
Materials & Design 213 (2022) 110328
Contents lists available at ScienceDirect

Materials & Design

journal homepage: www.elsevier .com/locate /matdes
A differential evaporation model to predict chemistry change of
additively manufactured metals
https://doi.org/10.1016/j.matdes.2021.110328
0264-1275/� 2021 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author at: Texas A&M University, Department of Materials Science and Engineering, 3003 TAMU, College Station, TX 77843-3003, USA.
E-mail address: mranaiefar@tamu.edu (M. Ranaiefar).
Meelad Ranaiefar a,⇑, Pejman Honarmandi a, Lei Xue a, Chen Zhang b, Alaa Elwany b, Ibrahim Karaman a,
Edwin J. Schwalbach c, Raymundo Arroyave a

a Texas A&M University, Department of Materials Science and Engineering, College Station, TX 77840, USA
b Texas A&M University, Wm Michael Barnes’64 Department of Industrial and Systems Engineering, College Station, TX 77840, USA
cAir Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, OH 45433, USA
h i g h l i g h t s

� An integrated computational
framework is developed to predict
material properties.
� Thermal model parameter values and
uncertainties are evaluated with an
MCMC method.
� Chemistry and property predictions
are in good agreement with
experiment results.
g r a p h i c a l a b s t r a c t
a r t i c l e i n f o

Article history:
Received 6 October 2021
Revised 5 December 2021
Accepted 16 December 2021
Available online 18 December 2021

Keywords:
Additive manufacturing
Markov chain Monte Carlo
Differential evaporation
NiTi
Shape memory alloys
Bayesian calibration
4D printing
a b s t r a c t

The desire for increased performance and functionality has introduced additional complexities to the
design and fabrication of additively manufactured (AM) parts. However, addressing these needs would
require improved control over local properties using in-line feedback from fast-acting low-fidelity mod-
els during the fabrication process. In this regard, differential evaporation is an inherent characteristic in
metal AM processes, directly influencing local chemistry, material properties, functionality, and perfor-
mance. In the present work, a differential evaporation model (DEM) is presented for laser powder bed
fusion (LPBF) AM to predict and control the effect of evaporation on chemistry and properties on local
and part-wide scales. The DEM model is coupled with an analytical thermal model that is calibrated
against 51.2 Ni [at%] nickel titanium shape memory alloy (NiTi SMA) single-track experiments and a
multi-layer model that accounts for the AM part’s multi-layer design and the inherent melt pool overlap
and chemistry propagation. The combined hierarchical model, consisting of the thermal, evaporation, and
multi-layer components, is used to predict location-specific chemistry for LBPF AM fabrication of
Ni50.8Ti49.2 [at%] SMAs. Model predictions are validated with values obtained from multi-layer experi-
ments on a commercial LPBF system, resulting in a root mean square error (RMSE) of 0.25 Ni [at%] for
predicted Ni content. Additionally, martensitic transformation temperature, Ms, is calculated and com-
pared with empirical data, resulting in an RMSE of 18.6 K. A practical account of the cumulative and prop-
agative thermal-induced evaporation effect on location-specific chemistry is made through this linkage of
models. Fundamentally, this model chain has also provided a solution to the forward modeling problem,
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enabling steps to be taken towards resolving the inverse design problem of determining processing
parameters based on desired location-specific properties.
� 2021 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Additive manufacturing (AM) of functional and structural mate-
rials has received increased attention to meet the demand for spe-
cialty components in the aerospace, automotive, and medical
industries [1–4]. Through design optimization and improved con-
trol over the AM process, components with improved performance
and functional properties have been successfully fabricated from
materials such as Ti-6Al-4V, stainless steels, and NiTi shape mem-
ory alloys (SMAs), among many others. AM has been traditionally
regarded as a manufacturing method that can be used to fabricate
components with high degrees of geometric complexity. While this
is certainly true, much larger (and rather underutilized) potential
lies in achieving material complexity through effectively modulat-
ing and controlling underlying mechanisms associated with the
complex AM process. One such mechanism that can be harnessed
to achieve location-specific control of properties and improved
component quality of AM tailor-designed parts is differential
evaporation.

Several studies involving laser processing of Ti-6Al-4V and
stainless steels have shown that differential evaporation influences
the post-process composition of a part [5–7], leading to a change in
functional and structural properties. In the case of NiTi, Khan et al.
demonstrated that laser processing of NiTi (50.07 at% Ni) SMA
resulted in Ni depletion and an outcome of (48.36 ± 0.84) [at%]
Ni [8]. The processed region also experienced a microstructural
change from austenite to martensite, and Ti2Ni precipitates were
found in the processed region due to Ti’s insolubility in the Ni
depleted region. The significant influence of evaporation on func-
tional properties is then exhibited through changes of 1 [at%] Ni
resulting in (80–100) K changes in transformation temperature
for Ni compositions above 50 at% [9,10]. Ma et al. [11,12] captured
this process-structure-property relationship in NiTi by changing
hatch spacing during laser-based AM from 35 lm to 120 lm for
two sections of a monolithic NiTi part. This alteration and the
change in the resulting volumetric energy density (VED) input
translates to a distinct difference in thermal history, the magnitude
of evaporation, and post-process chemistry. Indeed, this resulted in
a difference of 60 K in transformation temperature for each section
of the part, demonstrating the effect of evaporation on the chem-
istry and functional properties of an AM NiTi part [13].

Advancing the capability for tailored AM design would then
require a comprehensive understanding of vaporization and the
process-structure-property-performance (PSPP) relationship in
AM. Fig. 1 illustrates the complexity of this PSPP relationship for
SMA NiTi vaporization in AM. An AM part’s final chemistry and
properties are the culmination of a set of processing parameters
and the repeated thermal processing of the initial powder compo-
sition, building track-after-track and layer-upon-layer. In principle,
by controlling the process conditions at each location of the part, it
would be possible to alter the local thermal history and affect the
(differential) evaporation process. In the case of functional materi-
als, such as NiTi-based SMAs, that are extremely sensitive to chem-
ical and microstructural changes, such degree of local control could
enable, for example, 4D printing of metallic components [11,14].

To explicitly leverage differential evaporation as a tool to provide
location-dependent control over chemistry, microstructure, prop-
erties and behavior, it is necessary to develop formal design tools
capable of transforming a desired (local) chemistry/microstructure
2

into a required (local) processing protocol. The first necessary
ingredient of such a design tool would be a suitable chain of for-
ward models capable of connecting process conditions, thermal
histories and chemistry changes due to differential evaporation.
Experimental approaches to building such connections are imprac-
tical. High-fidelity numerical models are extremely costly, particu-
larly when considering that simulations must be able to capture
local changes in chemistry at the part level. One solution to this
forward problem is the utilization of fast-acting, physically-rich
(semi) analytical models calibrated and validated with experi-
ments to provide relatively accurate simulations of the PSPP rela-
tionship for the sake of AM product design.

In order to quantify the effect of evaporation, the thermal his-
tory of an AM part must first be simulated through numerical or
analytical solutions. These simulations can be performed to vary-
ing degrees of complexity and fidelity, with the tradeoff of compu-
tational cost. High-fidelity models have arisen from the need to
address complex coupling present in the various mechanisms in
place during AM. Such models may employ finite element [15–
24], finite difference [25], or finite volume [26–28] methods. How-
ever, these high-fidelity solutions come at a high computational
cost, limiting their utility for the AM design process [29,30] and
parameter calibration [31]. For comprehensive exploration of the
AM design space, a fast analytical model yielding an acceptable
degree of fidelity and accuracy presents a desirable approach
[32]. Linking this fast-acting thermal model with a cost-effective
structural and property-based model in an integrated computa-
tional materials engineering (ICME) framework then enables the
screening of trends in the (forward) PSPP of AM parts and can also
aid the reverse PSPP linkage in product design.

In this study, a fast-acting thermal-history coupled differential-
evaporation model is developed to predict the change in chemistry
for laser powder bed fusion (LPBF) AM parts, as highlighted in
green alongside corresponding depictions in Fig. 1. A follow-up
study will then further explore and exploit this model to solve
the inverse design problem, where inexpensive physically-rich
models are applied to guide experiments. Model assumptions are
presented, simulation and calibration of melt pool geometry dis-
cussed, a mass balance analysis is conducted, and considerations
for evaporation rate are presented. In conjunction, an assessment
of a multi-layer model accounting for geometric effects is provided.
Model predictions for location-specific chemistry (Ni [at%]) are
then validated with experiments and linked to material properties
(martensite transformation temperature, Ms) - providing a com-
plete path through the PSPP relationship and a solution to the for-
ward design problem. NiTi SMA was chosen as the model material
for this work due to its industrial relevance, functional properties,
and vapor pressure difference among the alloying components
ensuring a measurable change in post-process composition.

2. Thermal model calibration

2.1. Thermal model

The thermal model used in this study, a fast-acting analytical
discrete source model (DSM), was developed and described in
detail by Schwalbach et al. [33]. In the current work, directly rele-
vant aspects of the DSM will be described briefly, but the reader is
referred to the reference for more details. Additionally, this inex-
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Fig. 1. Process-Structure-Property-Performance diagram toward the location control of properties and tailored design of AM fabricated parts. Components considered by the
computational model in this work are highlighted in green. Modeling components include: Process to Structure - (1) Thermal Model; Structure to Property - (2) Multi-Layer
Model, (3) Differential Evaporation Model, and (4) Ni-Transformation Temperature Relation. Property to Performance coupling can then be performed based on desired
specifications and experiment results (5).
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pensive low-fidelity model will be calibrated similar to [34], pro-
viding sufficiently accurate results for the purpose of this work.
Although the individual models comprising the ICME framework
in this study are generally modular, where a higher-fidelity model
could instead be substituted in, this does not necessarily alleviate
all calibration requirements, and computational cost must be bal-
anced against fidelity requirements for the purposes of rapid
design iterations.

