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ABSTRACT

We report on 193 nm excimer laser-based liftoff (LLO) of Al0.26Ga0.74N/GaN high electron mobility transistors (HEMTs) with thick
(t> 10 lm) AlN heat spreading buffer layers grown over sapphire substrates. The use of the thick AlN heat spreading layer resulted in ther-
mal resistance (Rth) of 16 Kmm/W for as-fabricated devices on sapphire, which is lower than the value of !25–50Kmm/W for standard
HEMT structures on sapphire without the heat-spreaders. Soldering the LLO devices onto a copper heat sink led to a further reduction of Rth

to 8Kmm/W, a value comparable to published measurements on bulk SiC substrates. The reduction in Rth by LLO and bonding to copper
led to significantly reduced self-heating and drain current droop. A drain current density as high as 0.9 A/mm was observed despite a mar-
ginal reduction of the carrier mobility (!1800 to !1500 cm2/V s). This is the highest drain current density and mobility reported to-date for
LLO AlGaN/GaN HEMTs.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0064716

AlGaN/GaN high electron mobility transistors (HEMTs) have
come a long way since their initial demonstration in 1993 and are
desired for a multitude of applications in high-frequency and high-
temperature power electronics.1–8 Recently, AlGaN/GaN HEMTs pen-
etrated the consumer electronics with first-order applications.9,10

However, the performance of the devices is currently limited by severe
self-heating effects that significantly reduce their efficacy in demanding
applications that require high current density operation. One strategy
to reduce the self-heating effects of GaN-based HEMTs is to use high
thermal conductivity SiC or bulk AlN substrates. However, the cost of
these substrates is !3 to 10-times that of sapphire substrates.11 Hence,
strategies to improve the thermal management of the devices are
highly desired for the full realization of III-nitride based device’s
potential in power electronics.

One promising approach for better thermal management of
HEMTs on sapphire substrates is the LLO and bonding to a substrate
with higher thermal conductivity. This approach has been used for vis-
ible InGaN and ultraviolet (UV) AlGaN LEDs12–19 and HEMTs
(Table I).20–26 The laser lifted-off devices are typically mounted on an
Si, AlN, or a metallic heat sink, such as copper, commonly used in
power electronics.27,28 This leads to further challenges in assuring
bonding with low thermal impedance and preserving the structural
integrity of the III-nitride epi-layers. If the thickness of the III-nitride

layer is small compared to the solder thickness of 10–50lm, it may
wrinkle, crack, and be damaged during the solder reflow. However,
too thick an epilayer can also introduce more thermal resistance.
Ultraviolet LEDs with typical epilayer thicknesses of 2–3lm when
flip-chipped by LLO15 are also susceptible to cracking. Due to this
damage, LLO HEMTs typically are not soldered directly to highly ther-
mally conductive metallic heat sinks.21–25

For effective soldering to copper heat sink, III-nitride epilayers
>10lm thick are required. We recently demonstrated the growth of
such thick ultra-wide bandgap (UWBG) AlN layers on sapphire
substrates with a room temperature thermal conductivity
320W/m-K.29,30 This is much higher than the measured thermal con-
ductivity values for GaN.31–33 These thick AlN/sapphire templates,
therefore, not only are a suitable high thermal conductivity platform
for AlGaN/GaN HEMTs but can also provide protection during the
soldering of lifted-off devices to copper heat sink. However, it is more
difficult to release AlN than GaN from the sapphire substrate because
of its hardness and higher melting temperature.15 It also requires a
high fluence short wavelength deep ultraviolet (DUV) k¼ 193nm
excimer laser. The hardness and the high laser fluence liftoff invariably
lead to excessive layer cracking. Developing LLO techniques for AlN
liftoff from sapphire substrates is also highly desired for UWBG
AlxGa1-xN (x> 0.6) HEMTs, which are always grown with AlN buffer
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layers. Thus, many previously demonstrated LLO approaches (Table
I) for AlGaN/GaN HEMTs are not applicable to emerging UWBG III-
N devices.34–36

In this paper, we demonstrate the LLO of AlGaN/GaN HEMTs
that were fabricated with >10lm thick high-quality AlN buffer layers
on sapphire substrates. The lifted off layers were then soldered to cop-
per heat sink to improve their capability to operate at high drain cur-
rents without a thermal droop attributed to self-heating.37 We show
that the thermal performance is improved substantially and is like that
of devices on bulk SiC substrates, the current gold-standard in heat
sinks.

