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Asymptotically Optimal One- and
Two-Sample Testing With Kernels

Shengyu Zhu

Abstract— We characterize the asymptotic performance of
nonparametric one- and two-sample testing. The exponential
decay rate or error exponent of the type-II error probability is
used as the asymptotic performance metric, and an optimal test
achieves the maximum rate subject to a constant level constraint
on the type-I error probability. With Sanov’s theorem, we derive
a sufficient condition for one-sample tests to achieve the optimal
error exponent in the universal setting, i.e., for any distribution
defining the alternative hypothesis. We then show that two classes
of Maximum Mean Discrepancy (MMD) based tests attain the
optimal type-II error exponent on R?, while the quadratic-
time Kernel Stein Discrepancy (KSD) based tests achieve this
optimality with an asymptotic level constraint. For general two-
sample testing, however, Sanov’s theorem is insufficient to obtain
a similar sufficient condition. We proceed to establish an extended
version of Sanov’s theorem and derive an exact error exponent for
the quadratic-time MMD based two-sample tests. The obtained
error exponent is further shown to be optimal among all two-
sample tests satisfying a given level constraint. Our work hence
provides an achievability result for optimal nonparametric one-
and two-sample testing in the universal setting. Application to
off-line change detection and related issues are also discussed.

Index Terms— Universal hypothesis testing, error exponent,
large deviations, maximum mean discrepancy (MMD), kernel
Stein discrepancy (KSD).

I. INTRODUCTION
E study two fundamental problems in statistical
hypothesis testing: the one- and two-sample testing.
One-sample testing, also referred to as goodness of fit testing,
aims to determine how well a given distribution P fits the
observed sample y"* := {y;}7 . This goal can be achieved by

=

testing the null hypothesis Hy : P = () against the alternative
hypothesis Hy : P # @, where (Q is the true distribution
governing the sample y™. In two-sample or homogeneity
testing, one wishes to test if two samples 2™ and y™ originate
from the same distribution. Let P and () denote the underlying
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unknown distributions for the respective samples. Then a two-
sample test decides whether to accept Hy : P = @ or
H 1 - P 7& Q

Both one- and two-sample testing have a long history in
statistics and find applications in a variety of areas. In anomaly
detection [2]-[4], the abnormal sample is supposed to come
from a distribution that deviates from the typical distribu-
tion or sample. Similarly in change-point detection [5]-[9],
the post-change observations originate from a different source
from the pre-change one. In bioinformatics, two-sample testing
may be conducted to compare micro-array data from identical
tissue types measured by different laboratories, to decide
whether the data can be analyzed jointly [10]. Two-sample
tests can also be applied to (conditional) independence test-
ing by comparing the observed sample with a permutated
version [11]-[13], which is important to a class of meth-
ods, the so-called constraint-based methods, in causal discov-
ery [14]. Other examples include spectrum sensing in cognitive
radio [15], [16], criticizing statistical models [17], [18], and
measuring quality of samples drawn from a given probability
density function (up to the normalization constant) by Markov
Chain Monte Carlo (MCMC) methods [19]-[21].

In this paper, we consider the universal nonparametric
setting, in which no prior information on the unknown dis-
tributions is available. We will only allow for tests that are
independent of the unknown distributions, whereas the statis-
tical performance of the tests may depend on the unknown
distributions (cf. Section II). Typical tests in this setting
are constructed based on some probability distance measures
between distributions, which possess the property that they
are zero if and only if two distributions are identical; hence a
larger sample estimate of the distance measure indicates that
the two distributions are more likely to be different. Exam-
ples in some earlier tests include the Kolmogorov-Smirnov
distance [22]—-[24], total variation distance [25], and Wasser-
stein distance [26]-[28]. Although the constructed tests have
satisfactory theoretic properties and work well in low dimen-
sions (namely, R), they do not in general apply to high
dimension data. Recent tests have also used the Kullback-
Leibler Divergence (KLD) [29], [30] and Sinkhorn divergence
(smoothed Wasserstein distance) [28], [31], whose statistics
are estimated by solving some optimization problems and can
better handle higher dimensions. We refer the reader to related
works, e.g., [11], [21], [28], and references therein for a more
detailed review of existing one- and two-sample tests.

More recently, kernel based statistics have attracted much
attention in machine learning, as they possess several key
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advantages such as computational efficiency and fast con-
vergence [32], [33]. A particular example is the Maximum
Mean Discrepancy (MMD), defined by the distance between
the mean embeddings of two distributions into a Reproducing
Kernel Hilbert Space (RKHS) [11].! There have been sev-
eral effective two-sample tests that are constructed based on
the MMD: a vanilla test statistic can be computed by plugging
in the sample empirical distributions with a quadratic-time
computation complexity in terms of number of samples, and
some variants have been proposed with even lower complex-
ities [38]-[43]. Applying the MMD to one-sample testing is
straightforward but requires integrals with respect to (w.r.t.) the
target distribution P [44]-[46]. Another idea, in the context
of model criticism, is to conduct a two-sample testing by
drawing samples from P [17], [18]. A difficulty with this
approach is to determine the required number of samples
drawn from P relative to m, the sample number of the test
sequence. Alternatively, there exist more efficient one-sample
tests constructed based on classes of Stein transformed RKHS
functions [19]-[21], [47], [48], where the test statistic is
the norm of the smoothness-constrained function with largest
expectation under ) and is referred to as the Kernel Stein
Discrepancy (KSD). The KSD has zero expectation under P
and does not require computing integrals or drawing sam-
ples. Additionally, constructing explicit features of distribu-
tions attains a linear-time one-sample test that is also more
interpretable [49].

Distinguishing distributions with high success probability at
a given fixed sample size, however, is not possible without any
prior assumptions regarding the difference between P and @)
(see an example for two-sample testing in [11, Section 3]).
Consequently, statistical performance in the universal setting
are often considered in the large sample regime. A test is said
to be consistent if its type-II error probability approaches zero
in the limit, subject to a constant level constraint on the type-I
error probability. While consistency is a desired property for
hypothesis tests, it is even more desirable to characterize the
decay rate w.r.t. sample size as it provides a natural metric for
comparing tests’ performance. Indeed, the decay rate of the
type-II error probability has been investigated for existing ker-
nel based one- and two-sample tests. For the one-sample tests
in [44]-[46] and two-sample tests in [38]-[43], analysis is
based on test statistics, through their asymptotic distribu-
tions or some probabilistic bounds on their convergence to the
population statistics. The statistical characterizations depend
on kernels and are loose in general (more details are given in
Section IV-C). For KSD based one-sample tests, current char-
acterization restricts to consistency; attempts in characterizing
their asymptotic performance, in particular, the optimal error
decay rate, have not been fruitful [21], [47], [49].

The present work is devoted to characterizing the statis-
tical optimality of nonparametric one- and two-sample tests
in the universal setting. This is motivated by the success of

'The MMD is closely related to another probability distance measure,
the energy distance [34], [35]. Roughly speaking, for every distance metric,
there exists a suitable kernel (and also vice versa) so that the MMD and
the energy distance are equivalent; see [36], [37] for details. In this paper,
we focus on kernel based statistics, and particularly, the MMD and KSD.
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Hoeffding’s result in [50] which established universal opti-
mality of the so-called likelihood ratio test for testing against
a multinomial distribution. For the general case, i.e., with
arbitrary sample space, testing between Hy : y™ ~ P and
Hy : y™ ~ @ can be extremely hard when @ is arbitrary
but unknown, as opposed to the simple case where @ is
known. With independent and identically distributed (i.i.d.)
sample and known (), the type-II error probability of an
optimal test, subject to a constant level constraint on the type-I
error probability, vanishes exponentially fast w.r.t. the sample
size m, and the exponential decay rate or error exponent
coincides with the KLD between P and () (cf. Lemma 1). This
motivates the so-called Universal Hypothesis Testing (UHT)
problem [50]: does there exist a nonparametric one-sample
test that achieves the same optimal error exponent as in
the simple hypothesis testing problem where Q is known??
Over the years, universally optimal tests are known to exist
only when the sample space is finite [50], [51]. For a more
general sample space, attempts have been largely fruitless
except the works of [52]-[54]. These results, however, were
obtained under alternative criteria in the universal sense and
the proposed tests were complicated for practical use with
possibly high dimension data (see Section II-A for a review).
Here we remark that even the existence of an optimal test for
the UHT problem remains unknown in the latter case.

Closely related to the current setting is a broader class of
composite hypothesis testing, where there is uncertainty in the
distributions associated with the hypotheses. This uncertainty,
if known a priori, could be used to devise tests to optimize
the worst-case performance, leading to generalized likelihood
ratio tests or other minimax based tests, e.g., [55]. By con-
trast, the universal optimality criterion used in this paper is
much stronger in that the optimum must be achieved for
any distribution defining the alternative. Also related are the
works [49] and [56], which respectively use the approximate
Bahadur slope and detection boundary as performance metric
to compare kernel based one-sample tests. The authors of [49]
show that their linear-time test has a greater relative efficiency
than the linear-time test proposed in [47], assuming a mean-
shift alternative. In [56], a nonparametric kernel based test is
proposed to achieve the minimax optimality for a composite
alternative. It is noted that, while the tests in [49], [S56] are able
to work in the universal nonparametric setting, the correspond-
ing statisical results need to assume a particular composite
alternative.

A. Contributions

We show that a plug-in kernel test, comparing the MMD
between the given distribution and the sample empirical dis-
tribution with a proper threshold, is an optimal approach
to the UHT problem on Polish, locally compact Hausdorff
space, e.g., R%. Taking into account the difficulty of obtaining
closed-form integrals for non-Gaussian distributions, we then
follow [17] to cast one-sample testing into a two-sample

2Throughout the rest of this paper, the UHT problem refers to the specific
problem of finding a universally optimal one-sample test in terms of the type-II
error exponent.
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problem. We establish the same optimality for the quadratic-
time kernel two-sample tests proposed in [11], provided that
a suitable number of independent samples are drawn from
the given distribution. For the KSD based tests, the constant
level constraint on the type-I error probability is difficult to
meet for all possible sample sizes. By relaxing the constraint
to an asymptotic one, we show that the quadratic-time KSD
based tests proposed in [21], [47] are also optimal for the
UHT problem under suitable conditions. Key to our approach
are Sanov’s theorem and the weak convergence properties of
the MMD [57], [58] and the KSD [20], which enable us to
directly investigate the acceptance region defined by the test,
rather than using the test statistic as an intermediary.

As another contribution, we investigate the quadratic-time
kernel two-sample tests in a more general setting where the
sample sizes scale in the same order. The original Sanov’s
theorem, however, is insufficient in this setting as it involves
only a single distribution. To proceed, we derive an extended
version of Sanov’s theorem, based on which an exact type-II
error exponent of the two-sample test is established. The
obtained error exponent is then shown to be optimal among
all two-sample tests under the same level constraint, and is
independent of the choice of kernels provided that they are
bounded continuous and characteristic.

Finally, we discuss related issues, including how two other
statistical criteria—exact Bahadur slope and Chernoff index—
perform under the universal optimality criterion. Application
of our results to nonparametric off-line change detection is also
included, and we establish an optimal change detection result
when no prior information on the post-change distribution is
available.

