 1/2 + €, for a suitably chosen constant €;/,. Second,
of any two half edge bundles sharing a common endpoint in the
hierarchy, at least one is good. For example, in Fig. 2, (a, up) and
(b, up) are good half-edge bundles. We advise the reader to ignore
half edges in the first reading of the paper. Correspondingly, we note
that our proofs would be much simpler if half-edge bundles never
showed up in the hierarchy. It may not be a coincidence that half
edges are hard to deal with, as it is conjectured that TSP instances
with half-integral LP solutions are the hardest to round [40, 41].

Our solution is to never reduce bad edges. But this in turn poses
two problems. First, it means that we need to address the possibility
that the bad edges constitute most of the cost of the LP solution.
Second, our objective is to get negative expected slack on each good
edge and non-positive expected slack on bad edges. Therefore, if
we never reduce bad edges, we can’t increase them either, which
means that the responsibility for fixing an odd cut with reduced
edges going higher will have to be split amongst fewer edges (the
incident good ones).

We deal with the first problem by showing that in every cut u
in the hierarchy at least 3/4 of the fractional mass in §(u) is good
and these edges suffice to compensate for reductions on the edges
going higher. Moreover, because there are sufficiently many good
edges incident to each cut, we can show that either using the slack
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Figure 3: In the triangle u corresponding to the cut §(a; U ay),
when A1 and By are odd, all 3 cuts (5(a1)7,d(az)T and §(a; U
az2)t = 8(u)T are odd (since fr is always 1). (Recall also that
the edges in the bundle e must have one endpoint in {a;Uaz}
and one endpoint in {a3 U a4}, as was the case, e.g., for the
edge (a,c) in Fig. 1.)

vector {s.} gives us a low-cost O-join, or we can average it out
with another O-join solution concentrated on bad edges to obtain a
reduced cost matching of odd degree vertices.

We deal with the second problem by proving there is a matching
between good edge bundles e = (u,v) and fractions me,y, Me, v
of edges in 5T(u), 5T(U) such that, roughly, me ,; + Mme,o = (1 +
0(61/2))xe-

Dealing with triangles. Turning to (b), consider a triangle cut S,
for example d(a; U ap) in Fig. 3. Recall that in a triangle, we can
assume that there is an edge of fractional value 1 connecting a;
and ay in the tree, and this is why we defined the cut to be happy
when At and Bt are odd: this guarantees that all 3 cuts defined by
the triangle (§(a1), 8(az), 8(a1 U az) are even.

Now suppose that e = (u,v) is a top edge bundle, where u
and v are both triangles, as shown in Fig. 3. Then we’d like to re-
duce se when both cuts u and v are happy. But this would require
more than simply both cuts being even. This would require all of
Ar,Br, A’T, B;. to be odd. Note that if, for whatever reason, e is re-
duced only when &(u1 )T and §(uz)T are both even, then it could be,
for example, that this only happens when A1 and Bt are both even.
In this case, both §(a1)T and §(az)T will be odd with probability 1
(recalling that fr = 1), which would then necessitate an increase
in s whenever e is reduced. In other words, the reduction will not
even be 1-ideal.

It turns out to be easier for us to get a 1-ideal reduction rule for
e as follows: Say that e is 2-1-1 happy with respect to u if 6(u)T is
even and both A7, B, are odd. We reduce e with probability p/2
when it is 2-1-1 happy with respect to u and with probability p/2
when it is 2-1-1 happy with respect to v. This means that when e
is reduced, half of the time no increase in s¢ is needed since u is
happy. Similarly for .

The 2-1-1 criterion for reduction introduces a new kind of bad
edge: a half edge that is good, but not 2-1-1 good. We are able to
show that non-half-edge bundles are 2-1-1 good, and that if there
are two half edges which are both in A or are both in B, then at
least one of them is 2-1-1 good. Finally, we show that if there are
two half edges, where one is in A and the other is in B, and neither
is 2-1-1 good, then we can apply a different reduction criterion that
we call 2-2-2 good. When the latter applies, we are guaranteed to
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decrease both of the half edge bundles simultaneously. All together,
the various considerations discussed in this paragraph force us
to come up with a relatively more complicated set of rules under
which we reduce se for a top edge bundle e whose children are
triangle cuts.

