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Abstract

For each integral homology sphere Y, a function I'y- on the set of integers is constructed. It is
established that I'y- depends only on the homology cobordism class of Y™ and it recovers the Frgyshov
invariant. A relation between I'y and Fintushel-Stern’s R-invariant is stated. It is shown that the
value of I'y at each integer is related to the critical values of the Chern-Simons functional. Some
topological applications of I'y are given. In particular, it is shown that if I'y is trivial, then there is no
simply connected homology cobordism from Y to itself.

1 Introduction

Various Floer homology theories provide powerful tools in 3-manifold topology [Flo88,0S04, KMO7].
The definitions of these invariants follow a similar pattern. To a given 3-manifold Y, one associates a
pair of an infinite dimensional space B(Y’) and a functional CS, defined on B(Y').! Then the relevant
Floer homology of Y is obtained by applying the Morse homological methods to the functional CS. A
unique feature of instanton homology [Flo88] among other Floer homology theories is that both 5(Y")
and the functional CS are topological. On the other hand, one needs to fix additional auxiliary structures
for monopole Floer homology (in the form of a Riemannian metric for Y') and Heegaard Floer homology
(including a Heegaard diagram for Y') to define B(Y') and CS. In the present article, we exploit this
property of instanton Floer homology to introduce an invariant of integral homology 3-spheres which
is preserved by homology cobordisms. The definition of this invariant is partly inspired by ideas from
Min-Max theory.> This homology cobordism invariant provides a platform to unify works of various
authors including Donaldson [Don83], Fintushel-Stern [FS85, FS90], Frgyshov [Frg02], Furuta [Fur90],
Hedden-Kirk [HK12].

*The work of the author was supported by NSF Grant DMS-1812033.

"Here CS stands for the Chern-Simons functional, which is the relevant functional in the case of instanton Floer homology.
This is not a standard notation for other 3-manifold Floer homologies. We use this notation to emphasize on formal similarities
among the definitions of these 3-manifold Floer homology theories.

2See Appendix A for an elaboration on this point.



1.1 Statement of Results

Let Y and Y’ be two integral homology spheres. A cobordism W from Y to Y’ is a smooth 4-manifold
with boundary —Y 11 Y. The 3-manifolds Y and Y’ are homology cobordant, if there is a cobordism
W from Y to Y’ such that H,(W,Y;Z) = H.(W,Y’;Z) = 0. The collection of all integral homology
spheres modulo homology cobordism relation is called the homology cobordism group and is denoted by
.

Suppose Y is an integral homology sphere. As the main construction of the present article, we

. . =0 =0 . . . .
introduce a function 'y : Z — R~ , where R is the extended positive real line R=? U {0}, equipped
with the obvious ordering. The following theorem states some of the basic properties of this function:

Theorem 1. The function I'y satisfies the following properties:

(i) I'y is non-decreasing.

(i1) If there is a homology cobordism from the integral homology sphere Y to another integral homology
sphere Y/, then 'y = T'y-.

Both parts of the above theorem can be strengthened. Before stating an improvement of Theorem 1
(i), we need to give a definition:

Definition 1.1. An integral homology sphere Y is SU(2)-non-degenerate, if all SU(2) flat connections
on Y are non-degenerate. That is to say, for any flat connection e on Y, we have H'(Y’; ad,) = 0 where
ad,, is the flat vector bundle of rank 3 associated to the adjoint representation of .

Theorem 2. Suppose Y is an integral homology sphere. There is a positive constant 7(Y") such that for
any positive integer ¢, we have:

FY (Z) =T (Y)
Moreover, if Y is SU(2)-non-degenerate, then there is a positive constant 7/(Y") such that for any positive

integer ¢, we have:
Ly(i+1) =Ty (i) +7(Y).

The constants 7(Y") and 7/(Y") in the above theorem can be explicitly defined in terms of the moduli
spaces of anti-self-dual SU(2)-connections on R x Y. (See Definitions 3.28 and 3.40.) The following
theorem gives a generalization of part (ii) of Theorem 1:

Theorem 3. Suppose W is a cobordism from an integral homology sphere Y to another homology sphere
Y” such that by (W) = 0 and the intersection form of W is negative definite, i.e., b* (W) = 0. Then there
is a non-negative constant (/) such that for any positive integer i and non-positive integer j, we have*:

Ly (i) < Ty (i) —n(W) I'y/(j) < max(I'y () — n(W),0).

Moreover, the constant 7(WW) is positive unless there is an SU(2)-representation of 71 (W) which extends
non-trivial representations of 71 (Y') and 71 (Y”).

3Here we define 00 — k to be oo for k € EBO.



Gauge theoretical methods provide an important source of tools to study the group ©3. In his
groundbreaking work [Frg02], Frgyshov introduced a homomorphism £ : @% — Z which is defined
using Floer’s instanton homology of integral homology spheres. Frgyshov’s construction motivated
the definition of numerical invariants of homology cobordism group in the other Floer homologies
[Frg96, OS03, KMO7, Frg10, Manl6, Linl18, HM1705], which have many interesting applications in
low dimensional topology. An invariant with similar flavor is introduced in [HHL] by building on the
constructions of [Man16, HM1705]. The invariant I'y- can be regarded as a refinement of Frgyshov’s
h-invariant:

Theorem 4. The function I'y takes a finite value at an integer k if and only if k& < 2h(Y").

The invariant 2(Y") gives constraints on the intersection form of 4-manifolds X which fill the 3-
manifold Y. For example, if A(Y") < 0, then there is no negative definite 4-manifold X with boundary
Y such that the intersection form of W is not diagonal [Fr¢02, Theorem 3]. If we let Y = S3, then this
result specializes to Donaldson’s groundbreaking diagonalizability theorem [Don83]. Negative definite
4-manifolds can be also used to obtain constraints on I'y:

Theorem 5. Suppose X is a 4-manifold whose boundary is an integral homology sphere Y. Suppose the
intersection form Q of X on H?(X;Z)/Tor has the following form

RQ=(-1)@  -@(-lacL

Here £ is a non-trivial negative definite lattice such that:

m(£) == min_ {Q(a)]} (12)
is greater than 1. Then we have:
Ty (i) < mf) for i < [m(QE)J (1.3)

In particular, I'y (1) is a finite number.

For a slightly more general version of Theorem 5 see Propositions 5.1 and 5.3.

In the case that Y = S®, we have:

o k>0
r33<k)={0 - (1.4)

This is an immediate consequence of the definition of I'y. It also follows from Theorem 3 applied to the
product cobordism between two copies of S and Theorem 4. For an integral homology sphere, we say
I'y is trivial, if 'y = I"gs. Theorems 3 and 5 imply that:

Corollary 1. Let W be a homology cobordism from Y to Y’ such that 'y is non-trivial (and hence T'y~
is non-trivial). Then the inclusion of Y and Y’ in W induce non-trivial maps of fundamental groups. In
particular, there does not exist a simply-connected homology cobordism from Y to itself if h(Y") # 0.



This corollary is an extension of [Tau87, Proposition 1.7], which was originally proved using gauge
theory on manifolds with periodic ends. (See Remark 3.52 about the relation between Corollary 1 and
[Tan17].) It also answers a variant of the following question asked by Akbulut [Kir95, Problem 4.95]. In
this question, © denotes the Rokhlin homomorphism:

Question 1.5. Does there exist a simply connected homology cobordism W from Y to Y’ such that
wu(Y) # 0 (and hence u(Y') # 0)?

Remark 1.6 (Levin and Lidman). The following question was raised in [HL.L.18, Remark 1.13]: given an
integral homology sphere Z which bounds a homology 4-ball and v € 71(Z), does there exist a homology
4-ball X such that 0X = Z and +y is null-homotopic in X ? Corollary 1 may be used to give a negative
answer to this question. Suppose Y is an integral homology sphere with a weight one fundamental group.
Suppose 7 is a closed curve in Y which normally generates 71 (Y). We also assume that I'y- # I'gs.
For example, we may take Y to be the poincaré homology sphere (2, 3, 5). (See Example 3.21.) The
3-manifold Z = Y# — Y bounds a homology 4-ball. However, there is no homology 4-ball X with
0X = Z such that y vanishes in 71 (X') because Corollary 1.5 asserts that the inclusion map induces a
non-trivial map from 71 (Y") (and also 71 (—Y")) to w1 (X).

Fintushel and Stern introduced an invariant for any Seifert fibered homology sphere X(aq, .. ., a,) in
[FS85], which is denoted by R(ay, ..., ay) and is defined as follows:

R(ai,...,a ):,_34_”_,_2 Z cot(— wka ) cot( k)sm (Wk) (1.7)

Here a = ay - a2 ... ay,. It turns out that the above number is an odd integer, not smaller than —1. The
following theorem states that I'y- is related to Fintushel and Stern’s R-invariant:

Theorem 6. Let Y be an integral homology sphere which has the form:
Y =Y1#Ys. .. #Y;

where Y; are (not necessarily distinct) Seifert fibered homology spheres with positive values of the
R-invariant. Let Y] be the Seifert fibered space ¥(ay, ag, .. .a,) such that the value of the product

i< [R(al,.zan)-i-iij

a1az . ..ay is maximum among all Seifert spaces Y;. Then for 1 < , we have:

B 1
" dajas...an
In particular, A(X(aq,...,a,)) = % an)+3J.

The main theorem of [FS85] asserts that if R(aq,...,a,) > 0, then there is no negative definite
4-manifold X whose boundary is —X(ay, .. ., ay,). This result follows immediately from Theorems 3 and
6. The following well-known theorem of Furuta is another corollary of Theorem 6.

Corollary 2 ([Fur90]). Suppose {Y; = X(a; 1, .., ain,;)}ier is a collection of Seifert fibered homology
spheres with positive R-invariants such that the positive integers a; := a;10;2 . . . a; ,, are distinct. Then
the integral homology spheres Y; determine linearly independent elements of @%.

4



As a special case, Furuta’s result implies that the integral homology spheres {3(p, ¢, pgk — 1)}.cz>0,
for coprime positive integers p, g, span a subgroup of @% isomorphic to Z™ because R(p, q,pgk —1) = 1.

Corollary 3. Suppose D(T, ,) denotes the Whitehead double of the (p, ¢)-torus knot and Y}, ; is the
3-manifold —X(D(T},q)), the branched double cover of D (T}, ;) with the reverse orientation. Then we

have:
1 1

 _<Ty,, ()<
4pq(4pg — 1) m 4pq(2pg — 1)
More generally, if Y = ny - Y}, ¢, # ... #ny - Yy, 4, for integers n;, p;, g; such that p;, ¢; are coprime
integers greater than 1 and n; is a positive integer, then:
. 1 . 1
min <Ty(1) £ min
1<i<k 4p;iqi(4pigi — 1) 1<i<k 4p;qi(2pigi — 1)

(1.8)

(1.9)

This corollary is a consequence of Theorems 2 and 6 using the ingredients provided by [HK12]. In
[HK12], a lower bound for the positive values of the Chern-Simons functional on the set of flat SU(2)-
connections of Y}, ; is given. This lower bound allows us to obtain the lower bound for I'y in (1.9). The
upper bound in (1.9) is verified with the aid of a negative definite cobordism from X(p, ¢, 2pg — 1) to Y}, ,.
In fact, Proposition 1 below implies that I'y; (1) is one of the following values and it is natural to ask
which of these values are equal to Iy, _(1):

1 1 1
4pq(4pg — 1) 2pq(4pg — 1) 4pq(2pg — 1)’

Corollary 3 can be used to conclude the following theorem proved in [HK12].

Corollary 4 ([HK12]). The knots {D(T 2n_1)},>2 are linearly independent in the smooth concordance
group.

A stronger version of Corollary 4 for a more general family of knots is proved in [PC17]. Analogous to
Corollary 4, it is possible to reformulate the results of [PC17] in terms of I'y. In particular, the arguments
of [PC17] can be used to obtain information about I'y- where Y is the branched double cover of S3,
branched along one of the knots studied in [PC17].

There are properties and invariants of integral homology spheres which do not respect the homology
cobordism relation. But we can use I'y to show that the homology cobordism group is not completely
blind to them. For instance, being an SU(2)-non-degenerate integral homology sphere is not preserved by
homology cobordisms. If Y has an irreducible SU(2) flat connection, then Y# — Y is SU(2)-degenerate
and it is homology cobordant to S, an SU(2)-non-degenerate integral homology sphere. Nevertheless,
we have the following corollary of Theorems of 2 and 6:

Corollary 5. Suppose X(a1,as,...ay) is a Seifert fibered space with R(aj,az,...a,) = 5. Then
Y (a1, as,...ay) is not homology cobordant to an SU(2)-non-degenerate integral homology sphere. In
particular, ¥:(aq, as, . . . a,) is not homology cobordant to a Brieskorn homology sphere X(p, ¢, 7).

Note that there are Seifert fibered homology spheres (a1, as, ... a,) with arbitrarily large values of
R(ay,as2,...a,). (See Example 4.16.)



The Chern-Simons functional of an integral homology sphere Y takes finitely many values on the
space of flat SU(2)-connections. The homology cobordism relation might change this set. For example,
the connected sum Y # — Y, which is homology cobordant to S3, can take non-trivial values on the space
of flat SU(2)-connections. On the other hand, the following proposition implies that if Y is homology
cobordant to Y, then the values of Chern-Simons functionals of Y and Y on the space of flat connections
share the set of finite values in the image of 'y and I'y:

Proposition 1. For any integral homology sphere Y and any integer k, either I'y (k) = oo, I'y (k) = 0,
or there is an irreducible flat connection « such that I'y (k) is equal to CS(«) mod Z.

It is natural to ask whether I'y takes any irrational value. Proposition 1 implies that if Y is a linear
combination of Seifert fibered homology spheres (or more generally plumbed 3-manifolds), then I'y- is
always rational valued. In order to find Y with an irrational value in the image of 'y, we firstly need to
find an SU(2)-flat connection « on an integral homology sphere such that CS(«) is an irrational number.
Even the existence of such flat connections is an open question.

We end this part of the introduction by discussing a filtration on @%. Given two integral homology
spheres Y, Y’, we define Y > Y’ if I'y (1) < T'y+(1). This defines a total quasi-order* on @%. There
is also a well-known quasi-order > on @% where Y >y Y if there is a negative definite manifold
cobordism W from Y’ to Y. Theorem 3 implies thatif Y > Y/, thenY > Y. If W : Y — Y'isa
negative definite cobordism, then performing surgery on a set of loops representing a basis for H; (W, R)
gives rise to a negative definite cobordism from Y to Y’ with vanishing b;.) Theorem 6 implies that if
we pick the sequence {Y) := X(p, ¢, pgk — 1)}, then for any integer N we have Y >p N - Y;_1. It
would be interesting to study the behavior of this filtration (or some refined version of it) with respect to
connected sums of 3-manifolds. Of course, this requires a better understanding of the invariant I'y- with
respect to connected sums which will be investigated in [DST].