B. Paper Organization

Section II formally presents the problems of one- and two-
sample testing, along with the optimality criterion used in
this paper. A sufficient condition for a one-sample test to be
universally optimal in terms of the type-II error exponent is
proposed in Section III. We briefly review the MMD and KSD,
and related tests in Section I'V. Section V presents two classes
of MMD based tests and the KSD based tests that are optimal
for the UHT problem. Section VI establishes an extended
version of Sanov’s theorem and shows that the quadratic-time
MMD based two-sample test is also universally optimal for
two-sample testing. We apply our results to nonparametric off-
line change-point detection in Section VII and conclude this
paper in Section VIII.

Mostly standard notations are used throughout the paper.
We use boldface P to denote probability of a set w.r.t. a dis-
tribution specified by the subscript, e.g., Pym.o(A) denotes
the probability of y™ € A with ™ i.id. ~ Q.

II. PROBLEM STATEMENT

In this section, we formally state the problems of one- and
two-sample testing and also introduce the optimality criterion
used in this paper.

A. One-Sample Testing

Throughout the rest of this paper, let X denote a
Polish space (that is, a separable completely metrizable
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topological space) and P the set of Borel probability measures
defined on X. Given a distribution P € P and a sample
sequence y™ from an unknown distribution () € P, we want
to determine whether to accept Hy : P = Q or Hy : P # Q.
A hypothesis test Q(m) = {Qo(m),Q21(m)} partitions X'™
into two disjoint sets with Qg(m) U Qi (m) = X™. If y™ €
Q;(m),i = 0,1, a decision is made in favor of hypothesis H;.
We say that o(m) is an acceptance region for the null
hypothesis Hy and 21 (m) the rejection region. A type-I error
is made when P = () is rejected while Hj is true, and a type-II
error occurs when P = (@ is accepted despite H; being true.
The two error probabilities are respectively

QO = PymNP (Q1(m)) s under Ho,
Bm = Pym~g (Qo(m)), under H;.

In general, the two error probabilities cannot be minimized
simultaneously. A commonly used approach is the Neyman-
Pearson approach [59] which imposes the type-I error prob-
ability constraint in the form of «a,, < « for a pre-defined
a € (0,1). A level « test is said to be consistent when the
type-1I error probability vanishes in the large sample limit.
Such a test is exponentially consistent if the error probability
vanishes exponentially fast w.r.t. the sample size, i.e., when

1
liminf —— log f3,,, > 0.
m

m—0o0

Here and throughout the rest of this paper, log denotes the
logarithm to the base 2. The above limit is also referred to as
the type-1I error exponent [60].

We next present Chernoff-Stein lemma, which gives the
optimal type-II error exponent of any level « test for sim-
ple hypothesis testing between two known distributions. Let
D(P||@Q) denote the KLD between P and (). That is,
D(P||Q) = Eplog(dP/dQ) where dP/dQ stands for the
Radon-Nikodym derivative of P w.r.t. () when it exists, and
D(P||Q) = oo otherwise [61].

Lemma 1 (Chernoff-Stein Lemma [60], [61]): Let y™
ii.d. ~ R. Consider hypothesis testing between Hy : R =
PePand H : R=Q € P, with 0 < D(P||Q) < co. Given
0 <a <l let Q(m,P,Q) = (Q(m, P,Q), 2 (m, P,Q))
be the optimal level o test with which the type-II error
probability is minimized for each sample size m. Then the
type-1II error probability satisfies

1
W}l_rzﬂoo _E IOg Py’"'NQ (Qg(ma P, Q)) = D(PHQ)

We can now describe the universal optimality criterion used
in this paper. Let Q(m) = (Qo(m),Q21(m)) be a nonpara-
metric one-sample test of level a. With ¢ i.i.d. ~ @) under
the alternative hypothesis H;, the corresponding type-II error
probability Q(Qo(m)) cannot be lower than the minimum
Q(Q5(m, P,Q)). As a result, Chernoff-Stein lemma indicates
that its type-II error exponent is upper bounded by D(P||Q).
The UHT problem is to find a test (m) for a given P so that

a) under H() : PymNp(Ql(m)) < Q,
1
b) under Hi : liminf —— logPymq(Q0(m)) = D(P|Q),
m—00 m
(&)
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for an arbitrary @ with 0 < D(P||Q) < oo, giving rise to the

name universal hypothesis testing.

It is also possible to consider a constant constraint on the
type-I error exponent, i.e., for a given A > 0, the test Q(m)
needs to satisfy liminf,, .o —= log Pym~p(Q1(m)) > A
Let Qm denote the empirical measure of sample y™,
ie, Qum = L5, where §, is Dirac measure at y. When
the sample space X is finite, Hoeffding’s test is equivalent
to deciding Hy if D(Q,,||P) < A and H; otherwise, which is
shown to achieve the optimal type-II error exponent among all
tests that meet the type-I error exponent constraint [S0]. For the
problem considered in this paper, a properly vanishing thresh-
old is needed to achieve the optimal type-II error exponent; in
particular, Hoeffding’s test is to decide Hy if D(Qyn||P) < 6pm
where d,,, > 0 is such that the type-I error probability is equal
to « and §,, — 0 as m — oo. It is important to note that
although a constant constraint placed on the error exponent is
more strict than that placed on the type-II error probability,
an optimal test under the former constraint does not imply the
optimality under the latter in general: one has to select a proper
threshold, like §,, in the above Hoeffding’s test, to achieve the
optimal type-II error exponent.

While Hoeffding’s test has a desirable performance when
X is finite, the construction of Hoeffding’s test does not
easily extend to continuous sample spaces. In the following
we provide a brief review on three existing attempts.

o Authors of [53] considered a constant constraint placed on
the type-I error exponent, i.e., the type-I error exponent is
greater than or equal to a given A > 0. Let dy, (-, -) denote the
Lévy metric between two probability measures. For some
d >0, denote Br(R,0) = {S :dr(R,S) < d} as an open
ball of radius & around a distribution R and T = Uger{S €
P:dr(R,S) < 0} as the §-smooth set for a set I' C P. For

1= {S : infReBL(S,Qé) D(RHP) > )\} and Qf =P \ Qr,
it was shown that
lim inf—% 10g Pymnp(Qm € %) > A,

n—oo

and if there is another set Q] and Qf = P \ Q] such that
lim inf,, _%Py””wP(Qm S Qllﬁé) > ), then for any

Q#P,
1 A
hm 1nf ——PymNQ(Qm (S 986)

n— o0 n

1 A
> liminf —— log Py (Qum € Q°).
n

n—00

In this sense, the test Q* = (QF,€QF) is said to be
0-optimal. Although the above result holds for both finite
and continuous sample spaces, the optimality is weaker
than that of Hoeffding’s test when the sample space is
finite. Moreover, it is computationally challenging to decide
whether an empirical measure Qm falls into the set 7
due to the difficulty in practically characterizing the Lévy
ball Br(S,25) as well as computing the infimum KLD
over the ball. Besides, as discussed above, this result does
not necessarily indicate the optimality with a constant level
constraint on the type-I error probability, i.e., when A\ = 0.
o A difficulty of generalizing the Hoeffding’s test from dis-
crete sample space to continuous sample space is that the
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suplevel set {S € P : D(S||P) > A} is not closed in P,
which leads to the unexpected property that its closure
may encompass the entire probability space [50]. Thus,
it was proposed in [54] to consider a composite hypothesis
testing by replacing P with By (P,J), i.e., y™ is either
from a distribution lying in By, (P, d) or another distribution
Q@ ¢ Br(P,9) but otherwise unknown. This is a different
problem from ours. For this composite hypothesis testing
problem, the test Qf = {S : infrep, (pr)<s D(S||R) > A}
and Qf = P\ Q7 is shown to be optimal among all the tests
that satisfy the type-I error exponent constraint with rate .
However, this result was only established when the sample
space is R.

o To extend Hoeffding’s result to R, another work [52]
proposed a test statistic based on the KLLD between empirical
measure and the one under Hy on a finite partition of the
sample space. A sufficient condition on the finite partition
was then given to achieve optimal type-II error exponent
with a constant constraint on both the type-I error probability
and error exponent. Unfortunately, while such a condition
can be used to verify if a partition suffices to achieve the
optimality, it is not clear how to explicitly construct the
partition for a given distribution P and also when this
condition is a necessary one.

B. Two-Sample Testing

Let " and y™ be independent samples with " ~ P
and y"™ ~ @, and both P and () are unknown. The goal
of two-sample testing is to decide between Hy : P = @
and Hy; : P # (@ based on the observed samples. We use
Q(n,m) = (Qo(n,m), 21 (n, m)) to denote a two-sample test,
with Qo(n,m) N Qy(n,m) = & and Qy(n,m) UQy(n,m) =
XnT™ The type-1 and type-II error probabilities are given by

nm = Pynopymop (2", y™) € Q1(n,m)), under Hy,
Bn.m = Panpymq (2", y™) € Qo(n,m)), under My,

respectively. Notice that both o, ., and f3,,, are defined
w.r.t. the underlying yet unknown distributions under the
respective hypotheses.

Motivated by the UHT problem, we also consider the error
exponent of f3, ,, defined in the large sample limit, with a
constant level constraint on , ,,. That is, we would like to
maximize

lim inf — log B, m, subject to ay, m < o
o ,

n,m—00

Unlike one-sample testing, there does not exist a characteri-
zation on the optimal type-II error exponent for two-sample
testing. As such, we would like not only to derive an exact
characterization of the type-II error exponent for a given two-
sample test, but also to investigate if the characterization
is optimal among all two-sample tests satisfying the level
constraint.

III. A SUFFICIENT CONDITION FOR
UNIVERSAL HYPOTHESIS TESTING

A useful tool for establishing the exponential decay of a
hypothesis test is Sanov’s theorem from large deviation theory.
In this section, we will use it to derive a sufficient condition
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for one-sample tests to be universally optimal, followed by
discussions on why various tests fail to meet this condition.

We start with the weak convergence of probability measures,
followed by Sanov’s theorem.

Definition 1 (Weak Convergence): For a sequence of prob-
ability measures P, € P, we say that P, — P weakly if
and only if E,p f(z) — E,.pf(z) for every bounded
continuous function f : X — R. The topology on P induced
by this weak convergence is referred to as the weak topology.