The AlGaN/GaN heterostructures used in this study were grown
on c-plane sapphire by metalorganic chemical vapor deposition
(MOCVD). A 2lm AlN seed layer was first grown followed by the
selective area growth (SAG) of 14lm thick AlN in 1# 1mm2 window
openings in a SiO2 masking layer. The SiO2 mask was then etched off
using HF, and the first 2lm thick AlN seed layer was also etched
down by inductively coupled plasma (ICP), leaving a template with
fully disconnected 16lm thick 1 # 1mm2 blocks of AlN on the sap-
phire substrate. HEMT epilayers were then grown on these SAG AlN
template by MOCVD, with a 3lm undoped GaN channel layer and a
30nm delta doped Al0.26Ga0.74N layer with a 1 nm AlN spacer in
between. Delta doping was done by sandwiching a 10nm Si-doped
Al0.26Ga0.74N layer between two undoped 10nm Al0.26Ga0.74N layers.
Delta doping separates the dopants from the AlGaN/GaN 2DEG inter-
face enabling higher sheet carrier concentration (ns), while minimizing
carrier-impurity scattering that provides enhanced carrier mobility at
high ns.

38 These effects both lead to an overall lowering of the sheet
resistance. The device source/drain Ohmic contact metal stack Ti/Al/
Ti/Au (150/700/300/500 Å) was e-beam evaporated and annealed for
30 s at 950 $C under N2. This was followed by the gate-stack Ni/Au
(1000/2000 Å) metallization. Source to drain spacing was 6lm, with a
gate length of!2lm.

For the LLO process, the epitaxial side of the processed sample
was bonded to UV tape, and a 193 nm excimer laser fluence of
!1 J/cm2 was used. This yielded HEMT devices with 16lm thick AlN
heat spreading layers. The lifted-off surface was etched with 1:1 dilute
HCl and Cl2/Ar ICP to remove the damaged AlN layer. The sample
was then transferred to copper using thermocompression bonding.
The In-Pb solder temperature [!175 $C (Ref. 39)] is low enough to be
compatible with flexible electronics. This procedure is schematically
represented in Fig. 1. The HEMTs before and after LLO are also
shown in Fig. 1. The output and transfer characteristics of the HEMT
before and after LLO were measured using a parameter analyzer, while
the capacitance–voltage (C–V) measurements were done using an
LCR meter. Micro-Raman measurements were done at 473nm. High-
resolution x-ray diffractometry (HRXRD) was done using a triple-axis
diffractometer at a wavelength k¼ 0.154 nm.

Figure 2(a) shows the micro-Raman spectra of the Al0.26Ga0.74N/
GaN HEMT before and after LLO. The E2 (high) peaks are only sensi-
tive to strain unlike the A1(LO) peaks, which are also sensitive to free
carriers.40,41 The E2 (high) phonon linewidth of the GaN channel
layer, a measure of the crystalline quality, remained the same
(!7 cm% 1) before and after LLO.40 Both AlN and GaN E2 (high) pho-
nons show 2.8 cm% 1 red-shift after LLO, indicating strain relief in both
the AlN buffer and GaN channel layers, consistent with spatial Raman
maps (Fig. SI1). This red-shift corresponds to a relief of compressiveTA
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FIG. 1. LLO process flow of the Al0.26Ga0.74N/GaN HEMT. (a) Device structure of the as-fabricated HEMT. (b) The HEMT structure was bonded to UV tape, and laser energy
passes into the wafer acting on the AlN/sapphire interface dissociating AlN into Al(s) and N2(g). (c) After laser exposure, the sapphire substrate was separated. (d) The lifted-
off AlN surface was cleaned and bonded to a copper heat sink using low melting temperature In-Pb solder. Optical images of the HEMT (e) before and (f) after LLO.
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biaxial stress change –0.8GPa calculated using a stress conversion
coefficient % 3.096 0.41 cm% 1GPa% 1.42

