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Abstract. We build upon recent work by Kleinberg, Oren, and Ragha-
van [10–12] that considers present biased agents, who place more weight
on costs they must incur now than costs they will incur in the future.
They consider a graph theoretic model where agents must complete a
task and show that present biased agents can take exponentially more
expensive paths than optimal. We propose a theoretical model that adds
competition into the mix – two agents compete to finish a task first. We
show that, in a wide range of settings, a small amount of competition
can alleviate the harms of present bias. This can help explain why biased
agents may not perform so poorly in naturally competitive settings, and
can guide task designers on how to protect present biased agents from
harm. Our work thus paints a more positive picture than much of the
existing literature on present bias.
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1 Introduction

One of the most influential lines of recent economic research has been behavioral
game theory [3, 9]. The majority of economics research makes several idealized
assumptions about the behavior of rational agents to prove mathematical re-
sults. Behavioral game theory questions these assumptions and proposes models
of agent behavior that more closely align with human behavior. Through exper-
imental research [5, 6], behavioral economists have observed and codified several
common types of cognitive biases, from loss aversion [9] (the tendency to pre-
fer avoiding loss to acquiring equivalent gains) to the sunk cost fallacy [4] (the
tendency to factor in previous costs when determining the best future course of
action) to present bias [7] (the current topic). One primary goal of theorems in
game theory is to offer predictive power. This perspective is especially impor-
tant in the many computer science applications of these results, from modern ad
auctions to cryptocurrency protocols. If these theorems are to predict human be-
havior, the mathematical models ought to include observed human biases. Thus,
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rather than viewing behavioral game theory as conflicting with the standard
mathematical approach, the experimental results of behavioral game theory can
inform more sophisticated mathematical models. This paper takes a step towards
this goal, building on seminal work of Kleinberg, Oren, and Raghavan [10–12]
who formulated a mathematical model for planning problems where agents are
present biased.

Present bias refers to overweighting immediate costs relative to future costs.
This is a ubiquitous bias in human behavior that explains diverse phenomena.
The most natural example is procrastination, the familiar desire to delay difficult
work, even when this predictably leads to negative consequences later. Present
bias can also model the tendency of firms to prefer immediate gains to long-term
gains and the tendency of politicians to prefer immediate results to long-term
plans. One simple model of present bias [10–12] is to multiply costs in the current
time period by present bias parameter b when making plans. This model is a
special case of hyperbolic discounting, where costs are discounted in proportion
to how much later one would experience them. But even this special case suffices
to induces time-inconsistency, resulting in a rich set of strategies consistent with
human behavior.

Examples of time inconsistent behavior extend beyond procrastination. For
example, one might undertake a project, and abandon it partway through, de-
spite the underlying cost structure remaining unchanged. One might fail to com-
plete a course with no deadlines, but pass the same course with weekly deadlines.
Many people pay for a gym membership but never use it. Kleinberg and Oren
[10] presented the key insight that this diverse range of phenomena can all be
expressed in a single graph-theoretic framework, which we describe below.

Fix a directed, acyclic graph G, with designated source s and sink t. Refer to
G as a task graph, where s is the start of the task and t the end. A path through
this graph corresponds to a plan to complete the task; each edge represents one
step of the plan. Each edge has a weight corresponding to the cost of that step.

The goal of an agent is to complete the task while incurring the least cost (i.e.,
to take the cheapest path from s to t). An optimal agent will simply follow such
a cheapest path. A naive present biased agent with bias parameter b behaves
as follows. At s, they compute their perceived cost for taking each path to t by
summing the weights along this path with the first edge scaled up by b > 1.
They choose the path with the lowest perceived cost and take one step along
this path, say to v, and recompute their perceived cost along each the path from
v to t. Notice that such an agent may choose a path at s, take one edge along
that path, and then deviate away from it. This occurs because the agent believes
that, after the current choice of edge, they will pick the path from v to t with
lowest true cost. But once they arrive at v, their perceived cost of a path differs
from the true cost, and they pick a path with lowest perceived cost. This is why
the agents are considered naive: they incorrectly assume their future self will
behave optimally, and thus exhibit time-inconsistent behavior. See Figure 1 for
an example.
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Fig. 1: The optimal path is (s, x, t) with total cost 6. However, an agent with bias b = 2
will take path (s, v, z, t), with cost 21. Importantly, when the agent is deciding which
vertex to move to from s, they evaluate x as having total cost 12, while v has total
cost 11. This is because they assume they will behave optimally at v by taking path
(v, y, t). However, they apply the same bias at v and deviate to the worst possible path.

