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Abstract—This paper presents a stochastic geometry-based
analysis of propagation statistics for 5G millimeter wave (mm-
wave) cellular. In particular, the time-of-arrival (TOA) and angle-
of-arrival (AOA) distributions of the first-arriving multipath
component (MPC) are derived. These statistics find their utility
in many applications such as cellular-based localization, channel
modeling, and link establishment for mm-wave initial access
(IA). Leveraging tools from stochastic geometry, a Boolean
model is used to statistically characterize the random locations,
orientations, and sizes of reflectors, i.e., buildings. Assuming non-
line-of-sight (NLOS) propagation is due to first-order (i.e., single-
bounce) reflections, and that reflectors can either facilitate or
block reflections, the distribution of the path length (i.e., absolute
time delay) of the first-arriving MPC is derived. This result
is then used to obtain the first NLOS bias distribution in the
localization literature that is based on the absolute delay of
the first-arriving MPC for outdoor time-of-flight (TOF) range
measurements. This distribution is shown to match exceptionally
well with commonly assumed gamma and exponential NLOS bias
models in the literature, which were only attained previously
through heuristic or indirect methods. Continuing under this
analytical framework, the AOA distribution of the first-arriving
MPC is derived, which gives novel insight into how environmental
obstacles affect the AOA and also represents the first AOA
distribution derived under the Boolean model.

Index Terms—Localization, range measurement, non-line-of-
sight (NLOS) bias, time-of-flight (TOF), time-of-arrival (TOA),
angle-of-arrival (AOA), multipath component (MPC), stochastic
geometry, Boolean model, Poisson point process (PPP), millimeter
wave (mm-wave), first-order reflection, independent blocking.

I. INTRODUCTION

The past decade has seen tremendous advances in both the
understanding and characterization of the mm-wave channel
for 5G cellular. These advances have been realized, in part,
by the development of stochastic geometry-based analytical
models. One of the most tractable stochastic geometry tools
employed to study mm-wave propagation, and consequently
the most widely-utilized, is that of the Boolean model, which
is able to statistically capture the randomness in the locations,
sizes, and orientations of environmental obstacles (i.e., build-
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ings) [2].1 The pioneering work first utilizing the Boolean
model to study mm-wave propagation in cellular networks
was conducted in [4]. While an excellent examination of
the Boolean model’s usefulness in studying blockage effects,
the analysis in [4] was focused on line-of-sight (LOS) links,
and thus, the study of NLOS propagation under this model
remained an open problem.

An important aspect of mm-waves is that diffraction effects
are negligible while reflections dominate NLOS propagation
[5]. Thus, while [4] did not study multipath effects under
the Boolean model, other subsequent works have. In [6]
for example, first-order reflections were incorporated into the
Boolean model to derive the power delay profile (PDP). The
work in [7] extends that of [6] by considering buildings
with random orientations and equipping the transmitter (Tx)
and receiver (Rx) with directional antennas. Channel char-
acteristics were then derived under first-order reflections and
independent blocking. In [8], the Boolean model under first-
order reflections and independent blocking was used, along
with a point process of transmitters, to “quantify the total
amount of network interference.” Lastly, the work in [9] also
utilized a similar model to derive the probability an anchor-
mobile pair can perform single-anchor localization.

While many works incorporate NLOS propagation into the
Boolean model, including the ones above, they unfortunately
either have restrictive setups or they do not derive our metrics
of interest, namely, the TOA and AOA statistics of the first-
arriving MPC experienced at the mobile for a single link.
For example, the model in [6] does not consider random
orientations of buildings in a given Boolean model realization,
and in [7], the assumption of directional antennas pointed in
fixed directions makes it difficult to determine whether other
NLOS paths are available from different directions. Finally,
while [10] does find the TOA of the first-arriving MPC,
the model assumes one-dimensional reflectors and only the
reflector closest to the mobile is responsible for facilitating
the first-arriving reflection, an assumption that does not often
hold.

The obvious next question is: Why are the TOA and AOA
statistics of the first-arriving MPC important? We begin with
the TOA. In addition to its use in establishing an absolute

1In addition to the Boolean model, there exist other statistical models of
environmental obstacles which are not covered here. For a more in-depth
discussion of other models, the interested reader is referred to [3] and the
references therein.
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timing reference for channel modeling purposes, the TOA
distribution of the first-arriving MPC is perhaps most useful
for addressing the NLOS bias problem that arises in localiza-
tion. The NLOS bias problem can be summarized as follows.
Consider a range measurement where the distance between a
base station (anchor) and a mobile (target) is measured via the
TOF of a signal transmitted by either node. In a LOS scenario,
multiplying the TOF by the speed of light yields the true
base station-mobile separation distance. However, the LOS
path is often blocked and the resulting reflected, diffracted,
or scattered signal will lead to an erroneously larger range
estimate than the true separation distance. This distance the
signal travels in excess of the true LOS distance is termed the
NLOS bias. When these positively biased range measurements
are used to perform localization, they ultimately lead to a
biased/poor target position estimate.

For a noiseless NLOS, TOF range measurement, the range
and bias are related simply by:

R = d + B, (1)

where R is the distance (i.e., range) measured via the TOF,
d is the true separation distance, and B is the NLOS bias
(P[B > 0] = 1) [11]. In many NLOS localization algorithms
and analyses, having a priori information regarding the statis-
tics of the bias error (i.e., the distribution of B in (1)) can
improve NLOS detection [12], improve estimator performance
[13], and reduce the Cramér-Rao Lower Bound on positioning
error as well [14]. Thus, obtaining an accurate distribution of
the NLOS bias is of vital importance for geolocation in NLOS
environments.

Although the NLOS bias problem has been around since
the inception of range-based localization, there are, at present,
no agreed upon statistical distributions characterizing the bias
error in outdoor environments, such as urban canyons (see
Sec. III-C). While the localization literature does offer a
variety of bias distributions, they are either: 1) chosen simply
due to their tractability or desirable features such as having
a positive support, e.g., half-Gaussian [15], Rayleigh [16],
positive uniform [17], and gamma [18]; 2) chosen based on
simple point scattering models from the channel modeling
literature [14, Sec. III-B], [19], [20]; or 3) chosen indirectly
based on the delay of the first-arriving MPC from empirical
excess delay LOS PDP models, such as the commonly used
exponential distribution [21], [22], and not directly via the
first-arriving MPC from absolute delay NLOS PDPs.2 Since
range measurements are often triggered on the first-arriving
signal [14], [23], then if the LOS path is blocked, the first-
arriving MPC (i.e., the first-arriving reflection assumed here)
will be responsible for triggering the range measurement.
Thus, in an NLOS scenario, obtaining the absolute delay (i.e.,
TOA or path length) distribution of the first-arriving MPC
will yield the distribution of the range measurement, and
subtracting from this the true base station-mobile separation
distance will yield the distribution of the NLOS bias via
(1). Unfortunately, obtaining this TOA distribution empirically,

2Absolute delays are measured w.r.t. the transmission time. Excess delays
are measured w.r.t. the first-arriving detected signal.

through an outdoor measurement campaign, is a difficult task
(see Sec. III-C). Moreover, ray-tracing techniques are only
able to characterize NLOS bias for a specific setup [4], and
hence are unable to generate an NLOS bias distribution over
the ensemble of environmental realizations the base station-
mobile pair will likely experience in a network. Thus, an
accurate analytical solution is needed. Towards this end, this
paper derives the TOA distribution of the first-arriving MPC
under the Boolean model, which characterizes the TOA over
all random placements of environmental obstacles.3 This result
then yields the NLOS bias distribution; thus filling the void in
the localization literature by offering the first bias distribution
derived via the absolute delay of the first-arriving MPC and
under a comprehensive stochastic geometry framework.

We now address the AOA. As mm-waves “generally require
high directionality to achieve a sufficient signal-to-noise-ratio
(SNR),” beam sweeping, a process whereby angular sections
are tested and checked for a received signal, will be needed
to establish links in the IA phase [24]. Since the first-arriving
MPC is often likely to be the dominant MPC, understanding its
AOA distribution will be important for developing techniques
to improve the angular search space in the IA phase; reducing
the time it takes to close a link. Furthermore, this AOA
distribution can aid in the analysis and/or simulation of the
performance of mm-wave, beamforming-based communica-
tion systems, and also offers an analytical alternative to an
empirically derived AOA distribution. Thus, in addition to
the TOA, this paper also derives the AOA distribution of the
first-arriving MPC, which is the first AOA distribution of any
kind derived under the Boolean model. This AOA distribution
offers a distinct advantage over AOA distributions derived
under older omni-directional scattering models, e.g., [19], [25],
since point scatterers can not capture blocking effects nor the
dominant reflection effects of mm-waves.

Given the gaps in the stochastic geometry and localization
literature, our contributions are:

1) The derivation of the TOA distribution of the first-arriving
MPC under the Boolean model, both with and without
blocking, which yields the NLOS bias distribution.

2) An analysis highlighting the close connection between
this NLOS bias distribution and the exponential and
gamma bias model assumptions in the localization lit-
erature.

3) A discussion regarding the lack of outdoor measurement
data characterizing NLOS bias and what information
about the bias can be gleaned from measurements that
do exist.

4) The derivation of the AOA distribution of the first-
arriving MPC under the Boolean model, which represents
the first AOA distribution of any kind derived under the
Boolean model.

5) A numerical analysis of this distribution which reveals
the connection between this AOA distribution and that

3Although this distribution of the TOA of the first-arriving MPC is derived
irrespective of blocking on the LOS path, and hence is the true TOA
distribution of the first-arriving MPC, our system model allows for this
distribution to also apply exclusively to scenarios where the LOS path is
blocked (Sec. II-A). This is investigated further in Sec. III-B.
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TABLE I
SUMMARY OF NOTATION

Symbol Description Symbol Description

fX ( ·) Probability distribution fn. (PDF) of RV X FX ( ·) Cumulative distribution fn. (CDF) of RV X
Supp(X) Support of the RV X: {x ∈ R | fX (x) > 0} E[X] Expectation of the RV X

P[A] Probability of event A ‖ · ‖ The Euclidean norm
δ( ·) The Dirac delta function 1[A] Indicator Function, 1 if A true, 0 if A false
x; 0 The (column) vector x; The zero vector [x]i ; x · y ith component of x; Dot product of x with y

g(x); g(x) Vector fn. of a scalar; Scalar fn. of a vector XT ; X−1 Transpose of matrix X; Inverse of matrix X
g(x); g(x) Vector fn. of a vector; Scalar fn. of a scalar Rθ The rotation matrix

[
cos θ sin θ
− sin θ cos θ

]
which

L[p,q] The set of points forming a line segment rotates a vector clockwise by angle θ
between, and including, the points p and q Q; ∅ Roman numeral set:{I, II, III, IV}; Empty set

µn
(
A

)
The n-dim. Lebesgue measure of set A ∂A Boundary of set A (closure minus interior)

Φ Set of points forming a Poisson Pt. Proc. Φ(A) The number of points of Φ in the set A
A ⊕ B Minkowski sum: For compact A, B ⊂ R2, A \ B Set subtraction: {x ∈ A | x < B}

A ⊕ B ,
{
x + y ∈ R2 �� x ∈ A, y ∈ B

}
QI 1st quadrant in R2:

{
[x, y]T∈ R2 ���x ≥0, y ≥0

}

w.l.o.g.; s.t. Without loss of generality; such that Remaining quad.’s defined similarly.
l.h.s.; r.h.s. Left hand side; right hand side c.c.w.; w.r.t. Counterclockwise; with respect to

derived under an elliptical, omni-directional scattering
model.

II. SYSTEM MODEL

This section first introduces the system model assumptions
and then describes the Boolean model setup. Next, a char-
acterization of first-order reflections is given followed by a
description of independent blocking. Finally, an important re-
sult is presented regarding the number of reflectors facilitating
visible (non-blocked) reflections. Common notation is given in
Table I.

A. Assumptions

Assumption 1 (NLOS Propagation). Only first-order specular
reflections are considered.

