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a b s t r a c t 

The focus of goal-oriented materials design is to find the necessary chemistry/processing conditions to 

achieve the desired properties. In this setting, a material’s microstructure is either only used to carry out 

multiscale simulations to establish an invertible quantitative process-structure-property (PSP) relation- 

ship, or to rationalize a posteriori the underlying microstructural features responsible for the properties 

achieved. The materials design process itself, however, tends to be microstructure-agnostic : the microstruc- 

ture only mediates the process-property (PP) connection and is—with some exceptions such as architected 

materials—seldom used for the optimization itself. While the existence of PSP relationships is the central 

paradigm of materials science, it would seem that for materials design, one only needs to focus on PP 

relationships. In this work, we attempt to resolve the issue whether ‘PSP’ is a superior paradigm for 

materials design in cases where the microstructure itself cannot be (directly) manipulated to optimize 

materials’ properties. To this end, we formulate a novel microstructure-aware closed-loop multi-fidelity 

Bayesian optimization framework for materials design and rigorously demonstrate the importance of the 

microstructure information in the design process. The problem considered here involves finding the right 

combination of chemistry and processing parameters that maximizes a targeted mechanical property of a 

model dual-phase steel. Our results clearly show that an explicit incorporation of microstructure knowl- 

edge in the materials design framework significantly enhances the materials optimization process. We 

thus prove, in a computational setting, and for a particular representative problem where microstructure 

intervenes to influence properties of interest, that ‘PSP’ is superior to ‘PP’ when it comes to materials 

design. 

© 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Further advancement of numerous important technologies [1–

] depends on the discovery and development of enabling ma- 

erials [4,5] . Historically, materials development has advanced 

hrough a mix of Edisonian approaches and serendipity. Yet, the 

eed to increase the rate at which materials are developed de- 

ands a much more focused and goal-oriented exploration of 

he material design space through experimental, computational, 

nd/or data-driven methods [6–9] . The central paradigm of goal- 

riented materials design [6] is to understand and then exploit 

rocessing/chemistry - microstructure - property (PSP) relation- 

hips ( Fig. 1 ). Within this paradigm, a material is treated as a
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omplex hierarchical system ultimately described by linkages along 

he PSP chain [6–8,10–13] . In theory, then, materials design occurs 

hen such PSP relationships are inverted to map desired proper- 

ies to the required chemistry and processing protocols through 

ptimal microstructures [4,8,9,14–18] . Despite the theoretical im- 

ortance of microstructural information to materials design, it is 

orth examining to what extent such information truly accelerates 

he materials development process, in practice [9] . 

In a computational setting, virtual PSP chains are built to estab- 

ish quantitative relationships connecting inputs (i.e., chemistries 

nd/or process protocols) to outputs (i.e. properties). While mi- 

rostructures mediate these connections, microstructural features 

re not directly manipulated to achieve the desired properties. We 

ote that in a virtual material design setting, one could poten- 

ially focus the optimization scheme on the microstructure itself. 

owever, this ‘microstructure-centric’ approach to materials design 

https://doi.org/10.1016/j.actamat.2021.117471
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Fig. 1. Processing/Chemistry-Microstructure-Property (PSP) paradigm in materials 

science. In the traditional, microstructure-agnostic , approach the microstructure in- 

formation is not directly exploited for material design, as shown. While in the pro- 

posed microstructure-aware approach the microstructure information is directly ex- 

ploited for material design, and it is shown that this microstructure-aware approach 

helps us arrive at processing/chemistry conditions that yield optimum properties 

more efficiently than the traditional microstructure-agnostic approach. 
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uns the risk of identifying optimal, yet infeasible (or unattain- 

ble) microstructures. In an experimental setting, the degree to 

hich microstructure knowledge is exploited to carry out the de- 

ign (or optimization) of a material is even more questionable. 

fter all, one could argue that one can treat the material’s mi- 

rostructure as a ‘black box,’ amenable for optimization by eval- 

ating how changes in its inputs (i.e. chemistry and/or processing) 

ffect its outputs, without necessarily having to characterize/know 

he state of the microstructure at every stage of the materials opti- 

ization process. While the notion of microstructure-awareness has 

een a central paradigm in materials optimization, in practice both 

irtual and real effort s to optimize a material’s performance tend 

o be microstructure-agnostic —see Fig. 1 . 

Microstructure-agnostic material design is the norm rather than 

he exception, even in recent state-of-the-art successful materials 

esign examples [19–21] . For example, the authors in ref. [19] , 

xperimentally designed a refractory high-entropy alloy with en- 

anced ductility by optimizing the material’s chemistry. Here, mi- 

rostructure characterization was only used to gain understanding 

nd rationalize the impact of processing/chemistry on the mechan- 

cal properties of the alloy a posteriori but was not explicitly used 

o guide the step-by-step exploration of the material design space. 

