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A B S T R A C T   

The accurate prediction of the thermal histories and melt pool characteristics during additive manufacturing 
(AM) is necessary to understand the factors responsible for the quality and integrity of the manufactured part. 
More importantly, the determination of optimal process windows and even feed-forward and in-line feedback 
control of the manufacturing process require computationally cheap, fast-acting, quantitative models connecting 
(local) processing parameters to melt and solidification conditions. Initially developed in the context of welding, 
the Eagar-Tsai (E-T) model stands out among the most widely used computationally cheap models to predict melt 
pool characteristics during AM. Despite its widespread use, its statistical validity in the context of AM has yet to be 
thoroughly verified. In this work, we study the E-T model in a systematic manner, from an uncertainty quan
tification/propagation (UQ/UP) perspective. E-T model parameters are calibrated against high quality single- 
track experimental data on the melt pool geometries of several materials through Markov Chain Monte Carlo 
(MCMC) sampling. Posterior distributions of the model parameter values are then propagated. We find that there 
are considerable discrepancies between predicted and measured melt pool depths when process conditions 
correspond to keyholing. We then apply a physics-based correction and find that it is possible to achieve much 
better agreement with experiments without increasing significantly the complexity of the E-T model. Although 
there might be some uncertainties due to the missing physics and assumptions in the model, the model accuracy 
and trend are satisfactory for the purpose of accelerated product design under uncertainty.   

1. Introduction 

Metal AM has been developing at a very fast rate over recent decades 
[1–3]. Despite the promise of AM, significant challenges remain due to 
the strong connection between processing conditions and the onset of 
microstructural features or defects that compromise the integrity of the 
manufactured part. In principle, computational models connecting 
processing parameters to solidification conditions may provide the 
means to interpret experimental observations or may be used to guide 
the systematic exploration of the AM process space. The (local) thermal 
histories arising during the printing process are ultimately responsible 
for the microstructure, defects and properties of the final product [4,5]. 
Therefore, models capable of predicting the effect of process conditions 

on the thermal histories and melt pool characteristics should be key 
elements in any effort to establish quantitative 
process-structure-property-performance (PSPP) relationships in AM. 

The simulation of thermal histories during AM is carried out by 
either numerical or analytical solutions, at varying levels of complexity, 
fidelity and, crucially, computational cost. The complex, coupled nature 
of the many different mechanisms prevalent during AM has motivated 
the development of high-fidelity numerical solutions—i.e., finite dif
ference (FD) [5], finite volume (FV) [6–8], and finite element (FE) 
methods [9–12–15–18–21,22]. However, the high computational cost of 
these models makes their parameter calibration very difficult [4], and 
also hinders their application in AM process design [23,24] as their cost 
makes them impractical for the wide exploration of the process 
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parameter space. In the latter context, fast, analytical (or numerical) 
models with acceptable degree of fidelity vis-à-vis experiments are 
highly desirable. 

One of the earliest approaches to the prediction of thermal histories 
of materials subject to the localized deposition of energy was carried out 
by Rosenthal [25]. Rosenthal’s theory described the solution (i.e., 
T(x, y, z, t)) to the motion of a point heat source across a semi-infinite 
plate under conduction heat transfer [25]. This model was originally 
proposed for fusion welding, but later on, it received some attention 
from the AM community [26]. To resolve the issues related to singu
larities in the temperature field arising from the point heat source 
approximation, Eagar and Tsai [27] instead considered a moving 
Gaussian-distributed heat source. Despite more enriched and sophisti
cated recently proposed analytical models, particularly by Steuben et al. 
[4] and Schwalbach et al. [26], the E-T model remains popular among 
the metal AM community due to its simplicity and ease of deployment. A 
subset of these authors have used the E-T model, for example, to assess 
the printability of alloys subject to laser powder bed fusion (L-PBF) AM 
[23,24]. We must point out, however, that despite its widespread use, 
the E-T model has yet to be rigorously assessed in the context of 
AM—physical phenomena during AM are different from those occurring 
during welding. 

The present work attempts to address this matter through the full 
characterization of the E-T model through the use of Bayesian parameter 
optimization (i.e., UQ) to estimate the most plausible values for the 
model parameters, given the ground truth data, accounting for the 
associated uncertainties. The latter may arise from lack of sufficient 
information, incomplete physics, inaccurate simplifications and as
sumptions in the model structure, as well as natural and human errors in 
the execution and analysis of the experiments used to calibrate the 
model(s) [28–31–34,35,36]. 

UQ is considered as one of the main elements of the simulation- 
assisted materials design in the integrated computational materials en
gineering (ICME) [37] since it can provide (i) rigorous statistically-valid 
metrics for the validation and verification of models/theories; (ii) sta
tistical confidence bounds for decision support in robust- and 
reliability-based design [38]. UQ studies have slowly permeated the AM 
literature, but much work remains to be done [39]. Lopez et al. [40] 
proposed a UQ approach for L-PBF models by the identification and 
overall estimation of different sources of uncertainty, including un
certainties associated with numerical solutions, model parameter
s/input controls, and experimental data. For the second-mentioned 
uncertainty source, a numerical Monte Carlo (MC) technique was uti
lized to propagate uncertainty from the pre-assigned normally distrib
uted input controls and parameters to the model output—i.e., melt pool 
width [40]. 

