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We present a study of the light output power and the thermal impedance of 281 nm emission AlGaN based micropixel LEDs. A modular
interconnected micropixel array design is presented which enables dense packing with area and power scalability. We study 5-15 pum diameter

stand-alone devices and parallel-connected micropixel arrays with 5 um interpixel gaps. A standalone 5 pm pixel emits 291 W cm

2 at

10.2 kA cm~2 DC-drive. A power as high as 23 mW (361 W cm~2) was measured at a pulsed-pump current of 800 mA (~15 kA cm~2) for an
interconnected array. These are the smallest and brightest DUV LEDs to date. © 2020 The Japan Society of Applied Physics

disinfection has been tremendous since the emergence

of the novel coronavirus (COVID-19) and its deacti-
vation with DUV light."” AlGaN DUV LED’s are the key to
these important air—water purification and germicidal appli-
cations. Currently, mercury-based sources dominate the
market for systems requiring high DUV radiation doses.
Their use in applications such as face-mask disinfection and
ventilation systems is problematic due to mercury toxicity.”

Since our early report of milliwatt-power AlGaN DUV
LEDs, the last two decades have seen intense development to
improve their performance.”™® Despite this, the reported
external quantum efficiency (EQE) and wall-plug efficiency
for AIGaN DUV LEDs are well below their visible
counterparts.”® This is primarily due to low light extraction
efficiency (LEE) and thermal issues which are reduced but
not eliminated even in flip-chip LEDs.”'” The junction
heating of AlGaN DUV LEDs leads to efficiency-droop,
early power saturation, and reduced device lifetime.''™'> A
key contribution to device self-heating is from its series
resistance, which consists of contributions from the contacts,
lateral spreading, and the vertical epilayer resistances. For
DUV LEDs, the Ultra-Wide Bandgap (UWBG) AlGaN
(3.43-6.0eV) also dictates a high operating voltage.
Although progress has been made in increasing the doping
efficiency,' "' the large ionization energy of the p-dopant
acceptors results in lower free hole concentrations for UWBG
AlGaN, leading to higher contact and epilayer resistances.
Furthermore, the thermal conductivity of ternary AlGaN
layers constituting DUV LEDs is lower than that for the
binary layers of the visible LEDs.'”

The current spreading and series resistance issues in DUV
LEDs were first addressed by our group using a 10 x 10
array of interconnected micropixel LEDs.'® % For that work,
we used 25 pym diameter pixels with an interpixel gap of
15 yum where the interconnected n-ohmic contact, which
blanketed the area surrounding all individual micropixels
was placed. We showed that the interconnected micropixel
design increases the light output power (LOP), reduces the
series resistance, increases the device reliability, and largely
eliminates current crowding. Gong et al. then published a
study of the size-dependent opto-thermal properties of
400 nm emission InGaN single pixel LEDs.”" They found
the maximum power density (brightness), spectral stability
and thermal properties to improve as the pixel size reduced

T he consumer demand for point-of-use purification and
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from 300 to 20 um. This was due to an increased ratio of the
device sidewall surface-area and the mesa volume which
facilitated efficient sidewall assisted out-radiation of the
generated heat.” A similar trend was also observed by Ploch
et al. for quaternary InAlGaN micro-LED arrays
(Aemission = 305-325 nm), where, the size limit (~10 pym)
was defined by an onset of saturation of the thermal
resistance.”” They concluded that further pixel size reduction
would likely reduce the opto-thermal performance due to
increased leakage currents at the mesa perimeters.

To date, no such studies of size-dependent LOP, nor
thermal impedance have been reported for AlGaN DUV
micro-LEDs. In this report, we present such a systematic
study of individual and interconnected AIGaN MQW micro-
pixel DUV LEDs with pixel sizes from 5 to 15 pm. We also
explore a new interconnected micropixel design, which
enabled high brightness and high power DUV emission.
For this new design, the blanket n-contact network between
the individual micropixels was removed to increase the active
area coverage and reduce the optical absorption.”® The n-
contact for this present work forms a narrow picture frame
border around a densely packed subarray of interconnected
micropixels. The subarray interconnection process also
passivates the pixel sidewalls and spreads the self-generated
heat away from the individual micropixels, while avoiding
current crowding. Then, multiple subarrays are intercon-
nected [Fig. 1(a)]. This completed device is suitable for
subsequent electroplating and flip-chip packaging. All the
micropixel arrays of this study with different micropixel
diameters have a total junction area of (6.36 x 1073 cmz),
which is also the same as of a reference, 90 um diameter
standalone LED.