This strain relaxation is supported by HRXRD [Fig. 2(b)] as dem-
onstrated by the decrease in lattice constants from c¼ 5.1879
–5.1844 Å, while it increased from a¼ 3.1813–3.1869 Å after LLO.
Based on the lattice constants from HRXRD, biaxial strain ea¼ 1.6
# 10% 3 was extracted42 corresponding to a stress relief of !0.8GPa
(Fig. SI2), which is in excellent agreement with Raman. The relative
biaxial strain of the barrier layer is preserved after LLO, as shown in
Fig. 2(b) by HRXRD and by the ns measured from frequency depen-
dent C–V (Fig. 3). The ns before and after LLO were calculated using
the following equation was !1# 1013 cm% 2,36 indicating that the epi-
taxial registry of the AlGaN/GaN junction is preserved,

qns ¼
ð0

VT

CG1 VGSð ÞdVGS; (1)

where q is the electron charge, VT is the threshold voltage, CG1 is the
gate capacitance per unit area ; andVGS is the gate-source voltage.

Figure 4 shows the output characteristics of the HEMT before
and after LLO. The peak currents remained nearly the same as did

RC ¼ 0.66 Xmm before LLO to 0.73 Xmm after LLO (Fig. SI3). This
increase in RC is most likely due to physical damage from transfer to
and off the UV-tape [Fig. 1(f)], leading to peeling of the Ti/Au pad
metals. Improved metal deposition at higher vacuum with a less adhe-
sive transfer tape may reduce this damage, although post-transfer pad-
formation could also solve this RC increase. Before LLO, a reduction in
drain current ðIDSÞ is observed in the saturation region with increas-
ing drain voltage ðVDSÞ due to Joule heating, commonly known as
self-heating,37 or thermal droop [Fig. 4(a)] that is significantly reduced
in the LLO sample [Fig. 4(b)]. The distance from the heat source
(HEMT channel) to the heat sink is now reduced from !400lm of
sapphire (k! 34.6W/mK)43 down to!16lm of AlN (k! 320W/mK),
eliminating a major source of Rth:

37

Rth was measured using thermochromic paint that changes its
color for a certain temperature under steady state electrical power.
From Fig. 4(c), we calculated the Rth by

44

DT ¼ RthP; (2)

where DT is the channel temperature rise and P is the applied power.
The as-fabricated devices on sapphire show Rth of !16Kmm/W,
which is lower than the typical !25–50Kmm/W (Refs. 44–47) seen
in GaN HEMTs grown directly on sapphire. This lower Rth is

FIG. 2. (a) Raman spectra E2 (high) and A1 (LO) peaks of the HEMT before and
after the LLO process. (b) HRXRD x-2h coupled scan of 002 plane shows that the
epitaxial registry of the AlGaN/GaN junction is preserved after LLO.

FIG. 3. Frequency dependent C-V characteristics of the Al0.26Ga0.74N/GaN HEMT
(a) before and (b) after LLO.
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attributed to the better heat spreading in the!16lm thick AlN due to
its high intrinsic thermal conductivity.29,30 AlN layers< 6lm thick
showed !1/2 the thermal conductivity compared to the thicker films,
leading to less effective heat removal attributed to poorer AlN quality
at the sapphire/AlN interface.29 After LLO and soldering to the copper
heat sink, Rth is !8Kmm/W, which is comparable to or less than the
!10Kmm/W for SiC substrates45,46,48 using steady state techniques.
The remaining Rth after sapphire removal and transfer onto copper
heat sink is likely dominated by the poor thermal conductivity of In-
Pb die-attach solder [!41W/mK (Ref. 49)] compared to the excellent
thermal conductivities of AlN [!320W/mK (Refs. 29 and 30)] and
copper [!386W/mK (Ref. 50)].