Theorem 1 (Sanov’s Theorem [61], [62]): Let y™ i.i.d. ~
QeP. Denote by Qm the empirical measure of sample y,
ie, Qn = (5 where 9, is Dirac measure at y. For a set
rcp deﬁned on the Polish space X', we have

lim sup —— log Pyn g (Qm el <

m— 00

lim mf—— log Pymq(Qm €T) >

m—0o0

plof D(R[Q),
A D(R||Q),

where int I" and clI' are the interior and closure of I' w.r.t. the
weak topology, respectively.
A useful property of the KLD is its lower semi-continuity.
Lemma 2 (Lower Semi-Continuity of the KLD [50], [63]):
For a fixed @ € P, D(:||Q) is a lower semi-continuous
function w.r.t. the weak topology of P. That is, for any ¢ > 0,
there exists a neighborhood U C P of P such that for any
P e U, D(P'||Q) > D(P||Q) — ¢ if D(P||Q) < oo, and
D(P'|Q) — oo as P’ tends to P if D(P||Q) =
We can now present a sufficient condition, following from
Sanov’s theorem and the lower semi-continuity of the KLD.
Theorem 2: Let y™ iid. ~ Q. Let Q(m) = (Qo(m),
Q1(m)) be a one-sample test based on y™ and P. Then it
is optimal for the UHT problem if
a) Pymp(Qi(m)) < a with P = Q.
b) Qo(m) C {y™ : d(P, Qm) < Ym}, where d(-,-) is a
probability metric that metrizes the weak topology on
P, Qm denotes the empirical measure of y™, v, > 0
denotes the test threshold and goes to 0 as m — oo.
Proof: Condition a) is simply the constant constraint on
the type-I error probability. By Chernoff-Stein lemma, we only
need to show that the type-II error exponent is no lower
than D(PHQ) Assuming Condition b), we have

liminf — — logP mNQ(QO( )

m—0o0

> liminf —— log Pym o

imin (AP.Qu) <7m) . @
To proceed, we notice that deciding if y™ € {y™
d(P,Qm) < ym} is equivalent to deciding if the empirical
measure Qm e {P': d(P,P") < 7n}. Since v, — 0 as
m — 00, for any given v > 0, there exists an integer m such
that ~y,, <  for all m > mg. Therefore, {P' : d(P,P’) <
Ym} C{P":d(P, P") <~} for large enough m, and for any
v >0,

(d(P Qu) < )

(d(P, Qm) < 'V)
1Q),

lim inf —— log Pymg

m— 00

> liminf —— logP maQ
> b
{P/EP:d(P,P’)gy}

3)
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where the last inequality is from Sanov’s theorem and that
{P" : d(P,P") < ~} is closed w.rt. the weak topology.
Moreover, for any given € > 0, there exists some v > 0
such that

D(P'|Q) = D(P(|Q) — e, )

inf
{P":dp(P,P")<~}
due to the lower semi-continuity of the KLD in Lemma 2
and the assumption that 0 < D(P||Q) < oo under H;. Since
€ can be arbitrarily small, combining (2), (3) and (4) gives

hmmf——logP mq(Qo(m)) > D(P|Q)

m—0o0

under H; : P # @, which completes the proof. |

Remark 1: 1t is worth noting that Condition b) requires only
a vanishing threshold +,, and does not place any constraint
on how fast it vanishes. Indeed, the requirement on the
vanishing rate is determined by the type-I error constraint in
Condition a). Consequently, if a test has its acceptance region
in the form of {y” : d(P,Qm) < 7m} and is universally
optimal, then any such test with a vanishing threshold +;,, > 0,
whereA Vi, = Ym, also satisfies the two conditions, as {y™
d(P,Qm) < ym} C {y™ : d(P,Qm) < ~/,}. However,
using a larger threshold may result in a higher type-II error
probability in the finite sample regime. Several methods have
been proposed to choose a tighter threshold but they introduce
additional randomness. More discussions will be given in
Section V-D.

Remark 2: A direct extension of the above result is to
obtain a similar theorem for nonparametric two-sample tests.
However, Sanov’s theorem works only with a single distri-
bution, whereas there are two distributions involved in two-
sample testing. Extending Sanov’s theorem to handle two
distributions would be key to establishing a sufficient condition
for two-sample testing, similar to Theorem 2. This is the topic
of Section VI-A.

While Theorem 2 is somewhat straightforward since
most of the hard work has been done in proving Sanov’s
theorem [61], [62], the two conditions are indeed quite hard to
meet simultaneously. For example, the KLD and total variation
distance do not metrize weak convergence and tests that are
constructed from them fail to meet Condition b). While other
distances, such as Lévy metric, Wasserstein distance, and the
bounded Lipstchiz metric, metrize weak convergence, their
sample estimates are usually not easy to compute. Moreover,
there does not exist a uniform threshold such that Condition a)
is satisfied. To the best of our knowledge, universally optimal
one-sample tests in the sense of (1) only exist for distributions
defined on a finite sample space where the empirical KLD [50]
or mismatched distance [51] are used for constructing one-
sample tests. Clearly, seeking a proper probability distance
becomes key to meeting the sufficient condition given in
Theorem 2.

Meanwhile, in the machine learning community, there has
been an active research topic on kernel based probability
distances. While several efficient tests have been constructed
based on these probability distances, little is known about their
statistical optimality. In the next section, we will introduce
two such kernel based probability distances and their empirical

Authorized licensed use limited to: Biao Chen. Downloaded on January 09,2022 at 16:03:46 UTC from |IEEE Xplore. Restrictions apply.



ZHU et al.: ASYMPTOTICALLY OPTIMAL ONE- AND TWO-SAMPLE TESTING WITH KERNELS

estimates for constructing nonparametric one- and two-sample
tests.

IV. MAXIMUM MEAN DISCREPANCY
AND KERNEL STEIN DISCREPANCY

We introduce two kernel based probability distances, fol-
lowed by a brief review of related one- and two-sample tests.

A. Maximum Mean Discrepancy

Let H denote a Hilbert space (a complete, possibly infinite-
dimensional vector space endowed with an inner product) of
real-valued functions on X, where (-,")5y : H X H — R
denotes the inner product and |- || : H — R is the associated
norm defined as || f||x = \/{f, f)x for f € H. The evaluation
functional over H is a linear functional F, that evaluates each
function at a point z € X, i.e., Fy[f] = f(x) for all f € H.
Then H is a Reproducing Kernel Hilbert Space (RKHS) if the
evaluation functional is bounded, i.e., for all z € X, there
exists some finite C' > 0 such that |F,(f)| = |[f(x)] <
C| fllx for all f € H.

Given an RKHS, there exists a function k£, € H such
that F[f] = (ks, /) = f(x) for each x € X, according
to the Riesz representation theorem [64]. The corresponding
reproducing kernel k£ : X x X — R is a function defined
by k(xz,y) = ky(z), which is positive definite on X x X
in the sense that 3", 3% cicjk(xi,z;) > 0 for any
positive integer n, any choice of x1,--- ,x, € X, and any
c1,---,cn € R In [65], it was shown that for each positive
definite function k there exists a unique RKHS with k as its
reproducing kernel; conversely, the reproducing kernel of an
RKHS is unique and positive definite. Thus, we can focus on
the specific kernel associated with an RHKS and will use Hj,
to denote the RKHS to make the kernel explicit.

Now let x be an X-valued random variable with probability
measure P, and E,.pf(z) the expectation of f(z) for a
function f : X — R. Assume that k£ is bounded contin-
uous. Then for every Borel probability measure P defined
on X, there exists a unique element py(P) € Hy such that
Eprf(x) = <f7 Mk’(P))Hk for all f € Hy. [66]. The MMD
between two Borel probability measures P and @ is

di(P, Q) = (Eonrf(z) — Eong f(2)),

sup
(1fll#, <1

where || f||7, < 1 denotes the unit ball in the RKHS [11]. The
MMD belongs to a class of metrics for probability measures,
called the Integral Probability Metric (IPM). Choosing an
appropriate set of functions over which the supremum is taken
can obtain many other popular distance measures, including
the total variation distance and Wasserstein distance. We refer
the reader to [67] for more details on the IPM.

The use of the unit ball in the RKHS brings in an equivalent
formulation of the MMD. It was shown in [11] that the MMD
can also be expressed as the RKHS-distance between iy, (P)
and i (Q):

= [k (P) = 1 (@) 7,
= (Ez,z’k(xv xl) + Ey,y/k(y; yl) - 2Em,yk(xa y))1/2a
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where z,2’ iid. ~ P and y,y" iid. ~ Q. A kernel k
is said to be characteristic if the map uy : P — Hy is
injective. Intuitively, this indicates that the RKHS endowed
with the kernel k& should contain a sufficiently rich class of
functions to represent all higher order moments of P. There
exist several characterizations for kernels to be characteristic
and a summary can be found in [33, Section 3.3]. With a
characteristic kernel k, the MMD dj(+,-) becomes a metric
on P [11], [68], which enables the MMD to distinguish
between different distributions. Moreover, [57], [58] have also
established the weak metrizable property of di(-,-), as stated
below.?

Theorem 3 ([57], [58]): The MMD dj(-,-) metrizes the
weak convergence on P if the following conditions hold:

e (A1) the sample space X is Polish, locally compact and
Hausdorff;

e (A2) the kernel k is bounded continuous and character-

istic.

As discussed in Section III, the weak metrizable property is
key to the sufficient condition in Theorem 2. We note that this
property is also important to training deep generative models
[69], [70] in machine learning. Examples under Condition A1
include any finite set and R?, and Condition A2 is satisfied
by Gaussian and Laplace kernels defined on R?, which are

k(x,y) = e~ lz=vll*/7 and k(z,y) = emefyH/ry’ )

respectively, with z,y € R? and v > 0 being a kernel
parameter. The Gaussian kernel is widely used in kernel related
methods such as kernel mean embeddings and support vector
machines, for its ease of computation (see Examples 1-3) as
well as its universality—a kernel is universal if the corre-
sponding RKHS is dense in the space of bounded continuous
functions defined on a compact metric space [71].

B. Kernel Stein Discrepancy

The KSD is recently proposed in [21], [47] and cal-
culates some discrepancy from distribution () to a given
distribution P by using a Stein operator. For the rest of this
paper where KSD is involved, we assume that the sample
space X is R? or a compact subset of R?, and that the density
functions (w.r.t. Lebesgue measure) of P and () exist and
are continuously differentiable, which are denoted as p and
q, respectively.

The KSD is defined as

ds(P,Q) = o Ernq (sp(2)f(2) + Vi f(2)),

where the function space |f|l#, < 1 denotes the unit ball
of an RKHS Hj, and sp(z) = V,logp(z) is the score
function of p(x). The above definition requires f be differ-
entiable. Fortunately, according to [72, Corollary 4.36], any
function f € Hy is t-times differentiable if the kernel k is
t-times differentiable. Hence we only need to pick a proper
kernel k for ds(P, Q) to be well-defined. In particular, with a

3Indeed, it is shown in [57] that X only needs to be locally compact
Hausdorff. We require X" be Polish in order to utilize Sanov’s theorem.
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Co-universal kernel* [73, Definition 1 and Theorem 4.1] and
B, ||V, logp(z) — V. logq(a)]® < oo, ds(P,Q) —

if and only if P = @ [21, Theorem 2.2]. A nice property
of the KSD is that this result requires only the knowledge
of p(z) up to a normalization constant. To see this, notice
that V, logp(x) = V,log(np(z)) for any constant n > 0.
An equivalent expression of the squared KSD can be derived
as

d%‘(Pv Q) =E;@Er~q hp(xa SC/),

where
hp(x,2') = s} ()sp(2 ) k(x, 2’
+ 5 (2) Vo k(z, 2’

)+ sg(m’)vxk(m, )
) + trace(Vy o k(z, 2")).
(6)

Although the KSD is not a probability metric on P, it has
been shown to be lower bounded in terms of some weak
metrizable measures under proper conditions, as stated below.

Theorem 4 ([20]): If a) X = R and k(z,y) = ®(x — y)
for some ® € C? (twice continuous differentiable) with a non-
vanishing generalized Fourier transform; b) k(z,y) = ®(z—y)
for some ® € C? with a non-vanishing generalized Fourier
transform and the sequence {Qm}mzl is uniformly tight, then
there exists a weak metrizable measure dy, such that

where ¢ is a function involving some unknown constants and
g(w) — 0 if w — 0.

This theorem indicates that ds(P,Q,,) — 0 only if
Qm — P weakly, ie., dg(P,Q,,) vanishing is a necessary
condition for weak convergence. The Gaussian kernel defined
on R satisfies Condition a), and an example under Condition
b) is the inverse multi-quadric kernel

k(x,y) = (¢ + ||z —y||*)", with ¢ >0and —1 <7 <0.