The power of this graph theoretic model is that it allows us to answer ques-
tions over a range of planning problems, and to formally investigate which tasks
represent the “worst-case” cost of procrastination. This is useful both to under-
stand how present-biased behavior differs from optimal behavior and to design
tasks to accommodate present bias. We now briefly summarize the existing lit-
erature, to motivate our introduction of competition to the model.

1.1 Prior Work

The most striking result is that there are graphs where the cost ratio (the ratio
of the optimal agent’s cost to the biased agent’s cost) is exponential in the size
of the graph. In addition, all graphs with exponential cost ratio have a shared
structure – they all have a large n-fan as a graph minor (and graphs without
exponential cost ratio do not) [10, 15]. So this structure encodes the worst-
case behavior for present bias in the standard model (and we later show how
competition is especially effective in this graph). An n-fan is pictured in Figure 2.

s

v1

0

0

c

1 vnt

v2

v3

· · ·

0

c2

c3

cn

Fig. 2: A naive agent with bias b > c > 1 will continually choose to delay finishing the
task.

The exponential cost ratio demonstrates the severe harm caused by present
bias. How, then, can designers of a task limit the negative effects of present bias?
Kleinberg and Oren [10] propose a model where a reward is given after finishing
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the task, and where the agent will abandon the task if at any point, they perceive
the remaining cost to be higher than the reward. Unlike an optimal agent, a
biased agent may abandon a task partway through. As a result, they give the
task designer the power to arbitrarily delete vertices and edges, which can model
deadlines. They then investigate the structure of minimally motivating subgraphs
– the smallest subgraph where the agent completes the task, for some fixed
reward. Follow-up work of Tang et al. [15] shows that finding any motivating
subgraph is NP-hard. Instead of deleting edges, Albers and Kraft [2] consider
the problem of spreading a fixed reward onto arbitrary vertices to motivate an
agent, and find that this too is NP-hard (with a constrained budget). For other
recent work involving present bias, see [1, 8, 13, 14, 16].

The above results all focus on accommodating present bias rather than alle-
viating it. By that, we mean that the approaches all focus on whether the agent
can be convinced to complete the task – via edge deletion or reward dispersal –
but not on guarding the agent from suboptimal behavior induced by their bias.
[11] partially investigates the latter question in a model involving sophisticated
agents, who plan around their present bias. They consider several types of com-
mitment devices – tools by which sophisticated agents can constrain their future
selves. However, these tools may require more powerful agents or designers and
don’t necessarily make sense for naive agents. We take a different approach – we
show that adding competition can simultaneously explain why present-biased
agents may not perform exponentially poorly in “natural” games and guide task
designers in encouraging biased agents towards optimal behavior.

1.2 Our Model

In our model, a task is still represented by a directed, acyclic graph G, with a
designated source s and sink t. There are two naive present-biased agents, A1

and A2, both with bias b, who compete to get to t first. The cost of a path is
the sum of the weights along the path, and time is represented by the number of
edges in the path, which we call the length of the path. In other words, each edge
represents one unit of time. The first agent to get to t gets a reward of r; ties
are resolved by evenly splitting the reward. Recall that naive agents believe that
they will behave optimally in the future. Thus, an agent currently at u considers
the cost to reach the target t to be bc(u, v) plus the cost of the optimal path
from v to t minus the reward of that path. More formally, let P(v → t) denote
the set of paths from v → t and let P (s → u) denote the path the agent has
taken to u. Let Cn(u, v) denote the remaining cost that the naive agent believes
they will incur while at u and planning to go to v. The subscript n Then:

Cn(u, v) = b·c(u, v)+min
P (v→t)∈P(v→t)

c(P (v → t))−RA2
(P (s→ u)∪(u, v)∪P (v → t)), (1)

where c(P ) =
∑

e∈P c(e) denotes the cost of path P and RA2
(P ) denotes the

reward of taking path P from s to t. This reward depends on the path the other
agent A2 takes. Specifically, if A2 takes a path of length k, and Q := P (s →
u)∪(u, v)∪P (v → t) is a path of length `, then R(Q) is r if ` < k, r/2 if ` = k and
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0 if ` > k. We will often rewrite the second term in (1), for ease of notation, as
minPv

c(Pv)− RA2
(Ps→u,v→t). We sometimes refer instead to the naive agent’s

utility, which is the negation of this cost. Given this cost function, the naive
agent chooses the successor of node u via S(u) = argminv:(u,v)∈E Cn(u, v). See
Figure 3 for an example.
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Fig. 3: Suppose r = 5, the bias b = 2, and assume A2 takes path (s, u, x, t). Then at s,
A1 prefers to take u for perceived cost 4 + 4 + 5 − 2.5 = 10.5. Notice that, due to the
reward, the path A1 believes he will take from u is (u, x, t), despite (u, y, z, t) having
lower cost. However, at u, A1 evaluates the lower path to be cheaper, despite losing the
race. This shows that a reward of 5 does not ensure a Nash equilibrium on (s, u, x, t)
when b = 2.

We now consider how this model of competition might both explain the
outcomes of natural games and inform task designers on how to elicit better
behavior from biased agents. For a natural game, consider the classic example of
two companies competing to expand into a new market. Both companies want
to launch a similar product, and are thus considering the same task graph G.
The companies are also present biased, since shareholders often prefer immediate
profit maximization/loss minimization over long term optimal behavior. The first
company to enter the market gains an insurmountable advantage, represented
by reward r. If the companies both enter the market at the same time, they split
the market share, each getting reward r/2. This arrangement can be modeled
within our framework, and the competition between the companies should lead
them to play a set of equilibrium strategies.

For a designed game, consider the problem of encouraging students to submit
final projects before they are due. The instructor sets a deadline near the end
of finals week to give students flexibility to complete the project when it best
fits their schedule. The instructor also knows that (1) students tend to procras-
tinate and (2) trying to complete the final project in a few days is much more
challenging than spreading it out. They would like to convince students to work
on and possibly submit their assignments early, without changing the deadline
(to allow flexibility for the students whom it suits best). One possible solution
would be to give a small amount of extra credit to the first submission. How
might they set this reward to encourage early submissions?
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In both these examples, the intuition is that competition will alleviate the
harms of present bias by driving agents towards optimal behavior.

1.3 Summary of Results

We have introduced a model of competition for completing tasks along some
graph. We warm up by analyzing these games absent present bias. Namely, we
classify all Nash equilibria for an arbitrary task graph with unbiased agents, by
first defining and eliminating all dominated paths.

We then analyze the model where agents have equal present bias. We show
that a very small reward induces a Nash equilibrium on the optimal path, for any
graph with a dominant path. This is a substantial improvement over the expo-
nential worst case cost ratio experienced without competition. We then discuss
how time-inconsistency defeats the intuition that higher rewards cause agents to
prefer quicker paths. Despite this complication, we describe an algorithm that,
given arbitrary graph G and path Q, determines the minimum reward needed
to get a Nash equilibrium on Q, if possible.