The carrier mobility (ln) is extracted from the IDS % VGS transfer
curves (Fig. SI4) using51

gm ¼
@IDS
@VGS

¼ lnCG1
W
L

VGS % VTð Þ; (3)

where gm is the transconductance, L is the gate-length, and W is the
width. Figure 5(a) shows gm vs VGS, where x-intercept gives VT , and it
shifted negative by 1V after LLO. From Fig. 5(a), the ln in 2D-
channel is found to be !1800 cm2/V s for the as-fabricated device,
while it decreased to !1500 cm2/V s after LLO. This ln is extracted at
VGS¼ –5.1V(VT to ensure the applicability of Eq. (3), while it is

FIG. 4. Output characteristics of the Al0.26Ga0.74N/GaN HEMT (a) before and (b)
after LLO. (c) Channel temperature rise vs power dissipation comparison of the as-
fabricated and LLO structures.

FIG. 5. (a) gm and ln as a function of VGS of the Al0.26Ga0.74N/GaN HEMT before
and after LLO showing a marginal decrease in mobility after LLO. (b) Breakdown
characteristics of the Al0.26Ga0.74N/GaN HEMT before and after LLO with gate–
drain spacing, LGD ¼ 3 lm.
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much lower than the maximum VGS¼þ1V to minimize the influ-
ence of self-heating at high current levels. The lowered mobility is
attributed to the dispersion seen in C–V, indicative of higher trap den-
sities introduced by partial strain relaxation after LLO.52–55 The ln is
in excellent agreement with the sheet resistance from TLM (Table I),
with the TLM sheet resistance !10% lower than the transistor
measurements.

Figure 5(b) shows the breakdown voltage characteristics of the
Al0.26Ga0.74N/GaN HEMT before and after LLO with gate–drain spac-
ing, LGD ¼ 3lm. The breakdown voltages (VBR;OFF) of the devices
were measured at OFF-state conditions (VT ( VGS¼ –13V) without
junction edge termination. The results show VBR;OFF ¼!300V, corre-
sponding to breakdown field, EBR;OFF ¼ !1MV cm% 1 for both as-
fabricated and LLO devices. Higher VBR;OFF may be achievable by
proper junction edge termination, such as field plate extensions on the
gate, along with optimized surface passivation. Nevertheless, the rela-
tive insensitivity of VBR;OFF to the LLO process underscores its viability
in high voltage applications.

LLO of Al0.26Ga0.74N/GaN HEMT with >10lm thick AlN tem-
plates from sapphire substrate was performed by a 193nm ArF exci-
mer laser and transferred onto a copper heat sink bonded by In-Pb
solder. Incorporating a thick AlN heat spreading buffer layer instead
of GaN led to a Rth of !16Kmm/W for as-fabricated devices on sap-
phire, which decreased further down to !8Kmm/W, comparable to
published measurements on SiC substrates, after transferring the devi-
ces onto a copper heat sink. This is due to improved heat spreading in
the thick AlN buffer with high intrinsic thermal conductivity and
removal of large series Rth of the sapphire substrate. After LLO, the
mobility decreased from !1800 to !1500 cm2/V s due to the intro-
duction of traps during transfer. Drain current droop attributed to
self-heating in as-fabricated HEMTs on sapphire is significantly
reduced after transfer onto copper heat sink.

See the supplementary material for the Raman mapping images
of both GaN E2(high) and AlN E2(high) mode in the access regions of
both as-fabricated and LLO HEMT structures; lattice constants a and
c of different epitaxial films as well as this sample before and after LLO
determined by HRXRD measurements; room temperature Raman
shifts vs corresponding residual stress change indicated by both E2
(high) and A1 (LO) modes; and TLM measurement results and trans-
fer characteristics before and after LLO.
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