Bottom edge reduction. Next, consider a bottom edge bundle f =
(a1, az) where p(a1) = p(az) is a triangle. Our plan is to reduce s¢
(i.e., set it to —nx¢) when the triangle is happy, thatis, AT = By = 1.
The good news here is that every triangle is happy with constant
probability. However, when a triangle is not happy, s may need to
increase to make sure that the O-join constraint for §(a1) and §(az)
are satisfied, if edges in A and B going higher are reduced. Since
x¢ = x(A) = x(B) = 1, this means that f may need to compensate
at twice the rate at which it is getting reduced. This would result in
E [s¢g] > 0, which is the opposite of what we seek.

We use two key ideas to address this problem. First, we reduce
top edges and bottom edges by different amounts: Specifically, when
the relevant reduction event occurs, we reduce a bottom edge f by
Px¢ and top edges e by 7xe, where f > 7 (and 7 is a multiple of #).

Thus, the expected reduction in s¢ is pfxg = pf, whereas the
expected increase (due to compensation of, say, top edges going
higher) is pr(x(A) + x(B))q = pr2q, where

q = P[ triangle happy | reductions in A and B].

Thus, so long as 27q < f§ — €, we get the expected reduction in s¢
that we seek.

The discussion so far suggests that we need to take 7 smaller
than f/2q, which is /2 if q is 1, for example. On the other hand, if
7 = f/2, then when a top edge needs to fix a cut due to reductions
on bottom edges, we have the opposite problem - their expected
increase will be greater than their expected reduction, and we are
back to square one.

Coming to our aid is the second key idea, already discussed in
Section 1.2.3. We reduce bottom edges only when A7 = Br =1
and the marginals of edges in A, B are approximately preserved
(conditioned on At = Br = 1). This allows us to get much stronger
upper bounds on the probability that a lower cut a bottom edge is
on is odd, given that the bottom edge is reduced, and enables us to
show that bottom edge reduction is co-ideal.

It turns out that the combined effects of (a) choosing 7 = 0.571f,
and (b) getting better bounds on the probability that a lower cut is
even given that a bottom edge is reduced, suffice to deal with the
interaction between the reductions and the increases in slack for
top and bottom edges.

Example3.5. [Bottom-bottom case] To see how preserving marginals
helps us handle the interaction between bottom edges at consec-
utive levels, consider a triangle cut aj = {a1, a2} whose parent
cut $ = {a].a}} is also a triangle cut (as shown in Fig. 4). Let’s
analyze E [s¢] where f = (aj, az). Observe first that A” UB ™ is a
bottom edge bundle in the triangle S and all edges in this bundle
are reduced simultaneously when A7 = By = 1 and marginals
of all edges in A U B are approximately preserved. (For the pur-
poses of this overview, we’ll assume they are preserved exactly).
Let x(AT) = . Then since A = AT U A~ and x(A) = 1, we have
x(A™) = 1 — . Moreover, since A = AT UBT and x(A) = 1, we also
have x(BT) = 1 - @ and x(B™) = .



STOC ’21, June 21-25, 2021, Virtual, Italy

Figure 4: Setting of Example 3.5. Note that the set A = §(a;)N
S(ai) decomposes into two sets of edges, AT, those that are
also in §(S), and the rest, which we call A™. Similarly for B.

Therefore, using the fact that when A~ UB™ is reduced, exactly
one edge in ATUB is selected (and also exactly one edge in A UB™
is selected since it is a bottom edge bundle), and marginals are
preserved given the reduction, we conclude that

P [a{ happy | A UB™ reduced]
=P[Ar =Br =1| A~ UB™ reduced| = a® +(1-a).

Now, we calculate E [s¢]. First, note that f may have to increase to
compensate either for reduced edges in AT U B 1 orin A~ UB™.
For the sake of this discussion, suppose that AT U BT is a set of
top edges. Then, in the worst case we need to increase f by pr in
expectation to fix the cuts aj, az due to the reduction in AT U BT,
Now, we calculate the expected increase due to the reduction in
A™ U B™. The crucial observation is that edges in A~ U B are
reduced simultaneously, so both cuts §(a;) and §(az) can be fixed
simultaneously by an increase in s¢. Therefore, when they are both
odd, it suffices for f to increase by

max{x(A7),x(B7)} = max{a,1 - a}p,
to fix cuts aj, az. Putting this together, we get

E[s¢] = —pp +E [increase due to A~ UB™|
+E [increase dueto ATu BT]

< —pB+pp max a[l—a®-(1-a)?]+pr
ael1/2,1]
which, since maxqe[1/2,1] a[l—a?—(1-a)?] = 8/27and r = 0.5718
is

=pp(-1+ 2% +0.571) = —0.13pp.