imilarly, the authors in ref. [20] , experimentally designed a high- 

trength, low-cost nanostructured beta-titanium alloy consisting of 

omogeneous distribution of micron- and nano-scale α-phase pre- 

ipitates within the β-phase matrix. In this work, as in the previ- 

us example, analysis of the microstructure, after finding an opti- 

al property, was used to uncover the ultimate cause for the su- 

erior mechanical properties. Yet again, microstructural informa- 

ion was not explicitly used to guide the search for materials with 

ptimal mechanical response. Another example of such effort s in- 

ludes the work by authors in ref. [21] , who were able to identify

lloys defeating the strength-ductility trade-off by forming a dual- 

hase microstructure through ‘phase metastability engineering.’ In 

his case, the alloy design principle was based on a hypothesized 

nhancing mechanism verified, a posteriori , via experimental char- 

cterization. 
2 
While the examples just described certainly expanded our 

nowledge of the materials performance space by careful and 

round-breaking analysis of the connections between process- 

ng/chemistry and resulting properties (i.e., analysis of the direct 

P relationships) mediated by the material microstructure, the lat- 

er was not used as a direct input in the materials design process. 

ather, an analysis of the material microstructure state was carried 

ut to explain the attained properties. Thus, even though our aspi- 

ation as material scientists is to unravel the principles that govern 

aterial properties and performance, from a practical engineering 

tandpoint, explicit knowledge of the microstructure does not ap- 

ear to be a necessary condition for a successful materials design 

ampaign. 

Given the centrality of PSP relationships to materials science 

s a field, it is worth investigating whether microstructural infor- 

ation can help us arrive at processing/chemistry conditions that 

ield optimum properties more efficiently than otherwise . If the an- 

wer ends up being negative, then, from an admittedly pragmatic 

oint of view, the argument for building explicit PSP relationships 

s a necessary condition towards accelerated materials design is 

ot very strong. The microstructure state of the system, thus, can 

e simply replaced by a ‘black box’ without affecting the outcome 

f the design process i.e., identification of the region in the ma- 

erial design space (processing/chemistry parameters) that yields 

ptimal properties. Knowledge of the microstructure then would 

nly serve to rationalize observations and augment our knowl- 

dge of the material under investigation, rather than to assist in 

he decision-making process as one navigates the material design 

pace. On the other hand, showing that microstructure information 

an be explicitly exploited to accelerate the materials design pro- 

ess through each step of the materials optimization cycle provides 

 stronger footing to the notion of PSP relationships as the funda- 

ental, exploitable, encoding of materials information relevant to 

aterials design. 

In this work, we attempt to show how to formulate and solve 

 microstructure-aware materials design problem while answering 

he fundamental question whether microstructure information is 

ssential to materials design. In essence, we attempt to address 

hether explicit inversion of PSP relationships is truly necessary 

o optimize a given material, that is, whether PSP, rather than PP 

i.e., direct processing/chemistry - property) relationships need to 

e learned and exploited in a specific closed-loop materials dis- 

overy task. From a scientific perspective, understanding how mi- 

rostructure information can be explicitly incorporated in materials 

esign can contribute to better understanding of PSP relationships, 

hile from a pragmatic standpoint, the answer to this question 

an help develop better frameworks for materials design, including 

ewly proposed closed-loop autonomous materials research (AMR) 

latforms [22,23] . As we will see below, our investigation provides 

antalizing clues as to the outcome of the PSP vs PP comparison, in 

he context of materials design. 

. Overview of the present work 

Herein, we carry out a rigorous analysis to probe the impor- 

ance (if any) of the microstructure information in the materi- 

ls design process. The specific problem considered here involves 

nding the right combination of material chemistry and process- 

ng conditions that maximizes a target mechanical property of a 

odel dual-phase steel. We first solve this problem by following a 

raditional microstructure-agnostic ( Fig. 1 ) approach where the ma- 

erial design space includes the material’s chemistry and process- 

ng routes while the microstructure information is only used to 

arry out multiscale (or multi-level) simulations to establish for- 

ard quantitative PSP relationships. Next, we set up the same ma- 

erial design problem by following a novel microstructure-aware 
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Fig. 2. Schematic representation of the microstructure-agnostic and microstructure-aware closed-loop multi-information source Bayesian Optimization (BO) approach to de- 

signing a model dual-phase (ferrite-martensite) steel. Here, X I corresponds to the input variables with T IA being the intercritical annealing temperature, X C , X Si and X Mn 

correspond to the molar fraction of carbon, silicon and manganese in the alloy, while the output, X O , is the stress-normalized strain hardening rate ( ( 1 /τ ) 
(
d τ/d ε pl 

)
, with τ

and ε pl being the flow stress and the plastic strain, respectively). Also, f mart is the volume fraction and X mart 
C is the Carbon content of the martensite phase; while X f err 

Si 
and 

X f err 
Mn 

are the Silicon and Manganese content, respectively, of the ferrite phase. 
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 Fig. 1 ) approach where the material design space not only in- 

ludes the material’s chemistry and processing routes, but also in- 

ormation about the microstructure state of the material being op- 

imized. 

Note that apart from the explicit incorporation of the mi- 

rostructure information in the material design space in the lat- 

er approach, the two approaches are essentially identical, with the 

ame inputs and the same quantitative PSP relationships. In order 

o establish the microstructure-aware materials design protocol, it is 

rst necessary to decide how to incorporate microstructure infor- 

ation within the design framework. This is not a trivial task for 

 couple of reasons. First, microstructure is essentially causally re- 

ated to the chemistry and processing routes, i.e., it is a dependent 

ariable(s). Second, explicit incorporation of microstructure infor- 

ation in the material design space increases the dimensionality 

f the problem and the complexity of the optimization task. 