2.1.1. Assumptions
This model’s development begins with the generation of

assumptions used to describe and simplify the physics involved
in thermal history simulation and corresponding melt pool geom-
etry during LPBF AM. These assumptions are broadly similar to
those of the Rosenthal model of fusion welding, with the main
exceptions that the heat source is allowed to move in an arbitrarily
complex path, and that its shape is an elliptical 3D gaussian. The
main model assumptions include:

1. Thermophysical properties are considered temperature inde-
pendent, enabling model simplification. From a previous study
by Schwalbach et al. [33], temperature dependency of material
properties has a minimal effect on predicted melt pool charac-
teristics. However, the distributions associated with their effec-
tive values are obtained after probabilistic model calibration
against experiments to cover for any possible uncertainties
resulting from this assumption.
3

2. Latent heat due to phase change is assumed to be less than the
sensible heat during the thermal process. It is indirectly consid-
ered through a calibrated effective heat capacity parameter.

3. Heat transfer is directly governed by the heat conduction equa-
tion in the model, while the effects of radiation, evaporation,
and convection to the gas are indirectly considered in the form
of a tuning parameter called the efficiency parameter—which
accounts for the material absorption efficiency as well. More-
over, the physically complex convection in the liquid and its
effect on the melt pool shape is also indirectly implemented
in the model through the consideration of a shape factor, i.e.,
the depth to width ratio of the volumetric heat source [35]. This
ratio requires calibration for each individual experimental con-
dition, but is assumed to be constant and equal to 1 in this work
for simplicity. Accordingly, a physical depth correction factor is
considered and calibrated against experiments for cases that
the keyhole criterion is met—based on NiTi alloy printability
maps [36]—in order to account for the significant effect of con-
vection in these cases.

4. Scanning speed and power input are constant, as in the exper-
imental setup, although the DSM is capable of handling arbi-
trary changes in these quantities if required.

Through these assumptions, a reduction in both fidelity and
cost are incurred. This results in a model ideal for the purpose of
screening for trends that will be used as a basis for experiments
and materials design. However, in the interest of analyses requir-



Fig. 2. Melt pool schematic. (A) YZ-melt pool extent (B) 3D melt pool projection.
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ing extreme precision, the DSM may be exchanged with a thermal
model of higher fidelity, but typically at increased cost.

2.1.2. Thermal history
In general, the DSM predicts the temperature at any specifically

given position ( r!j) and process time (t) during the thermal pro-
cess. It does this by considering the thermal energy input at the
position from a series of volumetric discrete heat sources
( s!¼ s1; � � � ; sNf g that activate one by one during the process at
s!¼ s1; � � � ; sNf g, respectively) and the energy conduction through-
out the material, as follows:

@T
@t
¼ Dr2T þ

XN
i¼1

ŝi r!j; t
� �
qCp

ð1Þ

where T; q, and Cp are temperature, mass density, and mass specific
heat capacity, respectively. D is thermal diffusivity, a temperature-
independent parameter, and correlated to thermal conductivity (j)
as D ¼ j

qCp
.

Assuming the discrete heat sources have spherical normal-
distribution shapes centered at r!is with standard deviations equal
to r, Eq. 1 becomes:

@T
@t
¼ Dr2T þ

XN
i¼1

2giPiDt

qCp 2pr2ð Þ1:5
exp � R2

ij

2r2

 !
d t � sið Þ ð2Þ

where gi, known as efficiency, accounts for the material’s energy
absorptivity and, upon activation of the heat source i, energy losses
due to radiation and evaporation. giPi is the effective power of heat
source i, where Pi is the actual power of the heat source. It should be
noted that gi and Pi are assumed to be constant in this work,
denoted as g and P. Dt is the source discretization time,
Rij ¼ j r!j � r!ij is the distance of the given position from source i,
and d is the Dirac delta function.

Solving Eq. 2 for an infinite uniform medium with initial tem-
perature T0 results in the temperature prediction at any given posi-
tion and process time:

T r!j; t
� �

¼ T0 þ
XN
i¼1

giPiDt

qCp

ffiffiffi
2
p

p1:5
H t � sið Þ r2 þ 2D t � sið Þ� ��1:5(

� exp � R2
ij

2 r2 þ 2D t � sið Þð Þ

 !)
ð3Þ

where H is the Heaviside step function. For more details about the
model formulation, see [33].

2.1.3. Melt pool geometry
The melt pool formed through the previously described interac-

tion of the laser and material can define a controlled volume in the
printing process, a vital step for evaluating the effect of evapora-
tion. For the remainder of the work, it should be noted that the
beam propagates along the Z-direction, and traverses the
XY-plane of the powder bed along the X-direction. Assuming a
quasi-steady state, the melt pool’s extent at any location of interest
is then determined based on solidification time. A radial vector
search pattern centered about the location of interest provides a
resolved 2D cross-section of the YZ-plane (width and depth) along
with intermediary points, as shown in Fig. 2 (A). The solidification
time for each coordinate, tsolid;yz, and laser velocity, u, may then be
used to determine a length, LB, representing the back portion of the
melt pool:

LB;yz ¼ tsolid;yz � tsolid;min

� �
u ð4Þ

where tsolid;min is the minimum solidification time from all points in
the 2D cross-section. Following this, the length of the melt pool
4

front, LF , is determined by evaluating the melting time of each coor-
dinate, tmelt;yz, in the 2D cross-section:

LF;yz ¼ tsolid;min � tmelt;yz

� �
u ð5Þ

Fig. 2 (B) then illustrates the derived 3D melt pool, where
length, width, and depth correspond to x, y, and z coordinates,
respectively. These points may be represented as a convex hull,
allowing the melt pool volume to be determined. It should be
noted that the resolution of this convex hull is dependent on the
number of 2D intermediary points considered. However, the calcu-
lation of additional points will increase computational cost and
approach a diminishing return regarding the convex hull volume.

2.1.4. Keyhole depth correction
Our previous work [34] with similar analytical models showed

that these models typically underestimate the melt pool depth for
the print conditions with particular combinations of high laser
powers and low laser velocities that correspond to the keyhole
mode. In these cases, high linear energy density (LED ¼ P

u) input
from the laser beam and lack of time for the substrate to dissipate
energy via heat diffusion mechanism across the material cause
heat accumulation in the melt pool and a local rise in temperature
above the material boiling temperature, inducing substantial ele-
mental evaporation. This large evaporative effect imposes an oppo-
site force on the melt pool surface, known as the recoil pressure,
which results in deeper penetration of the molten material, consid-
erably increasing the melt pool depth under these conditions [37].
Since the physics associated with the keyholing phenomenon is
not considered in such analytical thermal models, the model
response for depth is corrected for the print conditions experienc-
ing keyholing, as proposed in [34]. This depth correction is per-
formed based on a simplified model proposed by Gladush and
Smurov [38], providing a general solution for keyhole depth, d.
Derivation involves solving the heat conduction equation for a
semi-infinite slab under the assumption of cylindrical keyhole for-
mation with radius r resulting from the laser beam interaction:

dk ¼ gP
2pjTb

ln
rþ D

u

r

� �
ð6Þ

where Tb is the boiling temperature.
The differences between the melt pool depths predicted by the

thermal model and their experimental counterparts are assumed
to be proportional to the formulation in Eq. 6 when the input vari-
ables fall into the keyholing regime. Therefore, a correction factor,
C, multiplied with this formulation is added to the predicted depth
for each print experiencing the keyholing regime. The probabilistic
calibration of parameter C and other uncertain material properties
in the thermal model against available experimental data for melt
pool width, wexp, and depth, dexp, is discussed in Section 2.4. It
should be noted that an experimentally-derived criterion [30,29],
i.e., wexp

1:5 6 dexp, is considered in this parameter calibration to find
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the experiments with the keyholing effect, where the depth correc-
tion is required to be applied in their corresponding model predic-
tions. This keyholing criterion can also be used to identify the
corresponding Power-Velocity region in the processing space of
NiTi SMAs, which indicates whether or not a prediction needs
the keyhole depth correction based on the print input conditions.
2.2. Experimental procedures

Gas-atomized Ni51.2Ti48.8 [at%] powder with d80 (the 80th per-
centile of the powder size distribution) of 32 lm provided by
Nanoval GmbH & Co. KG is used to manufacture the single tracks
in this work. Samples are printed using a 3D Systems ProX DMP
200 Laser Type (fiber laser with a Gaussian profile k = 1070 nm,
and a beam size (4r) of 80 lm) with a powder layer thickness
(q) of 30 lm (�d80). These single-track prints are performed on
equiatomic NiTi substrates cut from larger cylindirical bars using
wire electro-discharge machining (EDM). The printed single tracks
are sectioned orthogonal to the direction of beam travel, and the
cross sections are polished up to a 0.25 lm water-based diamond
solution. They are then etched in one part HF, three parts HNO3,
and ten parts of DI water for 15 s to reveal the melt pool shape.
Using optical microscopy (OM) images, the depth and width of
melt pools are measured in three YZ-plane cross-sections in each
single-track. Their averages, listed in Table 1, are utilized for the
calibration and validation of the thermal model. In Fig. 3, some
of the OM cross-section images are shown for prints performed
at different laser powers and velocities, which result in different
print modes during the LPBF process.
Table 1
Average measured melt pool width and depth for single-track prints, measured from N
separated for the thermal model calibration and validation.