It should be noted that replacing AM models by inexpensive surro
gate models, particularly Gaussian process (GP) and Polynomial Chaos 
Expansion (PCE), has been attracting attention in the UQ field over 
recent years. Kamath [41] and Hu and Mahadevan [39] quantified un
certainties by training a GP surrogate model over the E-T model and the 
Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) 
responses at input controls and parameters sampled through design of 
experiment (DOE) methods, respectively. The former work [41] directly 
reports the distance-based uncertainties obtained from the GP model 
while the latter [39] uses the surrogate model inexpensive predictions in 
an MC-based scheme to estimate the uncertainty of the model response. 
Nath et al. [42] implemented a chain of multi-level models—connecting 
a GP surrogate model trained over an expensive FE melting model—to a 
cellular automata (CA) solidification model in order to propagate the 
uncertainties from the material properties to microstructure to quanti
ties of interest (QoIs). In that work, the parameters associated with the 
temperature-dependent material properties in the melting model, as 
well as the parameters related to the microstructural grain growth rate 
in the solidification model were defined as Gaussian distributions, which 
can be updated by newly acquired experimental data using a Bayesian 

approach [42]. Tapia et al. [43] applied a general PCE method to 
propagate uncertainties from the input controls of two thermal history 
models—analytical E-T and numerical FE thermal models—for the 
L-PBF processes to one of their outputs—i.e., melt pool width. This 
approach was benchmarked against brute-force MC simulations as well 
as experimental data [43]. 

There is also a more sophisticated surrogate-based UQ in the recent 
AM literature, known as the Kennedy and O’Hagan’s approach. This 
approach takes different sources of uncertainty into account by estab
lishing a linear relationship between data and model response whose 
intercept consists of the model discrepancy due to model incompleteness 
and the data error. While the data error is a normally distributed func
tion, two GP surrogates are built over the model and its discrepancy and 
then statistically correlated and combined together for the subsequent 
UQ through a Bayesian sampling technique, such as MCMC [44]. It is 
worth noting that physical models can directly be used in this approach, 
provided they are not expensive [45]. This UQ method was applied by 
Wang et al. [46] along a chain of expensive multi-level AM models. 
Later, Mahmoudi et al. [47] and Seede et al. [24] employed this 
approach for the probabilistic calibration of the model parameters in an 
FE and the E-T thermal models for different AM processes, respectively. 
In the case of multi-level modeling, Bayesian network (BN) techniques 
have recently been utilized to demonstrate the statistical conditional 
dependencies of input and output variables along the hierarchical 
models through a directed acyclic graph. In this network, expensive 
models can be replaced by their corresponding surrogate models. BNs 
can address the challenge of dealing with the analysis of heterogeneous 
uncertainties in the probabilistic calibration of multi-level models when 
the models’ outputs contain unobservable variables besides observable 
ones [39,48]. For example, Mahmoudi et al. [48] utilized a BN frame
work to quantify uncertainties for the parameters and multi-level output 
variables in a chain of models where the GP surrogate of an FE thermal 
model is connected to its counterpart for a phase-field simulation 
through an unobservable variable [48]. 

Despite the focus of the AM literature on the GP-based UQ that is 
inevitable for the expensive numerical models in the AM processes, this 
surrogate modeling approach—similar to other machine learning tech
niques—typically delivers poor predictions beyond the training data. 
Therefore, numerical UQ approaches, e.g., MCMC sampling methods, 
can be applied for more accurate predictions in the case of inexpensive 
analytical models. In the present work, an MCMC approach is used to 
statistically calibrate and validate one of the most important analytical 
thermal history models used by the AM community—i.e., the E-T model. 
For this purpose, clean, extensive data for the melt pool dimensions of 
single-track prints at different L-PBF process conditions are experi
mentally obtained for different material systems. The first batch of 
calibrations shows the inability of the thermal model in the prediction of 
melt pool depth at process conditions corresponding to the keyholing 
phenomenon. For this reason, another batch of calibrations is performed 
by taking into account a physical correction for the keyholing process 
conditions. It is our hope that this work provides insight into the 
applicability of this inexpensive analytical model in the analysis and 
design of AM processes. 

2. Eagar-Tsai thermal model description 

The E-T model is an inexpensive analytical thermal model proposed 
in the early ’80 s to describe the thermal profile of a melt pool (and the 
material surrounding it) formed during fusion welding. With the sig
nificant growth in AM research, the community adopted this model as a 
fast, easily deployable, physically-motivated approximation to the 
thermal histories and melt pool characteristics of AM (particularly L- 
PBF) processes. The model provides a solution for the steady-state heat 
conduction equation where a Gaussian-distributed heat source moves 
across a semi-infinite flat plate with a constant speed in the x-direction. 
The generalized solution for this problem is expressed in the form of 
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Green’s function that is used in a double integral over the surface of 
interest to obtain the temperature profile across the plate. 

A more simplified solution can be obtained for the Gaussian- 
distributed heat source that results in a single integration over time 
along the moving direction. In this case, a set of discrete heat sources is 
considered along the moving direction, and then the rise of temperature 
from the initial temperature T0 at any point of interest across the plate is 
calculated for many short time intervals, [t′,t′ + dt′), from the initial time 
0 to final time t. The summation of all these temperature increases de
termines the ultimate temperature at any specific point of interest after 
the duration t, which can be expressed in the following integral form (for 
more information and mathematical derivations, see [27]), 

T − T0 =
1
2

∫ t′=t

t′=0
dTt′ =

q
πρCp

̅̅̅̅̅̅̅̅
4πα

√

∫ t′=t

t′=0

⎡

⎢
⎢
⎣

(t − t′)
−1

2

2α(t − t′) + σ2e

[

−
(x−vt′ )2 +y2

4α(t−t′ )+2σ2− z2
4α(t−t′ )

]⎤

⎥
⎥
⎦ dt′,

(1) 

The above integration is performed through a numerical quadrature 
method to find the temperature profile across the plate at any given time 
during the thermal process. In this equation, (x, y, z) is the coordinate of 
the spatial point of interest where the temperature T is predicted. There 
are two different types of model variables associated with the heat 
source and material properties. From the first category, q is the absorbed 
(input) energy to the material per time unit, which is a fraction of heat 
source input power—i.e., μP, where μ is efficiency—due to the inevitable 
energy dissipation during AM processes resulting from different mech
anisms, such as evaporation, reflection, spattering, etc. Moreover, v is 
the heat source velocity and, σ is the standard deviation of the Gaussian 
heat source. From the second category, ρ, Cp, and α are the density, 
specific heat capacity, thermal diffusivity of the given material, 
respectively. It is worth noting that the thermal diffusivity is propor
tional to the thermal conductivity, as α = κ∕ρCp. Cp and α∕κ are 
considered to be two effective parameters that are temperature- 
independent. At the end, the integrated solution for the temperature 
profile can identify the locations with the temperature greater than the 
material melting temperature that results in the determination of melt 
pool dimensions—i.e., melt pool length, width, and depth—as other 
model outputs. This model is used to predict the melt pool dimensions of 
single-track prints corresponding to the given experimental conditions 
for laser powers and velocities. 