. Methods 

Our model material design problem involves finding the right 

ombination of the parameters in the input (design) space, X I , 

hat maximizes the output (objective), X O , Fig. 2 . In this prob- 

em, the input space includes the processing condition (intercrit- 

cal annealing temperature, T IA ) and the material chemistry (the 

mount of alloying elements, carbon, X C , silicon, X Si , and man- 

anese, X Mn ); while the output is a targeted mechanical property 

stress-normalized strain hardening rate, ( 1 /τ ) 
(
d τ/d ε pl 

)
, with τ

nd ε pl being the flow stress and the plastic strain, respectively) of 

 model (ferritic-martensitic) dual-phase steel. The ( 1 /τ ) 
(
d τ/d ε pl 

)

s an important mechanical performance indicator, as higher values 

re associated with increased ductility and formability [24,25] . The 
3 
easible input space for this design problem is considered bounded, 

.e., we consider a material system with carbon within 0.05 to 

 wt%, silicon within 0.1 to 2 wt% and manganese within 0.15 to 

 wt%, and intercritical annealing heat treatment within a temper- 

ture range of 650 ◦C to 850 ◦C as processing parameters. 

Next, we employ computational thermodynamics using a com- 

ercial code Thermo-Calc TM as in refs. [18,26] to compute the mi- 

rostructure (characterized by the volume fraction, f mart , of the 

artensite phase) and chemical composition (characterized by the 

arbon content of the martensite phase, X mart 
C 

, and silicon, X 
f err 
Si 

, 

nd manganese, X 
f err 
Mn 

, contents of the ferrite phase) of the re- 

ultant phases as a function of X I , Fig. 2 . The details of the mi-

rostructure and chemical composition are then used to predict the 

echanical behavior of the dual-phase steel using five low-fidelity 

icromechanical models. These are considered low-cost ‘informa- 

ion sources’ within our multi-information source fusion BO frame- 

ork [27,28] . In addition, a high fidelity 3D microstructure-based 

nite element model ( μF E) is used as the ‘ground truth’ ( Fig. 2 ).

he first three low-fidelity models, isotrain [29] , isostress [30] and 

sowork [31] assume that different mechanical quantities (strain, 

tress and work of deformation, respectively) are equipartioned 

mong the different constituent phases of the microstructure. The 

ther two low-fidelity models, i.e. the secant method and the elas- 

ic constraint models, are more complex micromechanical models 

ef. [32] . The secant method is based on Hill’s weakening con- 

traint power in a plastically-deforming matrix. The elastic con- 

traint model, on the other hand, is based on Kröner’s analysis of 

he matrix-inclusion problem under elastic constraints [32] . The 

ground truth’ ( μF E model), on the other hand, utilizes a full- 

eld finite element analysis of a 3D representative volume element 
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RVE) of the material microstructure [18,33–35] constructed from 

nformation about the phase fraction of the constituent phases 

or a given chemistry-heat treatment combination. A typical finite 

lement mesh of the RVE employs 27,0 0 0 C3D8 brick elements 

rom the ABAQUS/standard element library [36] , and is subjected 

o a monotonically increasing uniaxial tensile deformation under 

ully periodic boundary conditions. Readers are referred to refs. 

18,33] for a more detailed description of the μF E model. 

The constituent phases, ferrite and martensite, are modeled 

n the μF E simulation as isotropic elastic-plastic materials with 

oung’s modulus of 200 GPa and Poisson’s ratio of 0.3, and con- 

titutive relations (relating flow stress, τ , equivalent plastic strain, 
 pl , and the chemical composition, X P 

i 
, in weight fraction) as, 

= τ F 
0 + C Si (X 

f err 
Si 

) 1 / 2 + C Mn (X 
f err 
Mn 

) 1 / 2 + K F (ε pl ) n 
F 

(1)

nd 

= τM 

0 + C c (X 
mart 
C ) 1 / 3 + K M (ε pl ) n 

M 

(2) 

or the ferrite and martensite phases, respectively, with 
F 
0 = 200 MPa, C Si = 732 MPa, C Mn = 213 MPa, K F = 2200 MPa,

 
F = 0 . 5 , τM 

0 
= 400 MPa, C c = 10 5 MPa, K M = 450 MPa and

 
M = 0 . 06 . The choice of the (representative) constitutive pa- 

ameters in Eqs. (1) and (2) are based on the prior observations 

hat the strength of the martensite phase is predominantly re- 

ated to its carbon content, and it does not exhibit significant 

ork-hardening; while the ferrite phase is softer compared to the 

artensite phase and exhibits significant work-hardening and its 

trength depends on its silicon and manganese contents [37–39] . 

he five (low-fidelity reduced-order) micromechanical models use 

he constitutive relations as per Eqs. (1) and (2) . 