P (W) u (mm/s) LED (J/m)

Experimental Data Used for Th
40 80 500.0
80 330 242.4
120 580 206.9
200 580 344.8
120 830 144.6
160 830 192.8
240 830 289.2
160 1080 148.1
200 108 185.2
240 1080 222.2
200 1330 150.4
240 1580 151.9
60 205 292.7
60 455 131.9
100 455 219.8
160 80 2000.0
200 80 2500.0
240 80 3000.0
160 330 484.8
200 330 606.1
240 330 727.3
240 580 413.8
100 205 487.8
140 205 682.9
140 455 307.7

Experimental Data Used for T
80 80 1000.0
160 580 275.9
200 830 241.0
240 1330 180.5
200 1830 109.3
240 1830 131.1
120 80 1500.0
120 330 363.6

5

2.3. Calibration approach

An adaptive Markov Chain Monte Carlo (MCMC) procedure is
applied to conduct Bayesian parameter inference. In this calibra-
tion framework, the prior belief (or distributions) for uncertain
parameters are updated to their posterior distributions, given the
available experimental data represented by a likelihood function.
In this context, solving the intractable integrals for the statistical
inference of parameters necessitates a sampling method. Pseu-
docode detailing this adaptive MCMC algorithm is shown in Fig. 4.

The process starts with an initial guess for the parameter values,
represented by prior distributions, and then proceeds by the
sequential sampling of parameter vectors from a proposal poste-
rior distributions. In this work, the proposal distribution is consid-
ered a multivariate normal distribution centered at the previous
parameter vector in the MCMC chain with a variance-covariance
matrix adapted in each sampling iteration by the variance-
covariance matrix of previous samples based on [39]. The parame-
ter samples are accepted or rejected during the sequential process,
using the Metropolis-Hastings criterion that accepts the new sam-
ple with a probability equal to min{MH,1} in each iteration. Here,
MH is the Metropolis-Hastings ratio that compares the joint prob-
ability (prior*likelihood) of the new sample with the previous one
in the chain, as well as the probability of moving from the previous
to the new sample with the probability of the reverse move. If the
new sample is rejected, the previous sample repeats in the chain. It
should also be noted that the prior and likelihood were considered
as uniform distributions and a multivariate normal distribution,
respectively, centered at the independent experimental data with
a constant diagonal variance-covariance representing the average
i51.2Ti48.8 powder at different process conditions. Experimental measurements are

�w (lm) �d (lm)

ermal Model Calibration
135.11 � 18.46 25.90 � 8.67
129.65 � 1.41 32.55 � 1.91
101.52 � 22.52 27.03 � 5.48
149.26 � 6.64 85.14 � 8.65
101.84 � 16.16 26.40 � 6.87
112.10 � 0.43 48.69 � 8.30
136.52 � 9.33 77.14 � 8.92
109.63 � 19.63 16.49 � 4.71
114.01 � 11.52 37.37 � 3.51
115.92 � 7.96 57.75 � 5.92
110.72 � 15.83 24.77 � 2.29
107.96 � 5.20 35.98 � 3.26
114.23 � 14.67 41.40 � 8.99
78.70 � 5.28 21.73 � 4.38
117.06 � 9.96 60.82 � 17.78
326.84 � 0.68 376.65 � 38.90
377.51 � 12.04 469.21 � 53.69
417.41 � 20.31 511.68 � 38.77
160.93 � 5.71 139.49 � 46.69

176.22 � 12.650 207.64 � 43.66
201.84 � 21.32 283.93 � 13.06
148.27 � 8.40 195.40 � 10.87
165.11 � 5.88 119.60 � 19.16
179.19 � 5.30 251.66 � 1.77
138.43 � 4.95 140.13 � 26.36

hermal Model Validation
230.79 � 9.65 143.10 � 11.58
124.06 � 16.72 42.11 � 20.77
126.04 � 1.56 72.61 � 6.65
109.66 � 3.49 32.60 � 14.15
61.39 � 19.01 19.06 � 10.08
97.58 � 4.13 40.86 � 8.26
291.66 � 4.92 248.01 � 15.73
138.36 � 3.63 108.28 � 7.01



Fig. 3. Cross-section print images obtained from optical microscopy for different print conditions during the LPBF process, indicating different print modes, (a) lack of fusion,
(b) good quality, (c) balling, and (d) keyholing modes.
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experimental uncertainty for width and depth measurement. The
mentioned sampling process stops when the proposal distribution
reaches a stationary state as the parameter convergence occurs. At
the end of this process, the samples before the parameter conver-
gence, known as the burn-in period, are removed from the chain in
order to represent the posterior frequency/probability distribu-
tions of model parameters and their statistical characteristics
(see [41–47] for further details about the applied MCMC calibra-
tion approach).
2.4. Calibration results

Generally, all models are surrogates of reality with their specific
assumptions and approximations, regardless of their fidelity and
cost. Therefore, their probabilistic calibration against data is
required in order to provide the most plausible predictions within
their uncertainty bounds. It should also be noted that Bayesian cal-
ibration is not hindered by limited data, providing the best infer-
ence corresponding to the current state of knowledge. In this
work, modeling of the melt pool geometry is one of the main com-
ponents to the modeling of the print as a whole, emphasizing the
importance of calibrating the thermal model. The DSM calibration
is conducted using the results obtained from 33 single-tracks listed
in Table 1 (split into 25 training and 8 test data points), printed
using Ni51.2Ti48.8 powder, as described in Section 2.2. Melt pool
widths and depths measured from these prints at different combi-
nations of laser power and velocity are used simultaneously in a
multi-objective optimization scheme, based on the adaptive
MCMC described in Section 2.3, to provide a probabilistic estima-
tion of the model parameters. The calibration parameters are then
g, effective j, effective CP , and C, while other parameters remained
constant. Additionally, by utilizing data from both conduction and
keyhole regions, the model is effectively homogenized for both
modes through the calibrated model parameters and any uncer-
6

tainties related to this are covered in the uncertainty
quantification.

After generating 20,000 MCMC samples for the mentioned
parameters and removing the burn-in period, the marginal proba-
bility density functions (PDFs) were plotted for each parameter in
Fig. 5. The average and standard deviations of these parameter
samples were also reported in Table 2, representing the parameter
plausible optimal values and uncertainties. As shown in Fig. 6, the
correlation between parameter pairs can also be studied qualita-
tively and quantitatively through the 2D joint PDF plots and the
Pearson linear coefficient, qX;Y ¼ cov X;Yð Þ

rXrY
, respectively. In the plots

in Fig. 6, the colors represent the density of parameter samples
in the joint parameter spaces, and the linearity of color features
qualitatively demonstrates the degree of linear correlation
between each parameter pair. The Pearson linear correlations, q,
shown at the bottom right corner of each plot can change from
�1 to 1, with a value close to �1 or 1 indicating strong correlation
and a value close to 0 indicating weak correlation between the
parameters. It is worth noting that the negative and positive signs
show the correlation direction. Here, the q values suggest a strong
correlation between the thermal model parameters. This can be
expected due to the linear correlation between heat capacity and
thermal conductivity [48] and due to the efficiency parameter act-
ing as a tuning metric. Additionally, a very weak correlation is seen
between the thermal model parameters and C, implying an inde-
pendent effect of parameter C and its non-substitutability with
the other three parameters. These correlations help explain a trend
observed in Fig. 5, where the probability for g increases as the
upper bound is approached, implying a peak value greater than
0.8. However, this high efficiency is physically impossible, and
could be a result of the missing physics in the model and the uncer-
tainties in the experimental measurements. Addressing these
issues in future work would then allow the posterior peak for g
to shift to a reasonable range for this parameter. Two other model
parameters observe similar trends due to their high linear correla-



Fig. 4. Pseudocode describing the implementation of the adaptive MCMC algorithm.

M. Ranaiefar, P. Honarmandi, L. Xue et al. Materials & Design 213 (2022) 110328
tion with g; j with q = 0.93 and more prominently in CP with
q = 0.99. However, as an extrinsic factor, C can independently peak
around an optimal value due to its low linear correlation with the
other parameters.