C. Preliminary Results

We end this section with some preliminary results on MMD
and KSD based one- and two-sample tests. As one will see,
these results depend on the kernels in use and are generally
loose. Nevertheless, they are important to finding a proper
test threshold to meet the level constraint on the type-I error
probability.

1) MMD Based One-Sample Test Statistic: From the defin-
ition of the MMD, a one-sample test statistic can be directly
obtained by plugging in the empirical distribution of the
observed sample. With sample y™ and its empirical distri-
bution Qm, the squared MMD can be estimated as

di(P,Qm) =E, ,k(z,2') + _ZZZk Yir Yj)
i=1 j=1
2 m
== Eok(w,y:), @
i=1

#Co-universal’ generalizes ‘universal’ defined over a compact metric space
to a non-compact one like R. A kernel is Co-universal if the corresponding
RKHS Hj, is dense in the Banach space of continuous functions vanishing
at infinity with the uniform norm.
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where z, 2’ ii.d. ~ P. A statistical characterization on this
statistic is given as follows.

Lemma 3 ([44], [45]): Assume Al and A2, with 0 <
k(-,-) < K. Given y™ i.id. ~ @, we have

Pyng (|di(P Q) - du(P.Q)| > (2K/m)'/? +¢)

€2m
S exp (—W> .

2) MMD Based Two-Sample Test Statistic: Given two sam-
ples ™ and y™, a two-sample test statistic can be constructed

as
&2 (P, Q) = nQZZk i, ;) mizz (Yi, v5)
=1 j=1 i=1 j=1
—%;;k(%ayﬂ ®)

where ]5” and Qm are the empirical distributions of =™ and
y™, respectively. This statistic was proposed in [11] and is a
biased estimator of dj (P, Q). The following lemma states the
convergence of di (P, Q) to di(P,Q)

Lemma 4 ([11, Theorem 7]): Assume the same conditions
in Lemma 3. With z" i.i.d. ~ P and y™ ii.d. ~ @, we get

Pz"wP,y””NQ <|dk(pna Qm) - dk(Pv Q)| >

2(K/n)Y? + 2(K/m)'/? + e)

<9 e2nm

exp| —=—— .
=29 Mok (n+m)

3) KSD Based One-Sample Test Statistic: Given sample y™
we may estimate d% (P, Q) by

1 m m
m_ z::z::l hp(yivyj)v

where hy,(-,-) is defined in (6). The statistic d%(P,Q,,) is a
degenerate V-statistic under the null hypothesis Hy : P = @
[21]. To our best knowledge, existing results only characterize
its limiting behavior, as stated in the following lemma.’

Lemma 5 ([21, Proposition 3.1]): Assume the density
functions p and ¢ are continuously differentiable and kernel %
is also differentiable over X. If h), is Lipschitz continuous and
E,qhy(z,x) < oo, then mcl%(P7 Qm) converges weakly to
some distribution under the null hypothesis Hy.

Letting P = @ so that d(P, Q) = 0 in Lemmas 3 and 4,
one can easily obtain a distribution-free threshold to meet
the constant type-I error constraint. With such a threshold,
however, the type-II error probability under the alternative
hypothesis H; : P # () depends on the kernel k& (more
precisely, an upper bound K') and the resulting type-II error
exponent is not tight. As to the KSD based test statistic, since
there is no finite sample result like Lemmas 3 and 4, the con-
stant level constraint can not be satisfied for each sample

SThe authors of [21] assume 7-mixing as the notion of dependence within
the observations, which holds in the i.i.d. case. They also assume a technical
condition Y72 t2/7(t) < oo on T-mixing. See details in [21], [74].
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size m. In Section V-C, we will relax the level constraint to
an asymptotic one for the KSD based one-sample tests.

V. ASYMPTOTICALLY OPTIMAL ONE-SAMPLE TESTS

In this section, we investigate three classes of kernel based
one-sample tests for the UHT problem: the first test directly
computes the MMD between the given distribution and the
sample empirical distribution, which requires closed-form inte-
grals w.r.t. the given distribution; the second test relaxes the
exact integration by drawing samples from the target distrib-
ution but needs more treatment in applying Sanov’s theorem;
and the third test can be more computationally favorable in
some cases but only meets an asymptotic level constraint.

A. Plug-in Kernel Tests

The first test relies on the statistic dy (P, Qm) defined in (7)
and has been studied in [44]-[46], [56], yet its optimality for
the UHT problem remains unknown.

Let Q,, be the empirical measure of y™. A plug-in kernel
test can be constructed with acceptance region

Qo(m) = {9 du(P.Qu) < Y }

where 7,, denotes the test threshold. On the one hand, we want
the threshold +,, to be small so that the test type-II error
probability is low; on the other hand, the threshold cannot
be too small in order to satisfy the level constraint on the
type-I error probability. The balance between the two error
probabilities is attained with a threshold that vanishes at an
appropriate rate.

Theorem 5: For P € P and ¢y i.i.d. ~ Q € P, assume 0 <
D(P||@) < oo under the alternative hypothesis Hy. Assume
A1, A2, where kernel k satisfies 0 < k(-,-) < K and K > 0
is a constant value. For a given o, 0 < a < 1, set v, =

V/2K/m (14 y/=Toga) . Then the kernel test d (P, Qn) <

Ym 1s an optimal level « test for the UHT problem, that is,
a) under Hy : Pym.p (dk(P Qm) > 'ym) <

b) under H; : liminf — — 1og Pynq (dk(P Qm) < ’Ym)
m—0oQ

:D(PHQ)~

Proof: That the test dy (P, Qm) < Ym has level a can be
directly verified by Lemma 3 with P = @. The rest follows
from Theorem 2, since dy (-, -) metrizes weak convergence on
P and v, — 0 as m — 0. ]

Example 1: Consider a one-sample problem where X =
R and P follows standard Gaussian distribution A(0,1).
We use the Gaussian kernel given in (5) and pick v = 2,
ie., k(z,y) = exp(—(x — y)?/2). An upper bound on this
kernel function is K = 1 and the threshold becomes ~,, =

v/2/m(1 + v/—loga). For the test statistic defined in (7),

we have

A2 (P, Q)

N

(z—x')?/2 _+ 1 7932/2 1

e~ 2dxdy’
V- Ve
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m m

LSy e
m i=1 j=1
_ = (z— )/2 7932/2
Z/ Yi \/ﬂ dx
ini —(yi—y;)?/2 _ ie y7/4
i=1 j=1

whose evaluation requires O(m?) time complexity.

The statistic d2(P Qm) is a biased estimator for
di(P Q). Replacmg m2 Zm Zm (yuyj) in dQ(P Qm)
with ——— 71) Sy ik (yz,y]) results in an unbiased

statistic, which is denoted as d2(P,Q,). We remark that
d2 (P, Qm) is not a squared quantity and can be negative,
a consequence of its unbiasedness. The following result shows
that d2 (P, Qm) can also be used to construct a universally
optimal one-sample test.

Corollary 1: Under the same conditions as in Theorem 5,
the test d2 (P, Q) < ~2, 4+ K/m is level a and optimal for
the UHT problem.

Proof: Since 0 < k(-,

u(P7 QT”) - di(Pa Qm)}

1 m

i=1 j#i i=1

) < K, we have

< K/m.
Thus,
{0 <3}
- {y’ Lo (P, Q) < 7 + K/m}
{v: R(P.Qu) <77, +2K/m}.
Under Hy, we have

Pynp (

<P,up

-

@2(P,Qu) > 2, + K/m)
E(P.Qm) > 2)
<aq,

where the last inequality is from Lemma 3 and the fact that
di(P, Q) > 0. Under Hy : P # @, we have the type-II error
exponent being

hmmf——logP meaQ (d (P,Qm) <72 —|—K/m)

m—0o0

P Qm <7m+2K/m)

(P,Om) < VA2 + 2K/m)

> liminf —— log Pymg

n—00

= lim mf—— logPym~q (

n—oo

zD(PHQ)-

The last inequality follows from Theorem 2 because 72, +
2K/m — 0 when m — oo. Applying Chernoff-Stein lemma
completes the proof. |

It is worth noting that the tests in this section
(e.g., Example 1) require closed-form integrals, namely,
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E, . k(z,2") and E k(z, y;), which may be difficult to obtain
for non-Gaussians. Our purpose here is to show that the
universally optimal type-II error exponent is indeed achievable
for non-finite sample spaces, providing a meaningful optimal-
ity criterion for nonparametric one-sample tests. In the next
section, we consider another class of MMD based tests without
the need of closed-form integrals.

B. Kernel Two-Sample Tests for One-Sample Testing

In the context of model criticism, [17] casts one-sample
testing into a two-sample problem where one draws sample
2™ from distribution P. A question that arises is the choice of
number of samples, which is not obvious due to the lack of
an explicit criterion. In light of UHT, we may ask how many
samples would suffice for a kernel two-sample test to attain
the type-1I error exponent D(P||Q).

Denote by P, the empirical measure of 2. Consider a two-
sample test with acceptance region

Qo(n, m) = {($n7ym) : dk(Pru Qm) < 'Yn,m}v
where dk(pn,Qm) is given in (8), K is a finite bound on
k(-,-), and
Yom = 2(K/n)"? + 2(K /m)'/?
+ (—2log(a/2)(K/m + K/n)"/?.

Notice that the type-II error probapility now depends on
both P and @), due to the use of P,. Although additional
randomness is introduced, it does not hurt the type-II error
exponent provided that n is sufficiently large, as stated below.

Theorem 6: Assume the same conditions as in Theorem 5,
and that 2™ i.id. ~ P and y™ iid. ~ Q. Let Q;(n,m) =
X"\ Qo (n,m) be the rejection region. Letting n be such
that n/m — oo as m — oo, we have

a) under HQ P = Q, PanP7ym,NP (Ql(n,m)) < a,
b) under Hy : P # @,

lim inf 1 log Pyon~pym~q (Qo(n,m)) = D(P||Q).

m—o00 m

Proof: That the two-sample test is level a can be verified
by Lemma 4. The rest is to show the type-II error exponent
being D(P||Q). To proceed, we write the type-II error prob-
ability as

Ponipymeq (dk(pn, Qm) < vn,m) = B+ Bhm
where
= Pann (4P Q) < Vs (P P) > 71 )
b = Parn (@1(Pas Qo) < s i (P Pa) < 7 )
Voo = V2K /n+ /2KmD(P|Q)/n.

It suffices to show that both 3, ,,, and Bil’m decrease at least
exponentially fast at a rate of D(P]|Q). We first have

i S Py (AP Pa) > 9,0

< Penep (dk(P7 pn) > V;L,m)
< e-mDPIQ).

©)
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where the last inequality is due to Lemma 3. Thus, 3, ,,, van-
ishes at least exponentially fast with the exponent D(P||Q).