1.2 Outline of Contents

For the purpose of this paper, we need to work with a version of instanton Floer homology which is
defined with coefficients in a Novikov field. This version of instanton Floer homology is discussed in
Section 2. Subsection 2.2 is devoted to a review of the functoriality of instanton Floer homology with
respect to negative definite cobordisms with vanishing b;. In [Don02], various equivariant instanton
Floer homology theories for integral homology spheres are introduced. In Subsection 2.3, we introduce
three such equivariant theories and show that they fit into an exact triangle. The construction of this exact
triangle is inspired by similar objects in the context of monopole Floer homology [KMO07] and Heegaard
Floer homology [OS04].

The definition of I'y is given in Subsection 3.1 using the exact triangle of equivariant instanton Floer
homologies. As it is explained there, one can avoid equivariant theories in the definition of I'y. However,
I find it more instructive to use the language of equivariant instanton Floer theories. I also believe that this
approach would be more efficient in studying the behavior of I'y: with respect to topological constructions

*A quasi-order > is a reflexive and transitive binary relation. A total quasi-order on a set S is a quasi-order > on S such that
for any two elements a, b of .S at least one of the relations a > b or b > a holds.



such as surgery along a knot and taking connected sum. In Subsection 3.2, we verify the basic properties of
I'y claimed above. In Section 4, we study the relation between I'y- and Fintushel and Stern’s R invariant.
Section 5 is devoted to the proof of Theorem 5 and its generalizations. In Appendix A, we discuss a finite
dimensional toy model to motivate the main construction of the paper.

Acknowledgements. This work is partly inspired by the ongoing collaboration of the author with Kenji
Fukaya. I am grateful to him for many enlightening discussions. The definition of the exact triangle of
Subsection 2.3 is motivated by the author’s discussions with Michael Miller. I am thankful to him for
explaining to me his work on instanton Floer homology of rational homology spheres. I thank Masaki
Taniguchi for brining his work to the author’s attention. I am also grateful to Simon Donaldson, Peter
Kronheimer and Christopher Scaduto for many interesting conversations about the present work.

2 A Review of Instanton Floer Homology

2.1 Instanton Floer Chain Complexes

Suppose Y is an integral homology sphere and P is an SU(2)-bundle on Y, which is necessarily a trivial
bundle. Let A(Y') be the space of SU(2)-connections on P. We fix a trivialization of P and denote the
associated trivial connection by ©. Other connections on P are given by adding elements of Q! (Y, su(2))
to the trivial connection. Here Q!(Y, su(2)) is the space of smooth 1-forms on Y with coefficients in
su(2), the Lie algebra of SU(2). For a connection A = © + a, with a being an element of Q' (Y su(2)),
the Chern-Simons functional of A is defined to be:

(’]\S(A) = L tr(a A da + 2@ Aa A a)
877'2 Y 3

Suppose G(Y) is the space of smooth automorphisms of P. Given an element of g € G(Y), we can

pull-back a connection using the automorphism g~!. This determines an action of G(Y) on A(Y). A

connection in A(Y) is called irreducible if its stabilizer with respect to the action of G(Y') is +id. The

action of each element of G(Y") changes the value of the Chern-Simons functional by an integer. Therefore,

we have an induced map CS : B(Y') — R/Z where B(Y) is the quotient space A(Y)/G(Y).

Instanton Floer homology of Y can be regarded as the “Morse homology group” associated to the
Chern-Simons functional CS. The critical points of CS are represented by flat SU(2)-connections on
Y and form a compact subspace of B(Y"). The trivial connection (more precisely, the class represented
by ©) is a singular point of B(Y), because the stabilizer of © consists of constant automorphisms of
P. On the other hand, all non-trivial flat connections on P are irreducible. The trivial connection is a
non-degenerate critical point of CS, namely, the Hessian of CS at © is non-degenerate modulo the action
of the gauge group. For now, we assume that the other critical points are also non-degenerate and hence
isolated. Consequently, there are only finitely many critical points of CS.

We can form the analogues of downward gradient flow lines for the Chern-Simons functional. Fix two
critical points « and 3 of CS which are represented by flat connections &, 5 € A(Y). Suppose Ay is a
smooth connection on R x Y, which is equal to the pull-backs of & and 3 on the ends (—o0,—1] x Y
and [1,00) x Y, respectively. The restrictions of Ay to {t} x Y determines a path z in B(Y") from «



to 3. Fix an integer [ > 3 and define A, («, 3) to be the set of Sobolev connections A on R x Y such
that |[A — Ao 1z < 9. As the notation suggests, this space depends only on the path z. We define the
topological energy of an element A € A, («, 3) to be:

1

— tr(F(A) A F(A))
82 RxY
The topological energy is independent of A, and we will denote it by £(z). It is also related to the

Chern-Simons functional as follows:
E(z) =CS(a) —CS(B) mod Z (2.1)

Suppose G («, 3) denotes the group of automorphisms g of the trivial SU(2)-bundle on R x Y such that
||VAog||le < oo. This group acts on A («, /) and the quotient is denoted by B, («, 3).

Fix a metric on Y and equip R x Y with the product metric. A connection A € A, («, ) is Anti-
Self-Dual, if the self-dual part of its curvature, F*(A), vanishes. The path { Ay }s«r. for an ASD
connection A, can be regarded as the downward gradient flow line of the Chern-Simons functional where
we use the following metric on A(Y"):

1
{a,by := 57 ), —tr(a A *b) a, be QYY,su(2))

The ASD equation is invariant with respect to the action of G («, ) and the quotient space of the space of
solutions is denoted by M., (v, 3). The space M, («, 3) is non-empty only if £(z) > 0 or z is homotopic
to the constant path. In the latter case, £(z) = 0 and o = /5. We say a point of M (a, ) is regular
if a representative connection (and hence any representative connection) is a regular point of the map
A — F7T(A). The space M («, /3) is an orientable smooth manifold in a neighborhood of any regular
point. For now, we assume that all elements of the moduli spaces M, («, ) are regular, and address the
general case below.

To any « in B(Y'), we can associate deg™ («), deg™ («) € Z/8Z such that [Flo88, Don02]:
dim(M(a, B)) = deg™ (a) — deg™(8) mod 8 (2.2)

Moreover, deg” (©) = —3, deg™ (©) = 0, and deg™ () = deg™ («) for an irreducible flat connection «
(under the standing assumption that the irreducible flat connections are non-degenerate). The grading
on the elements of B(Y") defined by deg™ is called the Floer grading. Translation along the R direction
gives an action of R on M («, ). Unless a = 3 and z is homotopic to the constant path, this action is
free and M (cv, 8) denotes the quotient space with respect to the R-action.

Suppose A is the following field:
e}
A= {Z a;\" | a; € Q, r; € R, lim r; = o0},
i=0 i—0

Define C(Y") to be the A-module generated by non-trivial flat connections on Y. Define the endomor-
phismd : Cy(Y) — Cy(Y) by:

d(a) == ). #M.(o,8) X3 (2.3)

z:a—f3



where o and 3 are generators of C (Y') and z is a path from « to 3. In the above expression, #M., (o, B)
denotes the signed number of the points in M »(a, ), with the understanding that this sum is non-zero
only if the moduli space is O-dimensional. In the case that Mz(a, B) is 0-dimensional, this moduli space
is compact and hence it consists of finitely many points. Moreover, for a general path z, the moduli space
M, (v, B) is orientable. However, to make (2.3) rigorous, we need to fix an orientation of M, («, 3) for
each «, 5 and z. We refer to [Don02] for a consistent way of fixing orientations for these moduli spaces.
The flat connection 3 contributes to the sum (2.3) only if deg™ () — deg™ () = 1. Therefore, the degree
of d with respect to the Floer grading is equal to —1. The subspace of the elements of degree i in C(Y)
is denoted by C;(Y).

The moduli spaces of ASD connections asymptotic to the trivial connection on one end can be utilized
to construct two other maps. Following [Don02], let D : Cx(Y) — A and Dy : A — Cy(Y) be
A-homomorphisms defined as follows:

Di(a) = Y #M.(a,0) NG Dy(1):= | #M.(,5) A*)p

z:a—0 2:0-03

From the definition, it is clear that D is non-zero only on C4(Y), and D, takes values in the summand
Cy(Y) of Ci(Y).

There is another interesting operator U which acts on C,(Y'). The map U is defined with the same
formula as (2.3) except that M, (a, 3) is replaced with N, («, ), a co-dimension 4 submanifold of
M:(a, B),

Ula) = Y —3#N-(a,8) X5, 2.4)

z:a—f

The factor —% does not have a great significance and is included to simplify subsequent formulas. Each
homology class o € H;(Y') gives rise to a cohomology class u(o) € H*4(B,(a, 8)) [DK90, Don02].
The submanifold N («, 8) of M(«, 3) can be regarded as a subspace of M, («, 3) representing the
cohomology class yi(4 - x) where x is the generator of Hy(Y"). To be more specific, let B*((—1,1) x Y) be
the configuration space of irreducible SU(2)-connections on (—1, 1) x Y with finite Ll2 norms. Associated
to the base point (0,y9) € (—1,1) x Y, there is a base point fibration E on B*((—1,1) x Y’), which is
a rank 3 real vector bundle with structure group SO(3). We fix two sections s1, so of the complexified
bundle E ® C and define NV, («a, 3) as follows:

N (a, B) := {[A] € M.(a, B) | s1(r([A])) and s2(r([A])) are linearly dependent.} (2.5)

Here r : M, (a, ) — B*((—1,1) x Y)) is given by the restriction of a connection to (—1,1) x Y and is
well-defined because of unique continuation. We also assume that s; and sy are chosen generically such
that AV (v, ) is cut down transversely. We refer the reader to [Don02] and [Frg02] for more details®. By
definition, U has degree —4 because N (v, ) is 0-dimensional only if deg™ (o) — deg™(8) = 4.

Let Co(Y) := Co(Y) @A @ Cy_3(Y). Here Cy_3(Y) is the same A-module as Cy(Y) whose
grading is shifted up by 3. The summand A is in correspondence with the trivial connection and we define

>The corresponding operator in [Don02] is equal to —iU and the corresponding operator in [Frg02] is —2U.
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its Floer grading to be 0. The above maps can be combined to form an operator d : Cy(Y) — Cy(Y):

d 0 0
Dy 0 0 (2.6)
U Dy —d

Proposition 2.7. The map d defines a differential of degree —1 on C.

Proof. The same proposition with the coefficient ring Q is proved in [Don02]. (See also [Frg02].) The
argument there can be easily adapted to our case where the coefficient ring is A and the differential is
weighted by powers of A\. We only need to observe that the topological energy of the concatenation of two
paths 21 and 29 in B(Y") is equal to the sum of the topological energies. O

Define the minimal-degree of a non-zero element n = Z?io a; A" of A by
val(n) = min{r; | a; # 0}
1

We can also extend the minimal-degree to the case that 7 = 0 by defining that val(0) = co. The
minimal-degree of (71, . ..,n;) € AF is defined as:

val(ni, ..., mg) == ml.iH{Val(m)}

In particular, val can be defined on 5'* (Y'). The differential d increases the minimal degree, because
the moduli spaces involved in the definition of this differential are non-empty only if the energy of the
corresponding path is positive.

One is often faced with homology spheres Y such that the Chern-Simons functional has degenerate
critical points or the moduli spaces M («, ) are not regular. In these cases, we need to perturb the
Chern-Simons functional. The classical choice of such perturbations are given by holonomy perturbations
[Don87, Tau90, Flo88, Don02, Kro05, KM 11b]. Without going into details of holonomy perturbations, we
explain what such perturbations provide for us. Here we follow the approach in [Don02, KM 11b]. For
each 3-manifold Y, one can define a family of holonomy perturbations parametrized by a Euclidean space
P: to each 7 € P, one can associate a bounded continuous function f : B(Y) — R and this association
is linear. If o and 3 are two critical points of CS + f and z is a path from « to 3, then the moduli space of
downward gradient flow lines from « to 3 is denoted by M7 («, 3). More precisely, M7 («, ) consists
of the gauge equivalence classes of connections A € A, («, 3) such that:

FHA) + (dt AV, fr)T =0
where A; := Al «y and V 4, fr is the formal gradient of f at the connection A;.

Proposition 2.8 ([Don02, KM11b]). For any positive real number e, there is an element w € P such that
the following properties hold:

(i) |nlp < e
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(ii) the non-trivial critical points of the functional CS + f are non-degenerate and irreduicble;

(iii) for any two critical points o and 3 of CS + f and any path z with index(z) < 8, the moduli space
MZ(«, B) consists of regular solutions, i.e., any element of this space is cut down transversely;

(iv) if a flat connection is already non-degenerate, then we can assume that f vanishes in a neighbor-
hood of this flat connection.

Remark 2.9. Strictly speaking, the proof of part (iv) of Proposition 2.8 does not appear in [Don02, KM11b].
However, the proofs there can be easily adapted to treat this part. The functions f are defined in terms
of the holonomies of connections in 3(Y") along a set of loops embedded in Y. If a flat connection « is
non-degenerate, then there is an open neighborhood of the equivalence class of this connection in B(Y"),
which does not contain any other flat connection. In fact, we can pick this neighborhood such that for any
flat connection in the complement of the class of « there is a finite set of loops in Y such that holonomies
along these loops distinguish this connection from the connections in the chosen neighborhood. Using
this observation one can easily adapt the arguments in [Don02, Chapter 5] to obtain the desired result.

Fix a positive real number ¢, and let f; be a perturbation given by Proposition 2.8. The trivial
connection is always a critical point of CS + f;, and if € is small enough, all the other critical points are
irreducible. Any such 7 is called an e-admissible perturbation. We also say a perturbation is admissible
if it is an e-admissible perturbation for some e¢. By replacing CS with CS + f;, we can construct a
chain complex (CT(Y), J) in an analogous way. The chain group can be also equipped with the Floer
grading and val. The differential decreases the Floer grading by —1. However, the differential d does not
necessarily increase the minimal-degree anymore. Nevertheless, there is an upper bound in terms of ¢ on
how much d decreases val.