Dealing with x,, close to 1. ° Now, suppose that e = (1, v) is a top
edge bundle with x;, := x(§ T(u)) is close to 1. Then, the analysis in
Example 3.4, bounding r := P[§(u)T odd | g reduced] away from 1
for an edge g € 5T(u) doesn’t hold. To address this, we consider two
cases: The first case, is that the edges in §1(u) break up into many
groups that end at different levels in the hierarchy. In this case, we
can analyze r separately for the edges that end at any given level,

Some portions of this discussion might be easier to understand after reading the rest
of the paper.
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taking advantage of the independence between the trees chosen at
different levels of the hierarchy.

The second case is when nearly all of the edges in 5T(u) end
at the same level, for example, they are all in § 7 (v”) where p(u’)
is a degree cut. In this case, we introduce a more complex (2-1-1)
reduction rule for these edges. The observation is that from the
perspective of these edges u’ is a "pseudo-triangle". That is, it looks
like a triangle cut, with atoms u and ¥’ \ u where §(u) N §(u’)
corresponds to the “A”-side of the triangle.

Now, we define this more complex 2-1-1 reduction rule: Con-
sider a top edge f = (u’,v’) € 57 (u’). So far, we only considered
the following reduction rule for f: If both u’, v’ are degree cuts,
f reduces when they are both even in the tree; otherwise if say
u’ is a triangle cut, f reduces when it is 2-1-1 good w.r.t., u’ (and
similarly for v’). But clearly these rules ignore the pseudo trian-
gle. The simplest adjustment is, if 4’ is a pseudo triangle with
partition (u,u” \ u), to require f to reduce when A7 = Br =1
and v’ is happy. However, as stated, it is not clear that the sets
A and B are well-defined. For example, u” could be an actual tri-
angle or there could be multiple ways to see u’ as a pseudo tri-
angle only one of which is (4, #’ \ u). Our solution is to find the
smallest disjoint pair of cuts @, b C u’ in the hierarchy such that
x(8(a) N 8(u"), x(5(b) N 5(u’)) = 1 - €11, where €y is a fixed
universal constant, and then let A = §(a) N 6(u’), B = 6(b) N 6(u’)
and C = §(u’) . A\ B (see Fig. 5 for an example). Then, we say f
is 2-1-1 happy w.r.t., u’ if A = By = 1 and C1 = 0.

A few observations are in order:

e Since u is a candidate for, say g, it must be that a is a descen-
dent of u in the hierarchy (or equal to ). In addition, b cannot
simultaneously be in u, since anb = 0 and x(5(u)NS(u’)) < 1
by Lemma 2.7. So, when f is 2-1-1 happy w.r.t. u’ we get
(6w N )r = 1.

o If u’ = (X,Y) is a actual triangle cut, then we must have
a CX,bCY.So, whenf is 2-1-1 happy w.r.t. u’, we know
that u’ is a happy triangle, i.e., (§(X) N §(u’))T = 1 and
BY)NSs@)r =1.

Now, suppose for simplicity that all top edges in §(u”) are 2-1-1
good w.r.t. u’. Then, when an edge g € §(u) N §(u’) is reduced,
(6w) NS )T = 1,50 P[6(u)T odd | g reduced] is at most

<P [E(u, u' N\ u)reven|g reduced] <0.57,

since edges in E(u, u” \ u) are in the tree independent of the reduc-
tion and E[E(u, u’ \ u)r] ~ 1.

Dealing with x,, close to 0 and the matching. We already dis-
cussed how the matching is modified to handle the existence of
bad edges. We now observe that we can handle the case x;, = 0
by further modifying the matching. The key observation is that in
this case, x(57(w)) > x(8T(w)). Roughly speaking, this enables
us to find a matching in which each edge in 6 (u) has to in-
crease about half as much as would normally be expected to fix the
cut of u. This eliminates the need to prove a nontrivial bound on
P[5(u)T odd | g reduced].