Remark. First, specular reflections imply the angle-of-
incidence (AOI) equals angle-of-reflection (AOR) at the point
of incidence. Second, the effects of higher-order (i.e. multiple-
bounce) reflections are considered to be minimal due to
increased pathloss and reflection losses, e.g., see [6] and [7].
Third, diffraction effects are negligible at mm-wave frequen-
cies [5] and hence are not considered. Lastly, since diffuse
scattering only begins to play a major role in NLOS propa-
gation outside of the mm-wave regime towards the terahertz
region, it is assumed in this work that scattering effects are
negligible as well [6], [26].

Assumption 2 (360◦ Coverage). The base station and mobile
are equipped with either isotropic antennas or antenna arrays
allowing 360◦ beam sweeping, i.e., all reflection paths are
illuminated.

Assumption 3 (Independent Blocking). Blocking on each
received signal path is assumed to be independent. Further,
for each reflection, blocking on the incident path is assumed
to be independent of blocking on the reflected path.

Remark. Treating blocking on each received signal path inde-
pendently, i.e., independent blocking, is a common assumption
in the literature [6], [7], [8]. Further, for each separate re-
flection path, treating blocking independently on the incident
and reflected paths has been done previously in [9], and a
similar treatment is also presented in [27]. Sections III-B

and IV-A reveal that treating the incident and reflected paths
independently matches true correlated blocking rather well.4

Remark. Since blocking is independent on each received path,
then blocking on the LOS path between the base station and
mobile does not impact blocking on reflected paths. Thus,
whether the LOS path is blocked or not does not impact the
analysis. As such, we simply assume the LOS path is blocked
for the NLOS bias analysis and can also simply ignore whether
the LOS path is blocked or not in the AOA analysis. This is
explored further in Sections III-B and IV.

B. Reflection Fundamentals Under the Boolean Model

This section first introduces the Boolean model setup and
then uses this setup, along with the assumptions above, to
derive results regarding first-order reflections. We begin by
formally defining our use of the term reflector.

Definition 1 (Reflector Rw,θ,c). A reflector Rw,θ,c is defined
to be a square compact set with edge width w ∈ (0,∞), center
point c ∈ R2, and orientation θ ∈ (0, π/2), measured c.c.w.
w.r.t. the +x-axis. To aid in the analysis, we further define four
internal vectors, kI, kII, kIII, kIV, which are depicted in Fig. 1,
and of which kIII exhibits the reflector’s orientation, θ.

Remark. Although the term reflector is used, Rw,θ,c can both
facilitate a reflection and/or act as a blockage. Reflectors in
this work represent buildings, and thus are assumed to be
impenetrable blockages due to the large attenuation of mm-
waves through solid materials [29], [30].

Definition 2 (Boolean Model of Reflectors, B). Let Φ =
{ci }∞i=1 be a homogeneous PPP over R2 with intensity λ > 0,
let U = {Wi }

∞
i=1, V = {Θi }

∞
i=1 be sequences of RVs

representing the widths and orientations of reflectors, re-
spectively, and let U,V , and Φ be mutually independent.
Next, let {Wi }

∞
i=1

i.i.d.
∼ fW (w) and {Θi }

∞
i=1

i.i.d.
∼ fΘ(θ), where

4By correlated blocking, we mean the true blocking case that occurs in
practice, where an obstruction can be responsible for blocking multiple paths
at once (red oval, Fig. 1). This type of blocking is notoriously difficult to
characterize analytically [28].
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Fig. 1. SYSTEM MODEL. Depicted is a realization of the Boolean model over the test link setup, along with illustrations of various concepts and definitions
from Sec. II such as: correlated blocking, independent blocking, reflection point characteristics, and a reflector’s internal vectors. The path length of the
first-arriving reflection is S(1) = s(1) and its AOA is A(1) = α(1) .

fW = unif(wmin,wmax, nw ) and fΘ = unif(θmin, θmax, nθ ).5

Then, the Boolean model of reflectors is defined as:

B ,
∞⋃
i=1
RWi,Θi,ci .

Remark. Note, B is a random set in R2. A realization of B is
given when the widths, {Wi }

∞
i=1, orientations, {Θi }

∞
i=1, and the

PPP of center points, Φ, are sampled according to the rules
above. We use ‘B’ for both the random set and its realization.
Its usage will be clear from context.

Definition 3 (Test Link). The test link setup is defined to be
that which places the base station at b ,

[
− d/2, 0

]T and the
mobile at m ,

[
d/2, 0

]T , for d > 0. (See Fig. 1.)

Remark. The results derived in this paper apply w.l.o.g. to any
translation and/or orientation of this test link setup due to the
stationary and isotropic properties of the Boolean model [2].

This Boolean model setup, along with Assumptions 1 and
2, leads to some important geometric consequences regarding
first-order reflections, which we now summarize. We begin
by considering a single reflector, Rw,θ,c, with fixed width and
orientation, yet arbitrary center point. Next, let r ∈ R2. We
say that r is a potential reflection point (PRP) for Rw,θ,c if
Rw,θ,c can be placed s.t. an edge of Rw,θ,c can intersect r to
establish a first-order reflection at r (i.e., AOI=AOR at r).
The following lemma lists all of the PRPs for Rw,θ,c.

5If x, y ∈ R with x ≤ y and n > 0 is a finite integer, then we define
“unif(x, y, n)” to be a discrete, uniform distribution with the support being
the n points equally spaced between (and including) x and y. The value of the
PMF at each point in the support is consequently 1/n. Note, x = y =⇒ n = 1
and x < y =⇒ n > 1. Additionally, with the technical machinery developed
in this paper, more general discrete distributions can be used as well. As a
final note, it was observed in simulation that if one chooses a distribution with
one width and a distribution with one orientation, the Boolean model and the
random lattice model [3] yield strikingly similar results for the TOA and AOA
of the first-arriving MPC. Thus, for our metrics of interest, the Boolean model
is able to capture a wide range of scenarios, e.g., urban, suburban, and rural.

Lemma 1 (Reflection Hyperbola). Let Hθ be the set of all
PRPs for reflector Rw,θ,c. Then,

Hθ =
{
[x, y]T∈ R2 ��� y

2 − x2 + 2 cot(2θ)xy + d2/4 = 0
}
. (2)

Proof. First, note that b and m are always considered to be
PRPs regardless of the reflector orientation, and thus trivially
satisfy the lemma.6 Next, we prove forward and reverse
containment.

(⊂): Let r = [x, y]T ∈ Hθ/{b,m}. Then θ ∈ (0, π/2) =⇒
∃! q ∈ Q s.t. r ∈ Qq . Next, let the vectors r − b and m − r
represent the incident and reflected paths, respectively. The
AOI and AOR at r are given by

ϕI , cos−1
(

kq · (b − r)
‖kq ‖‖b − r‖

)
and ϕR , cos−1

(
kq · (m − r)
‖kq ‖‖m − r‖

)
(see Fig. 1), which are both measured w.r.t. the vector, kq ,
where kq is normal to the edge that would facilitate the
reflection in Qq . Since r is a PRP by implication, then
ϕI = ϕR, and upon simplification, we have that for any q ∈ Q,
y2− x2+2 cot(2θ)xy+ d2/4 = 0. Thus, r is in the r.h.s. of (2).

(⊃): Let r = [x, y]T satisfy the r.h.s. of (2), where r , b,m
(these are already PRPs). Since b and m are the only points
on the x, y axes that are in the r.h.s. of (2), then ∃!q ∈ Q s.t.
r ∈ Qq , where r satisfies y2− x2+2 cot(2θ)xy+ d2/4 = 0. For
any q, we can work backwards from this equation to establish:

kq · (b − r)
‖kq ‖‖b − r‖

=
kq · (m − r)
‖kq ‖‖m − r‖

.

This implies ϕI = ϕR at r and hence r ∈ Hθ . �

Remark. Note the following: 1) For r ∈ R2, r is a PRP for
Rw,θ,c if and only if r ∈ Hθ ; 2) the set condition in (2) is a
hyperbola, and thus we refer to the set of PRPs for Rw,θ,c as

6If an edge of Rw, θ,c were to intersect b or m, to produce a reflection, this
would, of course, be a pathological case, since there would be no incident or
reflected path, respectively – there would just be the LOS path between b and
m. Thus, these two points are considered PRPs only to simplify the analysis.
This has no effect on results, as this event occurs with zero probability.
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the reflection hyperbola for Rw,θ,c; 3) the reflector orientation,
θ, is only present in the “xy” term of the hyperbola equation,
which implies that changing the orientation of the reflector
results in a rotation of this hyperbola about the origin. See
Fig. 2 for an example of Hθ=π/3.
Remark. Indeed, a reflector Rw,θ,c has uncountably many
PRPs. If Rw,θ,c were to actually intersect one of these PRPs
with the appropriate edge, then a reflection would be estab-
lished.7 We would then refer to this particular PRP as the
reflection point (RP). Thus, Rw,θ,c has many PRPs but can
have only one RP. Since this lemma states that all PRPs for
Rw,θ,c lie on Hθ , then to check whether Rw,θ,c generates a
reflection, one simply needs to check whether the appropriate
edge of Rw,θ,c intersects the reflection hyperbola.

We are oftentimes interested in reflection points correspond-
ing to reflection paths less than or equal to a certain distance,
s. The terminology below aids in this characterization.

Definition 4 (The s-Ellipse). Under the test link setup, the s-
ellipse is defined as: Ps ,

{
[x, y]T ∈ R2 ��� x2/u2+ y2/v2 ≤ 1

}
,

where u2 = s2/4, v2 = (s2 − d2)/4, and d < s < ∞. Further,
for s = d we set Pd , lims→d Ps = L[b,m], and for s = ∞,
we set P∞ , lims→∞ Ps = R

2. (See Fig. 2.)

Lastly, four PRPs exist which Rw,θ,c can intersect to gen-
erate reflections of exactly s meters.

Lemma 2 (Boundary PRPs). Let d ≤ s < ∞. Consider the test
link setup, a reflector Rw,θ,c, and its corresponding reflection
hyperbola, Hθ . Then, (Hθ ∩ ∂Ps) =

{
hI, hII, hIII, hIV

}
, where

hI =

[
√

zI, III ,
v

u

√
u2 −zI,III

]T
, hII =

[
−
√

zII, IV ,
v

u

√
u2 −zII,IV

]T
,

hIII = −hI, hIV = −hII, and

zI, III =
s4 cot2θ

4
[
s2 csc2θ − d2

] , zII, IV =
s4 tan2θ

4
[
s2 sec2θ − d2

] .

The variables u and v are from Definition 4. (See Fig. 2 for
a depiction of these points.)

Proof. Solve the system of two equations that define Hθ and
∂Ps . �

Remark. The hq’s are functions of s, d, and θ. We write
‘hq (s)’ to highlight the dependency on s, omit writing the
dependency on d, and occasionally use a subscript θ to remind
the reader when necessary. The Roman numeral subscript on
the hq’s denotes the quadrant in which it resides, for s > d. For
s = d, these points simplify to b and m. For s = ∞ not stated
in the lemma, we set hq (∞) , lims→∞ hq (s) = [±∞,±∞]T ,
∀q ∈ Q, where ‘±’ depends on the quadrant.

C. Blocking

This section briefly discusses what it means for a reflection
point to be visible, i.e., non-blocked under Assumption 3

7By appropriate edge, we simply mean the edge oriented towards the
base station and mobile that could facilitate reflections. For PRPs in QI
only, for example, the appropriate edge facilitating reflections is the edge
corresponding to the endpoint of kI. For PRPs in QII only, this would be the
edge corresponding to the endpoint of kII. Hence the internal vector labeling
convention.

(independent blocking). As this treatment is analogous to that
in [9], we only summarize the relevant results here, without
proof.

Definition 5 (Visible Reflection Point (VRP) for Rw,θ,c). Let
B, B1, and B2 be realizations of i.i.d. Boolean models and
let r ∈ R2 be a RP for Rw,θ,c ⊂ B. Then, the reflection path
through r is visible if (B1 ∩ L[b,r]) ∪ (B2 ∩ L[r,m]) = ∅. In
this case, we say r is a visible RP for Rw,θ,c.