Lemma 2.10. For any positive real number 0, there exists a positive € such that for any e-admissible
perturbation T and any ¢ € CL(Y'), we have:

val(d¢) < val(¢) + 0.

Proof. For critical points «, 8 of CS + fr, an element of the moduli space M7 (v, 3) can be regarded as
a downward gradient flow line of CS + f;. In particular, the non-emptiness of this moduli space implies
that:

5(2) + fw(a) - fw(/B) = 0.
é

If € is small enough, then we can assume that |f-| at any point of B(Y") is less than 5. Therefore,

&£(z) = —6, which implies that the differential d decreases the minimal-degree on CT(Y') by at most
J. O

2.2 Cobordism Maps

In this subsection, we discuss the functorial properties of instanton Floer homology with respect to
cobordisms. Suppose Y , Y’ are two integral homology spheres with base points, and m, 7’ are e-
admissible perturbations of the Chern-Simons functional on Y, Y”, respectively. The associated chain
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complexes to these perturbations are denoted by (C7(Y),d) and (CT (Y'),d). Let W : Y — Y be
a cobordism with a choice of a path between the base points of Y, Y’ such that b*(W) = 0 and
Hi(W,Z) = 0. We define below a chain map Cyy : CT(Y) — C™ (Y”), which has the following matrix
form with respect to the standard direct sum decompositions of CT(Y) and CT (Y”):

p(W) 0 0
Ay(W) 1 0 2.11)
p(W)  Dg(W) (W)

As in the case of of the differentials of the Floer complexes, these maps are defined by the moduli
space of ASD connections. Firstly, we need to fix a Riemannian metric on W. We assume that this metric
is the product metric in a collar neighborhood of its boundary corresponding to the chosen metrics on Y
and Y. Let also W be the non-compact manifold that is given by gluing the cylinders (—o0,0] x Y and
[0,00) x Y’ with the product metric to .

Let o, ' be respectively generators of CT(Y), CT (Y') and fix connections representing these
elements of B(Y"), B(Y”). Let A be a connection on the trivial SU(2)-bundle over W+ which is equal
to the pull back of the chosen representatives on the cylindrical ends. If A" is another connection with
the similar properties, then we say A and A’ are equivalent to each other if there is an automorphism g
of the trivial SU(2)-bundle such that g*(A) — A’ is compactly supported. An equivalence class of this
relation is called a path from « to o along W. The fundamental group of B(Y") (resp. B(Y")), based
at the connection « (resp. o), acts faithfully and transitively on the space of paths from « to o’ by
concatenation. The topological energy of a path z, represented by a connection A, is defined to be:

B 1
872

E(z): JWJr tr(F(A) A F(A)).

This energy is well-defined and only depends on z. Moreover, we have the following generalization of
(2.1):
E(z) = CS(a) — CS(/) mod Z (2.12)

For a path z from « to o' represented by a connection Ay, define A,(W;«,a’) to be the space
of SU(2)-connections on W such that |[A — Ag| 2 < . Let G.(Wsa, a’) be the group of the

automorphisms ¢ of the trivial SU(2)-bundle such that |V 4, 12 < 0. The group G.(W; o, o) acts on
A.(W; a,a’) and the quotient space is denoted by B, (W; «, ’). We consider perturbations of the ASD
equation on the space B, (W; «, o’) compatible with the perturbations 7 and 7. This equation has the
following form:

F*(A) + Go(A) + G1(A) = 0. (2.13)

The term G(A) is defined using 7 and 7’ in the following way:
Go(A) := d(t)(dt A Va, fr)" + & (t)(dt AV, frr)"

where ¢ (respectively, ¢) is a smooth function on R that is equal to 1 on (—o0, —2] (respectively, [2, 00))
and equal to 0 on [—1, 0] (respectively, [0, 1]). The functions ¢ and ¢’ clearly determine functions on W
which are respectively supported on the incoming end and the outgoing end of W ™. The term G1(A)
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in (2.13) is a secondary holonomy perturbation which is supported on a compact subspace of W*. The
parametrizing space for this secondary holonomy perturbation is a Euclidean space P. Let MT(W; o, o)
be the moduli space of solutions to the equation in (2.13).

As in the case of cylinders, we can associate an integer index(z) to the path z, which is the expected
dimension of the moduli space MT(W; a, o’). This integer is defined to be the index of the linearization
of the equation in (2.13) modulo the action of the gauge group and it satisfies the following identity:

index(z) = deg™ (a) — deg™ (/) mod 8 (2.14)

The maps involved in the cobordism map CN’W are defined using low dimensional moduli spaces of the
form MT(W; «, o’) where T is chosen such that all these moduli spaces are cut down transversely:

Proposition 2.15 ([Don02]). Given a positive real number ¢, there is a secondary perturbation term
7 € P such that |T| < € and all the moduli spaces MT(W; o, 1) with index(z) < 8 consist of regular
solutions.

Any secondary perturbation 7 that satisfies the properties of Proposition 2.15 is called an e-admissible
secondary perturbation. We say T is admissible if it is e-admissible for some choice of €. For an
e-admissible perturbation, M7 (W; a, o) is a smooth manifold whose dimension is equal to index(z).

We start with the definition of the map ¢ : CT(Y) — CT (Y”). We firstly fix an an e-admissible
secondary perturbation 7. Let a be a generator of C (Y') and define:

o(a) = Z HMT(W;a, o) - NG/ (2.16)

zia—a!

where the sum is over all paths z that the moduli space MT(W; a, ') is O-dimensional. In fact, for each
o/ there is at most one path z from « to o’ such that the moduli space MT(W; a, ') is 0-dimensional
and for this choice of z, the moduli space is compact. Therefore, it consists of finitely many points. As in
the case of differentials, there is a canonical choice of orientation for this moduli space [Don02] and for
this choice ¢ is a chain map.

The other terms in (2.11) are defined in an analogous way. For example, 1 : C7(Y) — ,fl_3(Y/ )
is defined similar to the map ¢ in (2.16) by replacing #M7T(W; a, ') with —2#NT(W; a, ) where
NT(W;a, /) is a codimension 3 submanifold of MZ(W;«, ). The definition of NT(W;«, o) is
similar to NV, («, 3) and uses the path between base points. We refer the reader to [Fr¢02, Theorem 6]
for the definition of 1. The maps A1(W) : CT(Y) — A and Ay(W) : A — CT (Y”) are also defined by
considering the moduli spaces M7 (W, o) where either « or o’ is equal to the trivial connection. A
standard argument using 1-dimensional moduli spaces over W verifies the following proposition:

Proposition 2.17. Cyy : CT(Y) — CT (Y') is a chain map.

In the following, when the choice of the cobordism W is clear from the context, we drop W from our
notation and denote the above maps with ¢, Ay, As and pu.

The chain map 6'W behaves well with respect to the Floer grading and val. Identity (2.14) implies

that the map Cyy preserves the Floer grading. In order to study the behavior with respect to val, let
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MT(W;,a’) be a non-empty moduli space that contains the class represented by a connection A. Then
£(z) can be written as the sum of three terms £y(2), £1(2) and E2(z), which are defined in the following
way:

1 1

tr(F(A) A F(A)) &1(z) :

= = tr(F(A) A F(A
8 (—00,—T|xYy 8 [T,00)x Y1 (F(4) (4)

_ # f tr(F(4) A F(4))

where ¢ is the complement of (—oo, —T'| x Yy and [T, 00) x Y7 in W™, and T is chosen such that the
secondary perturbation term is supported on W€, We can argue as in the previous subsection that for any
positive constant ¢ there is € such that &(z), £1(z) = —26. We also have:

Es(2) :

L
872

E3(2)

\%

g | @RI P

f Go(A) + G1(A)?
o

Therefore, if 7 is given by Proposition 2.15 and e is small enough, then we can conclude that £5(z) > —4.
Consequently, we can ensure that C'yyr does not decrease val by more than a given positive number once €
is small enough.

We can relax the condition Hy (W, Z) = 0 to b1 (W) = 0 using the ideas of [Don87]. In the case that
b1 (W) = 0, we have two additional types of reducible flat connections on W *:

(i) flat connections induced by representations of 71 (W) into Z/2Z. The stabilizer of any such
reducible connection is a copy of SU(2);

(ii) flat connections induced by representations p of 7y (W) into S* such that there are elements in the
image of p which do not have order 2. The stabilizer of any such reducible connection is a copy of
S1. The flat connections obtained from p and p~! are gauge equivalent to each other.

Using holonomy perturbations we may assume that any reducible flat connection of type (i) is regular.
Moreover, we may assume that the linearization of the perturbed ASD equation at any reducible connection
of type (ii) has 1-dimensional co-kernel. See [Don87] and [CDX17, Subsection 7.3] for more details on
the proofs of these facts.

The presence of flat connections of types (i) and (ii) requires us to modify the proof of Proposition
2.17. More specifically, we have the following new equations:

DyoX=c(W) Dy +A;od, Ao Dy =c(W)-Djy—d oAy, (2.18)

where ¢(W) is the number of the elements of Hy (W, Z), which is a finite positive integer. The first
equation in (2.18) is obtained by looking at the 1-dimensional moduli space associated to a path z along
W from a generator of C'7(Y) to the trivial connection ©’ on Y”. The first term on the right hand side
of the first equation in (2.18) is obtained by counting the ends associated to gluing an element of the
0-dimensional moduli space ./\ZQ(Y x R, a, ©) to flat connections of type (i) and (ii). Using the arguments
of [Don87], any flat connection of type (i) contributes one end to the glued up moduli space and any
flat connection of type (ii) contributes two ends. Therefore, in total we have the coefficient ¢(W) in our
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formula. A similar explanation applies to the second equation in (2.18). In summary, Proposition 2.17
holds if we replace (2.11) with (2.19):

(W) 0 0
A(W) (W) 0 (2.19)
p(W)  Ag(W) (W)

2.3 Equivariant Instanton Floer Homology Groups

In this section, we review the definition of three different equivariant Floer homology groups T* (Y),
T*(Y) and I, (") for any integral homology sphere Y. These Floer homology groups are A[z]-modules
and are constructed algebraically from the Floer chain complexes of Subsection 2.1 without any other
geometrical input. The Floer homology groups I, (Y) and T*(Y) are essentially the same as the Floer
homology groups HF(Y'), HF (Y') introduced in [Don02]. The notation here is motivated by the notations
used in the context of monopole Floer homology [KMO7]. Similar to the three flavors of monopole Floer
homology, the Floer homology groups I(Y) 1(Y) and I(Y') are modules over A[z] and they fit into an

exact sequence of the form:
Y) I T.(Y
L(Y)

Following Subsection 2.1, we fix an e-admissible perturbation 7 for the Chern-Simons functional
of Y and form the chain complex (C(Y), d) and the maps U, Dy and Ds. The Floer homology group
L. (Y") (pronounced as “I-from”) is the homology of the following chain complex:

(2.20)

N N
CT(Y) :=CI(Y)®Az] d(a, 2 a;ix’) = (do— Y. U'Dy(a;),0)

1=0

The A[z]-module structure is also induced by the map:

Z a;x (Ua, Dy(a) + Z a; T ’+1

It is helpful to think about the summand A[z] in 6’; (Y') as a free A[z]-module generated by the trivial
connection. Similar comments apply to L.(Y") and L, (Y") described below.

The Floer homology group T*(Y) (pronounced as “I-to”) is the homology of the following chain
complex:

-1 —1

CT(Y):= CT(Y)® Az, z]/Ax] d(o, D a’) = (do, Y. DU a)a')

i=—00 1=—00
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Here A[Jz~!, z] is the ring of Laurent power series in 2~ *. The action of 2 € A[z] on this vector space
over A is given by multiplication by z. The quotient module A[Jz~!, 2]/A[z] can be identified in an
obvious way with the set of power series in 2! with vanishing constant terms. The A[x]-module structure
on CT(Y) is given by the map:

-1 -2
z - (a, 2 a;z') := (Ua + Dy(a_1), 2 a;z' ™)

1=—00 i=—00

The Floer homology group I, (Y’) (pronounced as “I-bar”) has a very simple form, analogous to the
monopole Floer homology group HM (Y). Let C(Y) = AfJz~', z] with the obvious A[x]-module
structure and d = 0. In particular, 6:(1/) is independent of the choice of the perturbation term 7. Then
L.(Y), defined as the homology of the complex (C (Y), d), can be simply identified with AfJz !, z].

Next, we define chain maps:

ar(y) ’ Cr(Y) 221)
N
Cu(Y)
by the formulas:
i( Y ai’) = (). U'Da(ai), Y] aiat), (2.22)
1=—00 1=0 1=—00
-1 '

jla, Y] aa’) = (a,0), (2.23)
p(a, Z a;z') = Z DU a)z' + Z a;x’. (2.24)

i=0 i=—00 =0

Lemma 2.25. The maps i and p are A[x]-module homomorphisms which are also chain maps, and j is a
chain map which commutes with the action of x up to a chain homotopy. That is to say, there is a map

h:CT(Y) — CT(Y) such that:

itoxr =x01, jox—xojszoh—i—hoc\i/, pox =xop. (2.26)
In particular, if iy, j« and py are the maps induced by 1, j and p at the level of homology, then they are
A[z]-module homomorphisms. Moreover, iy, ji and p form an exact triangle as in (2.20).
Proof. 1t is straightforward to check that the first and the third identifies in (2.26) hold. If we define:

-1

h(c, Z a;iz’) := (0, —a_1).