The epilayer structure was grown over 3 um thick ther-
mally conductive AIN templates over c-plane sapphire
substrates using metalorganic chemical vapor
deposition.”>*® The device structure and the epilayer growth
details are shown in Fig. 1(b). The device fabrication
procedure consisted of first using a Cly/Ar chemistry induc-
tively coupled plasma reactive ion etching (ICP-RIE) to
define the micropixels and access the n-contact making
n"-Aly¢sGag 35N layer. Annealing in a nitrogen environment
was then performed at 750 °C to activate the Mg-dopants.
Then a narrow picture frame n-contact (5 um wide) was
fabricated around single pixels (for standalone devices) and
the subarrays of pixels (for interconnected devices). The n-

© 2020 The Japan Society of Applied Physics
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Fig. 1. (Color online) (a) Device layout and interconnection process overview with micrographs at each level of fabrication. (b) Structural details for the
DUV LED:s of this study can be seen from the cross-sectional schematic. (c) SEM image of a single 5 pm pixel (defined by the p-contact diameter) with the Al

heat-spreader.
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contact metal stack Zr(150 A)/AI(1200 A)/Mo(350 A)/Au
(500 A) was deposited via e-beam and annealed at 950 °C
for 3 min in forming gas by rapid thermal annealing (RTA).
The internal dimension of this n-contact border was for all
cases < 100 ym. Our past study indicates that this geometry
precludes current crowding.”” From the n-contact TLM
measurements, the sheet resistance for the epilayer structure
and the contact resistance were Ry;,=120 /] and
pe="6x10"* Q.cm®. Following the n-contact, Ni/Au p-
contacts were formed over the individual micropixels and
annealed at 500°C for 5min on a hotplate in an O,
environment. The p-metal dimensions were 5, 10 and
15 pm diameter for the micropixels.

The first micropixel interconnection stage began with
atomic layer deposition (ALD) of a conformal 75 nm thick
Al,O5 film. Windows above the p-contact regions of the
individual micropixels were then opened by ICP-RIE with a
high-power Cl,/BCls/Ar based etch. This was followed with
photoresist masking and electron-beam deposition of a
300 nm thick reflective aluminum heat-spreader to intercon-
nect the individual micropixels thereby forming the sub-
arrays. The Al interconnect blanketed the entire internal area
of the n-ohmic picture frame borders. An SEM image of a
fabricated micropixel with a p-ohmic diameter of 5 ym and
the Al heat-spreader is shown in Fig. 1(c). The second stage
of interconnection started with plasma enhanced chemical
vapor deposited SiO, (400 nm) followed by a SF¢/CF;H/Ar
dry-etching with RIE to open windows for each of the
subarrays. For each mesa diameter, nine subarrays (of
micropixels) were then interconnected to form LEDs with
the same emission area as the reference 90 ym diameter
single pixel LED. The final metal stack deposition blanketed
and interconnected the 3 x 3 arrays of subarrays. Table I
summarizes details for the various device geometries sche-
matically shown in Fig. 1(a).

Both standalone micropixels and the 3 x 3 arrays of
interconnected micropixel subarrays were then measured
and compared to the reference LED for their current—
voltage-light output (/-V-L) and external quantum efficiency
(EQE). A Si-photodiode and a calibrated photometer were
used for the measurements. Using a thermal-driven spectral
shift approach,”® the junction temperature versus input
electrical power was measured for the micropixel arrays
and the reference LED.

All the measurements were made on-wafer. The pulsed
measurements, for the micropixel arrays and the reference
LED, were conducted using 500 ns wide pulses at 0.05%
duty cycle to minimize device heating. Figure 2(a) shows the
electroluminescence (EL) spectra of a single 5 um pixel with
the Al heat-spreader. The EL emission obtained at 2 mA
(10.2kA cm™?) under continuous wave (CW) pumping has
undergone a small redshift, indicating moderate device self-

injection current. The junction area normalized I-V-L
characteristics for the single pixel devices under CW-pump
are plotted in Fig. 2(b). The light generation increases with
pump-current until junction heating leads to efficiency
droop.”'*” The brightness peaked at 291 Wem 2 at
10.2kA cm™2 for the single 5 um pixel with the Al heat-
spreader. This was nearly a factor of 30 higher than the
reference LED. As the pixel size shrinks, less absolute
injection current (and total input power) is required to reach
the same current density. Despite the increasing series
resistance with decreasing pixel size for individual micro-
pixels, arising from the reduced conductive cross-sectional
area of the epi-structure and the ohmic contacts, the total
joule heating for a given current density decreases with
decreasing pixel size enabling high current density operation.