Remark. As a simple example, if B, B1, and B2 only contain
reflectors of width w′ and orientation θ ′, then RP r′ in Fig.
1 is visible if no reflector center point from B1 falls in:
L[b,r′]⊕Rw′,θ′,0, and no reflector center point from B2 falls in:
L[r′,m] ⊕ Rw′,θ′,0. When B, B1, and B2 contain reflectors of
many widths and orientations, the probability a RP is visible
is given below.

Lemma 3 (Probability a Reflection Point is Visible [9]).
Consider the test link setup and let B, B1, and B2 be
i.i.d. Boolean models and r ∈ R2 be a reflection point for
Rw,θ,c ⊂ B. Then, the probability that r is a VRP for Rw,θ,c
is given by

ρ(r) = P
[
(B1 ∩ L[b,r]) ∪ (B2 ∩ L[r,m]) = ∅

]
= e
−λEW ,Θ

[
µ2

(
L[b,r]⊕RW ,Θ,0

)
+µ2

(
L[r,m]⊕RW ,Θ,0

)]
,

where ∀p, q ∈ R2, p , q, µ2
(
L[p,q] ⊕ Rw,θ,0

)
=




√
2w‖p − q‖ sin

(
π/4 + θ − η

)
+ w2, 0 ≤ θ − η ≤ π/2

√
2w‖p − q‖ �� sin

(
− π/4 + θ − η

) �� + w2, otherwise
,

and η = tan−1 [
([q]2 − [p]2)/([q]1 − [p]1)

]
, and for p = q,

µ2
(
L[p,q] ⊕ Rw,θ,0

)
= w2.

Proof. Please refer to [9]. Note that the interplay between the
slope of the line segment L[p,q], given by η, and the orientation
of the reflector, θ, is what dictates how the Lebesgue measure
of ‘L[p,q] ⊕Rw,θ ’ is evaluated – hence the piecewise function.

�

D. The Number of Reflectors Producing Visible Reflections

Considering reflections with path lengths between s1 and
s2 meters, this section presents the number of reflectors pro-
ducing visible reflections, denoted by the RV: V[s1, s2], where
d ≤ s1 ≤ s2 ≤ ∞. A subset of this metric, namely V[d,s2]
for d = s1 ≤ s2 < ∞, was also studied in [9] in the context
of single-anchor localization. However, the general metric is
of particular interest to us here for two reasons. The first
is that it considers the infinite case, i.e., V[d,∞], which is
vitally important in the derivations that follow since this gives
the total number of reflectors producing visible reflections
on all of R2. Obtaining this infinite case requires proving
extra convergence results (Appendix A). The second is that
restricting our attention to reflections of distances [s1, s2] aids
in the derivation of the AOA. Below we present the lemma
for the general metric, V[s1,s2]. With the exception of the
infinite case, the method behind the derivation is similar to
that presented in [9]. Thus, we only provide a proof sketch
here to connect system model concepts to the analysis which
follows and to give insight needed for subsequent derivations.
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Fig. 2. ANALYTICAL FRAMEWORK. The gray region in QI is the region where the endpoint of kI of reflector Rwi , θ j ,c (see Fig. 1) can lie in order to
produce a first order reflection between b and m of distance in [s1, s2]. If we let the edge corresponding to the endpoint of kI be denoted as EI ⊂ ∂Rwi , θ j ,c,
then this gray region is equivalently the region where the center point of edge EI can lie for Rwi , θ j ,c to produce a first order reflection. This region can be
thought of as being generated by sliding the EI-edge center point over Hθ j between Ps1 and Ps2 , having the edge trace out the region. Likewise for the
other quadrants. The AOA corresponding to a reflection at point hI (s1) is labeled ψI, θ j (s1) (see Definition 8). In this figure, θ j = π/3.

Lemma 4 (Number of Reflectors with VRPs). Consider the
test link setup and a deployment of reflectors under the
Boolean model B. Let V[s1, s2] be the RV representing the num-
ber of reflectors with VRPs corresponding to distances between
s1 and s2 meters, where d ≤ s1 ≤ s2 ≤ ∞ (the case s1 = s2 =

∞ is disregarded). Then, V[s1, s2]∼ Poisson
(
λ̂(s1, s2)

)
, where

λ̂(s1, s2) =
2λE[W ]

nθ

nθ∑
j=1

[ ∫ [Rθ j
hI (s2)]1

[Rθ j
hI (s1)]1

ρ
(
R−1
θ j

g∗I (xθ j )
)
dxθ j

+

∫ [Rθ j
hII (s2)]2

[Rθ j
hII (s1)]2

ρ
(
R−1
θ j

g∗II(yθ j )
)
dyθ j

]
,

and λ, E[W ], nθ are obtained from Definition 2, hI(s) and
hII(s) are from Lemma 2,8 b and m are from Definition 3,
ρ(r) is the probability that reflection point r is visible (Lemma
3), and

g∗I (xθ j ) =
[
xθ j ,
−d2 sin(2θ)

8xθ j

]T
, g∗II(yθ j ) =

[
−d2 sin(2θ)

8yθ j
, yθ j

]T
.

(3)

Proof. By independent thinning, we consider only reflectors in
B with width, wi , and orientation, θ j , where i ∈ {1, 2, . . . , nw }
and j ∈ {1, 2, . . . , nθ }. We denote this ‘thinned’ Boolean model
as Bwi,θ j , and its corresponding PPP of reflector center points
as Φwi,θ j , with intensity measure Λwi,θ j (B) = λ

nwnθ
µ2(B), for

all Borel sets B. Next, recall that: 1) a reflector Rwi,θ j,c ⊂

Bwi,θ j can produce a reflection iff its appropriate edge inter-
sects Hθ j ; and 2) if a reflection is going to have a distance of
[s1, s2], then the RP must fall within Ps2/(Ps1/∂Ps1 ). Thus, for

8Recall hI (s) and hII (s) are functions of the reflector orientation, θ, and
note g∗I (xθ j ) and g∗II (yθ j ) are as well. Thus, when evaluating λ̂(s1, s2), one
must take care to substitute the appropriate θ j in for θ in the hI (s), hII (s),
g∗I (xθ j ), and g∗II (yθ j ) expressions.

reflectors in Bwi,θ j to produce reflections of distances [s1, s2],
their center points, Φwi,θ j , must fall in the region⋃

q∈Q

[
Eq ⊕

(
Hθ j ∩Qq ∩

(
Ps2/(Ps1/∂Ps1 )

))]
− kq, (4)

where Eq ⊂ ∂Rwi,θ j,c is the set of points comprising the edge
of the reflector corresponding to the endpoint of kq (Fig. 1).
(In this formulation, the center points of the Eq’s are taken to
be at the origin.) For any s1, s2, the four quadrant portions of
this region overlap on at most a null set, and thus, we may
treat each separately and independently.

Consider the QI portion of this region:

EI ⊕
(
Hθ j ∩QI ∩ Ps2/(Ps1/∂Ps1 )

)
− kI,

which we write as ΩI −kI to simplify notation. We ultimately
want the distribution of the number of center points of Φwi,θ j

in this region which correspond to reflectors producing visible
reflections. To make this easier, we shift both Φwi,θ j and ΩI−kI
by kI. Thus, instead of referring to reflectors by their center
point, c, we now refer to them by the endpoint of their kI
vector, which is the center point of the EI-edge discussed
above. (The intensity measure of Φwi,θ j + kI is also Λwi,θ j .)

Now, equivalently, we seek the distribution of the number
of EI-edge center points (EI-ECPs), Φwi,θ j +kI, in ΩI (Fig. 2)
which correspond to reflectors producing visible reflections.
To obtain this distribution, we ‘thin’ the PPP of EI-ECPs,
Φwi,θ j + kI, over ΩI to retain only those points which cor-
respond to reflectors producing visible reflections. We denote
this ‘thinned’ point process as ΦI,v,wi,θ j and its intensity
measure over ΩI as

ΛI,v,wi,θ j (ΩI) =
∫
ΩI

ρ
(
gI(x)

)
dΛwi,θ j .

Note that r = gI(x) is the function that maps the EI-ECP, x, to
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the RP, r, where the edge intersects Hθ j (Fig. 2), and that ρ(r)
is from Lemma 3. Thus, the retention probability, ρ

(
gI(x)

)
,

is the probability that an EI-ECP corresponds to a reflector
producing a visible reflection. Since reflection paths are treated
independently (Assumption 3), this is an independent thinning.

This integral is easily evaluated in a coordinate system
rotated by θ j . In this rotated system, let Ω∗I be ΩI, x∗ =
[xθ j , yθ j ]T ∈ Ω∗I be an EI-ECP, and r∗ = g∗I (x∗) be the function
that maps the EI-ECP, x∗, to the RP, r∗. Note, g∗I , given in
(3), is simply the reflection hyperbola expressed in rotated
coordinates (now a rational function), and thus only depends
on xθ j in x∗ = [xθ j , yθ j ]T . Lastly,

r = R−1
θ j

r∗ = R−1
θ j

g∗I (x∗) = R−1
θ j

g∗I (xθ j ) and

r = gI(x) = gI(R−1
θ j

x∗)

⇒ gI(R−1
θ j

x∗) = R−1
θ j

g∗I (xθ j );

and so applying the coordinate transformation x = R−1
θ j

x∗, we
have

ΛI,v,wi,θ j (ΩI)
(a)
=

λ

nwnθ

∫
ΩI

ρ
(
gI(x)

)
dx

(b)
=

λ

nwnθ

∫
Ω∗I

ρ
(
gI

(
R−1
θ j

x∗
))

dx∗

(c)
=

λwi

nwnθ

∫ [Rθ j
hI (s2)]1

[Rθ j
hI (s1)]1

ρ
(
R−1
θ j

g∗I (xθ j)
)
dxθ j , (5)

where (a) follows from the definition of Λwi,θ j above, (b) by
applying the coordinate transformation, and (c) by noting that
the integral w.r.t. yθ j simplifies to wi and that the limits of the
integral w.r.t. xθ j are obtained from Fig. 2. The distribution
of the number of reflectors from Bwi,θ j which produce visible
reflections in QI of distance [s1, s2] is then ΦI,v,wi,θ j (ΩI)∼
Poisson

(
ΛI,v,wi,θ j (ΩI)

)
.

The same procedure above can be followed for the QII
portion of the region in (4) by simply replacing ‘I’ with ‘II’
and by noting that g∗II, given in (3), depends on yθ j . Thus,

ΛII,v,wi,θ j (ΩII) =
λwi

nwnθ

∫ [Rθ j
hII (s2)]2

[Rθ j
hII (s1)]2

ρ
(
R−1
θ j

g∗II(yθ j)
)
dyθ j ,

and the number of reflectors from Bwi,θ j with VRPs
in QII corresponding to reflections of distance [s1, s2] is
ΦII,v,wi,θ j (ΩII)∼Poisson

(
ΛII,v,wi,θ j (ΩII)

)
. (Note, Appendix A

verifies that the integrals in ΛI,v,wi,θ j (ΩI) and ΛII,v,wi,θ j (ΩII)
converge for s2 = ∞.)

Finally, the QIII portion of (4) is symmetric with that of
QI, and QIV with that of QII (Fig. 2), and so the number of
reflectors producing visible reflections in these regions follow
the same Poisson distributions. The lemma follows by noting:
1) the four quadrant regions in (4) are independent; 2) the
original thinning of B to the Bwi,θ j ’s is independent; and 3)
the sum of independent Poisson RVs is Poisson with mean
being the sum of the individual means. �

Remark. It follows from the lemma that as s2 → ∞, V[s1,s2]
converges in distribution to V[s1,∞].