1=—00
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then we obtain the second identity in (2.26). We define maps ¢, [ and ¢ as in the diagram:

CT(Y) : Cr(Y) (2.27)

using the formulas:

—1
t(a, Z aizt) = — Z a;z’, Zaz = ‘O‘Ia,()), (2.28)

i=—00 1=—00
and:
t( Z a;z') = (0, Z a;x'). (2.29)
1=—00 1=0

In the definition of [, the term |a| denotes the Z/8-grading of «. In particular, we assume that « is a
homogenous element. These maps satisfy the identities:

poj+tod=0 iop+lod+dol=0 joi+dor=0 (2.30)

It is also straightforward to check that the following maps are respectively isomorphisms of the chain
complexes CT(Y), CT(Y) and C(Y):

[oj+iot top+jol toi+por

This implies that (2.21) determines an exact triangle at the level of homology groups. (See [OS05, Lemma
4.2] and [KM11a, Lemma 7.1].) O

Equivariant instanton Floer homology groups and the exact triangle in (2.20) are functorial with
respect to cobordisms. Suppose Y and Y are two integral homology spheres and W : Y — Y’ is a
cobordism with by (W) = b (W) = 0. Suppose e-admissible perturbations 7 and 7’ of the Chern-Simons
functionals of Y and Y are fixed, and these perturbations are extended to an e-admissible perturbation
of the ASD equation on W ™. As in the previous subsection, we can associate the maps ¢, p, A1 and
Ay to W by the chosen perturbations. We use these maps as the only geomeirical iAnput to obiain the
functoriality of the exact triangle in (2.20). We firstly define a homomorphism Cyy : CT(Y) — CT (Y”)
as follows:

i—1

_U’ U=k Dy(a;), a;x
Z ,u 21 Zz

Mz

CA'W(oz,Zaimi) = (ga(oz) Z(U’ ) Ao (a;) +

i=0 i=0 i=0 k=0
N—-1 N N—-1 N
+ 3 () DU T Ay (ar))zt + D ( 2 AU 1Dy (ag)) 2
=0 k=i+1 =0 k=i+
N-2 —1 N
+ D 1 DYy R Dy(ay)) )
i=0 j=i+1k=j+1
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Here ¢(W) denotes the number of the elements of H; (W, Z). Similarly, Cw : CT(Y) > C™(Y") is
defined to be:

—1
Cv’W(a, Z a;z’) ( Z AU 7o)z Z Z Dy (U Ui = (o)t

i=—00 i=—00 i=—00 j=1i+1
—1 ) —1 ) . —1 ‘ )
() a) (W) + D) AU Dy(1)al + Y. Dy(U) 7 Ag(1)a?
1=—00 j=—00 j=—0

£33 D’l(U’)“uU“Dz(l)x”’“)>

J=—0k=—0

*’TIJ

Finally, we define C'y : C, (Y) — C (Y'):

N N

éw( Z aixi) (Z aixi) (C(W)+ 2 A1U7i71D2<1)1’i+ 2 Dll(U/)iiilAQ(l)xi

i=—00 i=—00 1=—00 1=—00

3 S o)

k=—00j=—00

Proposition 2.31. The maps é’w, CV’W and Cyy are chain maps. The map Cyy is a A[x]-module
homomorphism, and Cyy and Cyy commute with the action of x up to chain homotopies. That is to say,
there are maps K : and £ such that:

a:oCA'W—é'WO:L‘zﬁoc?—l—c?oﬁ xva’W—Cv’WoxzﬁocijJ’oS
Moreover, there are maps K : CT(Y) — CL(Y') and L : C(Y) — CT(Y") such that:
p’oé’w—éwop:Kocf j'oéW:@Woj i’oéw—(f’woi:c\l/’olj

In particular, éW, 5W and Cyy induce a A[x]-module homomorphism of exact triangles at the level of
homology.

Proof. The first part is easy to verify. For the remaining parts, we can define K, £, K and L as follows:

N -1
Rla, Y aia’) = (@), Ar(a)), Lla, Y] aia') = (ula) + Ag(a_1),0), (2.32)
=0 i=—00
N 4 —1 ' —1 —1 4
K(a, Y aiw’) = Y MU Hegal + Y >0 DYU) 7 ui )2, (2.33)
i=0 1=—00 k=—00 j=—00
N N N i—1 ‘ '
LY aa') = (O2(U) Ag(as) + D2 DU U =17 Dy(ay), 0). (2.34)
i=—00 i=0 1=05=0
O
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Remark 2.35. Suppose W : Y — Y’ is a negative definite cobordism with trivial b;. Standard
continuation maps can be used to show that if one changes the perturbation term 7 and the Riemannian
metric on Y, then Cyyr changes by a chain homotopy of the following form:

b0 0
Ky O 0 . (2.36)
v Ky —¢

This input can be used to show that the chain homotopy type of the maps @W, CV’W and Cyy are also
independent of the perturbation term and the metric.

Suppose W' : Y" — Y is another negative definite cobordism with trivial b;. Then we can form the
composite cobordism W#W’ Y — Y. Standard neck stretching argument shows that the map 5w#W/
is chain homotopic to C’W/ o CW Using this input, it is straightforward (but slightly cumbersome) to
show that CW#W/ is chain homotopic to CW/ o CW Similar results hold for C’W#W/ and CW#W/ We
do not attempt to write down these chain homotopies here partly because we do not need them. In fact,
there are larger models for the homology groups I, (Y), L, (V) and L, (Y) where these results are easier to
verify. In particular, these alternative models will behave better with respect to connected sum of integral
homology spheres [DST].

_We can extend the definition of the grading val to the non-zero elements of the complexes 6’,{{ (Y),
CT(Y) and C (Y):

val(a Zaz _ ) val(ag,a1,...,an) ﬁZiiOalx‘ # 0,
val(a) if >. g aiz’ =0,

_N :
iy val(e) if a # 0,
val(c, Z a;z') = { val(a_y) ifa=0anda_pn # 0,

i=—00
and N
; ag, a1, ...,ay) if SN aa’ #0
1 ) — va ) 9 9 =0 "1 9
v ﬂ,;@ ait’) { val(an) ifN < 0.
We define val of the zero element in these three complexes to be co. It is also useful to pick a notation for
the standard notion of degree for non-zero elements of C, (Y) = Az, z]:

N
Deg( Z a;z’) = N ifay # 0.

1=—00
The following lemma is a straightforward consequence of our analysis of the previous subsection on the

behavior of cobordism maps with respect to val:

Lemma 2.37. For any positive real number 0, there is a positive constant € such that if the perturbations
m, 7w’ and the secondary perturbation on W are e-admissible, then the maps C’W and CW do not decrease
val by more than 6. Moreover, for any z € Cy(Y), the difference |val(Cyy (2)) — val(z)| is at most § and

Deg(Ciw (2)) = Deg(2).
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Note that the claim Deg(Cyy (z)) = Deg(z) holds for any choices of admissible perturbations and we do
not need any assumption on e.

We end this subsection with some speculations about equivariant instanton Floer homology groups.
An immediate consequence of the claimed properties in Remark 2.35 is that the exact triangle (2.20) is a
topological invariant of Y and does not depend on the choices of the perturbation term and the Riemannian
metric on Y. By dropping the powers of A in our definitions, we can similarly define the analogue of the
exact triangle (2.20) with rational coefficients.

The three flavors of monopole Floer homology ﬁl\\/I(Y), ﬁlT/I(Y) and HM(Y') are also 3-manifold
invariants which fit into an exact triangle of Q[z]-modules®[KMO07]. Moreover, for integral homology
spheres, the invariant HM(Y") is always isomorphic to Q[z~!,z]] = Hom(Q[z~!,z],Q). These
similarities motivate the following question. An affirmative answer to this question would be in the sprit of
Witten’s conjecture relating Donaldson invariants and Seiberg-Witten invariants [Wit94, GNY 11, FLO2].

Question 2.38. Is there a relationship between the instanton invariants 1(Y'), 1(Y') and the monopole
invariants HM(Y'), HM(Y") ? What about the exact triangle (2.20) and its monopole counterpart [KMO07,
Section 3.1]?

As it is pointed out in Remark 3.25, Fréyshov’s instanton h-invariant can be reformulated using the
exact triangle (2.20). This definition of h-invariant is similar to the definition of Monopole h-invariant
[Fre96, KMO7,Fré10]. As a follow up to Question 2.38, one can ask:

Question 2.39. Is there a relationship between instanton and monopole h-invariants?

3 Homology Cobordism Invariants

3.1 Definition of I'y

We are ready to give the definition of I'y-. For any k, define:

Iy (k) := max(| lim inf (val(z) — val(w)) [,0) (3.1)
Imlp—=0 2eCL(Y), weCE(Y),
d(w)=i(z), Deg(2)=—k

Here the limit is taken over a sequence of perturbations {7;} where 7; is ¢;-admissible and ¢; converges
to 0. We use the convention that the infimum of an empty set is equal to co. In particular, if there is no
z € C,(Y) with i(z) = 0 and Deg(z) = —Fk, then the infimum in the above expression is equal to o0.
In the following proposition, we show that the definition of I'y (k) is independent of the choice of the
sequence of perturbations {7; }. Later in this subsection, we give equivalent definitions of I'y (k) which is
more in line with the original definition of the h-invariant in [Frg02].

®In the context of monopole Floer homology, Q[x] should be regarded as the cohomology ring of BS*. On the other hand,
equivariant instanton Floer homologies (with rational coefficients) are modules over the cohomology ring of BSO(3), which is
again isomorphic to Q[x].
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Proposition 3.2. For any integer k, I'y (k) is well-defined and depends only on k and the homology
cobordism class of Y.

Proof. Suppose Y and Y’ are integral homology spheres and W : Y — Y is a homology cobordism.
Suppose 7 and 7’ are e-admissible perturbations for the Chern-Simons functional of Y and Y. We extend
these perturbations to W™ using a secondary e-admissible perturbations. Thus we can associate the chain
complexes CT(Y), CT(Y), Ca(Y) to Y, the chain complexes CT (Y"), CT' (Y"), 6:,(1/’) to Y and the
chain maps Cyy, Cty and Cyy to W.

~

Let z € CE(Y) and w € CT(Y) be chosen such that Deg(w) = —k and d(w) = i(z). Let

w’ = Cy(w) and 2’ = Cyy(z). Proposition 2.31 and Lemma 2.37 assert that:

~

Deg(2') = —k, i(2)) = d(w' + L(2)),

where L is defined in (2.34). We fix a positive constant §. Using Lemma 2.37, we can conclude that there
is a positive constant ¢y such that if € < ¢g, then:

val(w') = val(w) — 6, [val(z') — val(z)] < 6. (3.3)
We can apply a similar argument to show that if ¢; is small enough, then:

val(L(z)) = val(z) — 4. (3.4)

Identities (3.3) and (3.4) imply that:

val(w’ + L(z)) in(val(w'), val(L(z))

)
in(val(w),val(z)) — ¢

m
m

VoWV

Therefore, we have:

val(z") — val(w’ + L(2)) < val(z) — min(val(w), val(z)) + 26
< max(val(z) — val(w), 0) + 20

By taking infimum over all pairs of (w, z) as above we have:

. inf (val(2')—val(w')) <
2eCy (Y),w'eCT (Y'),
d(w')=i(2"), Deg(z')=—k
max( inf _ (val(z) — val(w)),0) + 20 (3.5)
26C 4 (Y), weCE(Y),
d(w)=i(z), Deg(z)=—k

By reversing the cobordism W, we obtain a similar inequality where the roles of Y and Y are reversed.
Thus the limit in (3.1) converges to a finite number for any sequence of holonomy perturbations {;} with
|7i|» being convergent to zero. Moreover, this limit is independent of the chosen sequence, and only
depends on the homology cobordism class of Y and the integer k. 0
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Next, we attempt to unravel the definition of I'y. Fix a positive integer &, and let « € CZ(Y') be
chosen such that:

da =0, DU Ya) # 0, DU’ (a) =0 foranyj <k — 1. (3.6)

We can form a pair:

—k ~1
= Y DU Ha)z' e TL(Y) w=(a, > az;)eCI(Y) (3.7)
1=—00 1=—00
where the constants a; € A are chosen arbitrarily. Then z has degree —k and i(z) = J(w) In fact, any

pair of z with degree —k and w, satisfying d(w) = i(z), are given as in (3.7) for an appropriate choice of
« and {a;}. In particular, the definition of I'y- at a positive integer can be rewritten as:

Ty (k) = lim inf(val(D;U%Y(a)) — val())) (3.8)

|rlp—0 «

where the infimum is taken over all o € CJ (Y') that satisfy (3.6). Given any positive constant J, there is €
such that if 7 is an e-admissible perturbation, then the difference val(D'U®* =1 (a)) — val(«) is greater
than —¢. This is the reason that we do not need to take the maximum of the expression in (3.8) and 0. The
possibility to drop the maximum in (3.1) for positive values of k can be also explained using the fact that
for any z with negative degree, we have L(z) = 0 where L is defined in (2.34).

The infimum in (3.8) can be taken over an even smaller set. We firstly need to introduce a new
terminology:

Definition 3.9. Let ¢ be an integer and r be a real number. Let 7 be an admissible perturbation of the
Chern-Simons functional of an integral homology sphere Y. Let aq, . . ., ay, be the critical points of the
perturbed Chern-Simons functional whose Floer gradings are equal to ¢ mod 8. For each oy, there is up to
homotopy, a unique path z; from the trivial connection © to «; such that index(z) is equal to —i — 3. Let
also 7; denote the topological energy of z;, which is an integer lift of —CS(«;). (See the identity in (2.1).)
A homogenous element of CT(Y') with weight (r, ) is defined to be an element of the following form:

A (81 A g + 89N 2 + - + s\ R ay)

where s; are rational numbers. The set of all homogenous elements of CJ (Y') with weight (r, 7) is denoted
by C7(Y).

Definition 3.10. Let r, < and oy be given as above and r; be defined as in in Definition 3.9. Given:
a=3 Y s\ e CF(Y)
1=1;j=0

with s; ; € Q, define:

k o
Pri(a) == > ) s1Pri(Aay) € CF(Y)
I=1j=0

22



where P, ; (A" ¢y) is equal to X0 oy if 7y ; = 7 + 17, and is equal to O otherwise. We extend P, ; to a map
on CJ (Y') by requiring P,.;(5) = 0 if 3 is an element with Floer grading j such that j # i mod 8. The
map P, ; is called projection to homogenous elements of weight (r,i). Similarly, we define a projection
map P, : A — A which maps an element a of A to sA” where s is the rational coefficient of A" in a.