3. Experimental procedure 

Gas atomized AF9628 [24], 80Ni-20Cu, 96.8Ni-3.2 Nb, and 
51.2Ni-48.8Ti powder provided by Nanoval GmbH & Co. KG are used to 
manufacture the L-PBF specimens. Single tracks are printed using a 3D 
Systems ProX DMP 200 Laser Type (fiber laser with a Gaussian profile 
λ = 1070 nm, and beam size d = 80 μm). The tracks are printed on base 
plates with the same composition as each of the respective alloys. Each 
substrate is subjected to surface grinding in order to ensure a flat and 
parallel surface with respect to the machine’s base plate. The 
51.2Ni-48.8Ti substrate is additionally sand-blasted to improve powder 
coverage. These tracks are 10 mm in length with 1 mm spacing between 
tracks. Parameters are selected based on the optimization framework 
developed by Seede et al. [24]. The layer thickness used for each alloy is 
selected using the D80 of the received powder, where Dxx is the cu
mulative distribution of the powder at XX percent. AF9628, 80Ni-20Cu, 
96.8Ni-3.2 Nb, and 51.2Ni-48.8Ti are printed using a powder layer 
thickness of 37, 53, 30, and 30 μm, respectively. Three cross sections of 
the single tracks are wire-cut using wire electrical discharge machining 
(EDM), and these specimens are polished down to 0.25 μm with 
water-based diamond suspension polishing solutions. A 4% Nital solu
tion (4 mL HNO3 and 96 mL ethyl alcohol) is used to etch AF9628 single 
tracks, Kalling’s Solution No. 2 (5 g CuCl2, 100 mL HCl, and 100 mL 
ethanol) is used to etch the 80Ni-20Cu and 96.8Ni-3.2 Nb single tracks, 

and a HF etchant (1 part HF, 3 parts HNO3, and 10 parts of DI water) is 
used to etch the 51.2Ni-48.8Ti single tracks to obtain cross-sectional 
optical micrographs. Optical microscopy (OM) is carried out using a 
Keyence VH-X digital microscope equipped with a VH-Z100 wide range 
zoom lens. Melt pool boundaries are measured in each of the three cross 
sections and averaged to determine the displayed values. 

4. Probabilistic model calibration approach 

In the present work, model calibrations are performed using 
Bayesian statistical inference based on the Bayes’ rule. In this context, 
the prior probability distribution for the model parameters defined 
through the prior knowledge from the literature and/or experts, P(θ), is 
updated to a posterior distribution, P(θ∣D), by a likelihood function, P 
(D∣θ). The likelihood compares the model results, M(θ), and the corre
sponding data, D, and shows how likely to obtain the data given the 
parameter values of interest, θ. In this statistical inference process, there 
are some intractable integrals in order to find the statistical properties of 
the posterior distribution. These integrals are typically very hard or 
sometimes impossible to calculate through conventional analytical or 
numerical techniques due to the curse of high-dimensionality in the 
parameter space for most scientific models. However, the fast develop
ment of computing capabilities through the super-computers over the 
recent decade has made the numerical MCMC sampling approaches 
applicable to address the integration problem in the probabilistic cali
brations of models, provided they are inexpensive—more sophisticated 
approaches are necessary when model costs are significant [30]. 

An adaptive MCMC Metropolis-Hastings (M-H) algorithm is 
employed to perform the model calibration and uncertainty analysis. 
This approach begins with an initial guess for the model parameters 
within the predefined parameter ranges, θ0, and continues by a 
sequential sampling of parameter vectors from an adaptive proposal 
posterior distribution, q. Here, the proposal distribution is considered to 
be a multivariate Gaussian distribution with a mean vector equal to the 
previous parameter vector in the MCMC sample chain, θi−1, and an 
adaptive variance-covariance matrix, which changes as a function of the 
variance-covariance matrix obtained from all the previous parameter 
vectors. The sampled parameter vector at each iteration during the 
sequential process is considered as a candidate, θcand, that is accepted or 
rejected using the following M-H ratio, 

MH =
P(θcand)P(D

⃒
⃒θcand)

P(θi−1)P(D
⃒
⃒θi−1)

q(θi−1⃒
⃒θcand)

q(θcand⃒
⃒θi−1)

(2) 

where the first and second fractions are known as Metropolis and 
Hastings ratios, respectively. At each iteration, the Metropolis ratio 
compares the posterior probability of the candidate with its counterpart 
for the previous parameter vector in the chain. This comparison is per
formed through the joint probabilities—i.e., prior × likelihood—that 
are proportional to their corresponding posterior probabilities. The 
Hastings ratio compares the probability of the forward move from the 
previous parameter vector to the candidate with the probability of the 
reverse move. The chance of candidate acceptance is min{MH,1} × 100. 
If the candidate acceptance occurs, θi = θcand; otherwise, θi = θi−1. 