The mean values and uncertainties of the parameters in Table 2
were propagated to the model outcomes used for the calibration,
i.e., melt pool width and depth, using forward model analysis. In
this uncertainty propagation (UP) method, the MCMC converged
samples are run through the model with the keyhole depth correc-
tion to obtain the corresponding output samples for melt pool
width and depth. Then, 2.5% of the samples are removed from both
ends of the sorted output samples to find 95% credible intervals for
each output. Fig. 7 shows the comparison between the calibrated
model results and their corresponding experimental data for each
training- and test-experimental conditions. In this figure, colors
indicate LED values. In part (a) and (b) of this figure, it can be
observed that there is excellent agreement between the mean val-
ues for the calibrated model results and training-experimental
measurements, as deduced from high R2 values of 0.97 and low
RMSE values less than 25 lm. The comparison results for test-
experimental conditions in part (c) and (d) also imply good valida-
tion of the calibrated model. Therefore, despite missing physics in
the model and uncertainties in the experimental data, the cali-
7

brated thermal model, utilizing mean parameter values reported
in Table 2, can be used in Section 3 to estimate the evaporation flux
and final composition of the matrix after the multi-track multi-
layer prints at different process conditions. In this regard, it should
be noted that changes in the calibrated material properties due to
the change in powder composition from 51.2 to 50.8 Ni [at%] in
Section 3 are small and can be ignored.
3. Predicting location-specific composition

Illustrated in Fig. 8, user input, consisting of process parameters
and material properties, informs the hierarchical model, enabling
chemistry predictions across an AM part. The chemistry of the part
can then be linked to properties and performance. The resolution of
this hierarchical chain, also known as the forward problem, is an
essential task in design under the ICME scheme.

3.1. Multi-layer model

The Multi-Layer Model (MLM) enables part-level simulation of
the LPBF AM process by utilizing thermal history and geometric
relations to replicate the build from the substrate up. In a Cartesian
coordinate system, the MLM constructs a 2D slice projected into



Fig. 5. Marginal posterior density functions of parameters in the DSM thermal model after the MCMC-Bayesian calibration with Ni51.2Ti48.8 SMA single-track experiments.

Table 2
MCMC-Bayesian calibrated parameters in the DSM thermal model: mean values and
one standard deviation of MCMC samples after removing the burn-in period.

g j (W/m K) Cp (J/kg K) C

0.61 � 0.14 28.9 � 7.3 1033.6 � 243.6 1.11 � 0.05
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3D. The DSM generates melt pool cross-sections along the YZ-plane
for multiple tracks and layers, and melt pool lengths are projected
in the x-direction to determine melt pool volume. Additionally, if
the keyhole depth correction criteria is met, as discussed in Sec-
tion 2.1.4, adjusted melt pool depths will be utilized by the MLM.
Based on processing conditions, portions of each track and layer
can also be categorized into steady-state and dynamic regions. In
the case of a conventional hatching scan strategy with constant
processing parameters and sufficient length, a melt pool generated
in the center of a track, a steady-state region, could be extended in
either direction to represent the entire steady-state region. How-
ever, regions where the process may be more dynamic, such as
near the start or end of a track, could have a different thermal his-
tory than a steady-state region and should have separate MLM pre-
dictions generated. Through the MLM, a 2D slice across the cross-
section of multiple tracks and layers in the steady-state region
could then represent a substantial portion of the 3D AM part. Addi-
tionally, the MLM retains chemistry information for every point
within the simulated 3D projection, enabling location-specific
chemistry to be predicted and tracked through time, further aiding
in location-specific property predictions across the part.
3.1.1. Assumptions
Modeling the AM process on a part-level can be taxing on

resources, but is necessary for an accurate translation to part prop-
erties. In this regard, several assumptions are made in the MLM to
improve computational efficiency and retain adequate resolution.
8

These assumptions and their corresponding justification are
expressed below; this is proceeded by a more detailed discussion.

1. The intralayer preheat effect is automatically captured by the
DSM and drives changes in melt pool dimensions from one
track to the next. However, once the difference in dimensions
of the current and previous track reaches the desired tolerance,
i.e., 10e-15 lm, it is assumed that these steady-state melt pool
dimensions can be applied to the remaining tracks in the print
layer for the sake of reducing computational cost. This approach
could be revised based on scan strategy.

2. The interlayer preheating is assumed to be constant for all lay-
ers deposited due to previous experimental work [36,49] show-
ing homogeneity within an AM part at different print layers,
confirming there is sufficient time between layers to reduce
preheating effects in our experiments. However, in the case that
preheating is significant, it can be implemented in the DSM by
adjusting the parameter for background temperature.

3. If the melt pool overlap formed by track N and an adjacent track
is sufficiently small, e.g., less than 1% cross-sectional area over-
lap, the chemistry propagation is considered negligible.

In the case of a single-layer with multiple tracks, the diffusion of
heat from one track acts as a preheat for adjacent tracks. This
results in a slight variation in melt pool size, affecting several
tracks depending on part geometry and process parameters before
steady-state dimensions are reached. In the steady-state regions,
thermal history, respective melt pool geometry, and melt pool
overlap remain approximately constant. Due to this symmetry, a
single melt pool can be projected along the steady-state length of
a track. The MLM implemented in this study utilizes individual
melt pool geometry from the first track until steady-state, where-
after the remaining melt pool dimensions have equivalent dimen-
sions, allowing several melt pools to model an entire layer.
Additionally, preheating effects between layers are not considered.



Fig. 6. Joint posterior density functions of parameter pairs in the DSM thermal model after the MCMC-Bayesian calibration with Ni51.2Ti48.8 SMA single track experiments. q
represents the Pearson linear correlation.
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This means that melt pool dimensions in each layer are identical to
corresponding tracks in the previous layer, and a single layer can
be used to model all build layers. Consequently, the steady-state
region of the print can be modeled with several melt pools and a
significant reduction in computational cost. Furthermore, the
cross-sectional area of melt pool overlap with adjacent tracks var-
ies based on processing parameters and intralayer preheating. As
the overlap area decreased, the chemistry propagation between
the melt pools also decreases. When a melt pool overlap region
is sufficiently small, this effect becomes negligible. This simplifica-
tion aids in reducing the number of melt pool overlaps that need to
be evaluated for determining chemistry propagation, through each
track and layer. Melt pool overlap is discussed in greater detail in
the following section.

3.1.2. Melt pool overlap
The MLM provides insight on the chemistry propagation

throughout a part by constructing the sample from the substrate
up and tracking composition for every track and layer. The average
composition of each melt pool is calculated based on overlap with
melt pools from previous tracks in the same layer, and overlap
9

with tracks in previous layers and/or the substrate. Fig. 9 illustrates
this general relationship between melt pools on adjacent tracks
and layers.

In the simplest scenario, Case A, the first melt pool corresponds
to the first layer and first track of the build, MPL1T1. This melt pool
has an average composition, vL1T1, given by the volume fraction of
powder, Vp;L1T1, with composition vp, and the volume fraction over-
lap with the substrate, VOv lp;L1T1js, with composition vs. Here, layer
thickness is used to define the boundary between the powder
and substrate region. Case B then introduces the second melt pool
of layer 1, MPL1T2, which overlaps with MPL1T1 and the substrate. At
this point in time, the entire length of the first track has been pro-
cessed, meaning the volume encompassed by maximum cross-
sectional overlap of MPL1T2 with MPL1T1 is represented by the vol-
ume fraction VOv lp;L1T2jL1T1 having composition vL1T1. Now, the over-
lap of MPL1T2 with the substrate, VOv lp;L1T2js, not contained within
VOv lp;L1T2jL1T1 must be determined. This can be achieved through
Eq. 7.

VOvlp;L1T2js  VOvlp;L1T2js � VOvlp;L1T2js \ VOvlp;L1T2jL1T1
� � ð7Þ



Fig. 7. Calibrated model predictions vs. experimental data for the melt pool width and depth produced during the single-track prints of the given Ni51.2Ti48.8 SMA. Colors
indicate the LED values based on the given experimental input conditions.

Fig. 8. Model methodology. User input is fed into the model chain comprised of the calibrated thermal model, the multi-layer model, and the differential evaporation model.
This is followed by model validation with experimental results to determine location-specific chemistry and properties, and ends with an evaluation of performance.
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Here, the intersecting region of the substrate overlap with
VOvlp;L1T2jL1T1 is removed from VOvlp;L1T2js to redefine the volume frac-
tion overlap of the substrate with MPL1T2. The overlap and powder
volume fractions and corresponding compositions are then used
to determine the average composition of MPL1T2;vL1T2 . When con-
sidering a conventional snake scan strategy, and constant process-
10
ing parameters, this procedure for calculating melt pool volume
fraction and composition can be extended for the remainder of
tracks in the first row. Even though the build process could result
in a melt pool overlapping with multiple tracks, it is important to
recognize the development of a time hierarchy, where the most
recent event in time would be the influencing track. This means



Fig. 9. Melt pool overlap and chemistry propagation general relationship. The terms are as follows: V - volume, v - composition, p - powder, s - substrate, Ovlp - overlap, L -
layer, T - track, j - ‘with’.
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that, for any track in the first layer, L1TN, it is only necessary to con-
sider overlap with the most recent adjacent track, VOvlp;L1TNjL1TN�1
and substrate, VOvlp;L1TNjs.

Case C follows a similar procedure, but there is added complex-
ity in accounting for overlap with multiple melt pools in a previous
layer instead of a constant substrate with constant composition.
However, as with same-layer track overlap in a conventional snake
scan strategy with constant processing parameters, multi-layer
overlap is handled on a time hierarchy. Even though there might
be overlap extending through several layers, the only necessary
layer overlap to consider is with the layer directly preceding the
current position. For MPL2T1, this means consideration of the pow-
der, MPL1T3;MPL1T2;MPL1T1, and their respective volume fraction
and composition. VOv lp;L2T1jL1T3 can be determined directly, however
VOv lp;L2T1jL1T2 and VOv lp;L2T1jL1T1 require an adjusted application of Eq.
7. This process can become increasingly complex depending on
process parameters, with the number of overlaps and overlap vol-
ume fraction strongly dependent on power, velocity, hatch, layer
thickness, and material properties. This directly affects the chem-
istry propagation through the tracks and layers of the simulated
part determined by the MLM. However, another important factor
affecting composition and warranting consideration is the evapo-
ration of material from the melt pool.