The following lemma is a straightforward consequence of additivity of indices and topological
energies:
Lemma 3.11. Any homogenous element of weight (r,i) of CZ(Y) is also a homogenous element of
(r+ 1,7 + 8). We also have:
(i) d maps a homogenous element of weight (r,i) to a homogenous element of weight (r,i — 1), and

we have do P,.; = P, ;_10d;

(ii) U maps a homogenous element of weight (r,1) to a homogenous element of weight (r,i — 4), and
we have U o P, ; = Pr;_4 0 U;

(iii) Dy maps a homogenous element of weight (r, 1) to a rational multiple of \", and we have D0oP,. 1 =
PT o Dl;

(iv) Do maps A" to a homogenous element of weight (r, —4), and we have Dy o P, = P, _4 0 Da.
Suppose o € CT(Y) satisfies (3.6), and val(D U*"1(a)) = ro. We define o to be \7"0 -
P (ro,4(k—1)+1)(@), which is a homogenous element of weight (0,4(k — 1) + 1). By Lemma 3.11,

p satisfies the identities in (3.6) and val(D1U* !(ap)) = 0. Since the projection maps P,.; do not
decrease val, we can conclude:

val(D U (ap)) — val(ag) < val(D1U* 1 (a)) — val(a)

This inequality implies that to find the value of 'y (k), it suffices to take the infimum in (3.8) over the
following set:

Ly :={ae CIY) |ae Cf y_5(Y), du =0, (k—1) = min{j | DU’ (a) # 0}} (3.12)

We can give a similar description for I'y (k) in the case that k is non-positive. Let:

aeCL(Y) A = {ap,a1,...,a_p} < A (3.13)
be given such that:
-k
da = )" U'Dy(as). (3.14)
i=0
Then for any arbitrary sequence {b;} Z;l_ + the pair:
_k . _1 . . pE— _1 - N
=Y a' + Y DU Ha)al e CL(Y) w=(a, Y ba') e CL(Y) (3.15)
1=0 1=—00 1=—00
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satisfies the identity i(z) = d(w), and any such pair with z being of degree —k is given as in (3.15). Then
we have:

Iy (k) := max (O, lim inf (val(ag,at,...,a_g) — Val(a))> (3.16)

|7|p—0 (e, {ao,a1,...,a—x})
where the infimum is taken over all pairs (c, 2) which satisfy (3.14).

We can work with a smaller set of pairs (c, ) in (3.16). Let (o, 2() be as in (3.13) satisfying (3.14).
We also assume that a;, has the minimum val among the elements of 2(, which is equal to 9. We define:

)\7TOPTO+%(CL¢) 1 =19 mod 2

ag 1= /\_TOPTO,—374Z‘0 (Oé) bl = { 0 1 $ iO mod 2

Our assumption on ¢g implies that b; = 0 if ¢ > 4y. Projection of (3.14) to homogenous elements of
weight (19, —4 — 41() shows that:

—k
dag = Y. U'Dy(b;). (3.17)
i=0
We also have val(bg, b1, ...,b_;) = 0 and val(ap) is not less than val(«) — ro . Consequently, we have:
(Val(bOa bi,. .. ) b—k) - Val(a())) < (Val(CLO? aty ..., a—k) - Val(O&))

This analysis shows that when k < 0, it suffices to take the infimum in (3.8) over the following set:

—k
7= {(a, {ao, a1, ..., a}) |a € Cf 4_5(Y), do = Y U'Ds(as), a; is a rational multiple
i=0
of A\=5 if i = k mod 2, and is zero otherwise. } (3.18)

Remark 3.19. The author does not know any example where the value of I'y- at a non-positive integer is a
finite positive number. However, one can easily construct chain complexes over A with the similar formal
properties as CN’I (Y') such that the analogue of I'y takes non-trivial values at non-positive integers. For
instance, let (C, d) be a Z/8Z-graded complex generated by two generators « and 3 in degrees 5 and 4
such that:

do = \"p s =0

We also define U : C, — Cy_4 and Dq : Cy — A to be trivial maps. Let also Do : A — C, be defined
as follows:
Dy(1) = X2

where 79 is a real number smaller than ;. As in (3.1), we can associated amap ' : Z — EZO. The value
of this function at 0 is equal to the positive number r; — 79 (and this is the only non-trivial value of T).
We hope that the understanding the behavior of I'y- with respect to various topological constructions, such
as surgery along knots, would be helpful to study whether there are complexes as above with non-trivial
values of I'y at non-positive integers.

Motivated by the definition of L7 in (3.12) and (3.18), we also give the following definition:
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Definition 3.20. Let 7 be an admissible perturbation for the Chern-Simons functional of an integral
homology sphere Y. We say w € CT(Y) and z € C, (Y') form a special pair of degree N if the following
conditions are satisfied:

(i) Deg(z) = N;
(i) w = (a,0)and z = 37

e
—00 ajx >

(iii) if N < 0,then € L7 y, and if N > 0, then (a, {ao, ...,an}) € LT y.

(iv) Forj < —1, we have a; = DU 77 1(a).

~

In particular, any special pair of degree NV satisfies the identity i(z) = d(w). The above discussion
shows that to compute the value of I'y at — IV, it suffices to take the infimum in (3.1) over all special pairs
(z,w) of degree N.

Example 3.21. In the case that Y = S3, (2,3, 5) or —X(2,3,5), we fix the metrics on Y which are
induced by the standard metric on the 3-dimensional sphere, the universal cover of Y. Then all critical
points are non-degenerate and all moduli spaces are regular. Therefore, we can use the trivial perturbation
7o to compute I'y-. In the case that Y = S3, the set L;° is empty for any positive k£ and consists of
elements of the form (0, {ao, ..., a_}) for negative values of k. This implies that:

© k>0
F53(’“):{ 0 k<0

The complex C3°(X(2,3,5)) is generated by two flat connections « and 5 with Floer gradings 1 and
5. Then we have: ) ,
Di(a) = A120 U(B) =8 s« Dy =0

The above identities after evaluating A at 1 are verified in [Frg02]. The calculation of the index and the
Chern-Simons functional which determines the powers of A in the above identities can be found, for
example, in [FS90]. For an exposition of the method of [FS90], we refer the reader to [DX17, Subsection
3.4] where the same conventions as here for the definition of the Chern-Simons functional and Floer
grading is used. These calculations show that the complex C{°(—X(2,3,5)) is generated by two flat
connections o™ and 8* with Floer gradings 4 and 0. We also have:

Dy(1) = Ama* Ula*) = 8A53* D1 =0

These identities show that:

o k>2

49
EURy

535 (k) =41 13
(2,3,5) ﬁlo k=1
0 k<0

and F—Z(2,3,5) = F53.
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3.2 Properties of I'y

In this subsection, we review some of the basic properties of I'y.

eqs . . . . . =0
Proposition 3.22. T'y is a non-decreasing function with values in R .

Proof. 1t is obvious from the definition that I'y- takes values in R". To show monotonicity of I'y, fix
an admissible perturbation 7w of the Chern-Simons functional and let (2, wo) be a special pair of degree
—k. In particular, zo has degree —k, wo = («, 0) for an appropriate & € CT(Y) and d(wg) = i(zg). We
define z1 := x - zg and w; := x o wg. Then z; is an element of 5: (Y') with degree —k + 1. We also have
i(21) = d(w1) because i and d are A[z]-module homomorphisms.

It is clear that val(z1) < val(zp). Moreover, for a given 0, there is € such that for any e-admissible
perturbation:
val(wy) = val(wg) — 0.

These inequalities imply that:
val(z1) — val(wy) < val(zp) — val(wp) + 9
Consequently, taking infimum over all choices of of (29, wg) and letting |7|» go to 0 allow us to conclude

that I'y (k — 1) < 'y (k). O

Proposition 3.23. Suppose h denotes Froyshov’s invariant of an integral homology sphere Y. Then
Ty (k) is a finite number if and only if k < 2h(Y").

Before giving the proof of the above proposition, we give an interpretation for 4 in terms of some of
the terminology introduced in this paper:

Lemma 3.24. For any integral homology Y and any admissible perturbation 7, the integer 2h(Y) is
equal to the largest value of k such that the set L7, is non-empty.

Proof. For any admissible perturbation 7, let (€7 (Y'),d) be the standard Floer chain complex defined
over rational numbers. The definition of this complex is similar to C7 (Y") with the difference that we
use rational numbers as the coefficient ring and we do not include any power of A in the definition of the
differential 0. By dropping the powers of A from the definition of D, Dy and U, we can also define:

D1:¢7(Y) - Q Dy:Q — YY) U C(Y) - i, (Y)
Using these operators, we define:

K :={a|ael], 5 2a=0, (k—1)= min
k {a] 4k—3 ( ) DL () %0
for positive values of k, and:
—k

ko=l {s0,51,...,5k}) o€ € _3(Y), ,si € Q, D = 23292(8@'),
i=0
s; # 0 only if i = k mod 2.}
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Evaluation of A at 1 gives a bijective map from L}, to K7 for any integer k. It is also shown in [Frg02,
Proposition 4] that the set X is non-empty only if & < 2h(Y).” Thus the largest k with L7 being
non-empty is equal to 2h(Y"). O

Proof of Proposition 3.23. Lemma 3.24 shows that if & > 2h(Y), then L] is empty for any admissible
perturbation 7. This lemma also implies that if £ < 2h(Y’), then L] is non-empty for any given -
admissible perturbation 7. Therefore, the infimum in (3.8) or (3.16) is finite for any given . Now we can
follow the argument in the proof of Proposition 3.2 and obtain a uniform upper bound for the infimum of
(3.8) or (3.16) for any other e-admissible perturbation. Thus I'y (k) is a finite number. ]

Remark 3.25. Combining Lemma 3.24 and the discussion of the previous section shows that h(Y) is
given by the following identity:

h(Y) = max{k | 3z € I,(Y) with Deg(z) = —k and i4(2) # 0}
= min{k | Vz € 1,(Y) with Deg(z) = —k and z € image(ji)} — 1

This definition of A is similar to the standard definition of monopole h-invariant [KMO7, Section 39] and
the correction term in Heegaard Floer homology [OS03].

Proposition 3.26. For any integral homology sphere Y and any integer k, either I'y (k) = oo, I'y (k) = 0,
or there is an irreducible flat connection « such that Ty (k) is equal to CS(«) mod Z.

Proof. Suppose 7 is an admissible perturbation of the Chern-Simons functional of Y. Firstly let £ be a
positive number and o € L. The condition v € Cf 45 (Y') implies that:
a=s1\" a1 + s9A 2 + - + Sj)\rjaj

where a1, ..., ay are the critical points of CS + f; with Floer grading 4k — 3, s1, ..., s are rational
numbers. The exponent r; is introduced in Definition 3.9 and is equal to —CS(«;) mod Z. Since
a € Cf y_s) (Y), we have val(D;U*~1(a)) = 0. We also have:

val(a) = gznqlé%(m)

In particular, we have:

inf (val(DlUk_l(a)) - Val(a)> € {—r1,...,—rx}.

ael]
Therefore, there is an irreducible critical point a; of CS + f; with index 4k — 3 such that the above
infimum is equal to CS(c;) mod Z. As we let 1 — 0, the values of the Chern-Simons functional on the

critical points of CS + f;; converge to the finite set of values of the Chern-Simons functional on irreducible
SU(2) flat connections [KM 1 1b, Lemma 3.8]. O

"In [Frg02], the cohomological convention is used in the definition of Floer chain complexes. The reader should take that
into account for comparing [Frg02] and the present article.
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Remark 3.27. It is natural to ask whether there is an integral homology sphere Y such that I'y takes
irrational values. Proposition 3.26 implies that if I'y- takes an irrational value, then the value of the
Chern-Simons functional of an SU(2)-flat connection is irrational. Currently, it is unknown whether there
is such a flat connection on a 3-manifold Y. For example, the values of the Chern-Simons functional
for any plumbed 3-manifold takes rational values on SU(2)-flat connections. Consequently, if 'y is not
rational valued, then Y is not a linear combination of plumbed 3-manifolds.

Definition 3.28. For any integral homology sphere Y, 7(Y") is defined to be:
7(Y) :=inf{&(2)} (3.29)
4

where the infimum is taken over all paths z along R x Y from an irreducible flat connection « to the trivial
connection O such that the moduli space of (unperturbed) ASD connections M, («, ©) is non-empty.

Given a path z from « to O as in (3.29), £(z) is equal to CS(a) mod Z. Thus 7(Y") takes values
in a discrete set because the Chern-Simons functional takes only finitely many values on the set of
flat SU(2)-connections. This implies that 7(Y") can be realized by the topological energy of an ASD
connection from an irreducible flat connection « to the trivial connection. In particular, this constant is
positive and we have:

7(Y) = min{r | r e R™%, r = CS(a) mod Z for a flat connection o} (3.30)
We can use 7(Y") to give a constraint for the values of I'y at positive integers:
Proposition 3.31. For any integral homology sphere Y, we have I'y (1) = 7(Y'). Consequently, for any
positive integer k, we have I'y (k) = 7(Y).
The proof of the above proposition needs some preparation. Firstly we start with a standard exponential
decay result about instantons on tubes:
Lemma 3.32. Let « be a non-degenerate SU(2)-flat connection on an integral homology sphere Y. There

are constants €, €1, Cy and 6 such that the following holds:

(i) Suppose A is an ASD connection on (0,0) x Y such that the L*-distance between A|{t}xy, for
t € (0,1), and o is less than ey and |F(A)| 12((0,0)xy) < €1. Then A is gauge equivalent to a
connection of the form o + a where a is a 1-form on (0,00) x Y with values in su(2) and:

IV'a|(t,y) < Cre | F(A)| 12((0,1)xv)- (3.33)
forte (3,00).

(ii) Suppose A is an ASD connection on (—T,T) x Y, for T > 1, such that the L*-distance between
Algyxy, fort € (=T, =T + 1), and « is less than ey and |F(A)|p2(—r1)xy) < €1. Then A
is gauge equivalent to a connection of the form o + a where a is a 1-form on (=T, T) x Y with
values in su(2) and:

V'al(t,y) < Cle TV (I F(A)| 2 r-ri1yer) + IFWlp2r1myxr))- 339
forte (=T +3,T —3).
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Proof. This lemma is essentially proved in [Don02, Theorem 4.2, Proposition 4.3 and Proposition 4.4].
In [Don02], it is assumed that Y is SU(2)-non-degenerate. We weaken this assumption by requiring
that only the given flat connection « is non-degenerate and make the additional assumption that the L>
distance of A]{t} «y and « for appropriate values of ¢ is bounded by €. Since « is non-degenerate, the
L?-distance of o and any other flat connection is greater than a positive number . Let ¢ be equal to -
We claim that for any positive constant 77 smaller than ¢y and any positive integer k, there is a constant €;
such that for any ASD connection A as in part (i) (resp. part (ii)) of the lemma, the L%—distance between
the connections Al .y and v is less than 7 for any ¢ € (3,00) (resp. t e (=T + 5,7 — ).