III. THE NLOS BIAS DISTRIBUTION

To characterize NLOS bias, this section derives the path
length distribution of the first-arriving NLOS signal under two
scenarios. The first derives this distribution when blocking
is considered on reflected paths. This is henceforth denoted
as the case with blocking. Alternatively, the second derives
this distribution when blocking is not considered on reflected
paths. Similarly, this is henceforth denoted as the case without
blocking. Approximations for the distributions under the two
scenarios, as well as numerical results, are then presented,
followed by a discussion of the importance of having an
analytically derived bias distribution. We start by introducing
the following RVs:

Definition 6 (Distance Traversed by the 1st-Arriving NLOS
Signal). Let S(1) be the RV representing the path length, in
meters, traveled by the first-arriving NLOS signal. Note, d ≤
S(1) < ∞.

Definition 7 (NLOS Bias). Let B be the RV representing the
distance, in meters, of the NLOS bias. Note, 0 ≤ B < ∞.
(This implies Supp(B) = [0,∞), and as a continuous RV,
P[B > 0] = 1.)

Remark. With these RVs, we may state the simple relationship
between the path length of the first-arriving NLOS signal and
the NLOS bias by: B = S(1)−d, which comes from (1) in Sec.
I.

With regards to S(1) , the first and most important question
one may ask is: Does this RV always exist? That is, under
the system model, will there always be a reflection path, no
matter how far out? We address this with regards to the two
cases: with and without blocking.

Without blocking, the answer is simple: Yes, S(1) always
exists. To see why, note that without blocking, the probability
that any RP r is visible is one, i.e. ρ(r) = 1, and hence,
the integrands in λ̂(s1, s2) from Lemma 4 are one. Therefore,
without blocking, Lemma 4 is valid for d ≤ s1 ≤ s2 < ∞ (for
if s2 = ∞, then we would have λ̂(s1,∞) = ∞). Finally then,
for this case without blocking, the probability that there will
be at least one reflector producing a reflection on R2, i.e., the
probability S(1) exists, is:

lim
s2→∞

P[V[d,s2] ≥ 1] = 1 − lim
s2→∞

P[V[d,s2] = 0]

= 1 − lim
s2→∞

e−λ̂(d,s2)

= 1 − e−∞

= 1.

With blocking, however, the answer is unfortunately: No,
S(1) does not always exist. Let us see why:

Corollary 1 (Lower Bound on the Probability of No Re-
flections, With Blocking). Consider the test link setup under
the Boolean model. Then, the probability that there are no
reflectors producing visible reflections is lower bounded by
e−2, i.e., P[V[d,∞] = 0] > e−2.

Proof. Substituting the bound in (17) for each of the integrals
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in the expression for λ̂(d,∞) in Lemma 4 yields λ̂(d,∞) < 2,
which implies P[V[d,∞] = 0] = e−λ̂(d,∞) > e−2, as desired. �

Remark. Note that this is a hard lower bound, i.e., under the
independent blocking assumption, the probability that there are
no reflections at all is always at least e−2 ≈ 0.135, regardless
of the density of reflectors, their size, and orientation. This
corollary emphasizes the care one must take when adding
blocking into stochastic propagation models.

As a consequence of this corollary, ensuring the existence
of S(1) , with blocking, will require conditioning on the event
{V[d,∞] ≥ 1}, i.e., the event that there exists at least one
reflector producing a visible reflection. Thus, we can now
establish the distribution of S(1) . Before continuing, since
the remainder of this section and the next is concerned
with reflections of distance ≤ s, for some s, we adopt the
simplified notation: V[d,s] , Vs , with mean λ̂(d, s) , λ̂(s).

Theorem 1 (The Distribution of S(1) , With Blocking). Con-
sider the test link setup under the Boolean model with indepen-
dent blocking (Assumption 3). Then, the distribution of S(1) ,
conditioned on there existing at least one reflector producing
a visible reflection, is given by

CDF : FS(1) (s(1) | V∞ ≥ 1) =
1

1 − e−λ̂(∞)

(
1 − e−λ̂

(
s(1)

) )

PDF : fS(1) (s(1) | V∞ ≥ 1) =
λE[W ]s(1)

nθ
(
1− e−λ̂(∞)) e−λ̂

(
s(1)

)
×

nθ∑
j=1

[
ρ
(
hI, θ j (s(1) )

)√
s2

(1)−d
2 sin2θ j

+
ρ
(
hII, θ j (s(1) )

)√
s2

(1)−d
2 cos2θ j

]
,

where all of the parameters are listed in Lemma 4 and
Supp(S(1) | V∞ ≥ 1) = [d,∞).

Proof. Please refer to Appendix B. �

Remark. If one wants to account for Tx power, reflection
losses, pathloss, and a signal detection threshold at the mobile,
then this would be equivalent to strategically choosing a
maximum distance, smax , wherein only reflections that travel
less than or equal to this distance are deemed detectable. To
obtain the distribution of S(1) in this case, we would restrict
our attention to the region Psmax and condition on the event
{Vsmax ≥ 1}, rather than {V∞ ≥ 1}. Consequently, all that
would change in the above distribution is λ̂(∞) being replaced
with λ̂(smax ), along with a new, restricted support: [d, smax].
Although our model can easily incorporate various channel
parameters, we continue, however, with the most general case:
assuming the first-arriving path can be detected regardless of
its path length, i.e., conditioning on the event {V∞ ≥ 1}.

As a direct corollary, deriving the distribution of S(1) ,
without blocking, is straightforward since S(1) always exists,
i.e., there is no need to condition on any event to guarantee
existence.

Corollary 2 (The Distribution of S(1) , Without Blocking).
Consider the test link setup under the Boolean model. Then,

the distribution of S(1) is given by

CDF : FS(1) (s(1)) = 1

− e
−
λE[W ]
nθ

∑nθ
j=1

[√
s2

(1)−d
2sin2θ j−d(sin θ j+cos θ j )+

√
s2

(1)−d
2cos2θ j

]

PDF : fS(1) (s(1)) =
λE[W ]s(1)

nθ
×

nθ∑
j=1

[
1√

s2
(1)−d

2 sin2 θ j
+ 1√

s2
(1)−d

2 cos2 θ j

]
×

e
−
λE[W ]
nθ

∑nθ
j=1

[√
s2

(1)−d
2sin2θ j−d(sin θ j+cos θ j )+

√
s2

(1)−d
2cos2θ j

]

,

where the parameters are given in Definitions 2 and 3 and
Supp(S(1)) = [d,∞).

Proof. Recalling the discussion above Corollary 1, we know
that without blocking, ρ(r) = 1 for any RP r and thus, Lemma
4 is valid for d ≤ s1 ≤ s2 < ∞. Next, recalling the simplified
notation above Theorem 1, this implies that the number of
reflectors producing reflections of distance ≤ s, i.e., Vs , without
blocking, is valid for d ≤ s < ∞. Thus, knowing how Vs

changes for this case without blocking, we can now complete
the derivation. Towards this end, we have

FS(1) (s(1)) = 1− P[S(1) > s(1)]
(a)
= 1− P[Vs(1) = 0]

= 1− e−λ̂
(
s(1)

)
(b)
= 1− e

−
2λE[W ]

nθ

∑nθ
j=1

[[Rθ j hI (s(1) )]1∫
[Rθ j m]1

dxθ j +

[Rθ j hII (s(1) )]2∫
[Rθ j b]2

dyθ j

]

,

where in (a), Vs(1) is the number of reflectors producing
reflections (all are visible), and (b) follows from ρ(r) = 1
for any RP r. Lastly,

[Rθ j m]1 =
d
2

cos θ j,

[Rθ j hI
(
s(1)

)
]1 =

1
2

√
s2

(1) − d2 sin2 θ j,

[Rθ j b]2 =
d
2

sin θ j, and

[Rθ j hII
(
s(1)

)
]2 =

1
2

√
s2

(1) − d2 cos2 θ j,

which yields the CDF in the corollary.
The PDF is obtained via differentiation w.r.t. s(1) . The

support follows from Definition 6. �

Remark. Since this corollary does not consider blocking, and
since independent blocking was our main approximation, this
corollary represents a true, approximation-free derivation of
the S(1) (i.e., the NLOS bias) distribution under the Boolean
model with first-order reflections. Further, this distribution,
without blocking, offers a simple, closed-form approximation
of the distribution of S(1) | {V∞ ≥ 1}, with blocking, in cases
where the reflector/blockage density is low.
Remark. In a similar vein to the remark following Theorem 1,
we could incorporate Tx/Rx parameters and channel effects for
this distribution as well via a restriction to the region Psmax
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and conditioning on the event {Vsmax ≥ 1}. The support would
also change accordingly.

A. Exponential Family Approximations for NLOS Bias

The distributions of S(1) , both with and without blocking,
appear to manifest a form that resembles an exponential
distribution, or perhaps that of a distribution from an expo-
nential family. Consequently, this section attempts to bridge
the gap between this analysis and the prevailing localization
literature by demonstrating that the distributions derived here,
via analysis, match commonly used NLOS bias distributions
assumed in the literature.

1) The Non-Blocking Case: Here, we attempt to approxi-
mate the distribution of the bias, B, where B = S(1)−d and the
distribution of S(1) is from Corollary 2. Although not obvious,
the argument of the exponential of the CDF in Corollary 2 is
nearly linear in s(1) . This suggests a close connection with a
true, exponential distribution, as we see below:

Approximation 1 (Distribution of Bias, Without Blocking).
Consider the test link setup under the Boolean model and the
distribution of S(1) from Corollary 2, with the NLOS bias
given by B = S(1) − d. Then, the exponential distribution
approximation, F̃B, of the NLOS bias distribution, FB, is

B∼ FB (b) ≈ F̃B (b) = Exp
(
2λ E[W ]

)
= 1 − e−2λE[W ] b,

where Supp(B) = [0,∞), which applies to the exponential
distribution approximation, F̃B, as well.

Proof. We begin by noting some facts about the distribution
of FB. First, from Corollary 2, we know that FS(1) (s(1)) =
1 − e−g(s(1) ) , where −g(s(1)) is the large argument of the ex-
ponential in Corollary 2, and that Supp(S(1)) = [d,∞). Next,
since B = S(1) − d, then FB (b) = FS(1) (b + d), which implies
FB (b) = 1−e−g(b+d) , where Supp(B) = [0,∞). Thus, the goal
here is to find an exponential distribution approximation for
FB, i.e., 1 − e−g(b+d) = FB (b) ≈ F̃B (b) = 1 − e−αb , where we
need to find a suitable α. In other words, we would like an α
s.t. ‘αb’ approximates ‘g(b + d)’ as well as possible. This is
done via a heuristic argument based on asymptotics.

To determine α, first note that for b = 0, αb = 0 and
g(b + d) = 0. Next, although not obvious, g(b + d) becomes
linear in b when b � 0. Thus, for our approximation, αb ≈
g(b+ d), we set α equal to the slope of g(b+ d) when b � 0,
that is

α = lim
b→∞

∂

∂b
[
g(b + d)

]
= lim

b→∞

∂

∂b

[
λE[W ]

nθ

nθ∑
j=1

√
b2 + 2bd + d2 cos2 θ j −

d(sin θ j + cos θ j ) +
√

b2 + 2bd + d2 sin2 θ j

]

= lim
b→∞

λE[W ]
nθ

nθ∑
j=1

[
b+d√

b2+2bd+d2 cos2 θ j
+ b+d√

b2+2bd+d2 sin2 θ j

]

= 2λE[W ].

This completes the approximation. �
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Fig. 3. APPROXIMATION OF BIAS DISTRIBUTION WITHOUT BLOCKING.
This figure plots the NLOS bias distribution, derived via Corollary 2 (Solid),
against the NLOS bias distribution approximation in Approx. 1 (Dashed).
This comparison was made for a test link setup with d = 200m, and
for a Boolean model with reflector widths and orientations distributed as:
fW = unif(wmin = 20m, wmax = 100m, nw = 5) and fΘ = unif(θmin =
10◦, θmax = 80◦, nθ = 8).