The sampling process continues until the proposal distribution be
comes stationary, which is equivalent to parameter convergence. In 
other words, the MCMC parameter samples converge to a fixed distribution 
rather than a constant value. The parameter samples before convergence 
is known as the "burn-in period", which is discarded before for the 
parameter calibration and UQ are done. The distribution of the 
remaining samples (in the convergence region) can approximately 
represent the posterior distribution of the model parameters given data. 
In the context of probabilistic calibration, the mean values and square 
root of the diagonal terms in the variance-covariance matrix of these 
parameter samples can also be introduced as the most plausible values 
for the model parameters and their standard deviations, respectively. 
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These values and their uncertainties are also propagated to the model 
outputs—i.e., melt pool width and depth—through model forward 
analysis. In this UP approach, the model outputs are obtained for each 
parameter sample in the convergence region; then, 2.5% of the samples 
are discarded from the upper and lower values of the sorted output 
samples to provide 95% credible intervals. 

5. Results and discussion 

5.1. Statistical test of the E-T model 

In this section, the MCMC approach described in Section 4 is applied 
to probabilistically calibrate the uncertain parameters in the E-T mod
el—i.e., μ, κ, and Cp—against extensive experimental data for different 
material systems described in detail in Section 3. As discussed previ
ously, an exhaustive design of experiments is taken into account to cover 
a reasonable range of the input controls for each material system, where 
laser power and velocity can change from almost 40–260 W and 
0.05–2.40 m∕s, respectively. The corresponding measured data for melt 
pool depth and width is used for model calibration (75–80% of data) and 
validation (20–25% of data). It should be noted that melt pool length is 
not involved in these analyses due to the difficulties in its experimental 
measurement—it is only measurable through direct imaging of the melt 
pool during processing, contrary to width and depth, which can be 
measured postmortem. In these probabilistic calibrations, a uniform 
probability density function (PDF) is considered as the prior PDF for 
each model parameter. The uniform PDFs for the parameters μ, κ, and Cp 
are ranged from 0.3 to 0.8, 2–120 W∕mK, and 450–2000 J∕kgK in a 
conservative manner. Moreover, fixed values are assigned to the pa
rameters ρ and σ based on the given material system and the experi
mental laser beam size, σ = d∕4, respectively. It is worth noting that the 
likelihood function in these analyses is assumed to be a multivariate 
Gaussian distribution centered at the experimental data vector with a 
fixed diagonal variance-covariance matrix of the data errors, assuming 
statistical independence among all the given data for each material 
system. 

The above-mentioned settings are utilized to generate 30,000 MCMC 
samples of the parameter vectors for the parameter inference in each 
calibration case. In Fig. 1, the MCMC chain plot for each parameter is 
shown for the AF9628 case (see supplementary material for all the 
calibration cases [49]). The red shaded regions in these plots correspond 
to the burn-in periods before the parameters converge, where there are 

non-uniform fluctuations of the parameter values. 
As mentioned in Section 4, these parameter samples are discarded to 

find the parameter posterior PDFs. For visualization of the parameter 
PDFs, marginal and joint (pair) PDFs are plotted in Figs. 2 and 3, 
respectively. As observed in these plots, the uniform parameter prior 
PDFs are updated to the peaked posterior PDFs given the training 
experimental data for the AF9628 system that are used in the parameter 
inference (see supplementary material for all the calibration cases [49]). 

3-D joint PDFs in Fig. 3 can be turned into 2-D color graphs shown in  
Fig. 4 in order to evaluate the degree of correlation between each pair of 
parameters (see supplementary material for all the calibration cases 
[49]). In these graphs, the x and y axes show the parameter space for a 
given parameter pair, and the color spectrum corresponds to the prob
ability densities in each case. The linear color features in all of these 
graphs qualitatively indicate strong linear correlations between all three 
pair parameters. These correlations can also be quantified through the 
Pearson coefficient, ρc, defined as the covariance of the given parameter 
pair, over their standard deviations—i.e., ρc = ρX,Y = cov(X, Y)∕σXσY. 
The linear coefficient is bounded between − 1 and 1. Coefficient values 
close to zero indicate no (linear) correlations between the given pa
rameters, whereas the values close to 1 or − 1 correspond to very high 
linear correlations. It is worth noting that the positive and negative signs 
demonstrate the correlation direction. As shown in supplementary ma
terial for Fig. 4 [49], the linear coefficients are positive and mostly 
above 0.95. These strong correlations between the pair parameters in 
different systems imply a triple linear correlation between the given 
three parameters in the E-T model, which are shown in the plot insets of 
supplementary material for Fig. 4 [49]. In these figure insets, the sam
ples are plotted in each pair parameter space with the colors indicating 
the values of the third missing parameter. Here, the triple correlations 
are observed through the linear features of the samples and uniform 
changes of the colors. 

In the context of the probabilistic calibration, the mean values of the 
parameter samples (after the removal of the burn-in periods) and the 
square roots of the diagonal elements in their variance-covariance ma
trix provide the most plausible values, θ, and standard deviations, σθ, of 
the model parameters, as shown in Table 1. The mean values for melt 
pool width and depth corresponding to different experimental condi
tions are obtained from the model using the mean values of the pa
rameters for each material system. The parameter uncertainties are also 
propagated to the mentioned melt pool dimensions for both training and 
test experimental conditions through the forward UP analysis discussed 

Fig. 1. MCMC chain plots of the model parameters for the ultra-high strength steel AF9628 that shows the burn-in periods in the red shaded regions before the 
parameters converge (see supplementary material for all the calibration cases [49]). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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in Section 4. These mean values and uncertainties in the form of 95% 
credible intervals—i.e., M(θ) ± 2σM—are shown by circles and error 
bars in Fig. 5. It should be noted that the colors indicate the linear energy 
density (LED) for each experimental condition—where LED(J∕m) = P 
(W)∕V(m∕s). In these figures, the calibrated model results are compared 
with the corresponding experimental data through R-squared (R2) and 
Root Mean Square Error (RMSE) metrics in each case. These metrics are 
expressed as follows, 

R2 = 1 −

∑ND
n=1(Dn − Mn(θ))

2

∑ND
n=1(Dn − D)

2 (3)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑ND

n=1(Dn − Mn(θ))
2

ND

√

(4) 

where ND is the number of given experiments for each applied ma
terial system, Mn(θ) is the nth calibrated model result—either melt pool 
width or depth, Dn is the corresponding experimental data, and D is the 
average of all experimental data in each case. 