As shown schematically in Fig. 2 , the established PSP re- 

ationship for the model dual-phase material can now be ex- 

loited using our recently developed closed-loop multi-information 

ource fusion (multi-fidelity) BO framework [18] to solve the goal- 

riented material design problem by either following the tradi- 

ional microstructure-agnostic or a novel microstructure-aware ap- 

roach. Here, we briefly describe our closed-loop multi-fidelity 

O framework with a focus on highlighting the differences be- 

ween the proposed microstructure-aware approach and the tradi- 

ional microstructure-agnostic approach. A more complete descrip- 

ion of the closed-loop multi-fidelity BO framework can be found 

n ref. [18] . In the microstructure-agnostic approach, the decision- 

aking process does not involve knowledge of the material’s mi- 

rostructure and the optimization problem is simply posed as 

 
∗ = arg max 

x ∈ X I 
X o ( x ) (3) 

here x ∗ is the optimal design vector within the feasible input 

pace, X I = [ T IA , X C , X Si , X Mn ] . In the proposed microstructure-aware

pproach, on the other hand, the material design space not only 

ncludes the material’s chemistry and processing conditions, but 

lso the microstructure information; and the decision-making pro- 

ess explicitly involves the knowledge of the material microstruc- 

ure and the optimization problem is posed as 

 
∗ = arg max 

x ∈ X I 
X o 

(
x , f mart ( x ) 

)
(4) 

ith f mart being dependent on the input vector, x . 

The closed-loop multi-fidelity BO framework for both ap- 

roaches first involves the construction of surrogate models for 

he ‘information sources’ and ‘ground truth’ based on the current 

nowledge of the design space. Herein, we utilize a Gaussian pro- 

ess (GP) model with a squared exponential kernel as surrogate for 

he ‘information sources’ and ‘ground truth’—in practice, there is a 

ide range of potential kernels that can be used, depending on 

ur degree of knowledge of the function being modeled. GP mod- 

ls tend to be used as surrogates of black box functions due to 
4 
heir useful mathematical properties such as their ability to eas- 

ly predict the mean and variance of the quantity of interest, as 

ell as the way in which correlations between points in the de- 

ign space can be modeled through the covariance or kernel func- 

ion [40] . The behavior of a GP surrogate model is controlled by 

he hyperparameters of the kernel, and it is necessary to tune their 

alues based on the current knowledge of the input-output con- 

ection. The optimum values of the hyperparameters in this work 

re estimated by finding the maximum of the log marginal likeli- 

ood. Note that the Gaussian process model for the microstructure- 

gnostic approach correlates the input X I to output X O ; while for 

he microstructure-aware approach the input X I is augmented with 

n extra dimension corresponding to the volume fraction of the 

artensite phase, f mart , to explicitly incorporate the microstruc- 

ure information in the materials design process. 

Since all the ‘information sources’ i.e., the low fidelity reduced- 

rder micromechanical models attempt to describe the relationship 

etween the material’s microstructural descriptors and the corre- 

ponding mechanical behavior, one can expect that they would 

e correlated with each other and with the ‘ground truth’ i.e., 

he μF E model. By exploiting these correlations through the ‘reifi- 

ation’ process [28,41–43] we generate a fused Gaussian process 

odel. This model encodes our most up-to-date knowledge of the 

orrelation between the design space and the objective value. In 

 multi-fidelity iterative design optimization problem, one needs 

o answer two questions at every iteration: (i) which point in the 

esign/input space to query, and (ii) which ‘information source’ to 

se to query the selected point. To determine this, we generate po- 

ential sample design points using Latin hypercube sampling in the 

nput design space and evaluate them from each of the Gaussian 

rocess models of ‘information sources’ and then construct a tem- 

orary fused Gaussian process model for each ‘information source.’ 

ext, among these potential design points, we seek to identify the 

esign point and ‘information source’ to query such that it will re- 

ult in maximum improvement in our knowledge of the maximum 

bjective value. 

In this work, we use the Knowledge Gradient (KG) [44] as the 

etric that quantifies the expected change in our knowledge of 

he maximum value of the quantity of interest when evaluating a 

otential design point with a given ‘information source’. We then 

ompute the Knowledge Gradient for the set of potential design 

oints on the temporary fused Gaussian process model of each ‘in- 

ormation source.’ The best design point-‘information source’ pair, 

 
∗
I 

− IS i ,is the one that maximizes the KG and is thus selected for 

he next query within the BO loop. Following this, we evaluate the 

esponse of the selected ‘information source,’ IS i , by computing the 

nput-output correlation at the selected design point, X 
∗
I 
. After this 

valuation, the GP emulating the selected IS i and the fused GP are 

pdated. Now, based on either a total budget or a fixed number of 

ueries, the ‘ground truth’ model ( μF E model) may also be queried 

o update our knowledge of the objective value. Here, we query the 

ground truth’ at every ten design iterations. Using this evaluation 

f the ‘ground truth’ model, we update the Gaussian process model 

f the ‘ground truth’ as well as the fused Gaussian process model. 

his entire process is repeated until we reach the end of the opti- 

ization which in this case is a preset number of design iterations. 

inally, at the end of the optimization, the best design point that 

aximizes our objective function is reported. 