We prove this claim for part (i). The proof for the other case is similar. Suppose there is a sequence of
ASD connections A; on (0,00) x Y such that | F'(A;)]z2((0,00)xy) — 0, the L2-distance of A;|(yy for
t € (0,1) is less than €, and there is ¢; € [1, 00) such that the L?-distance between A,| {t}xy and the space
of flat connections is equal to 7. By Uhlenbeck compactness theorem, the connections A;| (ti—1,ti—1)xY >
after passing to a subsequence and changing gauge, are CX.-convergent to a flat connection on (—1,1) x Y.
However, this is a contradiction because the Li distance between Ai]{t} «y and any flat connection is at
least €p. This verifies the claim. Given this claim, the arguments of [Don02] can be applied to prove the
lemma without any change. O

Lemma 3.35. Suppose {m;}; is a sequence of admissible perturbations of the Chern-Simons functional of
Y such that |m;|p — 0. Suppose A; € MTi(a;, ©) where o is an irreducible critical point of CS + f,
and z; is a path with index 1. We also assume that there is a constant v such that fr, vanishes for
connections whose L2-distance to © is less than v. Then there exists an irreducible flat connection oy, a
path zo from o to ©, and a (non-perturbed) ASD connection Ay € M, (avp, ©) such that:

£(Ao) < limsup £(A;) (3.36)

7

Proof. The connection A can be constructed as a limit of a sequence of connections associated to the
connections {A;}. The argument is an adaptation of [Don02, Theorem 5.4]. We divide the proof into
several steps:

Step 1: The sequence |F(A;)| 12w xy) is bounded.

It suffices to show that the topological energies of paths between critical points of CS + f, with
index less than a fixed integer /N are uniformly bounded by a constant X which does not depend on <. In
the case that we are concerned only with the trivial perturbation, this is standard. The case of non-trivial
perturbations {7;} can be reduced to the case of the trivial perturbation using the following trick.

Each SU(2)-flat connection « has a path-connected open neighborhood such that the index and the
topological energy of paths in this neighborhood are uniformly bounded. We cover the space of flat
connections by finitely many such open neighborhoods. If |;|» is small enough, then each end point of
the path z; belong to one of the chosen open sets. Now we can use additivity of indices and topological
energies with respect to concatenation of paths to verify the claim.

Step 2: There is a positive constant € and for any connection A; in the above sequence, there is a
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constant T; such that A;| (Ti,00)xY 18 an ASD connection and:

f |F(A;)|2dvol = ¢ (3.37)
(Ti,oc)xY

Suppose €p and €; are given as in Lemma 3.32. As in the proof of Lemma 3.32, we assume that g
is smaller than half of the L2-distance of the trivial connection and the space of irreducible flat SU(2)-
connections of Y. Let € := min(eg, €1, 5) and T} be the largest real number such that the L? distance
between Al 77y and © is at least €. Then the connection A,| (T/,00)xy is an ASD connection. We claim
that there is a constant Ny, independent of ¢, such that:

/

f |F(A;)2dvol > —. (3.38)
(T, 0) XY No

Given 1, if the above inequality does not hold for Ny > 1, then part (i) of Lemma 3.32 implies that there
is a; such that A; is gauge equivalent to o + a; and:

IV asl(t,y) < Cre™ | F(A) ] 12(0.1)x )

In particular, we have:
/

€
|ai|(TiI7 y) < COFO

If Ny is large enough in compare to Cp, then the L? norm of a; is less than 5, which is a contradiction.

Thus the inequality holds for an appropriate value of Ny and we define € := ]f,—'O There is also a unique
value of T; greater than TZ»’ such that (3.37) holds.

Step 3: There is a connection Ay € M, (ap, ©) satisfying (3.36).

Let A} be given by translating A; in the R direction by the parameter 7;. Then we have:
f |F(A})2dvol = € (3.39)
(0,00)xY

Using Lemma 3.32, the connection A/ is gauge equivalent to a connection of the form « + a} where a/
satisfies the inequalities in (3.33). Thus the Arzela-Ascoli theorem implies that there is a subsequence® of
the connections which is C'°-convergent on (0, 00) x Y. We can also employ the Uhlenbeck compactness
theorem to show that there is an ASD connection Aj, and a finite subset S of R x Y such that the sequence
A!, after passing to a subsequence and changing gauge, is L] -convergent’ on compact subsets of R x Y\ S
to an ASD connection Af). Moreover, we have:

E(Ap) < limsup £(A;)

7

8Here and in what follows, we always denote a subsequence with the same notation as the original sequence.
9The weaker L¥-convergence instead of C®-convergence is due to non-locality of holonomy perturbations. For a discussion
related to adapting the Uhlenbeck compactness theorem to the ASD equation perturbed by holonomy perturbations, see [Kro05].
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These two observations show that A’ is strongly convergent (resp. weakly convergent) on (0, 00) x Y’
(resp. R x Y) to Aj,. In particular, Aj is asymptotic to © on the outgoing end of R x Y. Since Aj, is
an ASD connection, it is convergent to a flat connection on the incoming end [Don02, Theorem 4.18].
If this flat connection is irreducible, then we are done. In the case that Ay € M/ (©,©), the term
| F(AD) | £2((—o0,—h)x vy s strictly less than lim inf; | F'(A})] 12((—c0,—n)x v for any value of h. Otherwise,
the incoming flat connection of A/ is convergent to the trivial connection which is a contradiction. The
connection Ay is non-trivial and hence its energy is at least 872, the energy of a single instanton.

Let h be chosen large enough such that S is disjoint from (—o0, —h) x Y and the distance between
Ailgtyxy and © is less than g for t € (—h — 1, —h). Define:

liminf; | F(AD] 22 ((—o0,—h)xv) = IF (A0l L2((—o0,—m)xY) )
2

where €7 is given by Lemma 3.32. For large values of ¢, we may pick a constant S; such that:

1 = min(ey,

| per =g+ | (AP

(Si,—h)xY (—00,—h)xY

The constants .S; are convergent to —oo and we define a new sequence of connections A/ by translating
Al in the R direction by the parameter S;. Another application of Uhlenbeck compactness implies that
A, after passing to a subsequence and changing gauge, is convergent to an ASD equation which satisfies:

E(AD) + E(AD) < lim sup £(A;)

Moreover, part (ii) of Lemma 3.32 implies that A{ is asymptotic to the trivial connection on the outgoing
end. If Afj is asymptotic to an irreducible flat connection on the incoming end, then we are done.
Otherwise, we repeat the above process. This process terminates because the energy of a non-trivial ASD
connection asymptotic to the trivial connection on both ends is at least 872. O

Proof of Proposition 3.31. Let {m;} be a sequence of admissible perturbations such that |m;|p — 0.
Since the trivial connection is a non-degenerate critical point of the (non-perturbed) Chern-Simons
functional of Y, we may also assume that f,. is trivial for connections whose L?-distance to the trivial
connection is less than a fixed constant . If o; € £7'(Y), then the difference val(D;(«;)) — val(a;)
is equal to the topological energy of an element A; of MT’(a;, ©) for an irreducible flat connection «;.
Therefore, we can pick the connections A; such that £(4;) — I'y(1). Applying Lemma 3.35 to this
sequence of connections implies that there is an irreducible flat connection oy and an ASD connection
Ay € M, (ap,O) such that I'y (1) = £(Ap) which verifies our claim. O

Definition 3.40. Suppose Y is an SU(2)-non-degenerate integral homology sphere. We define:
(V) := inf{&(2)} (3.41)
Z/

where the infimum is taken over all paths 2’ such that 2’ is obtained by concatenation of paths z1, ...,
z, satisfying the following properties. There are flat connections ay, . .., o such that oy and oy, are
irreducible, z; is a path from a;_; to «;, the sum of the indices of paths z; is equal to 4 — 8n for a
non-negative integer n and there is an ASD connection 4; € M., (ov;_1, o).
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Given a path 2’ from a_ to a; as in (3.41), £(2’) is equal to CS(ap) — CS(a) mod Z. Therefore,
7/(Y") takes values in a discrete set. This implies that 7/(Y") can be realized by a tuple (Aq, ..., Ag) of
ASD connections as in the above definition. We also have:

(V) = min{r | re R, r = CS(a_) — CS(ay) mod Z for irreducible flat connections v }

Lemma 3.42. Suppose Y is an SU(2)-non-degenerate integral homology sphere. Suppose {m;}; is a
sequence of perturbations of the Chern-Simons functional of Y such that |m;|p — 0, the critical points of
CS + fx, are the same as the critical points of the unperturbed Chern-Simons functional and fr, = 0 in a
neighborhood of flat connections. Suppose A; € M7 (cvi—, v 4 ) where o — and o . are irreducible
flat connections and z; is a path from o; _ to o; o with index 4. Then there are distinct flat connections
ao, ..., ay, apath zy j from a;_1 to o , and a (non-perturbed) ASD connection A; € MZOJ, (ozj,l, oz]-)
such that o and oy, are irreducible, the sum of the indices of zo1, ..., 2o is equal to 4 — 8n for a
non-negative integer n and:

E(z0,1) + -+ E(z0k) < limsup E(z;). (3.43)

7

Proof. The proof is similar to that of Proposition 3.35. Since Y is SU(2)-non-degenerate, there are only
finitely many SU(2)-flat connections. Using this observation and the fact that the index of connections A;
are at most 4, we may assume that A; € M7i(a_, o) for a fixed path z and irreducible flat connections
a_, a4. Following the argument of Proposition 3.35, we can construct nontrivial ASD connections
Aje Mzoh]- (aj_l, Ozj) where «; is a flat connection, ag = o—, a, = vy, 2o ; is a path from «;_1 to
and the inequality (3.43) is satisfied. O

Proposition 3.44. If Y is an SU(2)-non-degenerate integral homology sphere, then for any positive
integer i we have 'y (i + 1) = T'y (i) + 7/(Y).

Proof. We fix a sequence of admissible perturbations 7; such that |m;|» — 0, the critical points of
CS + fx, are the same as the critical points of the unperturbed Chern-Simons functional and f,, = 0
in a neighborhood of flat connections. For each admissible perturbation 7; and any « € ﬁZil(Y), we
have U(a) € L;*(Y'). Furthermore, there are flat connections «; _, ;1 with Floer gradings 4k — 3,
4(k —1) — 3 and A; € M7 (cy,—, ;1) with index 4 such that:

val(U(a)) — val(a) = E(4;).

By taking infimum over all a € L]

i1 (Y), we conclude that :

inf (val(DlUk_l(a)) - Val(a)) > inf (Val(DlUk_2(o/)) — Val(o/)> + igifS(Ai).

el (V) o/eL H(Y)

where the infimum is taken over all index 4 connections A; € /\/lfz:z (o —, a4 ) where o, o 4 are
irreducible flat connections. By taking the limit of the above inequality as ¢ — oo and using Lemma 3.42,
we can conclude that I'y (i + 1) > 'y (¢) + 7/(Y). O

Next, we use the argument in the proof of Theorem 3.2 to obtain a more general result. The constant
7 in the following theorem is introduced in Definition 3.46:
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Theorem 3.45. Suppose W : Y — Y’ is a cobordism of integral homology spheres with by(W) =
bT (W) = 0. Then T'y+(k) < T'y (k) — n(W) for any positive integer k. For a non-positive k, we have
the weaker inequality T'y: (k) < max(T'y (k) — n(WW),0).

Definition 3.46. Let W be a cobordism from an integral homology sphere Y to another integral homology
sphere Y. Let:
n(W) = ir}lf{E(A)} (3.47)

where the infimum is taken over all ASD connections A on W which is asymptotic to irreducible flat
connections on Y and Y. Here we allow A to be a broken ASD connection. That is to say, A might have
one of the following forms for irreducible flat connections « and «':

(i) Ae M, (W,a,d);
(i) A = (Ao, A1) where Ag e M, (R xY,a,0)and A; € M,,(W,0,d));
(iii) A = (Ag, A1) where Ag € M, (W, a,0) and A; € M, (R xY',0,d);

(iv) A = (Ao, A1, As) where Ag € M (R xY,0a,0), A1 € M,,(W,0,0) and Ay € M,,(R X
Y’ 0,d).

The constant 7(V) is a non-negative number. The set of possible values for the energy of ASD
connections on W is a discrete subset of non-negative integers. Therefore, if 77(1V) is finite, then it can be
realized by the energy of a (possibly broken) ASD connection on W which is asymptotic to non-trivial
connections on both ends. We have:

n(W) = min{r | r € R®%, r = CS(a) — CS(a’) mod Z

for irreducible flat connections a, @’ on Y, Y’}

We also make the observation that if (W) = 0, then there is a flat connection extending non-trivial flat
connections on Y and Y’. Consequently, if W is simply connected, such a flat connection does not exist,
and hence n(1W) > 0.

Lemma 3.48. Let {m;}, {m]} be sequences of e;-admissible perturbations for the Chern-Simons functionals
of Y, Y' such that fr, and f.r vanish in fixed neighborhoods of the trivial connections on'Y andY". Let
7; and T, be extended to an e;-admissible perturbation T; on the cobordism W :'Y — Y', which satisfies
bi(W) =0T (W) = 0. Let A; € MT: (W, o, o)) be chosen such that c;, o are respectively irreducible
critical points of CS + fr,, CS + f, and z; is a path along W with index 0. If ¢; — O, then there is a
(possibly broken) ASD connection Aozon W which is asymptotic to irreducible flat connections o, oy on
Y, Y’ and:

E(Ap) < limsup E(A;). (3.49)

Proof. Firstly as in Step 1 of the proof of Lemma 3.35 we can show that the terms | F'(A;)| 2 +) are
uniformly bounded. Thus the Uhlenbeck compactness theorem implies that the connections A;, after
passing to a subsequence and changing gauge, are weakly convergent to an ideal instanton (Ag, .S) on
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W, where S « W is a finite subset and Ay is an ASD connection. The weakly convergence of A;
implies that A;, after possibly changing the gauge, is L% convergent on compact subsets of W*\S to Ay,
and:
E(Ap) < limsup E(4;)
7

If the connection Aq is asymptotic to non-trivial flat connections on both ends, then there is nothing
left to prove. If it is asymptotic to the trivial connection on one of the ends, say the outgoing end,
then we can argue as in Step 3 of Lemma 3.35 to find an instanton A; in a moduli space of the form
M., (R x Y’ ©,a’) where ¢ is an irreducible flat connection on Y”. The pair (Ao, A1) also satisfy the
analogue of the inequality in (3.49). The other cases can be treated similarly. O

Proof of Theorem 3.45. We follow a similar argument as in Theorem 3.2. Let w = («,0) and z form a
special pair of degree —k. Then the pair w’ = (¢(a) + L(2),0) and 2’ = Cyy(2) satisfies the identity
d(w') = i(z'). Here ¢ : CT(Y) — CT (Y") is the cobordism map associated to WW. Recall that L(z) = 0
if k is a positive integer. The first inequality in (3.3) can be modified as follows:

val(w') = val(w) + E(A)

for a connection A € M7 (a, ') of index 0 where «, o are irreducible critical points of CS + fy,,
CS + f, and z is a path over W from « to o/ with index 0. This the inequality in (3.5) can be improved
as follows:

inf (val(2')—val(w')) <
20T (Y'), w'elT (Y7),
d(w')=i(2"), Deg(z')=—k
max( inf (val(z) — val(w)) — inf £(A),0) + §
2eCL (Y), weCE(Y), A
d(w)=i(z), Deg(z)=—k

where the second infimum on the right hand side is over all elements of the moduli spaces M7 («a, o)
with a, o' being irreducible critical points and z being a path along W of index 0 from « to o/. By taking
the limit of the above inequalities as the norms of perturbations 7, 7’ and 7 converge to zero and using
Lemma 3.48, we can conclude:

Py (k) < max(T'y (k) — n(W), 0).