This completes the proof sketch.
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w2
Uy — a4 Ul —— by W1 — ¢4
a; a; a3 by by bs c1 C2 €3

AA

Figure 5: Part of the hierarchy of the graph is shown on top. Edges
of the same color have the same fraction and € > 7 is a small con-
stant. u; corresponds to the degree cut {ay, ay, a3}, uy corresponds
to the triangle cut {u;, a4} and u corresponds to the degree cut con-
taining all of the vertices shown. Observe that edges in 57(a;) are top
edges in the degree cut u. If € < }¢;/; then the (4, B, C)-degree par-
titioning of edges in §(uy) is as follows: A = §(a;)NS(uy) are the blue
highlighted edges each of fractional value 1/2 — ¢, B = §(as) N §(uz2)
are the green highlighted edges of total fractional value 1, and C are
the red highlighted edges each of fractional value €. The cuts that
contain edge (aj, c1) are highlighted in the hierarchy at the bottom.

ACKNOWLEDGEMENTS

The research of the first author was supported in part by NSF grant
CCF-1813135 and the Air Force Office of Scientific Research grant
FA9550-20-1-0212. The research of the second author was supported
in part by NSF grants CCF-1813135, CCF-1552097 and CCF-1907845.
The research of the third author was supported in part by Air Force
Office of Scientific Research grant FA9550-20-1-0212, NSF grants
CCF-1552097, CCF-1907845, ONR YIP grant N00014-17-1-2429, and
a Sloan fellowship.

REFERENCES

[1] Nima Anari, Shayan Oveis Gharan, and Cynthia Vinzant. 2018. Log-Concave
Polynomials, Entropy, and a Deterministic Approximation Algorithm for Count-
ing Bases of Matroids. In FOCS, Mikkel Thorup (Ed.). IEEE Computer Society,
35-46.

[2] David L. Applegate, Robert E. Bixby, Vasek Chvatal, and William J. Cook. 2007.
The Traveling Salesman Problem: A Computational Study (Princeton Series in
Applied Mathematics). Princeton University Press, Princeton, NJ, USA.

[3] Sanjeev Arora. 1996. Polynomial Time Approximation Schemes for Euclidean
TSP and Other Geometric Problems. In FOCS. 2-11.

[4] Sanjeev Arora, Michelangelo Grigni, David Karger, Philip Klein, and Andrzej
Woloszyn. 1998. A polynomial-time approximation scheme for weighted planar
graph TSP. In SODA. 33-41.

[5] Arash Asadpour, Michel X. Goemans, Aleksander Madry, Shayan Oveis Gharan,
and Amin Saberi. 2010. An O(log n/ log log n)-approximation Algorithm for the
Asymmetric Traveling Salesman Problem. In SODA. 379-389.

™
=

[23]

[24

[25

[27

[28

STOC °21, June 21-25, 2021, Virtual, Italy

Andras A. Benczir. 1995. A Representation of Cuts within 6/5 Times the Edge
Connectivity with Applications. In FOCS. 92-102.

Andras A. Benczur. 1997. Cut structures and randomized algorithms in edge-
connectivity problems. Ph.D. Dissertation. MIT.

Andras A. Benczir and Michel X. Goemans. 2008. Deformable Polygon Represen-
tation and Near-Mincuts. Building Bridges: Between Mathematics and Computer
Science, M. Groetschel and G.O.H. Katona, Eds., Bolyai Society Mathematical Studies
19 (2008), 103-135.

Julius Borcea, Petter Branden, and Thomas M. Liggett. 2009. Negative dependence
and the geometry of polynomials. Journal of American Mathematical Society 22
(2009), 521-567.

Sylvia Boyd and Robert Carr. 2011. Finding low cost TSP and 2-matching solutions
using certain half-integer subtour vertices. Discrete Optimization 8, 4 (2011), 525
~539. http://www.sciencedirect.com/science/article/pii/S1572528611000302

S. Boyd and P. Elliott-Magwood. 2010. Structure of the extreme points of the
subtour elimination polytope of the STSP. In Combinatorial Optimization and
Discrete Algorithms, Vol. B23. 33-47.

S. C. Boyd and William R. Pulleyblank. 1991. Optimizing over the subtour
polytope of the travelling salesman problem. Math. Program. 49 (1991), 163-187.
Robert D. Carr and Santosh Vempala. 2000. Towards a 4/3 approximation for the
asymmetric traveling salesman problem. In SODA. 116-125.