For f3, ,,., we have

l

- Px"NP,y"‘NQ (dk (pn; Qm) S ’Yn,ma dk(Pa pn) S ’Y;Lm)

S Px"~P,y’”~Q dk (pn; Qm) + dk (Pa pn) é Yn,m + V;L’m)

(a)

S Px"NP,yMNQ (dk (Pa Qm) é Tn,m + V;L,m)

< Py'm.NQ (dk (P, Qm) < Yn,m T PY:’L,TYL) )

where (a) is from the triangle inequality for metric dj. Similar
to (3), we get

1
lim inf ——log 3, ,, > D(P|Q),
- ,

n—00

because Y m + Y,m — 0 as m — oo. Together with (9),
we have under Hy : P # Q,

1
liminf ——logPynpym~
gt - 1og Py

(dk(Pna Qm) < ’Yn,m)
> D(P[|Q).

We next show the other direction under H;. We can write

Px"wP,ymNQ (dk (Pna Qm) < ’Yn,m)

(@)

> PI"NP,?J’”NQ (dk (pm P) < ’Vim dk(Pv Qm) < V;n)

=P,up (dk(Pn, P) < y;) Pynq (dk(P, Qm) < vin,) )

where (a) is because dj is a metric, and we choose
v, = V2K/m(1 4+ y/loga=1/2) and v}, = /2K/n(1 +
Vloga=1/2) so that Ynm > 7, + 7, Then Lemma 3
gives Punop(di(P,P,) < 7)) > 1 — a and
Pymq(di(P, Qm)A < 4,) > 1 — \/a, where the latter
implies that dy (P, Q) < 7., is a level \/a test for testing
Hy: 2" ~ P and Hy : 2™ ~ Q with P # Q. Together with
Chernoff-Stein Lemma, we get

1 A
liminf ——log Pynpym~q (dk(Pn, Qm) < 'ymm)
m

m—0o0

< 1%{21?5 —% log (Pxnwp (dk(Pm P) < %)
X Pymq (dk(R Qm) < ’Y;n))

< liminf—% log ((1 —Va)Pyneg (d’“(‘P’ Qm) < 7:”))

m—0o0

<D(P|Q).

The proof is complete. [ ]

Example 2: Consider the same one-sample problem as
in Example 1 with P ~ A/(0,1). We may pick the
same Gaussian kernel k(x,y) = exp(—(x — y)?/2). Then
the threshold becomes v, = 2(1/n)/2 + 2(1/m)¥/? +
(—2log(cr/2)(1/m + 1/n))1/2. For standard Gaussian distri-
bution, we can easily draw n ii.d. samples z" from P.
The test statistic can be calculated using (8) by plugging
in the Gaussian kernel function exp(—(z — %)?/2), which
has O((n + m)?) time complexity. Here we comment that
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ii.d. samples from P may not be easily obtained when
P is complicated or is subject to a normalization constant.
Fortunately, such cases may be handled by another kernel
based test, as will be discussed in the next section.

Replacing the first two terms in d3(P,, Q) with
ﬁ Yim > iz K (iryj) and ﬁ Yim1 Dt
k(x;,x;) also results in an unbiased statistic, which we
denote as d2(P,,Q,,) [11]. We then have the following
universally optimal test based on d2 (P, Q,,).

Corollary 2: Under the same assumptions as in Theorem 6,
the test defined by Qo = {y" : d2(Pp, Q) <72, + K/n+
K/m} has its type-1 error probability below o and type-11
error exponent being D(P||Q), provided that n/m — oo as
m — o0.

Proof (Sketch): Similar to the proof of Corollary 1 by
noting that |d2 (P, Q) — d2(Pn, Q)| < K/n+ K/m. ®

Remark 3: The above result can be treated as a special
case of the two-sample problem where samples sizes scale in
different orders. For the case with 0 < lim,, oo n/m < oo,
however, the current approach is not readily applicable.
A naive way is to attempt to decompose the acceptance region
Qo(n,m) into Q(n) x QF(m) with Qj(n) and Qf (m) being
respectively decided by 2™ and y™, and then apply Sanov’s
theorem to each set. Unfortunately, such a decomposition is
not feasible for the MMD based two-sample tests. We post-
pone a further investigation until Section VI, after studying
the KSD based one-sample tests.

C. Kernel Stein Discrepancy Based One-Sample Tests

As mentioned in Section IV-C, there does not exist a uni-
form or distribution-free probabilistic bound on d% (P, Q.,),
and it becomes difficult to find a threshold to meet the constant
level constraint for all sample sizes. To proceed, we relax the
level constraint to an asymptotic one and use the result of
Lemma 5 which states that md?g(P7 Qm) converges weakly
to some distribution under Hy : P = (. We assume a
fixed a-quantile 7y, of the limiting cumulative distribution
function, i.e., lim,, o P(md%(P, Qm) > Ye) = a. If
is such that v, — 0 and lim,, oo My, — 00, €.2., Vm =
V1/m (1 +/=Tloga), we get my, > 7, in the limit and
thus lim,, oo P(d%(P,Qm) > 7m) < a. Together with
the weak convergence properties of the KSD, we have the
following result.

Theorem 7: Let P and Q be distributions defined on R¢,
with D(P||Q) < oo under the alternative hypothesis. Assume
y™ iid. ~ Q and set v, = \/1/m (1 + /= log ). Then we

have
o assuming the conditions in Lemma 5, we have
. 2 A
nlgr;o Pym.p (dS(P, Qm) > ym) < «, under Hy;

o assuming that kernels satisfy the conditions in Theorem 4,
then under H;
lim inf —— logP " (dS(P Qm) <’Ym) =D(P| Q).

m—0o0

Proof: To establish the type-II error exponent, let dy
denote the weak metrizable metric that lower bounds the KSD
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in Theorem 4. Then dw (P,Q.,) < ¢(ds(P,Q.)) where
g(ds) — 0 as ds — 0. Thus, there exists ,, such that
{y™ : d5(P,Qm) < v} C {y™ : diy(P,Qm) < 7,,} and
v, — 0 as m — oo. The rest follows from the sufficient
condition in Theorem 2. ]

Example 3: We continue with the same setting as in
Examples 1 and 2, and pick the same Gaussian kernel

k(x,y) = exp(—(z — y)?/2). We then have

1 2
sp(z) = V, log (mez /2>

ka($7$l) = Vxe_(x—x/)2/2
—(z —a)e" @2,
e (@—a')?/2
trace(Va,ork(2,2')) = —5 57—
N2
— (=) = e

According to (6), the test statistic is

m m

Zzh ylay_]

i=1 j=1

A3 (P, Q) =

m m

=2 > (&

i=1 j=1

Yty — 1)) e @imu)?/2,

Compared with Example 2, we see that there is no need
to draw i.i.d. samples of P. Hence, the KSD based test may
be computationally convenient when the density function p is
given in a complicated form and/or subject to a normalization
factor. Such a case is frequently encountered in Bayesian
inference involving complicated posterior distributions [75].

An  unbiased  U-statistic d%( wy (P, Qm) =
D) 2ot 2o hw(Yisyy)  for estimating  d3(P, Q)
was proposed in [47]. A similar result holds under an
additional assumption on the boundedness of h,, according to
the same argument of Corollary 1; detailed proof is omitted.

Corollary 3: Assume the same conditions as in Theorem 7
and further that hy(-,-) < H, for some H, € RT. Then the
test d?S'(u) (P,Qm) < Ym + H,/m is asymptotically level o
and achieves the optimal type-II error exponent D(P||Q).

D. Remarks

We have the following remarks regarding our results.

1) Threshold Choice: The distribution-free thresholds used
in the MMD based tests are generally too conservative, as the
actual distribution P is not taken into account. Alternatively,
one may use Monte Carlo or bootstrap methods to empirically
estimate the acceptance threshold [11], [21], [49], making the
tests asymptotically level «, i.e., lim;, oo @y < «. Bootstrap
thresholds have also been proposed for the KSD based tests
in [76]-[78]. These methods, however, introduce additional
randomness on the threshold choice and further on the type-II
error probability. As a result, it becomes difficult to establish
the optimal type-II error exponent. A simple fix is to take the
minimum of the Monte Carlo or bootstrap threshold and the
distribution-free one, guaranteeing a deterministically vanish-
ing threshold and hence the optimal type-II error exponent.
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2) Weak Metrizable Property: To apply Sanov’s theorem as
in our approch, we find a superset of probability measures
for the equivalent acceptance region, which is required to be
closed and to converge (in terms of weak convergence) to
P in the large sample limit. Without the weak convergence
property, the equivalent acceptance region may contain prob-
ability measures that are not close to P, and the minimum
KLD over the superset would be hard to obtain. An example
can be found in [20, Theorem 6] where the KSDs are driven
to zero by sequences of probability measures not converging
to P. Consequently, we cannot establish the optimal type-II
error exponent with the linear-time KSD based tests in [47],
[49], the linear-time kernel two-sample test in [11], the kernel
based B-test in [43], and a pseudometric based two-sample
test in [38], due to the lack of the weak metrizable property.

3) Non-lLi.d. Data: We notice that [21] considered non-
ii.d. data by use of wild bootstrap. In general, however,
statistical optimality with non-i.i.d. data is difficult to establish
even for simple hypothesis testing.

E. Other Asymptotic Criteria

Before ending this section, we would like to discuss two
other related asymptotic statistical criteria.

1) Exact Bahadur Slope: We consider the exact Bahadur
slope for its close relationship with our asymptotic statistical
criterion [79], [80]. In particular, the exact Bahadur slope for
a hypothesis test is equivalent to twice of the type-I error
exponent, subject to a constant constraint on the type-II error
probability, that is,

2
lim inf —— log av,y,, subject to 3, < .
m

m—0o0

The optimal exact Bahadur slople is given by 2D(Q|P),
assuming that 0 < D(Q||P) < oco. However, the universal
optimality w.r.t. this criterion cannot be achieved for any one-
sample test. To see this, notice that a nonparametric one-
sample test, including both the test statistic and threshold,
is constructed only through the sample y”* and the target
distribution P. Moreover, the type-I error probability is defined
w.r.t. the null hypothesis when y"* ~ P. Therefore, the type-I
error exponent of a nonparametric one-sample test is charac-
terized by only P and cannot capture the information of the
alternative distribution (), thereby cannot attain the optimum
D(Q||P) in the universal setting.

2) Chernoff Index: The Chernoff index of a hypothesis test
is defined as the minimum of its type-I and type-II error
exponents, i.e.,

min{liminf—ilogam, l'minf—llogﬁm} . (10)
m— o0 m m—o0 m

Assuming that P and @ are mutually absolutely continuous,
then the maximum Chernoff index is given by the Cher-
noff information and is achieved by the likelihood ratio test
whose type-I and type-II error exponents are equal [60], [61].
As discussed above with the exact Bahadur slope, the type-I
error probability of a nonparametric test is independent of the
alternative distribution (), whereas the optimal Chernoff index,
Chernoff information, depends on both P and ). Therefore,
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the optimal Chernoff index cannot be achieved in the universal
setting, either.

VI. ASYMPTOTICALLY OPTIMAL TWO-SAMPLE TESTS

In this section, we present our main results on the type-II
error exponent for general kernel two-sample tests. As dis-
cussed in Section V-B, the first and the most important step
is to establish an extended Sanov’s theorem that works with
two sample sequences.

A. Extended Sanov’s Theorem

We begin with our definition of pairwise weak convergence
of probability measures: we say (P}, Q;) — (P, Q) weakly if
and only if both P, — P and @; — @ weakly. Consider P x P
endowed with the topology induced by this pairwise weak
convergence; it can be verified that this topology is equivalent
to the product topology on P x P where each P is endowed
with the topology of weak convergence. An extended version
of Sanov’s theorem handling two distributions is stated below,
which may be of independent interest to other large deviation
applications.