In the case that & is a positive integer, the above argument can be modified to obtain the desired stronger
inequality using the fact that L(z) = 0. O

Example 3.50. There are negative definite cobordisms W : S% — X(p, ¢, pgk+1) and W’ : X(p, q, pgk+
1) — S2 with by = 0 [CG88]. Therefore, Theorem 3.45 implies that I'sp.apgk+1) = L'ss.

Corollary 3.51. Suppose W : Y — Y' is a homology cobordism and 'y (and hence T'y+) has a finite
positive value in its image. Then the inclusions of Y and Y’ in W induce non-trivial maps of fundamental
groups. In particular, if h(Y') is non-trivial, then there is no simply connected homology cobordism from
Y to another integral homology sphere.
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Proof. Let W : Y — Y’ be a homology cobordism and the fundamental group of Y or Y’ map trivially
to that of W. On one hand, I'y: = I'y+. On the other hand, (W) > 0 and I'y, I'y- satisfy the inequality
given in Theorem 3.45. Thus a positive value in the image of I'y is a contradiction.

If h(Y) # 0, then either A(Y) > 0 or h(—Y”) > 0. Propositions 3.23 and 3.31 imply that either I'y
or I'_y~ has a finite positive values in its image. Since W can be also regarded as a cobordism from —Y”
to —Y, it cannot be a simply connected. O

Remark 3.52. In his groundbreaking work [Tau87], Taubes proves that if Y is an integral homology
sphere and W : Y — Y is a simply connected homology cobordism (or more generally a definite
cobordism), then Y cannot bound a simply connected negative definite smooth manifold with a non-
standard intersection form. As it is stated in Theorem 5 and will be proved in Section 5, if Y bounds a
manifold X with non-standard negative definite form (without any assumption on 71 (X)), then I'y (1) is
a finite positive number. Therefore, Theorem (3.45) gives a new proof of Taubes’ result.

Taubes’ method (gauge theory on manifolds with periodic ends) can be adapted to prove the second
half of Corollary 3.51. This was firstly pointed to the author by Chris Scaduto. The author learnt later
from Masaki Taniguchi that this method is also used in [Tan17] and a proof of the second half of Corollary
3.51 is implicit there. Given a simply connected homology cobordism W : ¥ — Y, we can form a
4-manifold M with a periodic end and a cylindrical end in the following way. For each non-negative
integer ¢, let W; be a copy of W. We fix a metric on W which is cylindrical in a neighborhood of the
boundary components corresponding to a fixed metric on Y. For each positive integer ¢ we identify the
outgoing end of W, with the incoming end of TW;. We also glue a copy of [0,00) x Y to the outgoing
end of . Applying the method of [Tau87] to the moduli spaces of ASD connections on M, which are
asymptotic to the trivial connection on the cylindrical end and have finite energy, shows that h(Y") has to
vanish.

Corollary 3.51 implies that the answer to Question 1.5 is negative if the Rokhlin homomorphism
I @3Z — Z /27 is replaced with I'y. In general, there are integral homology spheres with non-trivial
Rokhlin invariant whose I'y does not take any positive value. For example, I's;(2 3 7) does not take any
finite positive value by Example 3.50. However, 11(X(2, 3, 7)) is non-trivial. In [Dae], we shall show that
Corollary 3.51 can be extended to other families of integral homology spheres including (2, 3, 7).

4 Relation to Fintushel and Stern’s R-invariant

For n = 3, suppose ay, ..., a, are relatively prime positive integers. Throughout this section, we
denote the Seifert fibered homology sphere ¥(ay, ag, .. .ay) by Y unless otherwise is specified. The
following elementary results about topology of Seifert fibered homology spheres is standard. (See, for
example, [FS85].) The 3-manifold Y admits a standard S*-action and the quotient space is S2. Suppose
W =Y x D?/S! where the action of S* is induced by the Seifert action on Y and the standard action on
the 2-dimensional disc D?. Then W has n singular points, one for each special fiber of Y. A neighborhood
of the i singular point is given by a cone over the lens space L(a;, b;) where the constants b; satisfy the
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following identity:

and a = ay - as . ..ay. Let Wy denote the complement of regular neighborhoods of the singular points of
W. Then Wy is a 4-manifold such that:

oWy =Y u—L(a1,p1) w---u—L(ap, Bn).

There is an obvious projection map from L = Y x D? to W, that induces a U(1)-bundle on Wy. We
will write L for this U(1)-bundle on Wy. Then wo = c;1(Lo) generates H?(Wy; Z) and its restriction to
the lens space boundary component L(a;, b;) is b; times the standard generator of the second cohomology
of this lens space. Moreover, W is negative definite and c;(Lg)? = —%. In particular, if we add
cylindrical ends to W and form W', then standard Hodge theory implies that there is an abelian ASD
connection B on the bundle Ly. We assume that the metric on WOJr is compatible with the standard
spherical metrics on the lens space ends. The main goal of this section is to prove Theorem 6. At the
outset, we mention how R(aq,...,a,) enters into the proof of this theorem. Suppose @ is the trivial
connection on the the trivial line bundle C over Wj. Then we can form the path!® z, along (Wo, wo)
which is represented by the ASD connection B @ 6. Then the index formula [MMR94, Tau93] imply
that the expected dimension of the moduli space M, (Wp, wp), which contains the reducible connection
B®0,isequal to R(ay,...,ay) of (1.7). Suppose 3; is the unique positive integer less than a; such that
1+ Bia% is divisible by a;. Then the formula for R(a1, ..., a,) can be simplified to 2b — 3 where b is
given by [NZ85]:

b==-+> =, .1

We fix an e-admissible perturbation 7 of the Chern-Simons functional of Y. As in Subsection 2.2,
we can fix a secondary perturbation 7 of the ASD equation on I/VOJr which is compatible with the chosen
perturbation of the Chern-Simons functional of Y and the trivial perturbations of Chern-Simons functional
of the lens space boundary components of . Moreover, we can assume that the norm of the perturbation
term 7 is less than € and all moduli spaces with dimension less than 8 consist of regular elements [Don02].
The following proposition can be used to prove half of Theorem 6.

Lemma 4.2. Suppose b is an integer greater than 1 and ng denotes [g] — 1. Define y9 € CE(Y) as
follows:
Z HMT(Wo, wo; a))\g(z)a b is even,

a B 43
DI HMI(Wo, wo; @) 0 V(30))A e b is odd. (*43)

"Previously, we defined paths along a cobordism T, which are given by equivalence classes of SU(2)-connections on
W with respect to an appropriate equivalence relation. More generally, we can define paths for a pair (W, w) where W is
a 4-dimensional cobordism and w € H?(W,Z). The cohomology class w determines a U(1)-bundle on W and we fix a
connection B on this bundle. Similar to the case of SU(2)-connections, we define an equivalence relation on U(2)-connections
whose central parts are equal to B. Any equivalence class of this relation is called a path along (W, w). For more details see
[Don02, Section 5.6] and [KM 1 1b, Subsection 3.10].
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where z is a path along (W, wo) that restricts to a generator a of CZ(Y') on'Y and to the same flat
connections on the lens space boundary components as B @ 0. Moreover, ¥ is an embedded surface
representing a generator of Ha(W') and V (3g) denotes a divisor representing the homology class p(Xo)
on the configuration spaces of connections on Wy [DKO0). Then ~q satisfies the following properties:

(i) d(v) = 0;
(ii) Dy o U"(v9) = 0 where k < ny;

(iii) D1 oU™(vg) # 0. Moreover, if § is an arbitrary positive number, then by choosing € small enough,
we have:

val(Dy o U™ (7)) — val(p) < i + 4. 4.4)

Proof. We firstly assume that b is even. The coefficient of 3 in d(7g) can be identified with the number of
the boundary points of the compactification of the moduli space:

MZ (W, wo, B)

where z is a path along (W, wp) such that the above moduli space is 1-dimensional, the restriction of z
to Y is 3, and z has the same restriction to the lens space boundary components as B @ 6. Note that the
compactified moduli space does not have any boundary component coming from the instantons which are
broken along one of the lens space boundary components because any flat connection on a lens space is
reducible and the index of any such broken instanton is at least two.

For a non-negative integer k, if D; o U¥(zy) is non-zero, then there is a (k + 2)-tuple of ASD
connections (Ag, A1, ..., Ak, Ax+1) such that Ay is an ASD connection contributing to the sum in (4.3),
A;, for 1 < 1 < k, is an ASD connection on R x Y between irreducible flat connections «;_1 and
«a; contributing to U(a;—1), and Ag1 is an ASD connection on R x Y from «y to © contributing to
D1 (ay). In particular, the index of A is 0, the index of A;, for 1 < i < k, is 4 and the index of Ay is
1. Therefore, the sum of the indices of these ASD connections is 4k + 1. We can glue the connections A;
to obtain a connection which has the same asymptotic flat connections as B @ 6 on the boundary of Wj.
Therefore, the additivity of ASD index with respect to composition of cobordisms implies that:

k+1
4k +1=8() E(A) - E(BDO)) +2b—3
=0
k+1
—825 )+ = +2b 3

In particular, if £ < ng, then the sum of the topological energies of the connections A; is at most
—% + ﬁ.” Since the connections A; are solutions of perturbed ASD equation, this is impossible if € is
small enough. This verifies the claim in part (ii). In the case that &k = ng, the above identity implies that
the sum of £(A;) is equal to 4 . Therefore, the inequality in (4.4) holds for a small enough ¢, if we show
that Dy o U™ () does not vanish.

"1n fact, this inequality can be improved to —1 + ﬁ because k and ng have the same parity.
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Fix a positive integer k smaller than g In order to address the last part of the proposition, we introduce
v, € CZ(Y) which is defined similar to q. Fix ng distinct points z1, . .., Zn, on Wy. Forany 1 < i < ny,
a standard construction in Donaldson theory allows us to form a co-dimension 4 divisor V'(z;) in the
configuration space of irreducible connections on W, which is a geometric representative for p(point)
[KMO95]. Define:

Y= ) #(MI(Wo,wo; ) A V() A V(zg) ) AP (4.5)

Here we may assume that the divisors are chosen such that the intersection (4.5) is transversal. In
particular, a path z contributes to the above sum, if the dimension of the moduli space M7 (W, wo; a) is
equal to 4k. A similar argument as in the case of vy shows that 4 is a cycle. Moreover, we can show
that 7541 and U (~y) differ by a co-boundary element in C7(Y"). To see this, we allow x.1 to move
off the boundary component Y of Wy and consider the associated 1-parameter family of moduli spaces.
Cutting this moduli space by the divisors V'(z1), .. ., V(z) and studying its ends give the desired relation
between 741 and U (7).'? In particular, DU ~%(~;) is independent of k.

Consider the moduli space Mfo (Wo, wo) which contains the class of the reducible connection B @ 6.
The divisors V' (x;) is defined only on the complement of the reducible connection. In fact, a neighborhood
of the reducible connection is a cone over the projective space CP?~2 and the restriction of V(z;) to
the boundary of this cone represents the cohomology class —h? where h is the generator of H 2(Cbez)
[DK90, Subsection 5.1.2]. Let M’ be the complement of this neighborhood of the reducible element
of MfO(WO, wp) and N’ denotes the boundary of this neighborhood. Therefore, we can form the
1-dimensional moduli space:

Z=MV(z)n-nV(zy).

We compactify Z in the standard way to form a compact 1-manifold whose boundary is given by
N nV(z1)n---nV(x;)and

H (M (Wo,wo;a) A V(z1) A0 Vi(zg)) x My(a,©) (4.6)
YH#HY =70

Since the count of points in N’ n V(1) n--- n V(z;) does not vanish, the count of elements in (4.6) is
also non-zero. The latter count is equal to D1 (7y,) by definition. Thus we conclude that D o U™ () is
nonzero. Analogous arguments can be used to prove similar claims in the case that b is odd. The only
required new ingredient is that the restriction of the cohomology class V(%) to CP%2 is a non-zero

multiple of A. (In fact, it is equal to —(c;(Lg), X0 h [DK90, Subsection 5.1.2].) d
Proposition 4.7. ForY as above and 1 < i < [%J, we have:
1
Ty (i) = —.
v (@) 4a

Proof. Lemma 4.2 asserts that I'y (i) < ﬁ. It is shown in [FS90] that the value of the Chern-Simons
functional for SU(2)-flat connections on Y has the form 4% where [ is an integer13. (See also [Auc94].)

"2The essential points here are the fact that any flat connection on a lens space is reducible and we also do not face any
reducible connection on W)y in our analysis of the relevant moduli spaces.

B1n fact, the 4-manifold Wy plays a key role in this part, too. The main point is that any SU(2) flat connection on Y extends
to a flat connection on Wj.
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Since I'y (i) is positive by Proposition 3.31, Proposition 3.26 implies that I'y- (i) > . This completes
the proof. 0

Theorem 6 is a generalization of Proposition 4.7 to the case that we consider a connected sum of
Seifert fibered spaces with positive R-invariants:

Proof of Theorem 6. Let M be the standard cobordism from the disjoint union of 3-manifolds Y; to
Y14 ... #Y) obtained by gluing 1-handles. For each ¢, we follow the above construction to construct a
cobordism W; o from a disjoint union of lens spaces to Y;. We can glue Wy g, ..., W}, o to M and obtain

M a cobordism from a disjoint union of lens spaces to Y1 # . .. #Y}. For eaih 1, we also constructed a
U(1)-bundle L; o on W; g. We extend the bundle L o on W ¢ trivially to M and denote the resulting

bundle by L. By applying the same argument as in the proof of Lemma 4.2 where Wy and L are replaced
with M and L, we can show that for 1 < [MJ

1

I'yvil) €« ——m.
v (@) daias . ..ap

The reverse inequality is also a consequence of Lemma 4.8 below. O

Lemma 4.8. For integral homology spheres Y andY', we have:

Fy#y/(l) = miH{T(Y), T(Y’)} 4.9)

This lemma strengthens Lemma 3.31 for integral homology spheres which are homology cobordant to
connected sum of two integral homology spheres.