In Fig. 3(a) the I-V characteristics of the equal junction
area micropixel arrays and reference LED are plotted. The
operating voltage and series resistance for the micropixel
arrays is less than that of the broad-mesa reference LED and
decreases with decreasing pixel size due to the growing area
of the n-contact with the increasing chip footprint required to
make equal junction area devices. The junction area normal-
ized brightness at low input powers was found to be identical
for a single 5 pm pixel (without the Al heat-spreader) and an
interconnected array of the same size micropixels. This
indicates minimal optical loss from the interconnection
process. From the I-L data of Fig. 3(b), the highest output
powers (and brightness) of 3.2 mW (50 W cm ) and 23 mW
(361 W cm™?) were delivered by the interconnected array of
5 pm pixels under CW and pulsed-pumping respectively.
This translates to a 5.25-fold (CW) and 15.2-fold (pulsed)
increase in maximum LOP compared to the reference LED.
The bare-chip peak EQE of ~1.5% was extracted from the
CW data of Fig. 3(b). Regardless of pixel size, a 13.5%
increase in the peak EQE was measured for the micropixel
arrays over the reference device. This indicates no impact
from sidewall defects or leakage currents, even for pixel sizes
as small as 5 pum, which may be attributed to the post mesa-
formation annealing.’” Our results suggest that unlike GaN/
InGaN LEDs,”"* the ideal mesa size for optimal perfor-
mance of AlGaN DUV micro-LEDs resides in the sub-10 ym
regime. They also support the assertion that the substantially
higher peak LOP over the reference LED was enabled by
improved thermal management of the micropixel arrays. Our
interconnected micropixel design in this study is therefore an
attractive approach to overcome thermal droop, a critical
limitation for high LOP in AlGaN DUV LEDs. Table II
compares the peak brightness, LOP and EQE for several
reported research and commercial DUV LEDs.

We next measured the junction temperature rise as a
function of CW input power for the micropixel arrays and
for the reference LED using the well-established electro-

heating, which becomes more severe with increasing luminescence spectral shift method (see Fig. 4).'%-?!23%
Table I. Relevant parameters for the devices of this study. S.S.A/V is the ratio of sidewall surface area to the mesa volume.

Pixel/gap size Junction area (single pixel) Pixels per subarray Pixels per array Junction area (array) S.S. ANV

90 pym 6.36 x 107° cm? Reference for Interconnected Arrays 0.0417

15/5 ym 1.77 x 107° cm? 4 36 6.36 x 107> cm? 0.2

10/5 pm 7.85 x 1077 cm? 9 81 6.36 x 107> cm? 0.27

5/5 im 1.96 x 1077 cm? 36 324 6.36 x 107> cm? 0.44
014002-3 © 2020 The Japan Society of Applied Physics
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Fig. 2.

(Color online) (a) The measured electroluminescence spectra of a single 5 pm pixel with the on-wafer Al heat-spreader under various CW-pump

currents. (b) Junction area normalized /-L characteristics for single micropixels and the reference LED under CW-pump. The inset shows the J-V

characteristics for the same.

Two sets of calibration measurements were carried out before
device temperature quantification: (i) measurement of the
redshift of the emission spectra with increasing junction
temperature using a heated stage at a fixed pulsed pump-
current; and, (ii) measurement of the blueshift of the emission
spectra at room temperature with increasing pulsed pump-
current. Both measurements were made using current pulses
with a duration of 500 ns, a duty cycle of 0.05%, and a rest
time of 10 min (between data points) to avoid pump-current
induced device self-heating. The maximum redshift was
2.58nm for a junction temperature range of 298423 K.
The largest observed blueshift of 0.782nm was from an
interconnected array of 5 ym pixels at an injection current of
50 mA. The mechanisms underlying the blueshift have been
reported by multiple groups across several Ill-nitride
platforms.>>? After the calibrations were performed, the
device emission spectra was measured with increasing CW
pump-current in a room temperature environment to estimate
the junction temperature rise with input power. Then, for
each pixel size, the spectral contribution of the current-
dependent blue shift was subtracted from the junction