3.2. Differential evaporation model

The differential evaporation model (DEM) serves to account for
the loss of material due to evaporation during the printing process
and provide increased accuracy in predicted compositions. The
11
DEM takes direct input from the thermal model, generates a melt
pool, and applies a formulation for evaporation to account for
material loss and provide an evaporation adjusted predicted chem-
istry. When utilizing the MLM, the average initial chemistry of each
melt pool is fed into the DEM and the resulting chemistry fed back
to the MLM. This linkage fully incorporates the effect of evapora-
tion across the simulated sample and predicts chemistry resulting
from the culmination of geometric and evaporation effects.

3.2.1. Assumptions
The development of the DEM begins with the generation of

assumptions, for both the DSM (mentioned in Section 2.1) and
DEM, used to describe and simplify the involved physics. Equations
are formulated, encompassing these physics, to solve for differen-
tial evaporation and to predict chemistry. Assumptions for the
DEM include:

1. The melt pool follows a mass balance.
2. There is complete mixing within the melt pool.
3. The Kinetic Theory of gases can be applied.

The implications of these assumptions are a solution to the
mass flow in and out of the system, a spatially uniform composi-
tion of the melt pool, and an evaporation rate formulation derived
from the Kinetic Theory of Gases, which itself is built on two pos-
tulates [50]:

1. Matter is composed of extremely small molecules, where mole-
cules of the same chemical substance are facsimiles
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2. Molecules of a gas are in constant motion! intimately related
to temperature

3.2.2. Mass balance
A derivation for mass balance in a control volume was con-

ducted, providing a formulation for chemistry change in a melt
pool. Fig. 10 depicts the mass flow, in and out, of a melt pool in a
control volume, whereby mass loss due to evaporation occurs
through the melt pool surface, liquid-vapor interface.

The following relation describes the mass flow through the con-
trol volume:

_mout ¼ _min � _mevap ð8Þ
where _min [kg/s] is the mass flow rate into the melt pool, _mout [kg/s]
is the mass flow rate out of the melt pool, and _mevap [kg/s] is the
mass flow rate, due to evaporation, out the top surface of the melt

pool. Here, m
_ in

; m
_ out

, and _mevap are expressed, respectively, as:

_min ¼
Z
in
q u!� n̂
� �

dA ð9Þ

_mout ¼
Z
out
q u!� n̂
� �

dA ð10Þ

_mevap ¼
Xn
iso¼1

Z
top

j vA;vB; . . . ; Tiso
� �

dSiso ð11Þ

where q is the density of mass moving in a velocity field u!� n̂ per-
pendicular to the cross-sectional area of the control volume (de-
fined as the extent of the melt pool) dA, and j is the evaporation
flux, dependent on the chemistry of the alloying elements
vA;vB; . . .
� �

and the temperature of interest (Tiso), out of the iso-
therm area (dSiso) corresponding to the temperature of interest.
The evaporative flux is a continuous function of both the alloy com-
position and the temperature. The latter varies spatially across the
liquid-vapor interface. To simplify the integral we discretize the
liquid-vapor interface into several regions bounded by selected iso-
therms and assume uniform temperature within each of these sub-
domains. It should be noted that the boiling isotherm accounts for a
majority of the mass loss due to evaporation in the melt pool. Eqs. 9
and 10 are reduced to:

_min ¼ qinxinuAin
x�s ð12Þ

_mout ¼ qoutxoutuAout
x�s ð13Þ

where q �x kg=m3
	 


represents the density of the alloy multiplied
by the alloying element’s weight fraction, and Ax�s m2

	 

is the front

projected area of the melt pool.
Fig. 10. Mass balance of a melt pool in a control volume. This includes mass flow in,
mass flow out, and mass loss due to evaporation.
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If the melt pool is thoroughly mixed, we can then assume that
the liquid has a spatially uniform composition, the chemistry of
the alloying elements can be considered constant. As a result, Eq.
11 becomes:

_mevap ¼
Xn
iso¼1

j vA;vB; . . . ; Tiso
� �

Siso ð14Þ

From here, the mass balance (Eq. 8) may be re-written as a first-
order steady-state solution for each alloying element i by substi-
tuting Eqs. (12)–(14):

_mout
i ¼ qin

i �xin
i

� �
uAin

x�s �
Xn
iso¼1

ji vA;vB; . . . ; Tiso
� �

Siso ð15Þ
3.2.3. Evaporation Rate
The DEM follows a sequence of several calculations, completed

for each alloying element (Ni and Ti in NiTi), to predict the chem-
istry at a location in an AM part:

1. Calculate Equilibrium Vapor Pressure, as a function of isotherm
temperature and incoming chemistry.

2. Determine Evaporation Rate, according to Eq. 18.
3. Conduct Mass Balance, as described in Eq. 15.

In order to calculate the equilibrium vapor pressure, �pi atm½ 	, the
standard pressure of the alloying element, p
i atm½ 	, must first be
evaluated. This was accomplished through Antoine’s equation
(Eq. 16), derived from the Clausius-Clapeyron relation, where A,
B, and C are Antoine coefficients, listed in Table 3, and T 
C½ 	 is
the temperature of interest [51]:

p
i ¼ 10 A� B
CþTð Þ=760 ð16Þ

The equation for equilibrium vapor pressure, for each alloying
element, is then:

�pi ¼ p
i ai ð17Þ
where ai is the activity of the respective alloying element. Activity
values were generated through Thermocalc 2020b TCHEA4 data-
base for temperatures ranging from Tmelt-Tboil for a desired compo-
sition. The evaporation rate for each element is then determined
through the Kinetic Theory of Gases as:

ji ¼ 44:331�pi
Mi

T

� �1
2

ð18Þ

where ji [g/(cm
2 s)] is the vaporization rate of species i; p

�
i atm½ 	 is

the equilibrium vapor pressure of i; Mi g½ 	 is the molecular weight
of i, and T K½ 	 is the absolute temperature. This is followed by the
mass balance (Eq. 15) for each alloying element. From the mass bal-
ance, the mass flow out of the melt pool can be related to the weight
fraction of Ni and Ti along with the melt pool’s updated chemistry.
This procedure is repeated for multiple melt pools, based on scan
strategy and sample size, to consider cumulative thermal effects
from adjacent layers and tracks on the location-specific chemistry
prediction of the AM part.

Themodel took aquick and simple approach to chemistrypredic-
tion, utilizing the thermal history of a designated point of interest.
This thermal historywas segmentedbased on the number of desired
Table 3
Antoine coefficients for Ni and Ti [51].

Element A B C

Ni �8.75 17882.38 134.99
Ti 8.90 20948.99 190.76



Fig. 11. Nickel content and corresponding Ms for multiple NiTi samples. Data from
Frenzel et al. [9] Region I: Non-Invertible, Region II: Invertible.
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isotherms, with surface area and interaction time calculated for
each. The mass balance was resolved and chemistry predicted.

3.3. Experimental procedure

For the validation of the DEM, gas atomized Ni50.8Ti49.2 [at%]
powder with a d80 of 38 lm was used to fabricate
10� 10� 10 mm3 cubes. As shown in Table 4, the laser power
and scanning velocity were in the range of 60–240 W and 80–
1330 mm/s, respectively. The Oxygen level in the print chamber
during printing and the layer thickness were 500 ppm and
40 lm, respectively. The volumetric energy density (VED ¼ P

uhLt
,

where h is hatch distance and Lt is layer thickness) for these 21
cube prints vary from 52.9 to 234.4 J/mm3.

A differential scanning calorimetry (DSC) sample of the powder
was solution heat-treated at 950 �C for 1 h under protective argon
atmosphere in order to determine the transformation tempera-
tures of the powder in single phase (without any precipitates
which may change the transformation temperatures and the
matrix composition). In addition, DSC samples with 3 mm diame-
ter and 1 mm thickness were cut from the printed cubes using wire
EDM, and then solution heat-treated at 800 �C for 1 h in argon,
again in order to eliminate any second phases, residual stresses
or any other microstructural features that may affect the transfor-
mation temperatures. This is critical because the Ni content of the
prints are indirectly determined using the transformation temper-
atures, as explained in the following section in detail. A TA Instru-
ments Q2000 DSC is used to measure the transformation
temperatures of both powder and the printed cubes. Two thermal
cycles were performed during the DSC measurement at a heating/-
cooling rate of 10 �C/min between �150 �C and 150 �C, and the
transformation temperatures listed in Table 4 were extracted from
the second cycle using the intersecting tangent method [52]. These
transformation temperatures include martensite start tempera-
ture, Ms, martensite finish temperature, Mf, austenite start temper-
ature, As, and austenite finish temperature, Af. The following
section will focus on Ms, however, a similar procedure could be
used for the remaining transformation temperatures.