As observed in Fig. 5, all the predictions show some discrepancies 
with the given experimental data. However, these discrepancies are 
much more significant for the melt pool depth compared to the width, as 
can be identified by the much lower R2s and much larger RMSEs for the 
melt pool depth predictions. Closer attention to the results reveals a 
similar trend in the depth discrepancies for all the given material 

Fig. 2. Marginal parameter posterior PDFs for the ultra-high strength steel AF9628 (see supplementary material for all the calibration cases [49]).  

Fig. 3. Joint (pair) parameter posterior PDFs for the ultra-high strength steel AF9628 (see supplementary material for all the calibration cases [49]). Colors show the 
probability densities. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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systems. In this regard, the experimental conditions with some specific 
combinations of high laser powers and low laser velocities—where the 
depths are at high values—are the main contributors to the large dis
crepancies for depth. According to the general idea of the printability 
maps in the AM literature [23,24,50,51], it seems that these conditions 
mostly correspond to the occurrence of the keyholing phenomenon, 
which results in larger melt pool depths relative to what would be ex
pected from conduction heating. As will be explained in Section 5.2, 
during keyholing, the melt pool is further depressed due to recoil pres
sure arising as a reaction to large evaporative fluxes out of the melt pool 
into the atmosphere. Since the physics associated with the keyholing 
phenomenon is not considered in the E-T model, the depth prediction is 
considerably underestimated for these experimental conditions. For this 
reason, a parametric, physics-based correction is suggested in this work 
to cover the discrepancy between the melt pool depth prediction and 
corresponding experimental data when the keyholing occurs during the 
thermal process. 

5.2. Physical correction of melt pool depth under keyholing condition 

As mentioned in Section 5.1, keyholing occurs under a combination 
of sufficiently high heat source power and low scan velocity—the onset 
of keyholing is highly material dependent. Under this condition, there is 
not enough time for the substrate to dissipate the energy deposited by 

the heat source, resulting in a local temperature rise to the boiling point 
of the material, which in turn produces a large evaporative flux from the 
melt pool surface. The latter is balanced by a strong recoil pressure into 
the melt pool surface. This evaporation-induced recoil pressure leads to 
a deep melt pool penetration that is manifested as a very deep melt pool 
[52], without noticeably affecting the width of the melt pool that one 
would predict under conventional conduction-mode melting/solidifi
cation. In order to quantitatively analyse this process, Gladush and 
Smurov [53] proposed a simplified model to predict the melt pool depth, 
dk, in terms of the laser power, velocity, and beam size, under keyhole 
conditions: 

dk =
μP

2πκTb
ln

[ σ + (α∕v)

σ

]
(5) 

where, Tb is the material boiling temperature. This equation was 
derived by solving the heat conduction problem for a semi-finite flat 
substrate considering a cylindrical keyhole with radius σ that forms 
under the heat source. 

In this work, the depth discrepancies in Fig. 5 associated with the 
keyholing conditions are assumed to be proportional to Equation 5. In 
other words, the multiplication of this expression by a correction factor, 
C, is taken into account as the depth discrepancy function. An experi
mentally obtained criterion[23,24] in terms of melt pool dimensions is 
assumed in this work—as Experimental Width/1.5 ≤ Experimental 
Depth—to recognize the experimental prints that experience the key
holing effect and require the above correction for their depth pre
dictions. In Section 5.3, the MCMC probabilistic calibration is repeated 
for each material case by considering the keyhole depth’s correction 
factor as an additional parameter. 

5.3. Statistical test of the corrected E-T model 

In this section, the same MCMC setting is applied to recalibrate the 

Fig. 4. Linear correlation color graphs for the model parameters in the ultra-high strength steel AF9628 (see supplementary material for all the calibration cases 
[49]). Colors show the probability densities and the third parameter values for the main graphs and insets, respectively. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
MCMC calibrated model parameters and their standard deviations.   

μ κ (W∕mK) Cp (J∕kgK) 

AF9628  0.63 ± 0.12  50.6 ± 10.0  776 ± 150 
80Ni-20Cu  0.64 ± 0.11  49.7 ± 8.9  831 ± 148 
96.8Ni-3.2 Nb  0.65 ± 0.11  40.0 ± 7.0  740 ± 126 
51.2Ni-48.8Ti  0.62 ± 0.13  31.5 ± 6.6  954 ± 200  
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model with the additional parameter C. Again, a uniform PDF is 
considered for this parameter, which changes between 1 and 5 for all 
calibration cases. The MCMC chain plots for all four parameters in the 

AF9628 case are shown in Fig. 6 (see supplementary material for all the 
calibration cases [49]). After the removal of burn-in periods in different 
cases, the parameter analyses are performed by the remaining parameter 

Fig. 5. Comparison of the mean value predictions and experimental data for melt pool width and depth at different experimental conditions for each given material 
system. Error bars are the results of UP through the forward model analysis of calibrated parameters in each case. Colors show the LED values for different 
experimental conditions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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vectors in the convergence regions. 
The parameter posterior PDFs are evaluated in the form of marginal 

and joint (pair) posterior PDFs, as shown in Figs. 7 and 8 for AF9628 
alloy (see supplementary material for all the calibration cases [49]). 
These figures indicate that the non-informative uniform distributions 
turn into relatively informative distributions with peaks after the model 

calibrations with the corresponding experimental data for the given 
material systems. Moreover, supplementary material for Fig. 7 [49] 
clearly shows that the posterior peaks are much more defined for C that 
implies more assertive calibrated values for this parameter. 