. Results 

The material design problem of finding the right combination 

f parameters in the input space, X I = [ T IA , X C , X Si , X Mn ] , that max-

mizes the output, X O = [1 /τ
(
d τ/d ε pl 

)
] , of a model dual-phase 

teel is solved using our closed-loop multi-fidelity BO framework 

ollowing both the traditional microstructure-agnostic and the novel 
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Fig. 3. A comparison of the performance of the traditional microstructure-agnostic and the novel microstructure-aware material design approaches. (a) Comparing the maxi- 

mum objective value found as a function of the number of design iterations for five realizations of the design process. (b) Comparing the average number of design iterations 

required to reach an average maximum objective value over five realizations of the design process. 
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rial design approaches at each design iteration over five realizations of the design 
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icrostructure-aware approaches, as shown schematically in Fig. 2 . 

he first step to set up our design framework requires construc- 

ion of Gaussian process models using the initial knowledge of 

he X I − X O correlation. To this end, we evaluate X I − X O corre- 

ation at ninety sets of randomly selected parameters in the input 

pace using computational thermodynamics and each of the low fi- 

elity micromechanical models referred to as ‘information sources.’ 

eanwhile, the X I − X O correlation is evaluated at only five sets of 

andomly selected parameters in the input space using computa- 

ional thermodynamics and the high fidelity μF E model referred to 

s ‘ground truth.’ To avoid any bias in the design process due to the 

nitial sets of randomly selected parameters in the input space, in 

articularly that of the five sets evaluated using the ‘ground truth’ 

odel, we carried out five realizations of the design process. A re- 

lization here basically refers to different sets of initially known 

ve ‘ground truth’ X I - X O correlations. 

The overall performance of the two materials design approaches 

re compared in Fig. 3 . The plot in Fig. 3 (a), compares the max-

mum objective value (i.e., the stress-normalized strain harden- 

ng rate) achieved as a function of the number of design itera- 

ions for five realizations of the design process; while the plot 

n Fig. 3 (b) compares the average number of design iterations re- 

uired to reach an average maximum objective value over five re- 

lizations of the design process. In Fig. 3 (a), the lines correspond 

o the average values and the shaded regions represent the vari- 

nce over the five realizations of the design process. As can be seen 

n Fig. 3 (a), at any design iteration, the maximum objective value 

chieved using the microstructure-aware approach is greater than 

hat using the microstructure-agnostic approach. An alternate rep- 

esentation of the same in Fig. 3 (b) also shows that, on average, 

ar fewer design iterations are needed to obtain the same aver- 

ge objective value using the microstructure-aware approach com- 

ared to the microstructure-agnostic approach. Furthermore, even 

hough after a large number (greater than 150) of design itera- 

ions the predictions of the microstructure-agnostic approach tends 

o catch up with those of the microstructure-aware approach, the 

aximum objective value achieved by the microstructure-agnostic 

pproach at the end of the optimization (i.e., after 300 design it- 

rations) is lower than the value achieved by the microstructure- 

ware approach. Thus, the results presented here clearly demon- 

trates that an explicit incorporation of the knowledge of the ma- 

erial microstructure in the design framework not only accelerates 
5 
he materials design process but also results in comparatively 

etter design solutions . 

Since the mechanical properties of a material are inherently 

ontrolled by the microstructure, we now analyze how the two de- 

ign approaches explore and converge in the material microstruc- 

ure space during the design process. A comparison of the aver- 

ge value of the microstructural parameter, i.e. volume fraction 

f the martensite phase, f mart , that corresponds to the average 

aximum objective value at each design iteration over five real- 

zations of the design process as predicted by the microstructure- 

gnostic and microstructure-aware design approaches are shown 

n Fig. 4 . As can be seen in the figure, even though both de-

ign approaches start the design process with the same knowl- 

dge of the X I − X O correlation, the value of f 
mart predicted by 

he two approaches during early stages of the design process are 

ery different. The microstructure-agnostic approach initially pre- 

icts a very small value of f mart which then evolves as the de- 

ign process/iteration continues and finally tends to saturate af- 
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Fig. 5. A comparison of the optimum processing/chemistry parameters identified by the traditional microstructure-agnostic and the novel microstructure-aware material 

design approaches. (a)-(d) Comparing the average optimal values of the processing parameter, intercritical annealing temperature, and the amount of alloying elements, 

carbon, manganese and silicon that correspond to the average maximum objective value at each design iteration over five realizations of the design process. 
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er a large number (greater than 150) of design iterations. On 

he contrary, the microstructure-aware approach predicts a value of 

f mart that is close to the saturation value of f mart predicted by the 

icrostructure-agnostic approach since the beginning of the design 

rocess. This early knowledge of the feasible material’s microstruc- 

ure space that corresponds to the maximum objective value en- 

bles the microstructure-aware approach to be more efficient than 

he traditional microstructure-agnostic approach. 