3.4. Nickel content and martensitic transformation temperature (Ms)

In NiTi SMA literature, it is well-known that determining the
exact Ni content of Ni-rich NiTi SMAs at the desired level of accu-
racy is very challenging, if not impossible, using known chemistry
Table 4
Process parameters and the transformation temperatures after solution heat treatment fo

P (W) u (mm/s) h (lm) LED (J/mm) VED (J

160 1080 70 148.1 52
65 297 100 218.9 54
240 1330 80 180.5 56
200 1080 80 185.2 57
160 830 80 192.8 60
200 830 100 241.0 60
160 580 110 275.9 62
120 330 130 363.6 69
80 330 80 242.4 75
96 297 100 323.2 80
65 200 100 325.0 81
96 350 80 274.3 85
60 160 100 375.0 93
96 250 100 384.0 96
96 297 80 323.2 10
96 200 100 480.0 12
60 120 100 500.0 12
72 120 120 600.0 12
60 80 120 750.0 15
65 80 120 812.5 16
60 80 80 750.0 23

13
measurement techniques [9,53,54]. This is due to the extreme sen-
sitivity of martensitic transformation temperature to the Ni con-
tent in materials with Ni contents greater than 50 at% as shown
in Fig. 11. Such chemical sensitivity requires the determination
of Ni content on the order of 0.01 at% level in bulk samples. As seen
in Fig. 11, there are two distinct regions defined by the Ms-Ni rela-
tionship, where Ms is the martensite start temperature. At Ni con-
tents less than �49.8 at%, Ms remains relatively constant, while a
strong negative trend is seen with Ni content greater than
�49.8 at%. This negative slope becomes larger as the Ni content
approaches 51 at%, and corresponds to a change of over �100 [K/
Ni at%]. This demonstrates a strong sensitivity of Ms to Ni content
in the NiTi system, and reinforces the importance for accurately
predicting composition to tailor location-specific properties.
Therefore, in the present study we used the measured Ms temper-
atures to calculate the Ni content of the printed samples as
described below and compare these with the Ni contents predicted
using the DEM.

Nickel content is determined from the Ms temperature attained
through DSC by utilizing an empirical relation for Ni at%½ 	 and Ms

K½ 	 [9]:

Ms vT
Ni

� � ¼ Aþ B � vT
Ni

� �þ C � D vT
Ni
�50ð Þ ð19Þ
r the 21 cubes manufactured from Ni50.8Ti49.2 powder.

/mm3) Ms (�C) Mf (�C) As (�C) Af (�C)

.9 �19.81 �33.29 �3.46 9.37

.7 11.23 �18.81 9.81 41.40

.4 �22.9 �29.21 �1.11 11.17

.9 �23.61 �36.61 �6.39 7.44

.2 �18.62 �29.62 �2.61 9.37

.2 �27.70 �35.90 �6.33 3.94

.7 �18.75 �27.66 �1.16 11.09

.9 3.81 �10.56 16.27 32.00

.8 12.78 �4.05 22.83 42.34

.8 15.10 �5.24 24.25 44.40

.3 27.35 10.62 37.61 57.34

.7 21.93 �3.65 26.51 50.25

.8 38.59 19.17 47.52 70.19

.0 20.95 1.87 34.24 51.24
1.0 21.37 �8.47 20.25 51.14
0.0 32.58 14.93 43.76 62.63
5.0 54.38 33.13 63.39 86.45
5.0 47.57 28.31 57.42 79.42
6.3 66.79 44.49 78.19 99.79
9.3 69.95 48.12 81.97 102.83
4.4 70.76 52.97 89.74 106.25
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where Ms [K] is the martensite start transformation temperature, A
is 4511:2373, B is �83:42425, C is �0:04753, D is 204:86781, and vT

Ni

is the true Ni content [at%].
Fig. 13. Model predictions of Ms compared with empirical values for LPBF 50.8 Ni
[at%] samples.
4. Model validation results and discussion

Following the previously stated methodology, the combined
DSM-MLM-DEM was used to model the printing process of the
21 solution heat treated (SHT) 50.8 Ni [at%] samples (mentioned
in Section 3.3) and predict Ni content after the thermal process.
Pertaining to the DSM, relevant input parameters are listed in
Table 5. Additionally, the surface area of each melt pool was binned
into 5 equally spaced isotherms, spanning NiTi’s melting to boiling
temperature (1312–3187 �C), for the application of the DEM.

Fig. 12 compares the predicted Ni [at%] for each of the 21 SHT
samples with the Ni [at%] derived from experiments. The data is
divided into two regions based on the Ms and Ni relationship
described in Section 3.4 and Fig. 11. In Region I, the experimentally
derived Ni values reach a limit of approximately 49.8 [at%]. This is
expected due to the non-invertible relationship of calculating Ni
content from Ms, when Ms is approximately 335 K or higher. How-
ever, the combined DSM-MLM-DEM is not limited by this conver-
sion, and directly calculates Ni compositions that may dip below
this 49.8 [at%] threshold. This is demonstrated by several points
in Region I with the predicted Ni [at%] below 49.8. Unlike Region
I, the invertible relationship of calculating Ni content from Ms

can be used in Region II. Both empirical and predicted Ni values
are superimposed on a 45-degree line, demonstrating over- and
under-predicting values that result from a combination of errors
corresponding to the lack of knowledge about the parameters, pos-
sible missing physics or assumptions in DSM-MLM-DEM, and
experimental measurements. Due to the non-invertible nature of
Region I, only points located in Region II were considered in calcu-
lating the RMSE of 0.25 Ni [at%] and the Pearson correlation, qNi, of
0.85, suggesting a strong positive linear correlation between model
predictions and experiment values. This means that the hierarchi-
cal DSM-MLM-DEM approach is capable of predicting Ni content in
a range well within the uncertainty of �0.5 [at%] for some of the
chemistry measurement techniques such as wavelength dispersive
Table 5
Model parameters and thermophysical properties.

P (W) t (mm/s) h (lm) Lt (lm) g j (W/m K) Cp (

60–240 80–1330 70–130 40 0.61 28.9 10

Fig. 12. Model predictions of Ni [at%] compared with e

14
spectroscopy (WDS) and inductively coupled plasma atomic emis-
sion spectroscopy (ICP-AES), and composition predictions followed
expected trends, even in Region I. It should be noted here that
although ICP-AES can be accurate to parts per million ranges for
low-level constituents, the accuracy can be as low as �2% of the
absolute value for the major constituents [55]. It is also important
to note that the predictions were achieved with only a calibrated
analytical thermal model being fed to the MLM and DEM, which
can be much faster than numerical thermal models (e.g. finite ele-
ment models).

Predicted Ni [at%] can then be related to transformation tem-
perature, Ms K½ 	, by utilizing Eq. 19. Fig. 13 illustrates the compar-
ison between predicted and experimental DSC-measured Ms.
J/kg K) C rx (lm) q (kg/m3) T0 (�C) f Tmelt
f T>Tmelt

33.6 1.11 20 6471 23 3 30

xperimental values for LPBF 50.8 Ni [at%] samples.
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The RMSE for the 21 samples is 18.65 [K], which is again well
within the range of uncertainty that a WDS or ICP-AES to Ms mea-
surement might provide (�50 K). Additionally, the Pearson correla-
tion, qMs

, is 0.85, again suggesting a strong linear positive
correlation between model predictions and experiment values.
Due to the nature of the Ms-Ni relationship, errors in predicted
Ni content are magnified with Ms, as is shown with several points
predicting Ms values 30–45 K larger than corresponding empirical
measurements. -However, some of this error could be imparted on
the fact that the analytical Ms-Ni relationship is an approximation,
and could be refined with supplementary experiments. Addition-
ally, as mentioned earlier, the compounding effect of assumptions
in the DSM-MLM-DEM could have impacted predicted values,
some more-so than others. This requires further inspection of the
relationship between processing parameters and structure, melt
pool volume and surface area, as well as properties.
5. Conclusion

In metal AM, accurate resolution of the forward problem (pre-
dicting location-specific chemistry for a specific set of manufactur-
ing processing parameters) is a necessary step preceding solution
of the inverse problem (determining manufacturing processing
conditions to achieve location-specific chemistry). With NiTi as a
model material system, this first step is achieved by utilizing sev-
eral hierarchically coupled physics-based models, calibration with
experiments, and validation. The model chain begins with the DSM
analytical model, enabling the simulation of thermal history based
on processing parameters and material properties. A depth correc-
tion factor to account for the keyholing phenomenon, determined
using an experimentally obtained criterion, is considered, and the
DSM is calibrated against the width and depth measurements of
Ni51.2Ti48.8 single-track experiments in the Bayesian context, pro-
viding a probabilistic calibrated value for heat capacity, conductiv-
ity, efficiency, and the depth correction coefficient. Following this,
the DEM’s initialization is 2-fold, where chemistry predictions are
made for a melt pool based on the effect of evaporation and melt-
pool overlap, and geometric considerations are evaluated and
updated through the multi-layer model (MLM). By considering
multiple-layers during the AM process, the effect of chemistry
propagation due to melt pool overlap across a part is appropriately
represented; followed by the combined consideration of the DSM-
MLM-DEM that enables the prediction of Ni content in LPBF AM
Ni50.8Ti49.2 parts with a smaller range of uncertainty (RSME: 0.25
Ni [at%]) than typical chemistry measurement techniques such as
WDS and ICP-AES provide. Additionally, the martensitic transfor-
mation temperature, Ms, corresponding to these predictions were
evaluated (RSME: 18.65 K), providing a complete transition from
process to structure to properties. The DSM-MLM-DEM chain has
thus shown its utility for predicting location-specific chemistry
and solving the forward problem for LPBF AM Ni50.8Ti49.2, as well
as providing a path to model NiTi’s PSPP relationship.