Again, the correlation graphs for the pair parameters in supple
mentary material for Fig. 9 [49] show very high linear correlations 

Fig. 5. (continued). 
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between μ, κ, and Cp in all calibration cases (ρ mostly above 0.9), while 
there are weak linear correlations between C and these three parameters 
(ρ mostly between −0.3 and 0.15). These weak correlations indicate that 
parameter C almost has an independent contribution in the predictions and 
cannot be substituted with other parameters. 

For the given material systems, the mean values of the remaining 
parameter samples (in the convergence regions) and the square roots of 
the diagonal terms in their variance-covariance matrix are also listed in  
Table 2 as the most plausible values and standard deviations for the 

parameters, respectively. Comparing Tables 1 and 2 demonstrates that μ 
is almost the same for both model calibrations with and without the 
depth correction factor, whereas κ and Cp undergo some changes, with 
the latter undergoing the most significant change when the correction 
for keyholing is included. It can also be observed that the addition of the 
fourth parameter—i.e., C—provides more flexibility for the other three 
parameters leading to larger standard deviations or more uncertainty. 
Moreover, optimal values, greater than 1, have been obtained for the 
correction factor C in different calibration cases, which result from the 

Fig. 6. MCMC chain plots of the parameters for the ultra-high strength steel AF9628 that shows the burn-in periods in the red shaded regions before the parameters 
converge (see supplementary material for all the calibration cases [49]). (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 

Fig. 7. Marginal parameter posterior PDFs for the ultra-high strength steel AF9628 (see supplementary material for all the calibration cases [49]).  
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underestimation of keyhole depth through the simplified relationship in 
Equation 5. In the case of AF9628 alloy, a more significant depth un
derestimation provides a much higher optimal value for C—i.e., a value 
larger than 3. Nevertheless, under the keyholing conditions, a depth 
discrepancy function proportional to the formulation in Equation 5 is 
still a more reasonable and physical assumption compared to a 
discrepancy function with just a constant term. 

At the given training- and test-experimental conditions for each 
material case, the most optimal values for the model responses and their 
95% credible intervals are calculated using the forward model analyses. 
These optimal results are compared with their corresponding experi
mental data in Fig. 10. Here, much higher R2 and lower RMSE values for 
melt pool depth plots indicate considerably better agreement between 
the model predictions and experimental data in all the given cases 
compared to their counterparts obtained from the calibration with no 
keyholing depth correction in Section 5.1. There is also slightly better 
agreement for melt pool width predicted for different given materials. 
This can be attributed to the compromising parameter values obtained 
after the calibrations with no depth correction for the sake of obtaining 
the maximum possible depth predictions at keyholing conditions, which 
is accompanied by more discrepancies for melt pool width. According to 
Fig. 10, R2 values are larger than 0.9 and RMSE values are between 19 

and 28 μm for the depth predictions associated with the training data. 
Although the width predictions for the training data show slightly lower 
values of R2 and higher values of RMSE, there are still relatively good 
agreements between the predictions and corresponding data. Moreover, 
R2 values greater than 0.55 and 0.8 besides RMSE values smaller than 43 
and 33 μm for the width and depth predictions associated with the test 
data can be acceptable enough to validate the E-T model corrected for 
the keyholing depth. 

Consequently, it seems the biases and underfitting in Fig. 5, resulting 
from the large melt pool depth underestimations of the original E-T 
model for the print conditions experiencing keyholing, are resolved after 
the model correction for the keyholing mode, as shown in Fig. 10. This 
can be inferred from the predictions at most training data that include 
the corresponding experimental results in their 95% credible intervals. 
Also, no overfitting is observed for the corrected model since the pre
dictions at the test data show similar trends and precision to the pre
dictions at the training data. However, it should be noted that the 
discrepancies between the corrected-model predictions and experi
mental results can result from the errors associated with the model pa
rameters, the simplification assumptions as well as the missing physics 
in the model, and the experimental data, as follows: 

Fig. 8. Joint (pair) parameter posterior PDFs for the ultra-high strength steel AF9628 (see supplementary material for all the calibration cases [49]). Colors show the 
probability densities. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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1. Physical properties are assumed to be temperature independent for 
the sake of model simplification. However, the contribution of this 
assumption to the discrepancies is incorporated into the un
certainties quantified for these properties in this work. 

2. Latent heat associated with phase changes is assumed to be negli
gible compared to the sensible heat during the thermal process. 
However, this might have a small effect on the predictions of the melt 
pool dimensions.  

3. The semi-infinite thick substrate assumption in the model for single- 
track prints implies that the temperature rise at the substrate loca
tions where are sufficiently far from the laser beam is negligible and 

can be ignored if the substrate is large enough. However, this might 
not be true for all the process conditions (especially for melt pool 
depths since the substrate thickness is usually not large enough). The 
E-T model can be improved by considering boundary conditions for 
the substrate dimensions, which is out of the scope of this work.  

4. In the thermal model, the moving heat source just over the substrate 
in the context of welding results in an extra assumption for the 
application of the model to the AM processes. This assumption offers 
that heat conduction solely takes place through the substrate, and the 
thin powder layer and its heat conduction contribution are ignored. 
Again, the boundary conditions associated with the powder layer 
should be implemented in the model to reduce the corresponding 
uncertainties.  

5. A spherical Gaussian-distributed heat source with the same standard 
deviations (σ) along all directions is assumed in this model, while an 
elliptical Gaussian distribution with different directional standard 
deviations (σx, σy, σz) seems to be more realistic. This can be also 
implemented in the integration of Equation 1, similar to Schwalbach 
et al. work [26]. 

Fig. 9. Linear correlation color graphs for the given parameters in the ultra-high strength steel AF9628 (see supplementary material for all the calibration cases 
[49]). Colors show the probability densities. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Table 2 
MCMC calibrated model parameters and their standard deviations after the 
depth correction for the keyholing conditions.   