014002-4

temperature rise spectral data to remove its influence on the
measurement. A linear fit was applied to the measured data in
Fig. 4 to extract the thermal impedances. The steeper slope
for the reference device, compared to those of the inter-
connected micropixel arrays, indicates significantly higher
joule heating. The reduction in thermal impedance for the
interconnected micropixel LED consisting of 5 ym pixels
compared to the reference device was approximately 3.75-
fold, supporting the origin of the substantially increased peak
LOP to be thermal rather than optical. The linear fit in the
inset underscores the strong dependence of thermal impe-
dance on pixel size arising from the distribution of the input
current through an increased number of micropixels and the
increased sidewall out-radiation of self-generated heat.”**”
The inset suggests that further reduction of pixel size is
unlikely to significantly improve the on-wafer thermal
performance.

In summary, we have presented a new design for the
interconnected DUV micro-LED to enable densely packed
scalable arrays of sub-20 pm diameter micropixels. We
studied the light output and thermal properties of the devices

© 2020 The Japan Society of Applied Physics
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(Color online) (a) I~V characteristics for the parallel-connected micropixel arrays and the reference LED. All of the devices have identical junction

areas. (b) Absolute /-L under CW-pump for the equal junction area LEDs. The inset shows the pulsed mode output power for the same and the pulsing
conditions. An image of a 6 x 6 subarray of 5 pum pixels and a 3 x 3 array comprised of such 6 x 6 subarrays of 5 ym pixels under CW-pumping is also

shown. Over 95% of the pixels in the completed 3 x 3 array are working.

Table II.

Maximum brightness of several reported AIGaN DUV LEDs including flip-chip, tunnel-junction (TJ), nanopatterned sapphire substrates (NPSS),

and state-of-the-art flip-chip multi-die encapsulated devices. SS denotes sapphire side light extraction and TS denotes top-side (p-electrode).

Measurement

Junction area normalized LOP

Absolute LOP

EQE

This work A =281 nm
(Standalone 5 ym pixel)
This work

Interconnected array

324 x 5 pum Micropixels
OSU?Y A =287 nm

(TJ, 30 pum x 30 pm)
Peng, Dong®® A = 282 nm
(NPSS, Broad-mesa)
Riken® A =282 nm
(Broad-mesa)

SETI* A =275 nm
(Broad-mesa)

UV Craftory® X = 285 nm
(Broad-mesa)

On-wafer, SS

On-wafer, SS
On-wafer, TS
On-wafer, SS
On-wafer, SS
Flip-Chip (FC)

FC + Encapsulation

(CW) 291 W cm ™2

(CW) 50 W cm 2
(Pulse) 361 W cm ™2

(CW) 54.4 W cm >
(CW) 4.5 W cm ™2
(CW) 12 W cem ™2
(Pulse) 32 W cm™2

(CW) 6.0 W cm ™2

0.057 mW @ 2 mA

32mW @ 80 mA
23 mW @ 800 mA

0.49 mW @ 9 mA

6.56 mW @ 60 mA

10.6 mW @ 250 mA

80 mW @ 300 mA

475 mW @ 200 mA

1.5%

1.5%

2.8%

3.45%

1.2%

5%

N/A
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(Color online) Measured junction temperature rise as a function of CW input power for the equal junction area devices. A linear fit was used to extract

the thermal impedances. The inset shows the linear relationship between measured thermal impedance and pixel size for all the equal junction area devices.

L . 8)
and compared them to a reference LED with identical
junction area. The reduction in pixel size down to 5 pum 9)
was shown to greatly reduce the thermal impedance of a  10)
micropixel array compared to a broad-mesa device. This is
primarily from the reduction in device series resistance, a  11)
division of the input through an increased number of
micropixels, and an increased sidewall out-radiation of the 12)
self-generated heat with decreasing pixel size. Due to the 3)
3.75-times reduction in thermal impedance compared to the
reference LED, the highest on-wafer output powers ex-  14)
ceeding 360 W cm > were delivered by an interconnected 15)
array of 5 ym diameter micropixels. These are the smallest
and the brightest reported DUV micropixel LEDs to date.
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