Remark. This exponential distribution approximation of the
NLOS bias distribution, for the non-blocking case, is depicted
in Fig. 3. In addition to being a good approximation for
the true NLOS bias, this exponential approximation is also
desirable due to its simplicity.

2) The Blocking Case: We now turn to the blocking case,
which implies we need to condition on the event {V∞ ≥ 1}.
Thus, NLOS Bias is given by

B | {V∞ ≥ 1} = S(1) | {V∞ ≥ 1} − d,

and so it follows from Theorem 1 that

fB (b | V∞ ≥ 1) = fS(1) (b + d | V∞ ≥ 1)

and Supp(B | V∞ ≥ 1) = [0,∞). Since we cannot make
an obvious connection here between FB (b | V∞ ≥ 1) and
an exponential distribution, as was done without blocking,
we take a different approach and compare fB (b | V∞ ≥ 1)
to various, common distributions of NLOS bias used in the
literature.

This comparison is done via the use of the Kullback-
Leibler (KL) divergence [31]. Specifically, we examine the
KL divergence from B | {V∞ ≥ 1} to X | {V∞ ≥ 1}, i.e.,

D(X | | B) =
∫ ∞

0
fX (x | V∞ ≥ 1) ln

(
fX (x | V∞ ≥ 1)
fB (x | V∞ ≥ 1)

)
dx, (6)

where we choose X | {V∞ ≥ 1} to be distributed by one of the
four common NLOS bias distributions: gamma, exponential,
half-normal, and Rayleigh.9 First, the parameters of these four
comparison distributions were found via ‘moment-matching,’
i.e., the moments of B | {V∞ ≥ 1}, computed numerically via
fB (b | V∞ ≥ 1) using the vales for d, fW , and fΘ from Fig. 3,

9These distributions share the same support as B | {V∞ ≥ 1}. The condi-
tioning of the RVs B and X on {V∞ ≥ 1} is omitted in (6) and Table II for
notational simplicity. Literature references for these common bias distributions
are given in Section I.
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TABLE II
KULLBACK-LEIBLER DIVERGENCE FROM B TO X

# of Buildings D(X | | B) in nats, where X is distributed by
per km2, λ Γ(α, β) Exp(β′) 1

2N (σ) Rayleigh(σ′)
10 0.0101 0.0238 0.1221 0.4178
40 0.0045 0.0181 0.1104 0.4041
70 0.0022 0.0117 0.0954 0.3793

and for λ = 10, 40, 70 buildings/km2 (Table II), were matched
to the necessary moments of X | {V∞ ≥ 1} to obtain the
distributions’ parameter values.10 Once the parameters of the
comparison distributions were found, then the KL divergences
from B | {V∞ ≥ 1} to X | {V∞ ≥ 1} were computed numerically,
with the results given in Table II.

Table II reveals that, overall, the gamma distribution pro-
vides the best match with our distribution of bias, and, of the
single-parameter families, the exponential distribution offers
the best approximation. For the λ = 40 case from Table II, we
plot the distribution of B | {V∞ ≥ 1} and of X | {V∞ ≥ 1}, for
the various moment-matched, comparison distributions, in Fig.
4. From the figure, it is clear that the gamma and exponential
distributions offer great approximations, with the gamma dis-
tribution approximation being virtually indistinguishable from
our analytically derived bias distribution.

Motivated by these results, we present a simple, yet accu-
rate, gamma distribution approximation of the NLOS bias for
the general blocking case, via moment matching.
Approximation 2 (Distribution of Bias, With Blocking).
Consider S(1) | {V∞ ≥ 1} from Theorem 1 for a given
test link setup under a Boolean model with set parameters,
where its first and second moments, E[S(1) | V∞ ≥ 1] and
E[S2

(1) | V∞ ≥ 1], are computed numerically for this particular
setup using fS(1) (s(1) | V∞ ≥ 1). Next, the NLOS bias is
B | {V∞ ≥ 1} = S(1) | {V∞ ≥ 1} − d, and hence

E[B | V∞ ≥ 1] = E[S(1) | V∞ ≥ 1] − d , and

E[B2 | V∞ ≥ 1] = E[S2
(1) | V∞ ≥ 1] − 2dE[S(1) | V∞ ≥ 1] + d2.

Then, the gamma distribution approximation of the NLOS bias
distribution, fB, is given by

B | {V∞ ≥ 1} ∼ fB (b | V∞ ≥ 1) ≈ f̃B (b | V∞ ≥ 1) = Γ(α, β),

where Supp(B | V∞ ≥ 1) = [0,∞), which applies to f̃B as
well, and

α =

(
E[B | V∞ ≥ 1]

)2

E[B2 | V∞ ≥ 1] −
(
E[B | V∞ ≥ 1]

)2 and

β =
E[B | V∞ ≥ 1]

E[B2 | V∞ ≥ 1] −
(
E[B | V∞ ≥ 1]

)2 , (7)

are the shape and rate parameters, respectively.

Proof. Since B | {V∞ ≥ 1} = S(1) | {V∞ ≥ 1} − d and from
Theorem 1, Supp(S(1) | V∞ ≥ 1) = [d,∞), then clearly
Supp(B | V∞ ≥ 1) = [0,∞), which we apply to the gamma
distribution approximation as well.

Next, we perform moment matching to obtain our gamma

10We choose α and β in Γ(α, β) to be the shape and rate parameters,
respectively, and β′ in Exp(β′) to be the rate parameter.
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Fig. 4. APPROXIMATIONS OF BIAS DISTRIBUTION WITH BLOCKING. This
figure plots the NLOS bias distribution with blocking, derived via Theorem 1,
against that of four common exponential family distributions used to model
NLOS bias in the localization literature.

distribution approximation of the NLOS bias distribution.
Towards this end, we note that in general, if X ∼ Γ(α′, β′),
then we may write the parameters, α′ and β′, in terms of the
moments of X as follows:

α′ =
(E[X])2

E[X2] − (E[X])2 , and β′ =
E[X]

E[X2] − (E[X])2 . (8)

Since we aim for a gamma distribution approximation, i.e.,
f̃B (b | V∞ ≥ 1) = Γ(α, β), of the NLOS bias distribution, fB,
we can obtain its parameters by matching the moments of fB
with the moments of f̃B. Thus, we write the parameters, α and
β, from f̃B (b | V∞ ≥ 1) = Γ(α, β), in terms of the moments of
f̃B, as in (8) above. Then, matching moments, we substitute
the moments of fB in for those of f̃B to obtain α and β from
(7). This completes the approximation. �

3) Summary: This section demonstrated that the
analytically-derived distribution of NLOS bias, both with
and without blocking, are well-approximated by a gamma
and exponential distribution, respectively. While a gamma
distribution might offer an even better approximation of the
bias (than the exponential) in the non-blocking case, as it
has two parameters to modify, we note that the exponential
approximation is not only sufficient, but it also maintains an
elegant simplicity, as evidenced in Approximation 1.

Since the exponential and gamma NLOS bias models pre-
sented here are derived via the absolute delay of the first-
arriving MPC (the most accurate method for determining
NLOS bias to date), then it is fascinating to find that we have
arrived at two NLOS bias models that have been assumed in
the localization literature, via indirect or heuristic methods,
for decades. Thus, this analysis suggests that these two bias
models were indeed good assumptions and should perhaps be
the standard bias models moving forward, especially for 5G
mm-wave.

B. Numerical Results

Here, we compare our analytically derived NLOS bias
distribution against three separate NLOS bias distributions
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Fig. 5. NLOS BIAS DISTRIBUTIONS: VARYING REFLECTOR DENSITY.
These results were generated for a test link setup with d = 350m. The reflector
widths were sampled from fW = unif(wmin = 10m, wmax = 40m, nw = 4),
and orientations from fΘ = unif(θmin = 10◦, θmax = 80◦, nθ = 8). Note,
for each λ, the first three CDFs listed in the legend virtually overlap each
other.
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Fig. 6. NLOS BIAS DISTRIBUTIONS: VARYING REFLECTOR
SIZES. Results were generated for a test link setup with d = 350m and
a density of λ = 60 reflectors per km2. Reflector orientations were sampled
from the same distribution in Fig. 5 and reflector widths were sampled from
the distributions listed in the plot. For each width distribution, the first three
CDFs listed in the legend virtually overlap.

generated via simulation. For our analytically derived bias,
B | {V∞ ≥ 1} = S(1) | {V∞ ≥ 1} − d, its distribution is given
by FB (b | V∞ ≥ 1) = FS(1) (b + d | V∞ ≥ 1), where the CDF
of S(1) | {V∞ ≥ 1} is given in Theorem 1. This is labeled as
‘Bias via Theorem 1’ in Figs. 5, 6, and 7. Next, the three
comparison bias distributions were generated over 105 Boolean
model realizations where the path length of the first-arriving
NLOS path was recorded in each realization.11 We now briefly
detail how these three simulated distributions were generated.

For the distribution labeled ‘Indep. Blocking Sim’ in Figs.
5, 6, and 7, a Boolean model of reflectors is placed over
the test link setup. All reflection paths, without regards to

11Note that only Boolean model realizations with at least one non-blocked
reflection were used.
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Fig. 7. NLOS BIAS DISTRIBUTIONS: VARYING SEPARATION DISTANCE.
These results were generated for a reflector density of λ = 60 reflectors
per km2. The reflector widths and orientations were sampled from the same
distributions listed in Fig. 5. Note that for each separation distance, d, the
first three CDFs listed in the legend overlap, save for the slight deviation in
the‘Correlated Blocking Sim’ CDF for d = 80m.

blocking, are noted. Then, each reflection path is checked
for blockages by checking whether the incident and reflected
paths are blocked using separate Boolean models (Definition
5). Thus, the steps taken to simulate this distribution exactly
matches our analytical approach. This simply serves as an
extra check on the analysis. From Figs. 5, 6, and 7, we see
that, indeed, this does match our analytical distribution (it is
not visible, as it exactly overlaps with the analytical bias CDF).

For the distribution labeled ‘Correlated Blocking Sim’ in
Figs. 5, 6, and 7, a Boolean model of reflectors is placed
as above. However, now each reflection path is checked for
blockages using this same Boolean model. This represents
true, correlated blocking on reflection paths. In almost all
cases plotted, this virtually overlaps the previous two distri-
butions, indicating that the independent blocking assumption
accurately captures correlated blocking on reflection paths.

Finally, we conduct a simulation similar to ‘Correlated
Blocking Sim’ above, but with the extra restriction that only
Boolean model realizations where the LOS path is blocked
by at least one reflector are considered. This departs from the
Boolean model assumption, due to the forced conditioning,
and also represents an extreme case of correlated blocking.
The bias distribution generated in this case is labeled ‘Corr.
Blocking w/ LOS Blocked Sim’ in Figs. 5, 6, and 7.

For the first result in Fig. 5, these four distributions above
were plotted for different reflector densities. As the reflector
density increases, the bias distributions shift to the left. This
trend is also seen in Fig. 6. This trend matches intuition in
that as the reflector density increases, or as the reflector sizes
increase, large reflections are less likely, which consequently
shifts the CDFs to the left. Additionally in both figures, the
close match with the ‘Corr. Blocking w/ LOS Blocked Sim’
case indicates that the analytical bias model, which assumes
independent blocking, can reasonably capture the effect of
forced blockages.
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Next, we explore this ‘Corr. Blocking w/ LOS Blocked
Sim’ case further. In Fig. 7, the density of reflectors, as well
as their size and orientation distributions, remained constant
and the only parameter that changed was the base station-
mobile separation distance, d. We can see that as the base
station and mobile begin to close in on each other, the
‘Corr. Blocking w/ LOS Blocked Sim’ CDF begins to deviate
slightly from the other three CDFs. This occurs due to the
conditioning in the ‘Corr. Blocking w/ LOS Blocked Sim’
case, where at least one reflector is forced between the base
station and mobile; blocking the LOS path. As d decreases,
the buildings appear larger in relation to this base station-
mobile separation distance, and thus, forcing at least one large
building in between the two introduces significant correlated
blocking. For example, when d = 80m, if the largest reflector,
w = 40m, is placed appropriately, it can take up to ∼70%
of the separation distance, thus having the potential to block
many reflection paths at once. For the reader accustomed to
examining positioning error distributions, bias error, relatively
speaking, is significantly larger, often on the order of hundreds
of meters to a few kilometers [32], [14]. Thus, despite the
amount of correlated blocking introduced in the d = 80m
case, the deviation of the ‘Corr. Blocking w/ LOS Blocked
Sim’ CDF from the other three CDFs is surprisingly small.
Consequently, the independent blocking assumption holds rea-
sonably well in these cases of significant correlated blocking.
That being said, placing the base station and mobile at the
extreme ends of a large building, so that the building covers
∼100% of the separation distance, will almost certainly cause
the independent blocking assumption to break down and the
accuracy of the analytical bias distribution to degrade. As with
any analytical model, it is always important to be aware of
such model limitations and ‘corner cases’.