Theorem 8 (Extended Sanov’s Theorem): Let X be a Polish
space, z" iid. ~ P, and y™ iid. ~ Q. Assume 0 <
limy, ;00 nfr—’m =:c< 1. ThenforasetI' C P x P,

inf  ¢D(R||P)+ (1 —¢)D(S]|Q)

(R,S)€int T’

> limsup — n log Px"wP,y"”NQ((pna Qm) € F)

n,m—o0
1 A

> liminf — m

> Ylig}linof; ntm log P, ~P,y NQ((Pna Qm) € F)

> i f D P 1— D
> plof | eDE|P)+(1-)D(5]Q).

m

where int I" and clT" are the interior and closure of I w.r.t. the
pairwise weak convergence, respectively.
Proof: See Appendix A. |
We comment that the extended Sanov’s theorem is not
apparent from the original one, as existing tools, e.g., Cramér
theorem [61] that is used for proving the original Sanov’s
theorem, can only handle a single distribution. Nevertheless,
inspired by [81] that proved Sanov’s theorem (w.r.t. a single
distribution) in the 7-topology, we first establish the above
result in finite sample spaces and then extend it to general
Polish spaces, with two simple combinatorial lemmas as
prerequisites.

B. Exact and Optimal Error Exponent

With the extended Sanov’s theorem and a vanishing thresh-
old, we are ready to establish the type-II error exponent for
the kernel two-sample test defined in Section V-B.

Theorem 9: Assume Al, A2, and 0 < limy, ;m—oo MLM =
¢ < 1. Further assume that

0< D" = int eD(R||P)+ (1 - )D(R|Q) < oc,

under the alternative hypothesis ;. Then the kernel test
dr(Pr, Qm) < Yn,m» With di(P, Q) and v, defined in

Authorized licensed use limited to: Biao Chen. Downloaded on January 09,2022 at 16:03:46 UTC from |IEEE Xplore. Restrictions apply.



ZHU et al.: ASYMPTOTICALLY OPTIMAL ONE- AND TWO-SAMPLE TESTING WITH KERNELS

Section V-B, is an exponentially consistent level « test with
type-1II error exponent being D*, that is,

Onom < o and liminf —
? n,m—oo N +m

log ﬁn,m =D~
Proof: A proof is given in Appendix B, which is similar

to the proof of Theorem 2 but needs some extra treatment on

the pairwise weak convergence. [ ]

Therefore, when 0 < ¢ < 1, the type-II error probability
vanishes as O(e~("+™)(P"=€)) “where ¢ € (0, D*) is fixed
and can be arbitrarily small. The result also shows that the
choice of kernels only affects the sub-exponential term in the
type-II error probability, provided that they meet the conditions
of A2.

Now that we have obtained the exact type-II error exponent
for the kernel two-sample test, we proceed to derive an
upper bound on the optimal type-II error exponent for any
(asymptotically) level « test.

Theorem 10: Let z™, y™, P, @, and D* be defined as
in Theorem 9. If a nonparametric two-sample test ' (n,m)
is (asymptotically) level a,0 < o < 1, its type-II error
probability 3], ,, satisfies:

oif0<1imn,mﬂoonl—”m:c<1and0<D*<oo,then

log 3, ,, < D*;

lim inf — m <

n,m—oo N +m

o if limy ;oo - = 00 and 0 < D(P||Q) < oo, then

1
liminf ——log 3, ,,, < D(P|Q).
m :

,M—00

Proof: Our proof is based on the notion of relative entropy
typical set, where the relative entropy is another name for the
KLD [60].

We begin with the case where 0 < ¢ < 1. Let P’ be
such that ¢cD(P'||P) + (1 — ¢)D(P’||Q) = D*. Consider first
D(P'||P) # 0 and D(P’'||Q) # 0. Since D* is assumed to be
finite, we have both D(P’||P) and D(P’||Q) being finite. This
implies that P’ is absolutely continuous w.r.t. both P and @,
so the Radon-Nikodym derivatives dP’ /dP and dP’/dQ exist.

We can define the following set

/ n
A, :{a: . D(P'||P) - e< % log % <D(P'|IP) + e},
which contains samples so that the log-likelihood ratios are
e-close to the true KLD, and is called the relative entropy
typical set. Recall the definition of the KLD: D(P’||P) =
E.p/ log(dP’(x)/dP(x)). By law of large numbers, we have
for any given € > 0,

Pynp (A,) > 1—€/2, for large enough n.
Similarly, define
1
By, = {ym :D(P'|Q) —e<—log
m

and we have

dP'(y™)

W<D(Pl||@+€},

Pym~p/(Bm) >1—¢€/2, for large enough m.
Therefore, we get

Pznwp/’ymwp/ (An X Bm)
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:Px7zNPl7y7n,NP, (J)n c AT“ym, c Bm)

>1 e, (1)

for large enough n and m.

Now consider the type-II error probability for a level «
test. First, if a test is level o, we have its acceptance region
satisfy

Px”NP,ym’NP (96(n,m)) >1- «, (12)

when the null hypothesis Hy holds, i.e., when ™ and y™
are i.i.d. according to a common distribution (which is not
necessarily P’). Then under the alternative hypothesis H; :
P # @, we have

ﬁ;wn =Ponpymag (Q5(n,m))
> Punapymag (An X By N QG (n,m))

_ / dP(z") dQ(y™)
Ap X BN (n,m)

(;) / o—n(D(P'|P)+€)g—m(D(P'[|Q)+e)
Ap X BmNQ(n,m)

x dP'(z™)dP'(y™)
— 9—nD(P'||P)—m(D(P'||Q)—(n+m)e

< 4P/ (") dP'(y™)
Ap X BmnNQ(n,m)

Y g-nD(PIP)-mD (P IQ—(tmie(y _ o _ )
where (a) is from the defintion of A4,, and B,,, and (b) is
due to (11) and (12). Thus, when ¢ is small enough so that

1—a—¢€>0, we get

liminf —
n,m—oo N+ 1Mm

log @mn

< . . / /
< }ng}ini) - (nD(P'|P) +m(D(P'||Q) + (n + m)e)
— D" +e (13)

If a test is an asymptotic level « test, we can replace «
by a + ¢ where ¢ can be made arbitrarily small provided
that n and m are large enough. Thus, the above equation (13)
holds, too. Since € can also be arbitrarily small, we conclude
that

liminf —
n,m—oo N +Mm

If P/ = P, then A,, contains all 2™ € X™ and the above
procedure results in the same result.

Finally, the same argument also applies the case with
limy, ;m— o0 5 = 00 and we have

log 3, ,n < D™

liminf ——log 8, < D(P|Q).
n,m—oo m ’
|
This theorem shows that the kernel test dk(pn,Qm) <
Yn,m 1s an optimal level o two-sample test, by choosing the
type-1II error exponent as the asymptotic performance metric.
Moreover, Theorems 9 and 10 together provide a way of
identifying more universally optimal two-sample tests:
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o Assuming n = m, the test d2(P,,Q,) <
(4K /+/n)+/log(a—1) is also level « [11, Corollary 11].
As k(-,-) is finitely bounded by K, its type-II
error probability vanishes exponentially at a rate of
infrep 2 D(R|P)+ $D(R||Q), which can be shown by
the same argument of Corollary 1.

o It is also possible to consider a family of kernels for the
test statistic [39], [58]. For a given family x, the test
statistic is supyc, di (P, Qm) which also metrizes weak
convergence under suitable conditions, e.g., when x con-
sists of finitely many Gaussian kernels [58, Theorem 3.2].
If K remains to be an upper bound for all & € &,
then comparing sup;.c,. dk(Pn, Qm) with 7, ., defined
in Section V-B results in an asymptotically optimal level
o test.

Remark 4: There is a similar result to Lemma 3 for the
unbiased two-sample statistic d2(P,,Q,,). Assume that 0 <
limy, 1—oo n/(n + m) < 1 and kernel k(-,-) is bounded
by K, then [41, Theorem 12] shows that the statistic (n +
m)d?(Py, Q,n) converges in distribution to some distribution
under the null hypothesis. With a fixed a-quantile 7/, for the
limiting distribution, then (m+n)d2 (P, Q) < 7, is level o
in the sample limit. Consequently, the (asymptotic) level «
constraint requires the threshold for di(ﬁn, Qm) decrease at
most O(1/(n + m)) fast.

Remark 5: In [12], a notion of fair alternative is proposed
for two-sample testing as dimension increases, which is to fix
D(P||Q) under the alternative hypothesis for all dimensions.
This idea is guided by the fact that the KLD is a fundamental
information-theoretic quantity determining the hardness of
hypothesis testing problems. This approach, however, does not
take into account the impact of sample sizes. In light of our
results, perhaps a better choice is to fix D* in Theorem 9 when
the sample sizes grow in the same order. In practice, D* may
be hard to compute, so fixing its upper bound (1 —¢)D(P||Q)
and hence D(P||Q) is reasonable.

Remark 6: The main results indicate that the type-II error
exponent is independent of the choice of kernels as long as
kernels are bounded continuous and characteristic. We remark
that this indication does not contradict previous studies on
kernel choice, as the sub-exponential term can dominate in the
finite sample regime. In light of the exponential decay, it then
raises interesting connections with a kernel selection strategy,
where part of samples are used as training data to choose a
kernel and the remaining samples are used with the selected
kernel to compute the test statistic [41], [42]. On the one
hand, the sample size should not be too small so that there
are enough data for training. On the other hand, if the number
of samples is large enough and the exponential decay term
becomes dominating, directly using the entire samples may be
good enough to have a low type-II error probability, provided
that kernel is not too poor. We conduct a toy experiment to
further illustrate this point in Appendix C. Selecting a proper
kernel is an important ongoing research topic and we refer
the reader to existing works on kernel selection strategy,
e.g., [41], [42].
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VII. APPLICATION TO OFF-LINE CHANGE DETECTION

In this section, we apply our results to off-line change
detection. To our best knowledge, no tests have been shown
to be optimal, in terms of either error probability or error
exponent, for detecting the change when no prior information
on the post-change distribution is available [5]. We only study
the case where both the pre- and post-change distributions are
unknown; the case with a known pre-change distribution can
be handled similarly and is omitted.

Let 21, -+, 2, € R? be an independent sequence of obser-
vations. Assume that there is at most one change-point at index
1 <t < n, which, if exists, indicates that z; ~ P,1 <7 <t
and z; ~ Q,t+1 < i < n with P # Q. The off-line
change-point analysis consists of two steps: 1) detect if there
is a change-point in the sample sequence; 2) estimate the
index t if such a change-point exists. Notice that a method
may readily extend to multiple change-point and on-line
settings, through sliding windows running along the sequence,
as in [6], [7], [9].

The first step in the change-point analysis is usually formu-
lated as a hypothesis testing problem:

H()Z
Hll

zi~Pi=1,...,n,
there exists 1 < ¢t < n such that
zZi~Pl1<i<tand z;~Q# Pt+1<i<n.

Let P; and Qn_i denote the empirical measures of sequences
z1, -+ ,2; and zjy1,---,2zp, respectively. Then an MMD
based test can be directly constructed using the maximum
partition strategy:

decide Hy, if , max dk(]:’i, Qn,z) < Yn,

where the maximum is searched in the interval [a,,b;,]
with a, > 1 and b, < n. If the test favors Hi,
we can proceed to estimate the change-point index by
argmax, <;<p. di(Pi, Q). Here we characterize the per-
formance of detecting the presence of a change for this test,
using Theorems 9 and 10. We remark that the assumptions
on the search interval and on the change-point index in the
following theorem are standard practice for nonparametric
change detection [S]-[9].