Finally, we add an element of bias uncertainty to the model, by drawing
agents’ biases iid from distribution F and, for the n-fan, describe the relationship
between F and the reward required for a Bayes-Nash equilibrium on the optimal
path. For a wide range of distributions, we find small rewards suffice to ensure
that agents behave optimally (with high probability) in equilibrium. For the
stronger goal of ensuring a constant expected cost ratio, it suffices to offer reward
linear in n when F is not heavy-tailed; competition thus helps here as well.

2 Nash Equilibria with Unbiased Competitors

To build intuition, we first describe the Nash equilibria of these games when
agents have no present bias. We also pinpoint where the analysis will change
with the introduction of bias. Notice that each path P in the graph is a strategy,
with payoffs either uw = r − c(P ), ut = r/2 − c(P ) or ul = −c(P ), depending
on whether the agent wins, ties or loses, respectively. (These in turn depend
on the path taken by the opponent.) We first rule out dominated paths. Notice
that if ul(P ) ≥ uw(P ′), path P ′ is dominated by path P , regardless of the path
taken by the opponent. Also, if uw(P ) ≥ uw(P ′) and |P |≤ |P ′| (where |P | is
the number of edges in P ), then P ′ is dominated. Therefore, for any length k, a
single cheapest path of length k will (weakly) dominate all other paths of length
k.

For a given graph G, let P1, . . . , Pn be a minimal set of non-dominated paths,
where |Pi|< |Pi+1| for each 1 ≤ i < n. Thus, P1 is the quickest path, the
remaining path of minimum length. Summarizing what we know about these
paths:

1. Winning is better than losing : for any pair of paths (Pi, Pj), we know that
uw(Pi) > ul(Pj). Thus, in particular, c(P1)− c(Pn) ≤ r.
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2. Longer paths are more rewarding : That is, c(Pi) > c(Pi+1) for each i. Oth-
erwise, Pi+1 would be dominated since its length is greater. Therefore, in
particular, Pn is the cheapest path, i.e., the lowest cost/weight path from s
to t.

We’re interested in characterizing, across all possible task graphs, the pure Nash
equilibria, restricting attention to paths in P1, . . . , Pn.

Proposition 1. Let G be an arbitrary task graph. As above, let P1, . . . , Pn be
a minimal set of (non-dominated) paths ordered so P1 is the quickest and Pn

the cheapest. Suppose n ≥ 3. Then, path Pi, where i > 1, is a symmetric Nash
equilibrium if and only if c(Pi−1)− c(Pi) ≥ r/2. P1 is a symmetric Nash if and
only if c(P1)− c(Pn) ≤ r/2. There are no other pure Nash equilibria. Therefore,
there can be either 0, 1 or 2 pure Nash equilibria.

If n = 2, there is an additional asymmetric pure Nash equilibrium where one
player plays the quickest path P1 and the other plays the cheapest path P2 if
c(P1)− c(P2) = r/2.

The proof can be found in the full version. We next turn our attention to the
biased version of this problem. In the unbiased case, we could take a “global”
view of the graph, and think about paths purely in terms of their overall length
and cost. But when agents are biased, the actual structure of the path is very
important; time-inconsistency means that agents look at paths locally, not glob-
ally. It is thus very difficult to cleanly rule out dominated paths – even paths
with exponentially high cost may be taken, as we see next.

3 Nash Equilibria to Elicit Optimal Behavior from Biased
Agents

We assume that the agents are both naive, present biased agents, with shared
bias parameter b.1 Our high-level goal is to show that competition convinces
biased agents to take cheap paths, as unbiased agents do without competition.
To this end, we show that a small amount of reward creates a Nash equilibrium
on the cheapest path, for all graphs which have a dominant path – a cheapest
path that is also the uniquely quickest path.

3.1 Graphs with an Unbiased Dominant Strategy

To focus exclusively on the irrationality of present bias rather than the optimiza-
tion problem of choosing between cheap, long paths and short, expensive paths,
we focus on graphs with a dominant path – a cheapest path2 that is also the

1 The homogeneity of the agents is not particularly important to our results in this
section. If the agents have different bias parameters, our results go through by setting
b equal to the larger of the two biases.