μ κ (W∕mK) Cp (J∕kgK) C 

AF9628  0.60 ± 0.13  45.2 ± 10.6  1490 ± 324  3.10 ± 0.24 
80Ni-20Cu  0.62 ± 0.12  62.3 ± 12.3  849 ± 166  1.32 ± 0.06 
96.8Ni-3.2 Nb  0.64 ± 0.11  48.0 ± 8.4  891 ± 148  1.53 ± 0.07 
51.2Ni-48.8Ti  0.61 ± 0.13  39.4 ± 8.6  1212 ± 250  1.53 ± 0.05  
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Fig. 10. Comparison of the mean value predictions and experimental data for melt pool width and depth at different experimental conditions for each given material 
system, considering the depth correction for the keyholing conditions. Error bars are the results of UP through the forward model analysis of calibrated parameters in 
each case. Colors show the LED values for different experimental conditions. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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6. Lastly, non-uniformity along the prints due to the inevitable insta
bility of the experimental conditions results in high uncertainties in 
the estimations of the melt pool dimensions. 

For more comparisons between the calibrated results obtained for 
melt pool depth with and without considering the keyholing depth 

correction and their corresponding experimental data, melt pool depth 
versus LED is plotted for each material system, as shown in Fig. 11. As 
observed in the plots, the calibrated results with no depth correction, 
ones with depth correction, and experimental data are shown by circles, 
squares, and diamonds, and their trends are illustrated in red, orange, 
and green lines, respectively. It should be noted that the point sizes and 

Fig. 10. (continued). 
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Fig. 11. Trends for melt pool depth versus LED obtained from the experiments (green line) as well as calibrations with and without correction (orange and red lines) 
in different material systems, besides some of the cross-sectional print images. In these plots, point sizes and colors correspond to the laser powers and velocities in 
the LPBF process. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 11. (continued). 
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colors also represent the laser powers and velocities used in their single- 
track prints for each material case. Moreover, the LED-axes are shown in 
the logarithmic scale for better visualization of the results. 

As expected, the calibrated results with depth correction show much 
lower discrepancies and higher trend consistencies with experimental 
data compared to the calibrated results with no depth correction. The 
calibrated results with no depth correction are very close to their cor
responding experimental data at low LED values, but discrepancies 
appear as the LED becomes larger than a specific value (shown by a 
black dotted line) for each given material. Although it seems that there is 
an increasing trend for these discrepancies as LED increases from the 
specific value in each plot, it is not necessarily the case for all the 
experimental conditions with high LED values. Indeed, in these high- 
LED regions, there are some drops in the experimental depth values 
causing zig-zag trends. At these drops, the calibrated results with no depth 
correction again become very close to the experimental data, similar to 
the calibrated results with depth correction. 

To explain the experimental trends in the melt pool depth versus LED 
plots, the physics of heat transfer in the AM processes should be eval
uated. In this regard, there are two main factors to determine the tem
perature profile and melt pool dimension during the AM processes, 
which are the total energy input density represented by LED and the 
total energy dissipation per time across the given material controlled by 
the material’s thermal diffusivity. At low LEDs, low energy inputs, 
which are also tuned down by energy dissipation, prevent melt pool 
from reaching the material’s boiling point or staying at this temperature 
for a long time, meaning there is no or very low evaporation and thus no 
keyhole formation under these conditions. Since the physics incorpo
rated into the E-T model can capture this combined effect when there is 
no keyholing occurrence, both of the calibrated results can be in good 
agreement with the experimental data. The Cross-sectional images also 
verify no keyholing effect before the dotted lines (low LEDs) for each 
given material and show prints experiencing either lack of fusion due to 
inadequate energy to melt the substrate in depth direction [23] or 
balling resulting from capillary-based instabilities in the melt pool [23, 
24], besides a few good prints with no defects. On the other hand, the 
high-LED experimental conditions with sufficiently high laser powers 
can experience a high energy concentration under the melt pool due to 
the material inability for heat dissipation during the thermal process. 
Regarding the recognition of print modes through the cross-sectional 
images, it should be mentioned that while balling and keyholing 
modes are typically clear from the cross-sectional print appearance, lack 
of fusion and good quality can be very close in appearance. Here, the 
lack of fusion mode is differentiated when melt pool depth is smaller or 
equal to the layer thickness, tL. 

As mentioned in Section 5.2, the concentrated heat raises the melt 
pool temperature to the boiling point that causes excessive evaporation 
and the keyhole formation. Therefore, only the calibrated results with 
depth correction can almost follow the experimental data at these con
ditions since the E-T model with no depth correction disregards the 
physics associated with the keyholing effect. However, the high-LED 
experimental conditions with low laser powers undergo no keyholing 
phenomenon during their thermal process, which drops the depth values 
close to the calibrated values with no depth correction. It should be 
noted that the calibrated results with depth correction mostly follow the 
drops since the dimensional criterion for keyholing mentioned in Sec
tion 5.1 is not satisfied, meaning the depth is calculated just by the E-T 
model with no additional correction. Again, the cross-sectional images 
verify the keyholing occurrence after the dotted line for each material 
case, except for the drops which correspond to either good prints or 
prints undergoing lack of fusion. However, there is one major drop (the 
second to last point indicated by the red arrow in Fig. 11c) in the case of 
96.8Ni-3.2 Nb that shows a conflict between the prediction based on the 
mentioned dimensional criterion and the corresponding experiment in 
experiencing keyholing effect. 