Theorem 11: Let0 < u < v < 1,a,/n — uwandb,/n — v
as n — oo. Under the alternative hypothesis H1, assume that
the change-point index ¢ satisfies v < lim,,_,oo t/n = ¢ < v,
and that 0 < D* < oo where D* is defined wrt. P,
@, and ¢ in Theorem 9. Further assume that the kernel k
satisfies A2, with K > 0 being an upper bound. Given
0 < a < 1, set ¢, = min{a,(n — ay,),bn(n — by)} and
Yo = 28/ K/an + 27/K/(n — by) + /2Knlog(2na—1)/c,.
Then the test max,, <i<s, dk(Pi, Qn,z) < 7y, is level « and
achieves the optimal type-II error exponent. That is,

n—oo

1
a, < «a, and liminf ——log 3, = D*,
n

where «,, and 3,, are the type-I and type-II error probabilities,
respectively.
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Proof: We first have
P...p <an<lflé<b di.(Pi, Qn—i) > ’Yn)

< P...p (dk(pi; Qn—i) > ’Yn) .

an <i<bp

To meet the type-I error constraint, it suffices to make each
P, (dk(f%-,@n,i) > v,) < «a/n under the null hypothe-
sis Hy. This can be verified using Lemma 4 with the choice
of v, in the above theorem. To see the optimal type-II error
exponent, consider a simpler problem where the possible
change-point ¢ is known, i.e., a two-sample problem between
z1, -+ ,2¢ and zyy1,---,2,. Since v, — 0 as n — oo,
applying Theorems 9 and 10 establishes the optimal type-II
error exponent. ]

VIII. CONCLUSION AND DISCUSSION

In this paper, we have established the statistical optimality
of the MMD and KSD based one-sample tests in the spirit
of universal hypothesis testing. The KSD based tests can be
more computationally efficient when the density function is
given in complicated forms and/or subject to a normalization
constant, as there is no need to draw samples or compute inte-
grals. In contrast, the MMD based tests are more statistically
favorable, as they require weaker assumptions and can meet
the level constraint for any sample size. Following the same
optimality criterion, we further show that the quadratic-time
MMD based two-sample tests are also asymptotically optimal
in the universal setting, by extending the Sanov’s theorem
to the two-sample case. Our results provide a practically
meaningful approach for constructing universally optimal one-
and two-sample tests.

A future direction is to generalize the result to a Polish
sample space, without the locally compact Hausdorff assump-
tion [53]. Although we cannot establish this result in the
present work, we believe that our approach would be feasible
once a proper metric is found to meet the two conditions
in Theorem 2, since both Sanov’s theorem and its extended
version are established w.r.t. Polish space.

APPENDIX A
PROOF OF THE EXTENDED SANOV’S THEOREM

We prove the extended Sanov’s theorem with a finite sample
space and then extend the result to a general Polish space.
Our proof is inspired by [81] which proved Sanov’s theorem
(w.r.t. a single distribution) in the 7-topology. The prerequisites
are two combinatorial lemmas that are standard tools in
information theory.

For a positive integer ¢, let P,(t) denote the set
of probability distributions defined on {1,...,¢} of form
P = (2 ... ) with non-negative integers ny, - - - ,n; and
n =), n; Stated below are the two lemmas.

Lemma 6 ({60, Theorem 11.1.1]): The cardinality |P,,(¢)] <
(n+1)%

Lemma 7 ([60, Theorem 11.1.4]): Assume z" i.id. ~ @
where () is a distribution defined on {1,...,t}. For any
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P € P,(t), the probability of the empirical distribution P,
of 2™ equal to P satisfies

(n+ 1)—te—nD(P||Q) < PWNQ(pn =P)< e~ nD(PIQ)

A. Finite Sample Space

1) Upper Bound: Let t denote the cardinality of X'. Without
loss of generality, assume that

¢D(R|[P) + (1 - ¢)D(S]Q) < o0,

inf
(R,S)€int "
which indicates that the open set int I' is non-empty. As 0 <
limy, oo MLm = ¢ < 1, we can find ng and mg such that
there exists (P, Q),) € int T NP, () x Py, (t) for all n > ng

m
and m > my, and that ¢cD(P)||P) + (1 — ¢)D(Q,,||Q) —
inf(r syt cD(R||P)+(1—c)D(S||Q) as n,m — oo. Then
we have, with n > ng and m > my,
Ponpymmg((Po,Qm) €T)
= > Ponepynng(Pn=R,Qm=15)
(R,8)EL NPy (t) X P ()
= >
(R,S)€int T' NPy (t) X Py (t)
> Px”NP,ym’NQ(Pn = Prlm Qm = le)
= P;c”NP (Pn = P7/;) Pym’NQ(Qm = Q;n,)
>(n+1)"t(m+1)"te " PEIP) =mD@nllQ)

PonnpynnQ(Pr = R, Qm = )

where the last inequality is from Lemma 7. Then we have

| 1 5 &

lim sup — logPynpymeq ((Pn; Qm) € F)

n,m—oo N T M

< lim
n,m—oo 1+ Mm

(= tlog((n+1)(m + 1)) +nD(P,| P)
+mD(Q,,]Q))

= Jim  —— (nD(P,|[P) + mD(Q;,]|Q))

(eD(R||P) + (1 = ¢)D(5]Q))-

= inf
(R,S)€int "

2) Lower Bound: We can write the probability as

Ponepymng((Pr,Qm) €T)
= Z Px”~P(pn =R) Pymeq (Qm =5)
(R,S)ETNPy (t) X P (t)
(a)

< 2

(R,S)eTNPy (t) X Pm (t)

e—nD(RHP)e—m,D(SHQ)

(%) (n+1)tm+1)! sup e "PEIP)e—mD(SIQ)

(R,S)el’
where (a) and (b) are due to Lemmas 7 and 6, respectively.
This gives

lim inf — log Pynpymn~ pn,Qm el
ln 1 nLtm 0g Py Q(( ) )
> inf D(R||P)+ (1 —¢)D(S
—( }g)ef‘c ( || ) ( C) ( ||Q)7
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and hence the lower bound by noting that I" € clI'. Indeed,
when the right hand side is finite, the infimum over I' equals
the infimum over clT" as a result of the continuity of KLD for
finite sample spaces.

B. Polish Sample Space

We consider the general case with X being a Polish space.
Now P is the space of probability measures defined on X
endowed with the topology of weak convergence. To proceed,
we introduce another topology on P and an equivalent defin-
ition of the KLD.

T-topology: Denote by II the set of all partitions A =
{A1,---,As} of X into a finite number of measurable
sets A;. For P € P, A €1l, and ¢ > 0, denote

< i=1,...t}.
(14)

U(P,A,C)={P €P:|P'(A) - P(A

The 7-topology on P is the coarsest topology in which the
mapping P — P(F) are continuous for every measurable set
F C X. A base for this topology is the collection of the
sets (14). We will use P, when we refer to P endowed with
this 7-topology, and write the interior and closure of a set
I' € P; as int,; I' and cl; I', respectively. We remark that the
T-topology is stronger than the weak topology: any open set
in P w.r.t. weak topology is also open in P, (see more details
in [61], [81]). The product topology on P, x P is determined
by the base of the form of

U(Pv AlaCl) X U(QaAQaCQ)v

for (P,Q) € Pr x Pr, A1, Ay €11, and (1,2 > 0. We still
use int(I") and cl-(T") to denote the interior and closure of a
set I' C P, x P-. As there always exists A € II that refines
both A; and As, any element from the base has an open subset

U(P,Q,AZ() =

for some ¢ > 0.
Another definition of the KLD: We now introduce an equiv-
alent definition of the KLD

U(P, A, Q) xU(Q,A,¢) CPrx Pr,

P(A;)
£QA)

t
D(P||Q) = sup »  P(4;)1 = sup D(PH|QY),
Aell i A€l
with the conventions 0log 0 = 0log 2 o =0andalog g = +o0
if @ > 0. Here P denotes the discrete probability measure
(P(A1),---,P(A;)) obtained from probability measure P
and partition A. Tt is not hard to verify that for 0 < ¢ < 1,

cD(R|[P) + (1= ¢)D(S]Q)
=c sup D(RA||PA1) + (1 —¢) sup D(S42]|Q*?)
A ell Az ell
= sup (¢D (RA||P4) + (1 —¢)D (S4Q1)).,
Aell

due to the existence of A that refines both 4; and A5 and the
log-sum inequality [60].

We are ready to show the extended Sanov’s theorem with
Polish space.

5)
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1) Upper Bound: Tt suffices to consider only non-empty
open I'. If T" is open in P x P, then I' is also open in
Pr x P.. Therefore, for any (R, S) € I, there exists a finite
(measurable) partition A = {47, -+, A;} of X and ¢ > 0

such that
U(R S, A, )
={(R,S5") : |[R(A;) — R'(A;)| < ¢,
IS(A;) — S"(A)| < ¢i=1,...,t}
cr.

Define the function 7': X — {1,...,t} with T'(x) =i for
z € A;. Then (P, Qm) € U(R, S, A, () with R, S € T" if and
only if the empirical measures Py of {T'(x1), - ,T(x,)} =

T(z™) and Q°, of {T'(y1), -, T(ym)} = T(y™) lie in
U°(R, S, A, Q)
={(R°,5°) : |[R°(i) — R(A:)| <,
15°(1) = S(A))| < (i=1,...,t}
CR! x R,
Thus, we have
Px"NRy’"NQ(( Q ) )
> Py (P Q) € U(R, S, 4,0)

=Prmyrm (P, Q) € U(R, S, A, Q).

As T(x) and T(y) take values from a finite alphabet and
U°(R, S, A,() is open, we obtain that

li 1
11m sup —

—logParpymng ((Pn,Qm) €T)
Py,Q5)

€ U°(R, S, A4,0)
(eD(R°(|PA) + (1 = ¢)D(S°(|Q™))

. 1
< limsup - log Pr(zmyr(ym) ((

n—oo

< inf
(R°,S°)€U°(R,S,A,Q)

_ inf cD(RA|PA) + (1 — ¢)D(5™1Q™)
(R’ S)€U(R,S,AL)
<cD(R||P) 4+ (1 —¢)D(5]Q),

where we have used definition of KLD in (15) and (R, S) €
U(R, S, A, ) in the last inequality. As (R, .S) is arbitrary in T,
the lower bound is established by taking infimum over I'.
2) Lower Bound: With notations
I ={(R*,S4) : (R,S) €T},
D(A) ={(R,5) : (R*,54) e T},

where A = {Ay, -, A;} is a finite partition, we have

Ponpymng((Pa,Qm) €T)
<Punapymng((Po, Qm) € T(A))
=Ponepymng((B, Q) € TANPL(E) X Pru(t))
<(n+1) (m+1)" x

max
(R°,S°)ETANP, (1) X P (t)

< (n+1)"m+1)" exp ( -

PP = 0,0 5°)

inf (nD(RA|P*)
(R,S)el

+mD(54]Q4))).
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where the last two inequalities are from Lemmas 6 and 7.
As the above holds for any A € II, (15) indicates

1 L
lim sup — logPonmpyma((Pn,Qm) €T)
<inf (= inf (eD(RA|P?) + (1 —¢)D(S4|Q*
<inf (- it (EDRAIPA) + (1 - OD(SHQY)
= - inf (cD(RA||PA) + (1 — ¢)D(S4QA)) .
Slj‘p(R??)er(c( I1P7) + (1 = ¢)D(SHQ™))

To obtain the lower bound, it remains to show
inf _ (cD(RA||PA) + (1 — ¢)D(S4|QA
sup inf (eD(RA|P4) + (1~ 0)D(S4[Q4))
(1-¢c)D(5]Q))-

Assuming, without loss of generality, that the left hand side
is finite, we only need to show

AT N B(P,Q,n) # @

> inf

D(R|| P
_(R,S)ECIF(C (R[|P) +

whenever

>sup inf (eD(RA|PA) +
n Ap(RS)EF( (R PH)

)

(1= o) D(SAQHY) .
Here B(P,(Q,n) is the divergence ball defined as follows
B(P,Q,n) ={(R,S5) : cD(R||P) + (1 = ¢)D(5(|Q) < n},

which is compact in P x P w.r.t. the weak topology, due to
the lower semi-continuity of D(-||P) and D(-||@Q) as well as
the fact that 0 < ¢ < 1.