Although the results here are promising, several considerations
can be made for the improvement of this model and future work.
The MLM is currently limited in its scope regarding the steady-
state assumptions, where predictions could be improved by allow-
ing for more complex patterns and full resolution of chemistry
propagation. Additionally, the DSM’s ability to switch processing
parameters mid-scan would enable the modeling and chemistry
prediction of more complex printing strategies and should be
tested. From the computational perspective, the most important
aspect in solving the inverse design problem is the introduction
of a cheap and effective forward model. Full uncertainty propaga-
tion analysis through the coupled models is also needed to estab-
lish uncertainty bounds on predicted quantities. The current
15
DSM-MLM-DEMwill be tested in this regard to provide, potentially
through training a cheaper surrogate model, processing parame-
ters that will achieve a desired chemistry, and subsequently vali-
dated with experiments. In this context, the detection and
quantification of prominent uncertainty sources in modeling are
also essential tasks. Finally, as was mentioned in the Introduction,
we will be using this forward model within an inverse design
framework to achieve designable and controllable location-specific
actuation in 3D-printed NiTi-based SMA components.
Data Availability

All data that support the findings of this study are openly avail-
able upon request.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

The authors would like to acknowledge the support of AFRL
through the AFRL/TAMU Data-Enabled Discovery and Design of
Materials (D3EM) MLP program, under subcontract No. UTC-
165852-19F5830-19-02-C1. Portions of this research were con-
ducted with the advanced computing resources provided by Texas
A&M High Performance Research Computing. PH acknowledges
support from NSF through Grant No. 1849085. AE acknowledges
support from NSF Grant No. 1846676. MR and RA acknowledge
NSF through Grant No. 1545403.

References

[1] Nannan Guo, Ming C Leu, Additive manufacturing: technology, applications
and research needs, Front. Mech. Eng. 8 (3) (2013) 215–243.

[2] Anton du Plessis, Chris Broeckhoven, Ina Yadroitsava, Igor Yadroitsev, Clive H.
Hands, Ravi Kunju, Dhruv Bhate, Beautiful and functional: a review of
biomimetic design in additive manufacturing, Addit. Manuf. 27 (2019) 408–
427.

[3] John O Milewski, Additive manufacturing of metals. From Fundamental
Technology to Rocket Nozzles, Medical Implants, and Custom Jewelry, 2017,
pp. 134–157.

[4] H.L. Tarasankar DebRoy, JS ZubackWei, T. Mukherjee, J.W. Elmer, J.O. Milewski,
A. de Allison Michelle Beese, A De Wilson-Heid, W. Zhang, Additive
manufacturing of metallic components–process, structure and properties,
Prog. Mater Sci. 92 (2018) 112–224.

[5] X. He, Tarasankar DebRoy, P.W. Fuerschbach, Alloying element vaporization
during laser spot welding of stainless steel, J. Phys. D: Appl. Phys. 36 (23)
(2003) 3079.

[6] M.M. Collur, A. Paul, T. DebRoy, Mechanism of alloying element vaporization
during laser welding, Metall. Trans. B 18 (4) (1987) 733–740.

[7] S.L. Semiatin, V.G. Ivanchenko, O.M. Ivasishin, Diffusion models for evaporation
losses during electron-beam melting of alpha/beta-titanium alloys, Metall.
Mater. Trans. B 35 (2) (2004) 235–245.

[8] Mohammad Ibraheem Khan, Andrew Pequegnat, Y. Norman Zhou, Multiple
memory shape memory alloys, Adv. Eng. Mater. 15 (5) (2013) 386–393.

[9] J. Frenzel, Easo P. George, A. Dlouhy, Ch. Somsen, M.F.-X. Wagner, G. Eggeler,
Influence of ni on martensitic phase transformations in niti shape memory
alloys, Acta Mater. 58 (9) (2010) 3444–3458.

[10] Weijia Tang, Thermodynamic study of the low-temperature phase b19 and the
martensitic transformation in near-equiatomic ti-ni shape memory alloys,
Metall. Mater. Trans. A 28 (3) (1997) 537–544.

[11] Ji Ma, Brian Franco, Gustavo Tapia, Kubra Karayagiz, Luke Johnson, Jun Liu,
Raymundo Arroyave, Ibrahim Karaman, Alaa Elwany, Spatial control of
functional response in 4d-printed active metallic structures, Sci. Rep. 7
(2017) 46707.

[12] B.E. Franco, B. Ji Ma, GA Tapia Loveall, K. Karayagiz, J. Liu, A. Elwany, R.
Arroyave, I. Karaman, A sensory material approach for reducing variability in
additively manufactured metal parts, Sci. Rep. 7 (1) (2017) 1–12.

[13] J. Sam, B. Franco, J. Ma, I. Karaman, A. Elwany, J.H. Mabe, Tensile actuation
response of additively manufactured nickel-titanium shape memory alloys,
Scripta Mater. 146 (2018) 164–168.

http://refhub.elsevier.com/S0264-1275(21)00883-2/h0005
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0005
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0010
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0010
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0010
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0010
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0020
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0020
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0020
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0020
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0025
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0025
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0025
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0030
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0030
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0035
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0035
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0035
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0040
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0040
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0045
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0045
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0045
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0050
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0050
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0050
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0055
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0055
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0055
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0055
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0060
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0060
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0060
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0065
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0065
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0065


M. Ranaiefar, P. Honarmandi, L. Xue et al. Materials & Design 213 (2022) 110328
[14] Ian D. McCue, Gianna M. Valentino, Douglas B. Trigg, Andrew M. Lennon,
Chuck E. Hebert, Drew P. Seker, Salahudin M. Nimer, James P. Mastandrea,
Morgana M. Trexler, Steven M. Storck, Realizing controlled, shape-morphing
metallic components for deployable structures, Mater. Des. (2021) 109935.

[15] Kubra Karayagiz, Alaa Elwany, Gustavo Tapia, Brian Franco, Luke Johnson, Ji
Ma, Ibrahim Karaman, Raymundo Arróyave, Numerical and experimental
analysis of heat distribution in the laser powder bed fusion of ti-6al-4v, IISE
Trans. 51 (2) (2019) 136–152.

[16] Patcharapit Promoppatum, P. Shi-Chune Yao, Chris Pistorius, Anthony D
Rollett, Peter J Coutts, Frederick Lia, Richard Martukanitz, Numerical modeling
and experimental validation of thermal history and microstructure for
additive manufacturing of an inconel 718 product, Prog. Addit. Manuf. 3 (1)
(2018) 15–32.

[17] Babis Schoinochoritis, Dimitrios Chantzis, Konstantinos Salonitis, Simulation
of metallic powder bed additive manufacturing processes with the finite
element method: A critical review, Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf.
231 (1) (2017) 96–117.

[18] Gu. Dongdong, Beibei He, Finite element simulation and experimental
investigation of residual stresses in selective laser melted ti–ni shape
memory alloy, Comput. Mater. Sci. 117 (2016) 221–232.

[19] Y. Huang, L.J. Yang, X.Z. Du, Y.P. Yang, Finite element analysis of thermal
behavior of metal powder during selective laser melting, Int. J. Therm. Sci. 104
(2016) 146–157.

[20] Sa.ad.A. Khairallah, Andrew T Anderson, Alexander Rubenchik, Wayne E King,
Laser powder-bed fusion additive manufacturing: Physics of complex melt
flow and formation mechanisms of pores, spatter, and denudation zones, Acta
Mater. 108 (2016) 36–45.

[21] Loong-Ee Loh, Chee-Kai Chua, Wai-Yee Yeong, Jie Song, Mahta Mapar, Swee-
Leong Sing, Zhong-Hong Liu, Dan-Qing Zhang, Numerical investigation and an
effective modelling on the selective laser melting (slm) process with
aluminium alloy 6061, Int. J. Heat Mass Transf. 80 (2015) 288–300.

[22] Yali Li, Gu. Dongdong, Parametric analysis of thermal behavior during selective
laser melting additive manufacturing of aluminum alloy powder, Mater. Des.
63 (2014) 856–867.

[23] L. Dong, A. Makradi, S. Ahzi, Y. Remond, Three-dimensional transient finite
element analysis of the selective laser sintering process, J. Mater. Process.
Technol. 209 (2) (2009) 700–706.

[24] Serguei Kolossov, Eric Boillat, Rémy Glardon, P. Fischer, M. Locher, 3d fe
simulation for temperature evolution in the selective laser sintering process,
Int. J. Mach. Tools Manuf. 44 (2–3) (2004) 117–123.

[25] Panagis Foteinopoulos, Alexios Papacharalampopoulos, Panagiotis
Stavropoulos, On thermal modeling of additive manufacturing processes,
CIRP J. Manuf. Sci. Technol. 20 (2018) 66–83.

[26] Pengpeng Yuan, Gu. Dongdong, Molten pool behaviour and its physical
mechanism during selective laser melting of tic/alsi10mg nanocomposites:
simulation and experiments, J. Phys. D: Appl. Phys. 48 (3) (2015) 035303.

[27] Donghua Dai, Gu. Dongdong, Thermal behavior and densification mechanism
during selective laser melting of copper matrix composites: Simulation and
experiments, Mater. Des. 55 (2014) 482–491.