Generally, it is interesting that the print mode suddenly changes from 

keyholing to lack of fusion or good quality and vice versa at these high- 
LED regions, as observed in the red dotted frames in the plots. These 
drops can be attributed to sufficiently low velocities at the mentioned 
conditions that can provide enough time for sufficient heat dissipation 
across the material in order to prevent temperature rise to the boiling 
point, despite a high supply of the energy input density resulted from 
these low velocities. But, even very low velocities with the provision of 
longer dissipation times cannot stop keyhole formation at sufficiently 
high laser powers due to extremely high energy input provided by these 
process conditions. Hence, there is a minimum laser power at each given 
low velocities, under which no keyholing occurs. This critical value is 
material dependent, and controlled by the material’s thermal diffusivity. 
No keyholing effect under the critical laser power at each given velocity 
can also be confirmed by the printability maps [23,24,50,51]. Conse
quently, the plots in Fig. 11 suggest that LED (the total energy input 
density) is not a good metric to recognize the keyholing conditions; instead, a 
trade-off between the total energy input and dissipation rate should be 
taken into account for this purpose. This combined effect can also be 
represented in the form of dimensional criteria, such as what is used in 
this work. 

6. Summary and conclusion 

In the present work, the E-T model as one of the most commonly used 
thermal model in AM is statistically evaluated against clean and exten
sive experimental data for four different material systems. For this 
purpose, an adaptive MCMC-MH sampling approach in the context of 
Bayesian statistics is applied to probabilistically calibrate the model 
parameters—i.e., μ, κ, and Cp—given 75–80% of the experimental data 
as training data in each case. The rest of the experimental data are used 
as test data. The parameter samples in the first batch of calibrations 
show a very high triple linear correlation between the model parame
ters. In addition, the calibrated model results for the melt pool width 
have a much better agreement with their corresponding experimental 
data (both training and test data) compared to the melt pool depth in all 
four material systems. The discrepancies for the depths mostly result 
from the model underestimations at combinations of high laser powers 
and low velocities, which are associated with the occurrence of the 
keyholing phenomenon. In these experimental conditions, the 
evaporation-induced pressure on the melt pool surface leads to deep 
melt pool penetration and increased depth. To reduce these discrep
ancies, the E-T model is physically corrected for the keyhole depth and 
statistically tested through another batch of calibrations where the 
correction factor C is considered besides the other three model param
eters. Again, the parameter samples in these calibrations indicate that 
the three model parameters are still strongly correlated, but they are 
almost uncorrelated to the parameter C that makes this parameter 
irreplaceable by any of the other mentioned parameters. The results for 
melt pool width and depth obtained from the second batch of calibra
tions become much closer to the training or test experimental data 
considered for each given material. Therefore, the E-T model with 
keyhole depth correction demonstrates much higher validity compared 
to the E-T model with no correction. These comparisons are studied 
further through the depth-LED plots and cross-sectional print images. 
The plots show that while both of the calibrated depth trends with or 
without correction are very consistent with their experimental coun
terparts at low LED values, the depths obtained from the E-T model with 
correction follow the experimental trends better at high LED values. The 
cross-sectional images also demonstrate that lack of fusion and balling 
are two melting modes observed the most at low LEDs in all the cases, 
whereas keyholing mostly occurs at high LEDs and contributes as the 
main source of discrepancies between the calibrated results with no 
correction for E-T depth and corresponding experimental data. How
ever, there are experimental conditions with high LED that experience 
no keyholing and instead show prints with lack of fusion or good quality. 
These conditions correspond to combinations of very low powers and 
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velocities, where despite high total energy inputs (high LEDs), the low 
velocities provide enough time for the substrate to dissipate heat arisen 
from low powers and consequently prevent heat concentration and 
keyholing. Here, both of the calibrated results for melt pool depth again 
become close to the experimental data at these conditions. According to 
these analyses and observations, it can be concluded that a combination 
of total energy input and dissipation should be taken into account to 
identify the keyholing phenomenon, not just total energy input repre
sented by LED. 

The calibrated results generally show that the E-T model has good 
estimations of melt pool dimensions for all the melting modes—i.e., lack 
of fusion, balling, and good quality—except for the depth prediction in 
the keyholing mode that has been physically corrected in this work. 
Despite some discrepancies between the model predictions and experi
mental results due to uncertainties corresponding to the parameters, 
model assumptions plus missing physics, and experimental measure
ments plus non-uniformity along the prints, the UQ of the corrected E-T 
model makes this model applicable for product design given the prop
erties of interest. The relatively good validity in terms of accuracy and 
trend for the corrected model based on experimentally derived infor
mation about the keyholing occurrence—i.e., keyholing regions in the 
experimentally obtained printability maps—implies a promising future 
for more precise analytical predictions of thermal histories during the 
AM processes by adding more physics to the model. In the end, it is 
worth noting that all the above thorough analyses, comparisons, and 
conclusions could not be achieved without the extensive design of ex
periments and the availability of high quality data over a wide region of 
the processing space. 
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I. Karaman, A. Elwany, R. Arróyave, Assessing printability maps in additive 
manufacturing of metal alloys, Acta Mater. 176 (2019) 199–210. 

[24] R. Seede, D. Shoukr, B. Zhang, A. Whitt, S. Gibbons, P. Flater, A. Elwany, 
R. Arroyave, I. Karaman, An ultra-high strength martensitic steel fabricated using 
selective laser melting additive manufacturing: densification, microstructure, and 
mechanical properties, Acta Mater. 186 (2020) 199–214. 

[25] D. Rosenthal, The Theory Of Moving Sources Of Heat And Its Application Of Metal 
Treatments, in: Trans, 68, ASME, 1946, pp. 849–866. 

[26] E.J. Schwalbach, S.P. Donegan, M.G. Chapman, K.J. Chaput, M.A. Groeber, 
A discrete source model of powder bed fusion additive manufacturing thermal 
history, Addit. Manuf. 25 (2019) 485–498. 

[27] T. Eagar, N. Tsai, et al., Temperature fields produced by traveling distributed heat 
sources, Weld. J. 62 (12) (1983) 346–355. 
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