To this end, we first show the following:

oIl = (elD'(A
A
The inclusion is straightforward since I' € T'(.A). The reverse
means that if (R,S) € clT'(A) for each A, then any neigh-
borhood of (R,S) w.r.t. the weak convergence intersects I'.
To verify this, let O(R,S) be a neighborhood of (R,S)
w.r.t. the weak convergence, then there exists U (R,S,B,() €
O(R,S) over a finite partition B as O(R,.S) is also open in
P x P,. Furthermore, the partition B can be chosen to refine
A so that cIT'(B) C cIT'(A). As 7-topology is stronger than
the weak topology, a closed set in the P, x P, is closed in
P x P, and hence clT'(B) C cl,. I'(B). That (R, S) € cl, I'(B)
implies that there exists (R',S’) € U(R,S,B, ¢) NT(B).
By the definition of T'(B), we can also find (R S)yerT
such that R(B;) = R'(B;) and S(B;) = §'(B;) for each
B; € B, and hence (R,S) € U(R,S,B,¢). In _summary,
we have (R,S) € U(R,S,B,() C O(R,S) and (R,S) € T.
Therefore, I' N O(R, S) # @ and the claim follows.
Next we show that, for each partition A,

T(A) N B(P,Q,n) # o. (16)

By (15), there exists (P, Q) such that cD(P4|P4) + (1 —
¢)D(QA|Q*) < 7. For such (P,Q), we can construct
(P, Q") €T'(A) as

> 5 PN A,
Q) =X GernA)

2089

for any measurable subset F© C X. If P(4;)) = 0
(resp. Q(A;) = 0) and hence 15(141') = 0 (resp. Q(Ai) =0),
as D(PA||PA) < oo (resp. D(Q4(|Q*) < o0), for some i,
the corresponding term in the above equation is set equal
to 0. Then (P’,Q") belongs to I'(A) and also lies in
B(P,Q,n). The latter is because D(P’||P) = D(PA| Q%)
and D(Q'||Q) = D(Q*||Q*): one can verify that any B that
refines A satisfies

D(P'""||PP) = D(PH|P*), D(Q|QF) = D(Q]Q™).

For any finite collection of partitions A; € IT and A € 11
refining each A;, each I'(A;) contains I'(A). This implies that

i=1
for any finite 7. Finally, the set c1T'(A) N B(P,Q,n) for any
A is compact due to the compactness of B(P,@,n), and any
finite collection of them has non-empty intersection. Thus, all
these sets are also non-empty. This completes the proof.

APPENDIX B
PROOF OF THEOREM 9

According to Theorem 3, dj metrizes weak convergence
over P. That o, ,, < « can be verified by Lemma 4, and
we only need to show that the type-II error probability 3, ,,
vanishes exponentially as n and m scale. For convenience,
we will write the error exponent of (3, ,, as (3.

We first show § > D*. With a fixed v > 0, we have v, ,,, <
v for sufficiently large n and m. Therefore,

.. 1 . A
[ = liminf — ntm 10g ch'nNRymNQ(dk (Pn, Qm) < ’Yn,m)

- 1 o
= ’flllgllinog B n+m 1Og Px"NvamNQ(dk’ (Pn7 Qm) < ’Y)
= inf D(R||P) + (1 —¢)D
- (R,S):dl:l(R,S)gV (eD(R||P) + ( c)D(5]1Q))
= D:,

where the last inequality is from the extended Sanov’s theorem
and that dj, metrizes weak convergence of P so that {(R, S) :
di(R,S) < ~} is closed in the product topology on P x P.
Since v > 0 can be arbitrarily small, we have

6> lim D

y—0+

where the limit on the right hand side must exist as D7
is positive, non-decreasing when ~ decreases, and bounded
by D* that is assumed to be finite. Then it suffices to show

lim D7 = D*.

y—0+t

To this end, let (R, S,) be such that di(R+,S,) < and

cD(R,||P)+ (1 —¢)D(S,|Q) = D3. Notice that R, and S,

must lie in
D*
1- c} ’

for otherwise D7 > D*. We remark that )V is a compact set
in P as a result of the lower semi-continuity of KLLD w.r.t. the
weak topology on P [61], [63]. Existence of such a pair is
a consequence of the facts that {(R,S) : dx(R,S) < v} is

wi={w:powie) < 2 0ovio) <
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closed and convex, and that both D(:||P) and D(-|Q) are
convex functions [63].
Assume that D* cannot be achieved. We can write

lim D* D* — ¢,

’y—)O

A7)

for some ¢ > 0. By the definition of lower semi-continuity,
there exists a Ky > 0 for each W € WV such that

D(R||P) + (1 = 0)D(S]|Q)
> eD(W||P) + (1 = )D(W]Q) - 5
>D" -, (18)

whenever R and S are both from
Sw = {R : dk(R, W) < /iw}.

Here the last inequality comes from the definition of D* given
in Theorem 9. To find a contradiction, define

Sy = {R:dk(R,W) < ”TW}

Since Sy, is open and |Jy, Si covers W, the compact-
ness of VW implies that there exists finite Sj;,’s, denoted by
Sy, Sy » covering W. Define % = minlY | my, > 0.
Now let v < k*/2 as v can be made arbitrarily small. Since
UzN=1 Sy, covers W, we can find a W; with R, € Sy, C Sw;,.
Thus,

dp (S5, W;) < di(Sy, Ry) + di(Ry, W;) < Kw,.
That is, S, also lies in Sw,. By (18) we get
eD(R,[|P) + (1= ¢)D(S,][Q) > D" —¢/2.
However, by our assumption in (17), it should hold that
D(R,|[P)+ (1= 9)D(S,]|Q) < D* —e.

Therefore, 3 > D*.

The other direction can be simply seen from the optimal
type-II error exponent in Theorem 10. Alternatively, we can
use Chernoff-Stein lemma in a similar manner as in the
proof of Theorem 6. Let P’ be such that ¢cD(P’||P) + (1 —
¢)D(P'||Q) = D*. Such P’ exists because 0 < D* < oo and
D(-||P) and D(-||Q) are convex w.r.t. P. That D* is bounded
implies that both D(P’||P) and D(P’||Q) are finite. We have

5n,m

= PI"~P,y’"~Q(dk(pna Qm) < 'Yn,m)

(@)

> Px"NP,y’"NQ(dk(qu P/) + dk(Qﬂ% P/) S ’Yn,m)
(b)

> Px”~Py’”~Q(dk(an P ) < Yny dk(@mv P/) S 'Ym)
= Px"NP(dk(Pvu P’ ) < ’Yn) PymwQ(dk(va Pl) < ’Ym)v

where (a) and (b) are from the triangle inequality of the
metric d, and we pick v, = /2K/n(l + v/—log«), and
Ym = v/ 2K/m(1++/—loga) so that v, n, > Y + ¥m. Then
Lemma 3 implies Pynp(di(P,, P') < 4,) > 1 — a. For
now assume that D(P’||P) > 0 and D(P’||Q) > 0. We can
regard {z" : di(P,,P') < v,} as an acceptance region for
testing Hy : 2™ ~ P’ and Hy : 2 ~ P. Clearly, this test
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Fig. 1. An example of samples drawn from distributions P (blue dot) and Q
(orange plus sign).

performs no better than the optimal level « test for this simple
hypothesis testing in terms of the type-II error probability.
Therefore, Chernoff-Stein lemma implies

lim inf —— log Pyan(dk(Pn, P’y <~,) < D(P'||P). (19)

n—oo

Analogously, we have

) < 9m) < D(P')|Q).
(20)

liminf —— log Pymq(d (Qm )

m— 00

Now assume without loss of generality that D(P’||P) =
0, i.e., P’ = P. Then D(P’||Q) > 0 under the alternative
hypothesis Hy : P # @, and (20) still holds. Using Lemma 3,
we have Panp(dk(Pn, P’y <~,) > 1—a, which gives zero
exponent. Therefore, (19) holds with P’ = P.

As limy, ym—oo MLM = ¢, we conclude that

1
= liminf — D*.
Ié) imin .

n,m— 00

log Brm <
m

APPENDIX C
EXPERIMENTS: KERNEL CHOICE VS. SAMPLE SIZE

Following the discussion in Remark 6, we conduct a toy
experiment to investigate how kernel choice and sample size
affect the test type-II error probability. We consider Gaussian
kernels that are determined by their bandwidth ~: k(z,y) =
exp(—||z — y||*/7). The work [42] uses part of samples
as training data to select the bandwidth, which we refer to
the trained bandwidth in this paper. The estimated MMD is
then computed using the trained bandwidth and the remaining
samples.

We take a similar setting from [42] using the Blobs
dataset [41]: P is a 3 x 3 grid of 2D standard Gaussians,
with spacing 10 between the neighboring centers; () is laid out
identically, but with covariance 2__& between the coordinates.
Here we pick € = 6 and generate n = m = 720 samples
from each distribution; an example of these samples is shown
in Fig. 1. For our purpose, we pick splitting ratios r =
0.25 and r = 0.5 for computing the trained bandwidth.
Correspondingly, there are n = m = 540 and n = m = 360
samples used to calculate the test statistic, respectively. With
a level constraint @ = 0.1, we report in Fig. 2 the type-II
error probabilities over different bandwidths, averaged over
200 trials, for each case with n = m € {360,540, 720}.
The unbiased test statistic d2(P,,Q,,) is used and the test
threshold takes the minimum of the distribution-free threshold
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Fig. 2. Experiment results for kernel choice vs. sample size. Red star denotes
the trained bandwidth.

and the bootstrap one obtained by 500 permutations [11].
We also mark the average trained bandwidths corresponding
to the respective sample sizes in the figure (red star marker).

Fig. 2 verifies that the trained bandwidth is close to the
optimal one in terms of the type-II error probability. More-
over, it indicates that a large range of bandwidths lead to
lower or comparable error probabilities if we directly use the
entire samples for testing. As the sample number increases,
the exponential decay term in the type-II error probability
becomes dominating and the effect of kernel choice dimin-
ishes. Since the desired range of bandwidths is not known in
advance, an interesting question is when we should split data
for kernel selection and what is a proper splitting ratio.
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