Next, we compare the average values of the design (i.e., input) 

ariables, intercritical annealing temperature, and the amount of 

lloying elements, carbon, manganese, and silicon that correspond 

o the average maximum objective value at each design iteration 

ver five realizations of the design process as identified by the 

icrostructure-agnostic and microstructure-aware design approaches 

n Fig. 5 . In this particular problem, we note that irrespective of 

he design approach, the framework is expected to converge into 

 region rather than a unique point. This is because the objec- 

ive value i.e., normalized strain hardening rate can be achieved 

y more than one combination of the processing condition and 

hemical composition [18] —this is due to the one-to-many map- 

ing between materials properties and microstructures/chemistries 

45] . As can be seen in Fig. 5 , although the two design approaches
6 
re trying to maximize the same objective, they follow differ- 

nt routes and also, on average, converge to different parameter 

ets in the design space. For example, both microstructure-aware 

nd microstructure-agnostic approaches identify a similar intercrit- 

cal annealing temperature in the early stages of the design pro- 

ess, but the microstructure-aware approach explores more in this 

esign space in search of the optimum solution and finally con- 

erges to a lower value compared to the microstructure-agnostic ap- 

roach. On the contrary, the two approaches identify a very differ- 

nt optimal carbon content in the early stages of the design pro- 

ess and the microstructure-agnostic approach explores more in this 

esign space in search of the optimum solution but finally con- 

erges to a value close to what is identified by the microstructure- 

ware approach. Both approaches, however, on average follow a 

imilar route and also finally converge to a rather similar value 

f the amount of manganese. While both approaches identify sim- 

lar amounts of silicon content in the early stages of the design 

rocess, the microstructure-agnostic approach explores more in this 

esign space and finally converges to a lower value compared to 

he microstructure-agnostic approach. 

Our closed-loop multi-fidelity BO framework employs multi- 

le ‘information sources’ to estimate the objective as described 



A. Molkeri, D. Khatamsaz, R. Couperthwaite et al. Acta Materialia 223 (2022) 117471 

Fig. 6. Exploitation of ‘information sources’ ( isostrain, isostress, isowork, secant method and elastic constraint reduced-order models) and the ‘ground truth’ ( μF E) model 

at each design iteration by the (a) novel microstructure-aware and the (b) traditional microstructure-agnostic material design approaches. The results are shown for one 

realization of the design process. 
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n Fig. 2 . Thus, we now analyze the impact of the microstructure- 

ware and microstructure-agnostic design approaches on the selec- 

ion of different ‘information sources’ during the design process. 

ote that none of the five low-fidelity reduced-order microme- 

hanical models are capable of reproducing the response predicted 

sing the high-fidelity ‘ground truth’ μF E model over the entire 

icrostructure space [35] . Also recall that the criteria to query the 

ground truth’ model is set here to every ten design iterations for 

oth design approaches. The results presented in Fig. 6 show the 

rogression of queries made to different ‘information sources’ as 

 function of the design iterations for one realization of the de- 

ign process. As shown in Fig. 6 (a), the microstructure-aware ap- 

roach extensively queries the design space using the more so- 

histicated secant method and elastic constraint models while the 

icrostructure-agnostic approach favors querying the design space 

sing the simple isostress model during the early stages of the de- 

ign process. At later stages of the design process, both approaches 

egin querying the design space through all available ‘information 

ources.’ This may be due to the fact that they have exhausted 

he potential value of the ‘information sources’ initially detected 

s most useful to the design task. 

The results presented thus far clearly demonstrate that the two 

esign approaches not only take very different routes in the de- 

ign space but also utilize different ‘information sources’ to query 

he design space in search of the same objective. The results 

lso demonstrate that the microstructure-aware approach converges 

apidly in the microstructure space and provides a better design 

olution compared to the microstructure-agnostic approach. 

To understand what enables the superior performance of the 

icrostructure-aware approach compared to the microstructure- 

gnostic approach we compare the predictions of the initial (at the 

ery first design iteration) fused Gaussian Process models built us- 

ng the two approaches with that of the predictions of exhaus- 

ively querying the chain of computational thermodynamics and 

he ‘ground truth’ model in Fig. 7 , for one realization of the de-

ign process. As shown in Fig. 7 (a) and (b), despite the fact that

he same five sets of X I − X O correlations are used to build the 

nitial fused Gaussian process models for both the approaches, the 

f

7 
redictions of the initial fused Gaussian process model for the 

icrostructure-aware approach correlates extremely well with the 

ground truth’ compared to the predictions of the initial fused 

aussian process model for the microstructure-agnostic approach. 

he parity plots in Fig. 7 (c) and (d) also highlight the quantita- 

ively better correlation between the predictions of the initial fused 

aussian process model for the microstructure-aware approach and 

he ‘ground truth’ compared to that of the microstructure-agnostic 

pproach. In conclusion, an explicit incorporation of the knowl- 

dge of the material microstructure in the design framework sig- 

ificantly enhances the initial knowledge of the microstructure- 

roperty correlations that in turn leads to more efficient and ef- 

ective design process. 