[28] Sankhya Mohanty, Jesper H Hattel, Numerical model based reliability
estimation of selective laser melting process, Phys. Procedia 56 (2014) 379–
389.

[29] Luke Johnson, Mohamad Mahmoudi, Bing Zhang, Raiyan Seede, Xueqin Huang,
Janine T. Maier, Hans J. Maier, Ibrahim Karaman, Alaa Elwany, Raymundo
Arróyave, Assessing printability maps in additive manufacturing of metal
alloys, Acta Mater. 176 (2019) 199–210.

[30] Raiyan Seede, David Shoukr, Bing Zhang, Austin Whitt, Sean Gibbons, Philip
Flater, Alaa Elwany, Raymundo Arroyave, Ibrahim Karaman, An ultra-high
strength martensitic steel fabricated using selective laser melting additive
manufacturing: Densification, microstructure, and mechanical properties, Acta
Mater. 186 (2020) 199–214.

[31] John C Steuben, Andrew J Birnbaum, John G Michopoulos, Athanasios P
Iliopoulos, Enriched analytical solutions for additive manufacturing modeling
and simulation, Addit. Manuf. 25 (2019) 437–447.

[32] Jia-Ning Zhu, Evgenii Borisov, Xiaohui Liang, Eduard Farber, M.J.M. Hermans, V.
A. Popovich, Predictive analytical modelling and experimental validation of
processing maps in additive manufacturing of nitinol alloys, Addit. Manuf. 38
(2021) 101802.

[33] Edwin J Schwalbach, Sean P Donegan, Michael G Chapman, Kevin J Chaput,
Michael A Groeber, A discrete source model of powder bed fusion additive
manufacturing thermal history, Addit. Manuf. 25 (2019) 485–498.
16
[34] P. Honarmandi, R. Seede, L. Xue, D. Shoukr, P. Morcos, B. Zhang, C. Zhang, A.
Elwany, I. Karaman, R. Arroyave, A rigorous test and improvement of the
eagar-tsai model for melt pool characteristics in laser powder bed fusion
additive manufacturing, Addit. Manuf. 47 (2021) 102300.

[35] John Goldak, Aditya Chakravarti, Malcolm Bibby, A new finite element model
for welding heat sources, Metall. Trans. B 15 (2) (1984) 299–305.

[36] L. Xue, K.C. Atli, S. Picak, C. Zhang, B. Zhang, A. Elwany, R. Arroyave, I. Karaman,
Controlling martensitic transformation characteristics in defect-free niti shape
memory alloys fabricated using laser powder bed fusion and a process
optimization framework, Acta Mater. (2021) 117017.

[37] Wayne E King, Holly D Barth, Victor M Castillo, Gilbert F Gallegos, John W
Gibbs, Douglas E Hahn, Chandrika Kamath, Alexander M Rubenchik,
Observation of keyhole-mode laser melting in laser powder-bed fusion
additive manufacturing, J. Mater. Process. Technol. 214 (12) (2014) 2915–
2925.

[38] Gennady G Gladush, Igor Smurov, Physics of laser materials processing: theory
and experiment, vol. 146, Springer Science & Business Media, 2011.

[39] Heikki Haario, Eero Saksman, Johanna Tamminen, et al., An adaptive
metropolis algorithm, Bernoulli 7 (2) (2001) 223–242.

[40] Pejman Honarmandi, Raymundo Arróyave, Uncertainty quantification and
propagation in computational materials science and simulation-assisted
materials design, Integr. Mater. Manuf. Innov. (2020) 1–41.

[41] Pejman Honarmandi, Noah H. Paulson, Raymundo Arróyave, Marius Stan,
Uncertainty quantification and propagation in CALPHAD modeling, Model.
Simul. Mater. Sci. Eng. 27 (3) (2019) 034003.

[42] Vahid Attari, Pejman Honarmandi, Thien Duong, Daniel J. Sauceda, Douglas
Allaire, Raymundo Arroyave, Uncertainty propagation in a multiscale
CALPHAD-reinforced elastochemical phase-field model, Acta Mater. 183
(2020) 452–470.

[43] P. Honarmandi, L. Johnson, R. Arroyave, Bayesian probabilistic prediction of
precipitation behavior in Ni-Ti shape memory alloys, Comput. Mater. Sci. 172
(2020) 109334.

[44] Pejman Honarmandi, Thien Chi Duong, S. Fatheme Ghoreishi, Douglas Allaire,
Raymundo Arroyave, Bayesian uncertainty quantification and information
fusion in CALPHAD-based thermodynamic modeling, Acta Mater. 164 (2019)
636–647.

[45] P. Honarmandi, A. Solomou, R. Arroyave, D. Lagoudas, Uncertainty
quantification of the parameters and predictions of a phenomenological
constitutive model for thermally induced phase transformation in Ni–Ti shape
memory alloys, Model. Simul. Mater. Sci. Eng. 27 (3) (2019) 034001.

[46] P. Honarmandi, R. Arroyave, Using bayesian framework to calibrate a
physically based model describing strain-stress behavior of TRIP steels,
Comput. Mater. Sci. 129 (2017) 66–81.

[47] Thien C. Duong, Robert E. Hackenberg, Alex Landa, Pejman Honarmandi,
Anjana Talapatra, Heather M. Volz, Anna Llobet, Alice I. Smith, Graham King,
Saurabh Bajaj, et al., Revisiting thermodynamics and kinetic diffusivities of
uranium–niobium with bayesian uncertainty analysis, Calphad 55 (2016)
219–230.

[48] P.G. Klemens, R.K. Williams, Thermal conductivity of metals and alloys, Int.
Met. Rev. 31 (1) (1986) 197–215.

[49] Brian Eelan Franco, Variability in the Shape Memory and Mechanical Response
of Additively Manufactured NiTi. PhD thesis, 2019.

[50] Saul Dushman, Scientific foundations of vacuum technique, 1949.
[51] Carl L Yaws, The Yaws handbook of vapor pressure: Antoine coefficients, Gulf

Professional Publishing, 2015.
[52] ASTM F2004-17, Standard test method for transformation temperature of

nickel-titanium alloys by thermal analysis. Technical report, ASTM
International, West Conshohocken, PA, 2017. https://doi.org/10.1520/F2004-
17, https://www.astm.org.

[53] O. Benafan, G.S. Bigelow, D.A. Scheiman, Transformation behavior in niti-20hf
shape memory alloys–transformation temperatures and hardness, Scripta
Mater. 146 (2018) 251–254.

[54] Xinwei Wang, Karol Putyera, Accurate determination of the chemical
composition of nickel-titanium binary alloys by nist high performance
inductively coupled plasma – optical emission spectroscopy method, in:
Shape Memory and Superelastic Technologies Conference (SMST), 2015.

[55] O. Benafan, G.S. Bigelow, A. Garg, R.D. Noebe, D.J. Gaydosh, R.B. Rogers,
Processing and scalability of nitihf high-temperature shape memory alloys,
Shape Memory Superelasticity (2021) 1–57.

http://refhub.elsevier.com/S0264-1275(21)00883-2/h0070
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0070
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0070
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0070
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0075
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0075
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0075
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0075
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0080
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0080
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0080
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0080
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0080
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0085
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0085
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0085
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0085
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0090
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0090
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0090
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0095
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0095
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0095
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0100
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0100
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0100
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0100
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0105
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0105
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0105
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0105
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0110
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0110
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0110
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0115
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0115
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0115
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0120
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0120
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0120
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0125
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0125
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0125
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0130
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0130
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0130
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0135
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0135
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0135
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0140
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0140
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0140
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0145
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0145
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0145
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0145
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0150
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0150
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0150
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0150
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0150
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0155
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0155
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0155
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0160
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0160
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0160
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0160
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0165
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0165
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0165
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0170
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0170
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0170
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0170
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0175
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0175
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0180
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0180
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0180
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0180
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0190
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0190
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0190
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0190
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0190
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0195
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0195
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0195
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0200
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0200
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0205
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0205
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0205
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0210
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0210
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0210
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0215
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0215
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0215
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0215
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0220
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0220
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0220
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0225
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0225
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0225
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0225
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0230
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0230
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0230
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0230
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0235
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0235
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0235
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0240
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0240
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0240
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0240
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0240
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0245
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0245
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0260
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0260
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0260
https://doi.org/10.1520/F2004-17
https://doi.org/10.1520/F2004-17
https://www.astm.org
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0270
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0270
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0270
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0280
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0280
http://refhub.elsevier.com/S0264-1275(21)00883-2/h0280

	A differential evaporation model to predict chemistry change of additively manufactured metals
	1 Introduction
	2 Thermal model calibration
	2.1 Thermal model
	2.1.1 Assumptions
	2.1.2 Thermal history
	2.1.3 Melt pool geometry
	2.1.4 Keyhole depth correction

	2.2 Experimental procedures
	2.3 Calibration approach
	2.4 Calibration results

	3 Predicting location-specific composition
	3.1 Multi-layer model
	3.1.1 Assumptions
	3.1.2 Melt pool overlap

	3.2 Differential evaporation model
	3.2.1 Assumptions
	3.2.2 Mass balance
	3.2.3 Evaporation Rate

	3.3 Experimental procedure
	3.4 Nickel content and martensitic transformation temperature (Ms)

	4 Model validation results and discussion
	5 Conclusion
	Data Availability
	Declaration of Competing Interest
	Acknowledgements
	References