2 There may be other cheapest paths which are longer.
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uniquely quickest path. An example of such a graph is the n-fan. In this setting,
the problem is trivial for unbiased agents; simply take this dominant path. But
for biased agents, the problem is still interesting; as the n-fan shows, they may
take paths that are exponentially more costly than the dominant path. However,
we prove that a small amount of competition and reward suffices to ensure the
existence of a Nash equilibrium where both agents take the dominant path.

Theorem 1. Suppose G is a task graph that has a dominant path, O. Then,
a reward of r ≥ 2b · maxe∈O c(e) guarantees a Nash equilibrium on O, for two
agents with bias b.

Proof. Assume that A2 takes O. Recall that a biased agent perceives the remain-
ing traversal cost of going to v from t as Cn(u, v) = b · c(u, v) + minPv

c(Pv) −
RA2

(Ps→u,v→t). We know that for any vertex v∗ on the dominant path, the
path that minimizes the second term is just the fragment of the dominant path
from v∗ → t (it is both the quickest and cheapest way to get from v∗ to t).
Further, any deviation from the dominant path results in no reward. So, for
any v not on the dominant path, the path that minimizes the second term
is again the cheapest path from v → t. Thus, the cost equation simplifies to
Cn(u, v) = b · c(u, v) + d(v) − r/2 · 1{D}, where d(v), the distance from v → t,
denotes the cost of the cheapest path from v to t (ignoring rewards) and 1{D}
is simply an indicator variable that’s 1 if the agent has not deviated from the
dominant path.

Now, let O = (s = v∗0 , v
∗
1 , v
∗
2 , . . . , t = v∗l ) be the dominant path and suppose

A2 takes this path. In order for A1 to choose O, we require, for all i:

S(v∗i ) = v∗i+1

⇐⇒ v∗i+1 = argmin
v:(v∗

i ,v)∈E
b · c(v∗i , v) + d(v)− r/2 · 1{D}

⇐⇒ ∀v : (v∗i , v) ∈ E, bc(v∗i , v) + d(v) ≥ bc(v∗i , v
∗
i+1) + d(v∗i+1)− r/2

Now, let i be arbitrary, let v 6= v∗i be an arbitrary neighbor of v∗i , and for ease of
notation, let c = c(v∗i , v), c∗ = c(v∗i , v

∗
i+1), d = d(v), and d∗ = d(v∗i+1). Then, we

get the following bound on the reward: r/2 ≥ b(c∗ − c) + d∗ − d. To get a rough
sufficient bound, notice that c + d ≥ c∗ + d∗, since O is the cheapest path. This
implies that bc∗ > b(c∗ − c) + d∗ − d. Thus, it suffices to set r ≥ 2bc∗ in order to
ensure S(v∗i ) = v∗i+1. Repeating this argument for all i, we see that a sufficient
reward is r = 2b ·maxe∈O c(e). ut

One might object to our claim that r = 2bmaxe∈O c(e) is “small”. To calibrate
our expectations, notice that we can view this problem as an agent trying to
pick between several options (i.e. paths), each with their own reward and cost
structure. We want to convince the agent to pick one particular option – namely,
the cheapest path. But it would be unreasonable to expect that a reward signifi-
cantly smaller than the cost of any option would sway the agent’s decision. Our
theorem above shows that a reward that is at most proportional to the cheapest
option suffices; and in many cases the reward is only a fraction of the cost of
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Fig. 4: A graph with many suboptimal deviations. For an agent with bias b > 2, a
designer with access to only edge rewards must spend O(n) total reward for optimal
behavior (b− 2 on each (vi, vi+1) edge). In our competitive setting, only 2(b− 2) total
reward is required.

the optimal path (e.g. when the optimal path has balanced cost among many
edges).