C. Discussion

To the authors’ knowledge, no outdoor measurement cam-
paigns characterizing NLOS bias currently exist. This obser-
vation was noted in 1996 [33], and was echoed again in 2007
[15]:

At the present time, very little is known about the
statistics of the NLOS variables [bias] in realistic
propagation environments, and there are no estab-
lished models.

and we believe this lack of measurement data characterizing
NLOS bias still exists to this day.

Appropriately characterizing the NLOS bias outdoors re-
quires measuring the absolute delay of the first-arriving MPC
under NLOS conditions. This is difficult for a number of
reasons, the first of which is the need for highly-accurate,
nanosecond-level (or less) synchronization between the Tx and
Rx. Not many non-tethered channel sounders exist that offer
enough bandwidth, along with the accurate synchronization
necessary, to perform the absolute TOF measurements needed
[34]. Additionally, the measurements themselves are tedious
due to the need for Rubidium clocks at the Tx and Rx which
require a “synchronization training period” of an hour or more
and which can fall out of synchronization just as quickly
[34]. Furthermore, the Tx and Rx would require accurate GPS

positioning in order to extract the bias, which can be hard to
obtain depending on the measurement environment, e.g., urban
canyons. Finally, these measurements would need to occur, for
a given Tx-Rx separation distance, over many realizations of
the surrounding environment in order to generate statistics of
the bias. Thus, deriving accurate analytical bias models, such
as those presented here, is necessary due to these difficulties
in empirically characterizing the NLOS bias.

Given this lack of data with which to compare our bias dis-
tributions against, it is reasonable to ask: “What can be gleaned
about NLOS bias from other (semi-related) measurement-
based models that already exist in the literature?” To answer
this, we attempt to glean insight into the nature of NLOS bias
by examining a mm-wave channel model of excess multipath
delays derived from outdoor LOS measurements. From the
model in [35], excess delays of MPCs from LOS PDPs are
sampled from an exponential distribution, which was derived
via a fit to measurement data. Supposing these multipath de-
lays are independent, then the excess delay of the first-arriving
multipath component is also exponentially distributed.12 Since
the measurements are LOS, then to obtain the absolute delay,
one can simply add on the LOS TOF, which is a simple shift of
the exponential distribution. Finally, if we assume that there is
a blockage that 1) removes the LOS component, and 2) is not
significantly correlated with the first-arriving reflection path,
then there is reason to believe that this shifted exponential
distribution can reasonably represent the absolute delay of the
first-arriving MPC in a NLOS scenario. (Similar reasoning is
also given in [22].) This evidence suggests that the distribution
for the path length (i.e., absolute delay) of the first-arriving
MPC presented here is at least “in-line” with what one would
expect in reality.

We conclude this section by noting that Theorem 1, i.e.,
the distribution of the first-arriving MPC, can also be used in
channel simulators [36] to provide a distribution from which
to sample an absolute timing reference for excess delay PDPs
in NLOS scenarios.

IV. THE ANGLE-OF-ARRIVAL OF THE FIRST-ARRIVING
REFLECTION

This section derives the AOA distribution of the first-
arriving reflected path, with blocking. We begin with some
important AOAs which correspond to the boundary PRPs from
Lemma 2.

Definition 8 (The s-Meter AOAs for Rw,θ,c). Recall from
Lemma 2 that there are precisely four PRPs that reflector
Rw,θ,c can intersect to produce a reflection of exactly s meters,
where d < s < ∞. These PRPs are labeled, hI,θ (s), hII,θ (s),
hIII,θ (s), hIV,θ (s). If ∂Rw,θ,c were to intersect hq,θ (s) (q ∈ Q)
to produce a reflection, then we label the AOA at m of the
reflected path, L[hq, θ (s),m], by ψq,θ (s), which is measured in
radians c.c.w. w.r.t. the +x-axis. We call these four AOAs the
s-meter AOAs for Rw,θ,c. The QI s1-meter AOA for Rw,θ j,c is
depicted in Fig. 2.

12The first order statistic of i.i.d. exponentially distributed RVs is also
exponentially distributed.
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TABLE III
THE s-METER AOA FUNCTIONS FOR Rw, θ,c , i.e., α = ψq, θ (s), THEIR DERIVATIVES, AND RESPECTIVE INVERSES

ψI, θ (s) = cos−1
(
− d sin θ

s

)
+θ− π2 , d ≤ s < ∞ ψ′I, θ (s) = − d sin θ

s
√
s2−d2 sin2 θ

, d ≤ s < ∞

ψ−1
I, θ (α) = d sin θ

sin
(
α−θ

) , θ < α ≤ 2θ
(
ψ−1

I, θ
)′(α) = −ψ−1

I, θ (α) cot
(
α− θ

)
, θ < α ≤ 2θ

ψII, θ (s) = cos−1
(
− d cos θ

s

)
+θ, d ≤ s < ∞ ψ′II, θ (s) = − d cos θ

s
√
s2−d2 cos2 θ

, d ≤ s < ∞

ψ−1
II, θ (α) = −d cos θ

cos
(
α−θ

) , π
2 + θ < α ≤ π

(
ψ−1

II, θ
)′(α) = ψ−1

II, θ (α) tan
(
α− θ

)
, π

2 + θ < α ≤ π

ψIII, θ (s) = cos−1
(
d sin θ

s

)
+θ+ π2 , d ≤ s < ∞ ψ′III, θ (s) = d sin θ

s
√
s2−d2 sin2 θ

, d ≤ s < ∞

ψ−1
III, θ (α) = d sin θ

sin
(
α−θ

) , π ≤ α < π + θ
(
ψ−1

III, θ
)′(α) = −ψ−1

III, θ (α) cot
(
α− θ

)
, π ≤ α < π + θ

ψIV, θ (s) = cos−1
(
d cos θ

s

)
+θ+π, d ≤ s < ∞ ψ′IV, θ (s) = d cos θ

s
√
s2−d2 cos2 θ

, d ≤ s < ∞

ψ−1
IV, θ (α) = −d cos θ

cos
(
α−θ

) , π+2θ ≤ α< 3π
2 +θ

(
ψ−1

IV, θ
)′(α) = ψ−1

IV, θ (α) tan
(
α− θ

)
, π+2θ ≤ α< 3π

2 +θ

Observe, for example, the QI s1-meter AOA for Rw,θ j,c,
i.e., ψI,θ j (s1), in Fig. 2. Note that as s1 increases, hI,θ j (s1)
tracks along the reflection hyperbola, Hθ j , as the s1-ellipse
boundary, ∂Ps1 , expands out. Consequently, the corresponding
AOA, ψI,θ j (s1), changes as well. Hence, the s-meter AOAs for
Rw,θ,c are functions of s (parameterized by θ). Their behavior
as functions of s is of particular importance in subsequent
derivations and so we present the following lemma.

Lemma 5 (The s-meter AOA Functions for Rw,θ,c). The s-
meter AOA functions for Rw,θ,c, i.e., α = ψq,θ (s), for q ∈
Q, are given in Table III, along with their derivatives and
inverses.

Proof. We present only the derivation of the QI s-meter AOA
function for Rw,θ,c, i.e. ψI,θ (s), as the other quadrant s-meter
AOA functions follow similarly. We begin by recalling from
Definition 8 that ψI,θ (s) is the angle of the slope of the
reflection path L[hI, θ (s),m]. Thus, letting α = ψI,θ (s), we have
the relationship

tan(α) =
−[hI,θ (s)]2

d
2 − [hI,θ (s)]1

,

which leads to the following: α = ψI,θ (s) =




tan−1
[

d2−s2

d
√
s2 csc2 θ−d2−s2 cot θ

]
, d2−s2

d
√
s2 csc2 θ−d2−s2 cot θ

≥ 0

tan−1
[

d2−s2

d
√
s2 csc2 θ−d2−s2 cot θ

]
+ π, d2−s2

d
√
s2 csc2 θ−d2−s2 cot θ

< 0
,

(9)

for d < s < ∞. This follows from simplifying the r.h.s. of
the above relationship using Lemma 2, taking tan−1(·) of both
sides, and noting that for −∞ ≤ x < 0, Range

(
tan−1(x)

)
=

[π/2, 0), and so π must be added when the slope of the
reflection path is negative. Finally, taking cos−1 (cos(·)

)
of the

r.h.s. in (9) and simplifying yields the expression for ψI,θ (s)
in Table III for d < s < ∞.13 �

13Note, in Table III we allow s = d. This corresponds to a RP at hI, θ (d) =
m, and since there is no reflection path, the d-meter AOA, ψI, θ (d), is not
defined. In this case, we simply take the AOA to be the limiting case, i.e.,
ψI, θ (d) = lims→d ψI, θ (s) = 2θ, which is obtained from (9) via L’Hôpital’s
rule and by noting the conditions’ dependency on θ. Note that ψI, θ (d) in the
Table III expression conveniently yields the same value. A similar argument
is used to handle the s = d case in QIV as well.

Definition 9 (AOA of the 1st-Arriving Reflection). Let A(1) be
the RV representing the AOA, in radians, of the first-arriving
reflection, measured c.c.w. w.r.t. the +x-axis. Note, 0 < A(1) <
2π.

Remark. Although the distribution of S(1) was derived assum-
ing the LOS path was blocked, Assumption 3 asserts that
fS(1) (s(1) | V∞ ≥ 1) does not change when we are agnostic to
blocking on the LOS path. Consequently, moving forward, we
simply assume fS(1) (s(1) | V∞ ≥ 1) was derived irrespective
of what happens on the LOS path. Since we also seek to
derive the distribution of A(1) irrespective of what happens
on the LOS path, then the distributions of S(1) and A(1)
will both characterize the first-arriving reflection under the
same conditions. This implies that S(1) and A(1) each describe
different properties of the same first-arriving reflection path;
hence, A(1) is subject to the same existence issues as S(1) , and
so must be conditioned on {V∞ ≥ 1} as well.