. Discussion 

As material scientists and engineers, we aspire to unravel the 

nderlying PSP relationships of materials. In practice, however, mi- 

rostructure information is not used as a direct input in a mate- 

ials design process, and only an analysis of the same is carried 

ut a posteriori to rationalize the attained properties. This raises 

 fundamental question, “can the intermediate microstructure infor- 

ation aid in the materials design process?” To answer this ques- 

ion, we have carried out a rigorous analysis to probe the impor- 

ance of the microstructure information in the materials design 

rocess. The latter involves finding the right combinations of mate- 

ial chemistry and processing condition that maximizes a targeted 

echanical property of a model dual-phase steel using a closed- 

oop multi-fidelity BO framework. We first solve this material de- 

ign problem by following the traditional microstructure-agnostic 

pproach where the material design space includes the material 

hemistry and processing condition, while the microstructure in- 

ormation is only used to carry out multi-level simulations to es- 

ablish PSP relationships. Next, we solve the same material de- 

ign problem by following a novel microstructure-aware approach 

here the material design space not only includes the material 

hemistry and processing condition but also the microstructure in- 

ormation. Our results clearly show that an explicit incorporation 
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Fig. 7. A comparison of the predicted variation of the objective value as a function of the material microstructure characterized by the volume fraction of the martensite 

phase, f mart , obtained by exhaustively querying the chain of computational thermodynamics and ‘ground truth’ ( μF E) model and by querying the initial (at the very first 

design iteration) fused Gaussian Process model for the (a) microstructure-aware and (b) microstructure-agnostic approaches. Parity plots of the objective value obtained by 

exhaustively querying the chain of computational thermodynamics and ‘ground truth’ and by querying the fused Gaussian Process model for the (c) microstructure-aware and 

(d) microstructure-agnostic approaches. The results are shown for one realization of the design process, and the five initially known ‘ground truth’ information are marked 

with stars in (a) and (b). 

o

n

i

t

a

p

a

s

m

f

m

i

i

c

f

t

c

s

d

t

o

t

t

p

s

l

F

b

t

d

d

a

e

a

u

f the microstructure knowledge in the decision-making process 

ot only accelerates the materials design process, but also results 

n comparatively better design solutions. A detailed analysis of 

he materials design process following the microstructure-agnostic 

nd microstructure-aware approaches show that the two design ap- 

roaches not only take very different route in the design space but 

lso utilize different set of ‘information sources’ to query the de- 

ign space in search of the same objective. The superior perfor- 

ance of the microstructure-aware design approach is rooted in the 

act that an explicit incorporation of the knowledge of the material 

icrostructure in the design framework significantly enhances our 

nitial knowledge of the microstructure - property correlation that 

n turn leads to a more efficient and effective design process. 

Since it is the difference in the initial knowledge of the mi- 

rostructure - property correlation that leads to the superior per- 

ormance of the microstructure-aware design approach compared 

o the microstructure-agnostic design approach, it is warranted to 

ompare their performance for a range of known initial design 
8 
pace (input) - objective (output) correlations used to initiate the 

esign process. To this end, we compared the performance of the 

wo design approaches by setting up the design framework using 

nly 1, 10 or 25 randomly selected sets of initially known ‘ground 

ruth’ input - output correlations. Additionally, to avoid any bias in 

he design process due to the initial sets of randomly selected in- 

ut - output correlations, we carried out five realizations of the de- 

ign process for each sets of initially known input - output corre- 

ations. The results of this exercise are given in the Supplementary 

igs. S1-S15. Our results clearly show that irrespective of the num- 

er of initially known input - output correlations used to initiate 

he design process, the performance of the microstructure-aware 

esign approach is always better than the microstructure-agnostic 

esign approach. Furthermore, our results also show that the rel- 

tive performance of the microstructure-aware design approach is 

ven better than the microstructure-agnostic design approach when 

 smaller number of initially known input - output correlations are 

sed to initiate the design process. 
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Moreover, an explicit incorporation of microstructure informa- 

ion in the microstructure-aware materials design approach more 

ccurately represents the trajectory of PP relationships as the 

icrostructure state evolves. This is not necessarily true for a 

icrostructure-agnostic materials design approach. Since the mi- 

rostructure has a strong dependence on chemistry and process- 

ng history, simple parametrization that ignores the former are 

ound to be subjected to considerable uncertainty. Furthermore, 

rom the perspective of irreversible thermodynamics, omission of 

icrostructure evolution renders intrinsic dissipation as a hidden 

arameter and is completely sidestepped by microstructure-agnostic 

pproaches. Such approaches may thus run the risk of establishing 

P relationships that are inconsistent with the second law of ther- 

odynamics. Thus, contrary to the pragmatic argument of focusing 

nly on the ‘black box’ PP relationships, this work suggests that 

xplicit consideration of (even very approximate) PSP relationships 

s a necessary and sufficient condition for materials design. Our re- 

ults show that the way microstructure information improves the 

aterials design process is by acting as a ‘through point’ that me- 

iates PP relationships, effectively filtering out intrinsically incon- 

istent regions in the processing space. Microstructure-aware ma- 

erials design frameworks thus may be considered to belong to the 

eneral class of physics-constrained or physics-informed machine 

earning approaches capable of overcoming many of the shortcom- 

ngs of data-only methods [46] . 

Note that incorporating the microstructure information in the 

aterial design space increases the dimensionality of the prob- 

em. In general, adding dimensions to a design space makes the 

O more inefficient [47] . Yet, our results counterintuitively show a 

ositive impact on the decision-making process by increasing the 

imensionality of the design space . The positive impact of increas- 

ng the dimensionality of a given problem has been explored and 

xploited in a variety of scientific and engineering problems. 