For a point of comparison, even internal edge rewards (which required the
same reward budget as competitive rewards for the n-fan) can require O(n) times
as much reward in some instances. To see the intuition, notice that internal edge
rewards must be applied at every step where the agent might want to deviate.
The agent also immediately “consumes” this reward; it doesn’t impact his future
decision making. However, the competitive reward is “at stake” whenever the
agent considers deviating; this reward can sway the agent’s behavior without
being immediately consumed. For a concrete example, see Figure 4.

3.2 Increasing the Number of Competitors

A very natural extension to this model would involve more than 2 agents com-
peting. The winner takes all, and ties are split evenly among those who tied.
However, this modification doesn’t change much when trying to get a Nash equi-
librium on the dominant path. The only change is that if m agents are competing,
the reward needed is O(m), as a single agent will get a 1/m fraction of the reward
in a symmetric equilibrium. This is true because there is no way for any agent to
beat the dominant path, and claim the entire O(m) reward for themselves. So if
the reward is scaled appropriately (i.e. in Theorem 1 set r ≥ mb ·maxe∈O c(e)),
we will still guarantee a Nash equilibrium. Put another way, the per-agent re-
ward needed for a Nash equilibrium on the dominant path does not change as
the number of competitors varies.

4 General Nash Equilibria

In this section, we describe a polynomial time algorithm that, given an arbitrary
graph G, path Q and bias b, determines if Q can be made a Nash equilibrium, and
if so, the minimum required reward to do so. Finding and using this minimum
required reward will generally cost much less than the bound given by Theorem 1.
Moreover, this algorithm does not assume the existence of a dominant path.
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We start by describing how time-inconsistency defeats the intuition that higher
rewards cause agents to prefer quicker paths. We then present a very high level
overview of how to compute the minimum reward that results in Q being a
symmetric Nash equilibrium.

4.1 Higher Rewards Need Not Encourage Quicker Paths

The proof of Theorem 1 suggests the following algorithm for this problem. Start
with a reward of 0, and step along each vertex u ∈ Q, increasing the reward by
just enough to ensure A1 stays on Q for one more step (assuming A2 is taking
Q). However, if A1 wants to deviate onto a quicker/tied path at any point, return
⊥; decreasing the reward would cause them to deviate earlier, and, intuitively,
it seems that increasing the reward could not cause them to switch back to Q
from the quicker/tied path. After one pass, simply pass through again to ensure
that the final reward doesn’t cause A1 to deviate early on. The following lemma,
which we prove in the full version, shows that this algorithm is tractable, by
showing that we can compute the minimum reward required for A1 to stay on Q
at any step (and determine whether A1 wants to deviate onto a quicker path).

Lemma 1. Assuming that A2 takes path Q, A1 can efficiently compute minPv
c(Pv)−

RA2
(Ps→u,v→t) by considering the cheapest path (from v → t), the cheapest path

where A1 ties A2, and the cheapest path where A1 beats A2. (Some of these paths
may coincide, and at least one must exist).

Unfortunately, while tractable, the approach described above does not yield a
correct algorithm. This is because it relies implicitly on the following two prop-
erties, which formalize the intuition that increasing the reward causes agents to
favor quicker paths.

Property 1 If a reward r guarantees a Nash equilibrium on some path Q, any
reward r′ > r will either (a), still result in a Nash equilibrium on Q, or (b),
cause an agent to deviate to a quicker path Q′.

Property 2 If A1 deviates from Q onto a quicker/tied path for some reward r,
increasing the reward will not cause them to follow Q

Both properties are intuitive – if we increase the reward, that should motivate the
agent to take a path that beats their opponent. And vice versa – increasing the
reward shouldn’t cause them to shift onto a slower path or shift between equal
length paths. But surprisingly, both properties are false, as Figure 5 demon-
strates.