Lemma 6 (A(1) Conditional Distribution Given S(1)). Con-
sider the test link setup and Boolean model. Then, the condi-
tional PDF of A(1) given a first-arriving reflection of distance
S(1) is: fA(1) (α(1) | S(1),V∞ ≥ 1) =

1
nθ∑
j′=1

∑
q′∈Q

ωq′,θ j′ (s(1))

nθ∑
j=1

∑
q∈Q

ωq,θ j (s(1)) δ
(
α(1) − ψq,θ j (s(1))

)
,

where,

ωI,θ j(s(1)) = ρ
(
hI,θ j(s(1))

) s(1)
(
ψ−1

I, θ j

) ′ (
ψI, θ j (s(1) )

)
2
√
s2

(1)−d
2 sin2θ j

ψ ′I,θ j(s(1)),

ωII,θ j(s(1)) = ρ
(
hII,θ j(s(1))

) s(1)
(
ψ−1

II, θ j

) ′ (
ψII, θ j (s(1) )

)
2
√
s2

(1)−d
2 cos2θ j

ψ ′II,θ j(s(1)),

ωIII,θ j(s(1)) = ρ
(
hIII,θ j(s(1))

) s(1)
(
ψ−1

III, θ j

) ′ (
ψIII, θ j (s(1) )

)
2
√
s2

(1)−d
2 sin2θ j

ψ ′III,θ j(s(1)),

ωIV,θ j(s(1)) = ρ
(
hIV,θ j(s(1))

) s(1)
(
ψ−1

IV, θ j

) ′ (
ψIV, θ j (s(1) )

)
2
√
s2

(1)−d
2 cos2θ j

ψ ′IV,θ j(s(1)),

hq,θ j , ρ(·), and ψq,θ j are from Lemmas 2, 3, and 5, respec-
tively, and Supp(A(1) | S(1),V∞ ≥ 1) =

{
ψq,θ j (s(1))

}
for q ∈ Q,

j ∈ {1, . . . , nθ }.
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Proof. Let S(1) = s(1) and consider all of the boundary PRPs,
hq,θ j (s(1)) (q ∈ Q, j ∈ {1, . . . , nθ }) that reflectors of B
can intersect to produce the first-arriving reflection path of
distance s(1) . (Letting s1 = s(1) , Fig. 2 gives an example
depiction of four of these PRPs, i.e., those associated with
a reflector of orientation θ j . The PRPs for the reflectors of
other orientations would be placed along ∂Ps(1) as well, if
depicted.) Recall from Definition 8, that associated with each
of these PRPs is an AOA for the reflected path, ψq,θ j (s(1)).
Since there are ‘4nθ ’ potential AOAs, we must determine
the probability A(1) equals any one of them. Thus, we seek
a conditional distribution of the form stated in the lemma,
where each possible AOA, ψq,θ (s(1)), has associated with it a
weighting factor, ωq,θ j (s(1)), where

P[A(1) = ψq,θ (s(1)) | S(1),V∞] =
ωq,θ j (s(1))∑nθ

j′=1
∑

q′∈Q ωq′,θ j′ (s(1))
.

Correctly determining these weighting factors requires con-
ditioning on S(1) being within an infinitesimal sliver:

fA(1)

(
α(1) �� S(1),V∞ ≥ 1

)
=

lim
∆s(1)→0

fA(1)

(
α(1) �� s(1) ≤ S(1) ≤ s(1) + ∆s(1),V∞ ≥ 1

)
.

In so doing, by ignoring zero probability events in this con-
ditioning, we can choose ∆s(1) s.t. one and only one reflector
produces a reflection with distance in [s(1), s(1)+∆s(1)], which
is that producing the first-arriving reflection. This implies we
have conditioned on one and only one reflector having a VRP
in ‘Ps(1)+∆s(1)/(Ps(1)/∂Ps(1) ).’ Now, there are ‘4nwnθ ’ mutually
exclusive ways, or “sub-events,” in which this reflector can
produce a VRP in ‘Ps(1)+∆s(1)/(Ps(1)/∂Ps(1) ),’ with the typical
sub-event being the center point of edge Eq of Rwi,θ j,c (for
q ∈ Q, i ∈ {1, . . . , nw }, j ∈ {1, . . . , nθ }) falling in

Ωq = Eq ⊕
(
Hθ j ∩Qq ∩ Ps(1)+∆s(1)/(Ps(1)/∂Ps(1) )

)
(see proof of Lemma 4 for Eq definition). Letting s1 = s(1)
and s2 = s(1) + ∆s(1) , Fig. 2 depicts four of these sub-events
for Rwi,θ j,c. Examining Fig. 2, we note that as ∆s(1) → 0, the
EI edge center point of Rwi,θ j,c falling in ΩI implies that the
RP for the first-arriving reflection is at hI,θ j (s(1)) =⇒ A(1) =

ψI,θ j (s(1)). Thus, we now have a way for determining whether
A(1) equals any of the ‘4nθ ’ potential AOAs, since this occurs
if the reflector producing the first-arriving reflection falls in
one of the corresponding sub-events, i.e., ΩI,ΩII,ΩIII,ΩIV for
Rwi,θ j,c. This yields

fA(1) (α(1) | s(1) ≤ S(1) ≤ s(1) + ∆s(1),V∞ ≥ 1)

=

1
nw

1
nθ

nθ∑
j=1

∑
q∈Q

nw∑
i=1

wiΓq,θ j (s(1)) δ
(
α(1) − ψq,θ j (s(1))

)
1
nw

1
nθ

∑nθ
j′=1

∑
q′∈Q

∑nw
i′=1wi′Γq′,θ j′ (s(1))

=

nθ∑
j=1

∑
q∈Q
Γq,θ j (s(1)) δ

(
α(1) − ψq,θ j (s(1))

)
∑nθ

j′=1
∑

q′∈Q Γq′,θ j′ (s(1))
, (10)

where,

ΓI,θ j (s(1)) =

[Rθ j
hI, θ j (s(1)+∆s(1) )]1∫

[Rθ j
hI, θ j (s(1) )]1

ρ
(
R−1
θ j

g∗I (xθ j)
)
dxθ j ,

ΓII,θ j (s(1)) =

[Rθ j
hII, θ j (s(1)+∆s(1) )]2∫

[Rθ j
hII, θ j (s(1) )]2

ρ
(
R−1
θ j

g∗II(yθ j)
)
dyθ j ,

ΓIII,θ j (s(1)) =

[Rθ j
hIII, θ j (s(1) )]1∫

[Rθ j
hIII, θ j (s(1)+∆s(1) )]1

ρ
(
R−1
θ j

g∗III(xθ j)
)
dxθ j ,

ΓIV,θ j (s(1)) =

[Rθ j
hIV, θ j (s(1) )]2∫

[Rθ j
hIV, θ j (s(1)+∆s(1) )]2

ρ
(
R−1
θ j

g∗IV(yθ j)
)
dyθ j .

Here, each sub-event from above is weighted by
‘ 1
nw

1
nθ
wiΓq,θ j (s(1)),’ where ‘ 1

nw
1
nθ

’ is the probability
Rwi,θ j,c is selected and ‘wiΓq,θ j (s(1))’ is the probability its
Eq edge center point falls in Ωq to create a visible reflection,
as opposed to the other Ωq regions (see Fig. 2). Note that
‘wiΓI,θ j (s(1))’ was derived in the same manner as in (5),
and simply computes the area of ΩI, where each x ∈ ΩI is
weighted by the probability its corresponding edge produces a
visible reflection. We refer the reader to the proof of Lemma
4 for further details. The other ‘wiΓq,θ j (s(1))’ are derived
similarly.

Next, it’s easiest to work with these integrals when they are
evaluated w.r.t. a common AOA variable. Thus, consider the
transformations:

for ΓI,θ j (s(1)), let xθ j =
[
Rθ j hI,θ j

(
ψ−1

I,θ j (α)
)]

1,

for ΓII,θ j (s(1)), let yθ j =
[
Rθ j hII,θ j

(
ψ−1

II,θ j (α)
)]

2,

for ΓIII,θ j (s(1)), let xθ j =
[
Rθ j hIII,θ j

(
ψ−1

III,θ j (α)
)]

1, and

for ΓIV,θ j (s(1)), let yθ j =
[
Rθ j hIV,θ j

(
ψ−1

IV,θ j (α)
)]

2.

For ΓI,θ j (s(1)), this transformation implies

dxθ j =
[
Rθ j

d
dα

hI,θ j
(
ψ−1

I,θ j (α)
)]

1dα,

which yields: ΓI,θ j (s(1))

(a)
=

∫ ψI, θ j (s(1)+∆s(1) )

ψI, θ j (s(1) )
ρ
(
hI,θ j

(
ψ−1

I,θ j (α)
)) [

Rθ j
d

dαhI,θ j
(
ψ−1

I,θ j
(α)

)]
1
dα

(b)
= ρ

(
hI,θ j

(
s(1)

))[
Rθ j

d
dα

[
hI,θ j

(
ψ−1

I,θ j
(α)

)]
α=ψI, θ j (s(1) )

]
1
×(

ψI,θ j (s(1)+∆s(1)) − ψI,θ j (s(1))
)

(c)
= ωI,θ j (s(1))∆s(1), (11)

where (a) applies the transformation, (b) is the evaluation of
the integral as “base-times-height” when driving ∆s(1) → 0,
and (c) follows by simplifying [·]1 and by the definition of the
derivative of ψI,θ j (s(1)) when driving ∆s(1) → 0 (ωI,θ j (s(1)) is
given in the lemma statement). Following the same procedure,
we obtain
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(a) Reflector orientations: Supp(Θ) = {60◦ }
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(b) Reflector orientations: Supp(Θ) = {20◦, 40◦, 60◦ }
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(c) Reflector orientations: Supp(Θ) = {1◦, 5◦, 9◦, . . . , 81◦, 85◦, 89◦ }

Fig. 8. AOA MARGINAL PDFS OF THE 1ST -ARRIVING REFLECTION: VARYING REFLECTOR ORIENTATIONS. PDFs were generated for a test link setup of
d = 350m, a reflector density of λ = 30 reflectors per km2, reflector widths sampled from fW = unif(wmin = 10m, wmax = 40m, nw = 4), and reflector
orientations given under each plot.

ΓII,θ j (s(1)) = ωII,θ j (s(1))∆s(1),

ΓIII,θ j (s(1)) = ωIII,θ j (s(1))∆s(1), and

ΓIV,θ j (s(1)) = ωIV,θ j (s(1))∆s(1) .

Finally, substituting these into (10), the ∆s(1)’s cancel, and
taking lim∆s(1)→0 ensures our approximations (b) and (c) in
(11) are, in fact, equalities in the limit. �

Theorem 2 (A(1) Marginal Distribution). Consider the test
link setup and Boolean model. Then, the marginal PDF of
A(1) is given by: fA(1) (α(1) | V∞ ≥1) =

nθ∑
j=1

∑
q∈Q



(
ψ−1
q,θ j

) ′
(α(1))ωq,θ j

(
ψ−1
q,θ j

(α(1))
)

fS(1)

(
ψ−1
q,θ j

(α(1))
���V∞ ≥1

)
∑nθ

j′=1
∑

q′∈Q ωq′,θ j′

(
ψ−1
q,θ j

(α(1))
)

× βq,θ j (α(1))

,

where

βI,θ j (α(1)) = −1
[
θ j < α(1) ≤ 2θ j

]
,

βII,θ j (α(1)) = −1
[
π

2
+ θ j < α(1) ≤ π

]
,

βIII,θ j (α(1)) = 1
[
π ≤ α(1) < π + θ j

]
,

βIV,θ j (α(1)) = 1
[
π + 2θ j ≤ α(1) <

3π
2
+ θ j

]
,

ψ−1
q,θ j

and
(
ψ−1
q,θ j

) ′
are given in Lemma 5, ωq,θ j from Lemma

6, the distribution of S(1) | {V∞ ≥ 1} from Theorem 1, and

Supp
(
A(1) �� {V∞ ≥ 1}

)
=

nθ⋃
j=1

[(
θ j, 2θ j

]
∪

(
π

2
+ θ j, π + θ j

)
∪

[
π + 2θ j,

3π
2
+ θ j

)]
.

Proof. Please refer to Appendix C. �

A. Numerical Results

This section compares the AOA distribution of the first-
arriving reflection (Theorem 2) against two AOA PDFs gen-
erated via simulation, labeled ‘Indep. Blocking Sim’ and
‘Correlated Blocking Sim’. Comparisons were made across
varying reflector orientations (Fig. 8), densities (Fig. 9a), and
sizes (Fig. 9b). The two simulated PDFs were generated over
500,000 Boolean model realizations and were generated in the
exact same manner as in Sec. III-B, with the only difference
being that the AOA of the first-arriving reflection was recorded
rather than its path length. Note that the remarkable overlap
between Theorem 2 and ‘Correlated Blocking Sim’ in all
figures reveals how well the independent blocking assumption
holds.

We begin by examining the impact of varying reflector
orientations. The unique form of the distributions in Figs.
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(a) VARYING REFLECTOR DENSITY. Reflector densities are given in the figure. For all PDFs, reflector widths were sampled from
fW = unif(wmin = 10m, wmax = 40m, nw = 4) and reflector orientations from fΘ = unif(θmin = θmax = 60◦, nθ = 1),
i.e., a delta function located at 60◦ (deterministic), as in Fig. 8a.