Nicos Christofides. 1976. Worst Case Analysis of a New Heuristic for the Traveling
Salesman Problem. Report 388. Graduate School of Industrial Administration,
Carnegie-Mellon University, Pittsburgh, PA.

G.B. Dantzig, D.R. Fulkerson, and S. Johnson. 1959. On a Linear Programming
Combinatorial Approach to the Traveling Salesman Problem. OR 7 (1959), 58-66.
J. N. Darroch. 1964. On the distribution of the number of successes in independent
trials. Ann. Math. Stat. 36 (1964), 1317-1321.

Erik D. Demaine, MohammadTaghi Hajiaghayi, and Bojan Mohar. 2007. Approx-
imation algorithms via contraction decomposition. In SODA. 278-287.

E.A. Dinits, AV. Karzanov, and M.V. Lomonosov. 1976. On the structure of a
family of minimal weighted cuts in graphs. Studies in Discrete Mathematics (in
Russian), ed. A.A. Fridman, 290-306, Nauka (Moskva) (1976).

Jack Edmonds. 1970. Submodular functions, matroids and certain polyhedra. In
Combinatorial Structures and Their Applications. Gordon and Breach, New York,
NY, USA, 69-87.

Jack Edmonds and Ellis L. Johnson. 1973. Matching, Euler tours and the Chinese
postman. Mathematical Programming 5, 1 (1973), 88-124.

Tomas Feder and Milena Mihail. 1992. Balanced matroids. In Proceedings of the
twenty-fourth annual ACM symposium on Theory of Computing (Victoria, British
Columbia, Canada). ACM, New York, NY, USA, 26-38.

David Gamarnik, Moshe Lewenstein, and Maxim Sviridenko. 2005. An improved
upper bound for the TSP in cubic 3-edge-connected graphs. Oper. Res. Lett. 33, 5
(Sept. 2005), 467-474.

Kyle Genova and David P. Williamson. 2017. An Experimental Evaluation of
the Best-of-Many Christofides’ Algorithm for the Traveling Salesman Problem.
Algorithmica 78, 4 (2017), 1109-1130.

Michel X. Goemans. 1995. Worst-Case Comparison of Valid Inequalities for the
TSP. MATH. PROG 69 (1995), 335-349.

M. Grigni, E. Koutsoupias, and C. Papadimitriou. 1995. An approximation scheme
for planar graph TSP. In FOCS ’95: Proceedings of the 36th Annual Symposium on
Foundations of Computer Science. IEEE Computer Society, Washington, DC, USA,
640.

Leonid Gurvits. 2006. Hyperbolic polynomials approach to Van der
Waerden/Schrijver-Valiant like conjectures: sharper bounds, simpler proofs and
algorithmic applications. In STOC, Jon M. Kleinberg (Ed.). ACM, 417-426.
Leonid Gurvits. 2008. Van der Waerden/Schrijver-Valiant like Conjectures and
Stable (aka Hyperbolic) Homogeneous Polynomials: One Theorem for all. Electr.
J. Comb. 15, 1 (2008).  http://www.combinatorics.org/Volume_15/Abstracts/
v15i1r66.html

Arash Haddadan and Alantha Newman. 2019. Towards Improving Christofides
Algorithm for Half-Integer TSP. In ESA (LIPIcs, Vol. 144), Michael A. Bender, Ola
Svensson, and Grzegorz Herman (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 56:1-56:12.

Arash Haddadan, Alantha Newman, and R. Ravi. 2017. Cover and Conquer:
Augmenting Decompositions for Connectivity Problems. (2017). http://arxiv.
org/abs/1707.05387 abs/1707.05387.

G. H. Hardy, J. E. Littlewood, and G. Polya. 1952. Inequalities. Cambridge Univ.
Press.

M. Held and R.M. Karp. 1970. The traveling salesman problem and minimum
spanning trees. Operations Research 18 (1970), 1138-1162.

W. Hoeffding. 1956. On the distribution of the number of successes in independent
trials. Ann. Math. Statist. 27 (1956), 713-721.

Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. 2020. An improved
approximation algorithm for TSP in the half integral case. In STOC, Konstantin
Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia
Chuzhoy (Eds.). ACM, 28-39.


http://www.sciencedirect.com/science/article/pii/S1572528611000302
http://www.combinatorics.org/Volume_15/Abstracts/v15i1r66.html
http://www.combinatorics.org/Volume_15/Abstracts/v15i1r66.html
http://arxiv.org/abs/1707.05387
http://arxiv.org/abs/1707.05387

STOC ’21, June 21-25, 2021, Virtual, Italy

[34]

[35]

Marek Karpinski, Michael Lampis, and Richard Schmied. 2015. New inapprox-
imability bounds for TSP. . Comput. System Sci. 81, 8 (2015), 1665 — 1677.
Philip N. Klein. 2005. A linear-time approximation scheme for planar weighted
TSP. In FOCS. 647-657.

[36] Joseph SB Mitchell. 1999. Guillotine subdivisions approximate polygonal sub-

[37]

[38]
[39]

[40

[41]

divisions: A simple polynomial-time approximation scheme for geometric TSP,
k-MST, and related problems. SIAM J. Comput. 28, 4 (1999), 1298-1309.

Tobias Moemke and Ola Svensson. 2011. Approximating Graphic TSP by Match-
ings. In FOCS. 560-569.

M Mucha. 2012. %fapproximation for graphic TSP.. In STACS. 30-41.

Shayan Oveis Gharan, Amin Saberi, and Mohit Singh. 2011. A Randomized
Rounding Approach to the Traveling Salesman Problem. In FOCS. IEEE Computer
Society, 550-559.

Frans Schalekamp, David P. Williamson, and Anke van Zuylen. 2012. A proof of
the Boyd-Carr conjecture. In SODA. 1477-1486.

Frans Schalekamp, David P. Williamson, and Anke van Zuylen. 2013. 2-Matchings,
the Traveling Salesman Problem, and the Subtour LP: A Proof of the Boyd-Carr
Conjecture. Mathematics of Operations Research 39, 2 (2013), 403-417.

[42

[43

[44

[45

[47

[48

]

Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan

Andras Sebo and Jens Vygen. 2012. Shorter Tours by Nicer Ears:. (2012). CoRR
abs/1201.1870.

A. L Serdyukov. 1978. O nekotorykh ekstremal’'nykh obkhodakh v grafakh.
Upravlyaemye sistemy 17 (1978), 76-79. http://nasl.math.nsc.ru/aim/journals/
us/us17/us17_007.pdf

D. B. Shmoys and D. P. Williamson. 1990. Analyzing the Held-Karp TSP bound:
a monotonicity property with application. Inf. Process. Lett. 35, 6 (Sept. 1990),
281-285.

Damian Straszak and Nisheeth K. Vishnoi. 2019. Maximum Entropy Distributions:
Bit Complexity and Stability. In COLT (Proceedings of Machine Learning Research,
Vol. 99), Alina Beygelzimer and Daniel Hsu (Eds.). PMLR, 2861-2891.

Vera Traub, Jens Vygen, and Rico Zenklusen. 2020. Reducing path TSP to TSP.
In STOC, Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam
Kamath, and Julia Chuzhoy (Eds.). ACM, 14-27.

René van Bevern and Viktoriia A. Slugina. 2020. A historical note on the 3/2-
approximation algorithm for the metric traveling salesman problem. (2020). https:
//arxiv.org/abs/2004.02437

Laurence A. Wolsey. 1980. Heuristic analysis, linear programming and branch
and bound. In Combinatorial Optimization II. Mathematical Programming Studies,
Vol. 13. Springer Berlin Heidelberg, 121-134.


http://nas1.math.nsc.ru/aim/journals/us/us17/us17_007.pdf
http://nas1.math.nsc.ru/aim/journals/us/us17/us17_007.pdf
https://arxiv.org/abs/2004.02437
https://arxiv.org/abs/2004.02437

	Abstract
	1 Introduction
	1.1 Algorithm
	1.2 New Techniques

	2 Preliminaries
	2.1 Notation
	2.2 Polyhedral Background
	2.3 Structure of Near Minimum Cuts
	2.4 Strongly Rayleigh Distributions and -uniform Spanning Tree Distributions
	2.5 Sum of Bernoullis
	2.6 Random Spanning Trees

	3 Overview of Proof
	3.1 Ideas Underlying the Proof of thm:maintechnical
	3.2 Proof Ideas for thm:paymentinformal

	References