For Property 1, consider the graph in Figure 5(a) and define paths Q =
(s, q1, q2, t), V = (s, v1, v2, v3, t), and X = (s, v1, t). Suppose both agents have
bias 10 and that A2 takes Q. Then a reward of 1 guarantees that A1 takes Q, as
the optimal path from v1 → t would follow V . However, if r = 300, the optimal
path from v1 → t follows X. So, A1 goes to v1, intending to beat A2. But at
v1, the perceived cost of (v1, t) is actually 1000, and so the agent prefers to take
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Fig. 5: Graphs which do not exhibit the two expected properties. Unlabeled edges have
cost 0.

path V . Thus, increasing the reward from 1 to 300 causes the agent to deviate
from Q onto a slower path!

For Property 2, consider the graph in Figure 5(b) and define paths Q,V , and
X in the obvious manner. Again, suppose both agents have bias 10 and that A2

takes Q. Then, with a reward of 10, A1 to stick to Q as well. But if r = 2, the
optimal path from v1 → t follows V and thus loses, which is not as meaningful.
So A1 goes to v1, intending to follow V . But there, with b = 10, deviating to
X is more attractive than remaining on V , and thus the agent takes X. So,
although A1 deviates from Q to a quicker path for reward 2, they remain on Q
with reward 10.

To summarize, Property 1 fails because present biased agents can take slower
paths than they planned and Property 2 fails because present biased agents can
take quicker paths than they planned. In other words, while higher rewards do
tempt agents to take quicker paths, and lower rewards tempt agents towards
cheaper paths, their time inconsistency may make them do the opposite.

4.2 A Description of the Algorithm

We now describe, at a very high level, how to efficiently find the set of rewards
which induce a symmetric Nash equilibrium on a path Q. The algorithm narrows
down the set of feasible rewards (rewards that ensure that Q is a Nash equilib-
ria) by computing the set of rewards that ensure that A1 takes (u, v) for every
(u, v) ∈ Q. The key idea is that we can efficiently compute all r that ensures
that A1 prefers (u, v) over (u, v′) by splitting into cases based on whether the
optimal paths from v → t and v′ → t involve winning, tying, or losing. From
this algorithm, we get the following theorem:

Theorem 2. There exists a polynomial time algorithm that returns the mini-
mum r that ensures that Q is a Nash equilibrium, or ⊥ if no such r exists.

We prove this theorem and fully define the algorithm in the full version.
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5 Extending the Model with Bias Uncertainty and
Multiple Competitors

One of the shortcomings of the prior results is that agents are assumed to have
publicly known, identical biases, which seems unrealistic. We therefore add the
agents’ uncertainty about their competitors bias to the model. The agents’ biases
are now represented by random variables B1 and B2 drawn iid from distribution
F , which is publicly known to both the agents and the designer. b1 and b2
correspond to the realizations of these random variables. Our goal is now to
construct, as cheaply as possible, Bayes-Nash equilibria (BNE) where agents
behave optimally with high probability. In this setting, the cost equation becomes
Cn(u, v) = b ·c(u, v)+minPv

c(Pv)−EA2
[RA2

(Ps→u,v→t)], where the expectation
is over A2’s choice of paths.

In this section, we provide a closed form BNE for the n-fan. We start with the
case of two agents and then briefly consider m competing agents. Since we are
searching for BNE, we assume that the agents know their competitor’s strategy.

5.1 Bayes-Nash Equilibria on the n-fan

As before, let Pi represent the path that includes edge (vi, t), and let P0 represent
the optimal path. Then, the following strategy is a Bayes-Nash equilibrium.

Theorem 3. Let G be an n-fan with reward r and suppose B1, B2 are drawn
from distribution B with CDF F . Let p be the solution to F ( rp

2 + c) = p. If
p > 1

cn−1+1 , then the following strategy is a Bayes-Nash equilibrium:

P (b) =

{
take P0, b ≤ rp

2 + c

take Pn, otherwise

In this equilibrium, for either agent, the probability that they take P0 is p. So the
expected cost ratio will be p + (1− p)cn.