0 /4 /2 3 /4 5 /4 3 /2 7 /8 2
0

0.2

0.4

0.6

0.8

1

(b) VARYING REFLECTOR SIZES. The reflector width distributions are given in the figure. For all PDFs, the reflector density
was λ = 30 reflectors per km2 and reflector orientations were sampled from the same distribution as in (a) above.

Fig. 9. AOA MARGINAL PDFS OF THE 1ST -ARRIVING REFLECTION. PDFs were generated for a test link setup of d = 350m.

8a and 8b reveal that when reflectors take on one, or a few,
orientations, such as buildings in a homogeneous city block
for example, unique AOA profiles result, with certain AOAs
being very prominent and others simply non-existent. This
highlights how Theorem 2 can be used to optimize beam
sweeping, for example, by greatly reducing the angular search
space depending on the environment. Additionally, Fig. 8c
compares Theorem 2 against an elliptical, omni-directional
scattering model from the traditional channel modeling liter-
ature. The ‘AOA PDF’ from [19, Sec. V-B-2] was generated
under the same base station-mobile separation distance, and
assumes there is one omni-directional point scatterer uniformly
distributed over an smax-ellipse (see Def. 4), where smax

was chosen s.t. P[S(1) | {V∞ ≥ 1} ≤ smax] ≈ 0.75, i.e., the
analogous VRP associated with the first-arriving reflection in
our model in Fig. 8c would fall within Esmax 75% of the
time. It is fascinating to see that as the number of reflector
orientations increases, our AOA distribution in Theorem 2
begins to approach that of the omni-directional scattering
model, with the notable exception being the pronounced peaks
coming from both in front of and behind the mobile.

Next, we examine the effects of changing the reflector
densities and sizes. In comparing Figs. 9a and 9b, we find
that the impact of increasing the reflector density is similar to
that of increasing the reflector sizes. This is because both of
these changes increase the blocking probability. Combining
this insight with the fact that reflection points occur on the
reflection hyperbola, one can examine Fig. 2 to ascertain how
the AOA PDFs change with increasing blocking probability.
That is, AOAs associated with a reflection point on the
hyperbola closer to the test link setup become more probable,
while AOAs associated with reflection points on the hyperbola

farther from the test link setup become less probable. This
offers the necessary intuition into how the AOA PDF curves
change in Fig. 9.

To conclude, the distribution of A(1) given here, derived
via the Boolean model, is the first to capture the impact of
environmental obstacles (buildings) at mm-wave frequencies.
It thus offers insight that can not be gleaned from more el-
ementary omni-directional scattering models where blocking,
the Specular Reflection Law, and reflectors with non-zero area
are not considered.

V. CONCLUSION

Under a Boolean model of reflectors, which can facilitate
or block reflections, and assuming NLOS propagation is
due to first-order reflections, this paper presented the first
analytical derivation of the TOA and AOA distributions of
the first-arriving multipath component (MPC) experienced on
a single link in outdoor, mm-wave 5G networks. In so doing,
the TOA of the first-arriving MPC was used to derive the
distribution of the bias experienced on NLOS range mea-
surements for localization. It was shown that this analytically
derived NLOS bias distribution: 1) matches closely with the
decades-old exponential and gamma models assumed in the
localization literature, thus offering the first support of these
NLOS bias models based on the more accurate first-arriving
MPC approach; and 2) gives intuition into how bias behaves
when the environment of reflectors/blockages changes. Next,
numerical analysis of the AOA distribution revealed: 1) how
reflector (e.g., building) orientations impact this distribution;
and 2) how this distribution approaches the form of the
AOA distribution of the first-arriving MPC from an elliptical,
omni-directional scattering model as the number of reflector
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orientations increases. Finally, obtaining a closed-from ap-
proximation to the exact AOA distribution presented here,
which can reveal intuition into the behavior of the distribution
while also remaining simple enough to be easily used in other
applications, would be a worthwhile avenue for future work.

APPENDIX A
PROOF EXTENSION OF LEMMA 4: CONVERGENCE OF

INTEGRALS IN INTENSITY MEASURES

Here, we consider the worst case, i.e., d = s1 and s2 = ∞,
and show that the integrals in the following intensity measures
converge:

ΛI,v,wi,θ j (ΩI) =
λwi

nwnθ

∫ ∞

[Rθ j
m]1

ρ
(
R−1
θ j

g∗I (xθ j )
)
dxθ j ,

ΛII,v,wi,θ j (ΩII) =
λwi

nwnθ

∫ ∞

[Rθ j
b]2

ρ
(
R−1
θ j

g∗II(yθ j )
)

dyθ j . (12)

Consider first the integral in ΛI,v,wi,θ j (ΩI). We begin with
two helpful derivations. The first is

R−1
θ j

g∗I (xθ j ) =
1

4xθ j



(
4x2

θ j
+ d2 sin2θ j

)
cos θ j(

4x2
θ j
− d2 cos2θ j

)
sin θ j


, (13)

and the second is

ρ(r)
(a)
= e

− λ
nw nθ

∑nw
i=1

∑nθ
j=1

[
µ2

(
L[b,r]⊕Rwi , θ j

)
+µ2

(
L[r,m]⊕Rwi , θ j

)]

(b)
< e−

λ
nw nθ

∑nw
i=1

∑nθ
j=1

[
wi ‖b−r‖+wi ‖r−m‖

]
(c)
< e−

2λE[W ]
nθ

∑nθ
j=1 ‖r−m‖

, (14)

where (a) follows from Lemma 3 and Definition 2, (b) from
Lemma 3 where we have that ∀p, q ∈ R2,

µ2
(
L[p,q] ⊕ Rw,θ

)
≥ w‖p − q‖ + w2 > w‖p − q‖,

and (c) from

E[W ] =
1

nw

nw∑
i=1

wi

and from the fact that r ∈ QI ∪ {m} =⇒ ‖r −m‖ < ‖b − r‖.
Next, substituting (13) into (14) yields: ρ

(
R−1
θ j

g∗I (xθ j )
)
<

exp


−

2λE[W ]
nθ

×

nθ∑
j=1

√√
*
,

(
4x2
θ j
+d2 sin2 θ j

)
cos θ j

4xθ j
− d

2
+
-

2

+

(
4x2
θ j
−d2 cos2 θ j

)2
sin2 θ j

16x2
θ j


.

(15)

The large square root term in the summand can be conve-
niently reduced to the following(

xθ j−
d
2

cos θ j
)√√

1+
d2 sin2θ j

4x2
θ j

≥ xθ j−
d
2

cos θ j (16)

where the inequality follows from the fact that√
1 + (d2 sin2θ j )/(4x2

θ j
) ≥ 1,

since

xθ j ≥
d
2

cos θ j = [Rθ j m]1

(lower limit of integral in ΛI,v,wi,θ j (ΩI) in (12)).
Finally, substituting (16) in for the square root term in (15)

and integrating both sides yields∫ ∞

[Rθ j
m]1
ρ
(
R−1
θ j

g∗I (xθ j )
)
dxθ j <

∫ ∞

[Rθ j
m]1

e−
2λE[W ]

nθ

∑nθ
j=1

[
xθ j −

d
2 cos θ j

]
dxθ j

=
1

2λE[W ]
, (17)

and thus, the integral in ΛI,v,wi,θ j (ΩI) in (12) is bounded.
Following the same strategy, the integral in ΛII,v,wi,θ j (ΩII)

in (12) can be shown to have the same bound as in (17). Thus,
when s2 = ∞, ΛI,v,wi,θ j (ΩI) and ΛII,v,wi,θ j (ΩII) are bounded.

APPENDIX B
PROOF OF THEOREM 1

FS(1) (s(1) | V∞ ≥ 1) = P[S(1) ≤ s(1) | V∞ ≥ 1]

= P[Vs(1) ≥ 1 | V∞ ≥ 1]

=
P[Vs(1) ≥ 1,V∞ ≥ 1]

P[V∞ ≥ 1]

=
P[V∞ ≥ 1 | Vs(1) ≥ 1] P[Vs(1) ≥ 1]

P[V∞ ≥ 1]

(a)
=

P[Vs(1) ≥ 1]
P[V∞ ≥ 1]

(b)
=

1
1 − P[V∞ = 0]

(
1 − P[Vs(1) = 0]

)
,

where (a) follows from P[V∞ ≥ 1 | Vs(1) ≥ 1] = 1, and (b)
yields the CDF in the theorem since Vs(1) and V∞ are Poisson
distributed according to Lemma 4.

The PDF is obtained by noting: fS(1) (s(1) |V∞ ≥ 1)

=
∂

∂s(1)
FS(1) (s(1) | V∞ ≥ 1)

=
1

1 − e−λ̂(∞)
e−λ̂

(
s(1)

) ∂

∂s(1)

[
λ̂
(
s(1)

)]

(a)
=

2λE[W ]

nθ
(
1 − e−λ̂(∞)

) e−λ̂
(
s(1)

)
×

nθ∑
j=1

[
ρ
(
R−1
θ j

g∗I
([

Rθ j hI(s(1))
]

1

)) ∂

∂s(1)

[
Rθ j hI(s(1))

]
1

+ ρ
(
R−1
θ j

g∗II
([

Rθ j hII(s(1))
]

2

)) ∂

∂s(1)

[
Rθ j hII(s(1))

]
2

]
,

where (a) follows from Leibnitz’s Rule [37, Theorem 2.4.1].
Then, the PDF expression stated in the theorem is achieved
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from (a) via the following simplifications:

ρ
(
R−1
θ j

g∗I
( [

Rθ j hI(s(1))
]

1

))
= ρ

(
hI,θ j (s(1))

)
,

ρ
(
R−1
θ j

g∗II
( [

Rθ j hII(s(1))
]

2

))
= ρ

(
hII,θ j (s(1))

)
,

∂

∂s(1)

[
Rθ j hI(s(1))

]
1 =

s(1)

2
√

s2
(1) − d2 sin2 θ j

, and

∂

∂s(1)

[
Rθ j hII(s(1))

]
2 =

s(1)

2
√

s2
(1) − d2 cos2 θ j

,

where θ j was added to hI and hII to emphasize the dependence.
The support follows from Definition 6.

APPENDIX C
PROOF OF THEOREM 2

fA(1) (α(1) | V∞ ≥1)

= lim
smax→∞

∫ smax

d

fA(1) (α(1) | S(1),V∞ ≥ 1) fS(1) (s(1) | V∞ ≥ 1) ds(1)

(a)
=

nθ∑
j=1

∑
q∈Q

lim
smax→∞

∫ smax

d

ωq,θ j (s(1)) fS(1) (s(1) | V∞ ≥1)∑nθ
j′=1

∑
q′∈Q ωq′,θ j′ (s(1))

×

δ
(
α(1) − ψq,θ j (s(1))

)
ds(1)

(b)
=

nθ∑
j=1

∑
q∈Q

lim
smax→∞

∫ ψq, θ j
(smax )

ψq, θ j
(d)(

ψ−1
q,θ j

) ′
(α)ωq,θ j

(
ψ−1
q,θ j

(α)
)

fS(1)

(
ψ−1
q,θ j

(α) ��� V∞ ≥1
)

∑nθ
j′=1

∑
q′∈Q ωq′,θ j′

(
ψ−1
q,θ j

(α(1))
) ×

δ
(
α(1) − α

)
dα,

where (a) follows from Lemma 6 and by finite additivity of
limits and integrals, and (b) from the substitution:

α = ψq,θ j (s(1)) =⇒ ψ−1
q,θ j

(α) = s(1)

=⇒
(
ψ−1
q,θ j

) ′
(α) dα = ds(1) .

The theorem follows by expanding the sum over q ∈ Q,
computing the integral limits via Table III, and computing
the integrals by noting δ(·) and the α(1) values for which the
integrals are non-zero.
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