For example, the so-called ‘kernel trick’ of machine learning 

48] , which replaces inner products with kernel functions to en- 

ble nonlinear learning, effectively raises the dimensionality of a 

achine learner from low dimension to high and even infinite di- 

ensions [49] . This is very common when using support vector 

achines for classification. In model order reduction, recent meth- 

ds for lifting maps [50,51] introduce auxiliary variables to a sys- 

em model to provide more mathematical structure. For example, 

he introduction of auxiliary variables through lifting maps can 

ead to polynomial systems of differential-algebraic equations or in 

ther cases, system dynamics with quadratic structure. The result- 

ng well-behaved mathematical structure of the problem caused by 

he increase in dimensionality leads to far more efficient solution 

trategies enabling larger problems to be tackled computationally 

52] . 

The identification of new, relevant dimensions in a given prob- 

em can also have a profound impact on an entire field of study. 

or example, the celebrated Buckingham π theorem [53] from 

he study of dimensional analysis [54] states on physical grounds 

hat physics-based equations may be rewritten in terms of dimen- 

ionless parameters providing there is some physical connection 

mong the variables in the equation. This identification of a latent 

overning parameter or set of parameters has had a profound im- 

act on the field of fluid mechanics, where parameters such as the 

eynolds number, the Mach number, and the Froude number have 

een discovered. These parameters are all derived from the origi- 

al variables of a given problem, and therefore, even though they 

ncrease the dimensionality of the problem, their use leads to a 

ramatic increase in the physical understanding of the phenomena 

t play. 

The proposed microstructure-aware closed-loop multi-fidelity 

O framework for materials design is demonstrated here to be ex- 

remely efficient and effective in realizing goal-oriented material 
9 
esign using a combination of models and simulation techniques. 

mportantly, this design framework can also be put into practice 

ven for an entirely experimental materials design campaign by 

sing ever-growing high-throughput material processing and char- 

cterization techniques. It is also important to note that since each 

information source’ is represented in our design framework as a 

tochastic model (i.e., Gaussian process), there is no fundamen- 

al limitation on using a combination of experimental, modeling 

nd/or simulation based ‘information sources,’ as long as they are 

ll represented as Gaussian processes or other stochastic models . 

Our proposed framework can also be further enhanced by uti- 

izing more sophisticated thermodynamics/kinetics-based model- 

ng schemes (e.g., phase-field simulations [55] ) to not only pre- 

ict the phase volume fraction and composition but also the size 

nd morphology of the constituent phases, and by incorporating 

hem explicitly in the decision-making process. Another future di- 

ection to enhance the performance of the proposed materials de- 

ign framework will be to incorporate adaptive active subspace 

ethod to efficiently handle the large dimensionality of the de- 

ign space [56,57] by taking advantage of the fact that in materials 

esign problems the objective function in general is more sensitive 

o some design variables compared to others. 

. Concluding remarks 

In this work, we have presented a microstructure-aware closed- 

oop multi-information source fusion (multi-fidelity) Bayesian Op- 

imization framework for goal-oriented materials design. The spe- 

ific material design problem considered here involved finding the 

ight combination of materials chemistry and processing condi- 

ion that maximizes a targeted mechanical property of a model 

ual-phase steel. We solved this material design problem by us- 

ng both a traditional microstructure-agnostic approach where the 

icrostructure information is only used to establish PSP relation- 

hips and the proposed microstructure-aware approach where the 

icrostructure information is also used in decision-making as we 

avigate through the material design space. Our analysis clearly 

hows that incorporating microstructure knowledge into the ma- 

erials design process (for a problem where microstructure inter- 

enes to influence properties of interest) results in better, faster 

olutions to the same problem. This improved performance can be 

scribed to the fact that microstructure information helps ‘shape’ 

ur initial understanding of microstructure - property correlations. 

This is a remarkable finding since, a priori it would not make 

uch sense that a derived quantity would have such a positive 

ffect. Yet, there are many examples in science and engineering 

hen lifting the dimensionality of a problem makes it more solv- 

ble. These additional dimensions (for instance, microstructural in- 

ormation in this particular case) are derived from the original pa- 

ameters of the problem, and therefore, even though they increase 

he dimensionality of the problem, they lead to a dramatic increase 

n the physical understanding of the phenomena at play. 

We close by briefly discussing the implications of this work 

n the design of new platforms for autonomous materials dis- 

overy/design. Our finding that microstructure information indeed 

an help accelerate the materials discovery process in a concrete 

ay provides a theoretical support to the importance of adding 

ne or many microstructure characterization steps within a ma- 

erials discovery workflow. Moreover, it provides some ideas on 

hat other interesting problems such platforms could tackle. For 

xample, it would be very interesting to develop systems capable 

f actively discovering objective-relevant microstructural features. 

uch an adaptive AI-enhanced characterization framework would 

hen become more efficient over time, by focusing only on the mi- 

rostructure information most relevant to the problem at hand. In 

ur admittedly ‘toy-like’ problem, for example, the volume fraction 
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f the martensite phase makes obvious sense as the microstructure 

eature most correlated with the plastic response of the composite 

icrostructure. When considering fracture, on the other hand, the 

opology, connectivity or other higher-order microstructural fea- 

ures may be more important. In the future, we intend to explore 

hese ideas further, using both in silico and in vivo platforms for 

aterials discovery and design. 
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