We prove this in the full version. Notice that while the trivial solution p =
0 satisfies F ( rp

2 + c) = p, this is not above 1
cn−1+1 , so the trivial solution is

not relevant for finding Bayes-Nash equilibria. One might wonder if there’s a
straightforward generalization of this BNE to other graphs with a dominant
path, as in the case without bias uncertainty. In the full version, we discuss
challenges that we encountered trying to do this.

We now use the theorem to understand how much reward is required for
optimal behavior with high probability, or a low expected cost ratio (which is a
much stronger requirement). Since the expected cost is p + cn(1 − p), in order
for this to be low, 1− p has to be close to 1/cn. Plugging this in to the CDF, we
see that for this to happen, we must have

F

(
r

2

(
1− 1

cn

)
+ c

)
= 1− 1

cn
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which essentially requires that exponentially little probability mass (in n) re-
mains after r/2 distance from c. For an exponential distribution, this requires r
to be linear in n, and with a heavier tailed distribution like the Equal Revenue
distribution, this requires r to be exponential in n. But we may be content with
simply guaranteeing optimal behavior with high probability. In that case, so long
as r is increasing in n, the agents will take the optimal path with high proba-
bility for at least the equal revenue, exponential, and uniform distributions. We
more precisely explore the probability of optimal behavior and the cost ratios
for these distributions in the full version.

5.2 Increasing Number of Competitors

We saw earlier that increasing the number of competitors doesn’t change the per-
agent reward needed for optimal behavior. But one might hope that in Bayesian
settings such as bias uncertainty, increasing the number of agents significantly
decreases the per-agent reward needed to encourage optimal behavior – in par-
ticular, as the number of agents increases, the probability of some agent having
a very low bias increases. In the full version, we provide evidence against this
belief. We first show that the BNE in Theorem 3 can be tweaked slightly to
remain a BNE with a variable number of agents. We then consider the equal
revenue distribution, which required an exponentially high reward to get a low
expected cost ratio with just two competitors. But we show that even as number
of competing agents goes to ∞, this relationship between the reward and the
probability of optimal behavior doesn’t significantly change. We conjecture that,
in general, increasing the number of agents does not significantly decrease the
per-agent reward required for optimal behavior.

6 Conclusion

We studied the impact of competition on present bias, showing that in many
settings where naive agents can experience exponentially high cost ratio, a small
amount of competition drives agents to optimal behavior. This paper is a first
step towards painting a more optimistic picture than much of the work surround-
ing present bias. Our results highlight why, in naturally competitive settings, oth-
erwise biased agents might behave optimally. Further, task/mechanism designers
can use our results to directly alleviate the harms of present bias. This competi-
tive model might be a more natural model than other motivation schemes, such
as internal edge rewards, and is able to more cheaply ensure optimal behavior.
Our work also leaves open many exciting questions.

First, with bias uncertainty, we only obtain concrete results on the n-fan. So
one obvious direction is to determine which graphs have Bayes-Nash equilibria
on the optimal path, and what these equilibria look like. Second, we explore two
“dimensions” of competition – the amount of reward and the number of com-
petitors, finding that the latter is unlikely to be significant. Another interesting
goal is thus to explore new dimensions of competition.
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Lastly, we could extend our work beyond cost ratios, moving to the model
where agents can abandon their path at any point. For one, this move would
allow us to integrate results on sunk-cost bias, represented as an intrinsic cost
for abandoning a task that’s proportional to the amount of effort expended. Pre-
vious work [12] has shown that agents who are sophisticated with regard to their
present-bias, but naive with respect to their sunk cost bias can experience expo-
nentially high cost before abandoning their traversal (this is especially interesting
because sophisticated agents without sunk cost bias behave nearly optimally).
Can competition alleviate this exponential worst case? There are also interest-
ing computational questions in this model. For instance, given a fixed reward
budget r, is it possible to determine in polynomial time if one can induce an
equilibrium where both agents traverse the graph? Such problems are NP-hard
for other reward models, but may be tractable with competition. Overall, the
abandonment setting has several interesting interactions with competition that
we have not explored.
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