Proof. Consider the standard cobordism N from Y#Y” to Y L Y’ given by gluing a 3-handle. Let ¢; be
a sequence of positive real numbers converging to 0. We fix ¢;-admissible perturbations 7, 7’ and 7# on
Y,Y’ and Y#Y" and extend them to an ¢;-admissible perturbation 7 on N. Suppose 7 = Zle s\

is an element of /Jf# (Y#Y"). For each i, there is a path z; of index 1 along N from the connection o; to
the trivial connections © and © on Y L1 Y. Let MZ " (N, a;, ©, ©’) be the standard compactification of
the 1-dimensional moduli space MT (N, a;, ©,©’). Clearly, we have:

k
D siAHEC) g MT (N, 0;,0,0)) = 0.

i=1

We can also analyze the boundary components of the moduli space MZ’Jr (N, a;,0,0’) to show that the
above identity implies that:

Fod(v)+ Di(y +Zs AN M (N, 04, 8,0) x ME, (R x Y, 3,0)+

T1H#T2=2;

DlsArtEC) N ME (N, a4,0,8') x MI(Rx Y, 3,0) =0 (4.10)

Y1#Y2=2;
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Here F' : C7 # (Y#Y') — A is induced by counting solutions of the perturbed ASD equation on N
corresponding to paths of index 0 along N which restrict to an irreducible connection on Y#Y” and trivial
connections on Y and Y. The path x; (respectively, y1) along N has index 0 and restricts to the trivial
connection on the end Y’ (respectively, Y) and to irreducible connections on the remaining ends. The path
x9 along R x Y (respectively, y2 along R x Y”) has index 1 and restricts to an irreducible connection
on the incoming end and to the trivial connection on the outgoing end. Since d(y) = 0 and D1 (7y) # 0,
(4.10) implies that either there is a path 2 along R x Y such that the moduli space M7 (R x Y, 3,0)
contains an element A; with:
val(Di (7)) — val(z) > E(4;) — §

/

or there is a path yo along R x Y such that the moduli space M7, (R x Y”, 3, ©') contains an element
Al with:

val(D1 (7)) — val(y) = E(A]) — 4.
Here § is a constant which converges to 0 as ¢ — c0. Now by letting ¢ go to oo and using Lemma 3.35, we
can verify (4.9). L]

Remark 4.11. Theorem 6 and Lemma 4.8 give some instances of relations among I'y sy, I'y and I'y~. In
[DST], we study this relationship more systematically.

Corollary 4.12 ([Fur90]). Suppose {Y; = X(a; 1, ..., Qin,)}ier is a collection of Seifert fibered homology
spheres with positive R-invariants such that the positive integers a; := a;1 - G;2 . ..a;p, are distinct.
Then the integral homology spheres Y; determine linearly independent elements of @%.

Proof. 1If there is a linear relation among Y; we can assume that we have a relation of the following form:
nY;, + -+ Y, = mY; 4+ -+ myY,

such that all integers n,, and m; are positive, and ¢, and j are all distinct elements of I. Evaluating the
invariant I' at 1 for the 3-manifolds given above implies that:

1 _ 1
4max{a;,,...,a;} 4max{a;,...,a;}
which is in contradiction with the assumption that the integers a; are distinct. O

Example 4.13. If p, g are coprime positive integers and k is another positive integer, then R(X(p, q, pgk —
1)) = 1. Therefore, Proposition 4.7 implies that:

1
Pewari-n ) = g =1y

Corollary 4.12 implies that {¥(p, ¢, pgk — 1)}4cz>o0 spans a Z® subgroup of ©3. This result is proved
by Furuta [FS90] and Fintushel and Stern [Fur90].

Example 4.14. Let K}, be the pretzel knot P(—2k — 1,4k + 1,4k + 3). This knot has Alexander
polynomial 1, and hence it is topologically slice. On the other hand, it is shown in [End95] that the
family of knots { K} are linearly independent as elements of the the smooth concordance group C and
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generate a Z™ subgroup of C. The proof of this result in [End95] can be reformulated in terms of I'y
in the following way. The branched double cover of S3 along K}, is the Brieskorn homology sphere
Y(2k + 1,4k + 1,4k + 3). As itis observed in [End95], R(X(2k + 1,4k + 1,4k + 3)) = 1 and hence:

1
Us(or+14k11,4843) (1) = 42k + 1)(4k + 1)(4k + 3)°

Therefore, Corollary 4.12 implies that {3(2k + 1,4k + 1,4k + 3)},ez>0 spans a Z* subgroup of ©3.
This shows the claimed linear independence of the knots K.

Example 4.15. If p, ¢, k are as in Example 4.13, then R(p, ¢, pgk + 1) = —1. Therefore, Proposition 4.7
does not say anything about I'y when Y = X(p, ¢, pgk + 1). This is in line with Example 3.50 where it
is shown that I'y = I'gs.

Example 4.16. Suppose p and q are coprime numbers, and a1, as, . .., az,+1 1S a sequence of positive
integers with a; = p, ap = g and for¢ > 3:

a; = kialag Qi1 — 1.

Here k; is an arbitrary positive integer. Then R(a1, ..., a2,+1) = n. In particular, the R-invariant can take
arbitrarily large values. As it is discussed in the introduction, if R(ay,...,a2,+1) = 5, then Propositions
3.44 and 4.7 imply that 3 (a1, . .., az,+1) is not homology cobordant to an SU(2)-non-degenerate integral
homology sphere.

Corollary 3 provides another family of 3-manifolds that similar techniques can be used to obtain
information about I'y. Next, we give the proof of this corollary which recasts the arguments of [HK12].

Proof of Corollary 3. There is a negative definite cobordism with trivial first integral homology from
X(p,q,2pg — 1) to Y}, 4 [HK12, Lemma 3.6]. Thus Theorem 3 and Example 4.13 imply that:

1
r 1)<’ Hl) = —ru—-—.
Yp,q( ) %(p,q,2pq 1)( ) Apq(2pq — 1)
The study of the Chern-Simons functional of Y}, ; in [HK12] shows that 7(Y}, 4) > qu—n’ which can
be used to verify the other inequality in (1.8). The proof of the more general inequalities in (1.9) is similar.

(See the proof of Theorem 6.) ]

5 4-manifolds and Reducible Connections

The following theorem is the counterpart of [Fr¢02, Theorem 3 and Proposition 1] which generalizes
Donaldson’s celebrated diagonalizability theorem [Don83]:

Proposition 5.1. Suppose Y is a homology sphere, and X is a 4-manifold with boundary Y such
that by(X) = 0, and the intersection form Q of X on H?(X,Z)/Tor is negative-definite. Suppose a
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cohomology class e € H*(X,7Z) is fixed such that Q(e) is an even integer, |Q(e)| = 2,

for any €' with ¢’ = e mod 2, and:

Q(e)| < [Q(¢)]

(-1 0. (5.2)

where the sum is over all pairs {¢', —e'} such that ¢’ € H*(X,Z), ¢ = e mod 2, and Q(e) = Q(¢€).
Then 'y (ng) < 4Q( e) where ng = —5 (e). The equality holds only if the fundamental group of X
admits a representation to SU(2) with non-trivial restriction to the boundary.

Proof. We follow the proof of [Frg02, Proposition 1]. Since the proof is also similar to the proof of
Lemma 4.2, we only sketch the main steps. Suppose L is the complex line bundle on X which represents
the cohomology class e. We also fix a metric with cylindrical ends on X. The bundle L admits an ASD
connection B such that | F'(B)|2(xy) is finite. Let ¢; be a sequence of positive numbers converging 0,
and for each 7, fix an ¢;-admissible perturbation 7; of the Chern-Simons functional of Y. We also pick a
compatible perturbation 7; of the ASD equation on X as in the previous section. Define:

i = ) H#MI(X, a)APa

where the sum is over all paths along (X e) of index 0 which restricts to a generator « of C*(Y).

Following the same argument as in the proof of Lemma 4.2, we can show that d(;) = 0 and
D1U*(v;) = 0 for k < ng — 1. Moreover, the inequality in (5.2) implies that DU ~1(~;) is a non-zero
multiple of A~1%°. To be a bit more detailed, we consider the moduli space that contains the ASD
connection B @ # and as in Lemma 4.2, we cut down the complement of a small neighborhood of
the reducible connections with nyg — 1 codimension 4 divisors representing 4 (pt). This determines a
1-dimensional moduli space. Clearly, the signed count of the boundary points of this moduli space is
zero. This count has contribution from D!U™~!(+;) and reducible connections. The count associated
to the reducible connections is a non-zero multiple of (5.2), and hence it is non-zero. Consequently,
D'U™~1(~;) is non-zero. The dimension formula implies that this non-zero number is a multiple of
A~T@(®) There is also an element A; of the moduli space of the form MTi (X e; ) such that val(v) is
equal to £(A;). In particular, we have:

val(D1U™ " (v;)) — val(7;) = —%Q(e) — &E(4)

By letting ¢ — o0, we have:
1
Ly (no) < _ZQ(S) — limsup £(4;)
i
The analogue of Lemma 3.48 for 4-manifolds with one boundary component implies that there is a
(possibly broken) ASD connection Ag on X which is asymptotic to an irreducible flat connection on Y’

such that:

1
Iy (no) < —7Q(e) — E(Ao)
In particular, 'y (ng) < —1Q(e) and if the equality holds then Ay has to be flat. Therefore, there is an
SU(2)-representation of 71 (X'), which extends a non-trivial representation of 71 (Y). O
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Proposition 5.3. Suppose Y and X are given as in Proposition 5.1. Suppose also a non-negative integer
m, a homology class = € Hy(X,Z) and a cohomology class e € H?(X,Z) are fixed such that Q(e) = m
mod 2, |Q(e)] =2, |Q(e)| < |Q(e)]| for any ¢’ with €' = e mod 2 and:

Z(—l)Q(%e/>(E )™ £ 0. (5.4)

where the sum is over all pairs {¢', —€'} such that ¢’ € H*(X,Z), ¢ = e mod 2, and Q(e) = Q(¢').
Then Ty (ng) < fiQ(e) where ng = *M' The equality holds only if the fundamental group of X
admits a representation to SU(2) with non-trivial restriction to the boundary.

Proof. Essentially the same proof as in Proposition 5.1 verifies this claim. We just need to modify the
definition of ~; as follows:

Y= Y H#MI(X, e0) A V(S1) .. V(Em)APa

where ; is an embedded surface'* in X representing the homology class = and V(%;) is the standard
codimension 2 divisor in the configuration space of irreducible connections on X representing (=)
[DK90]. O

Proof of Theorem 5. Let e be a cohomology class which represents a non-zero element of with minimum
|Q(e)|. In particular, Q(e) = —m(L) where m(L) is defined in (1.2). If ¢/ € H?(X,Z) is another
cohomology class that e = ¢/ mod 2 and Q(e) = Q(¢€’), then either e — ¢’ or e + €’ is a torsion element.
In particular, in the case that Q)(e) is an even number, the condition in (5.2) holds and we can conclude
that Iy (—3Q(e)) < —1Q(e). In the case that Q(e) is an odd number, we set m = 1 and E to be a

4
cohomology class that = - ¢ = 1 and apply Proposition 5.3 to conclude that Fy(7%) < —%Q(e).
This inequality completes the proof. O

A Evaluating a Function at Cohomology classes
Suppose M is a compact topological space, f : M — R is a continuous function and o € H, (M, Z). Let
M(r) := f~1((—o0,r]) and define:
flo) :=1inf{r | o € image(iy : Hy(M(r),Z) — H«(M,Z))}
We say f(o) is the evaluation of f at the homology class o.

In the case that M is a smooth manifold and f is a smooth function, we can reformulate the above
definition using the language of Morse homology. We firstly assume that f is a Morse function and fix
a Riemannian metric on M such that f is a Morse-Smale function. Suppose (Ci(f),d) is the Morse

14 As it is customary in the definition of Donaldson invariants, we assume that these surfaces intersect generically to avoid the
issue of instanton bubbles.
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complex associated to f. Then C,(f) is generated by critical points of f, and d is defined using down-
ward gradient flow lines of f. Moreover, the homology of the complex (Ci(f), d), denoted by H..(f), is
naturally isomorphic to H, (M, Z). For each homology class o, we have:

flo) = min  max{f(c)} (A.1)
o=[3; aics] 1

Here the minimum is over all linear combinations ), a;c; of critical points of f which represents the
homology class o. The above identity is a consequence of the fact that for any r, the sub-complex
generated by critical points « of f with f(«) < r has the same homology as the singular homology of
M (r). Clearly, the above min-max formula is independent of the choice of the metric because it is equal
to f(o). Alternatively, one can use standard continuation maps to show the independence of the left hand
side of (A.1) from the choice of the metric.

Example A.2. If f is a self-indexing Morse function, then for any o € H;(M,Z), we have f(o) = i.
The above definition can be modified easily for the functions which are not necessarily Morse. Given

a function f, we fix a smooth function 7; : M — R for each positive integer ¢ such that f + 7; is a Morse
function and |m;|co — 0. Then we have:

o) = lim min max{ f (o A3
1 (o) P 3wl {f (i)} (A3)

In particular, the term on the min-max formula on the right hand side of (A.3) is independent of the choice
of the perturbations ;. One can also observe from the definition of f (o) that this number is equal to a
critical value of f.

The definition of I'y- has some formal similarities with the expression on the left hand side of (A.3),
where M is replaced with the configuration space B(Y') and f is replaced with the S'-valued Chern-
Simons functional CS. Another similarity is that Iy, modulo integers, essentially takes values in the
set of critical values of the Chern-Simons functional, i.e., the values of the Chern-Simons functional
on SU(2)-flat connections. However, one should not go too far in this analogy. To have a better finite
dimensional approximation to the construction of this paper one should consider a manifold M with an
SO(3) action which has one fixed point and otherwise it is free. We also need to fix an SO(3)-invariant
function on M. Working with an appropriate model for the homology of M, we can produce a chain
complex with coefficients in A which has the form in (2.6). Then repeating the construction of Subsections
2.3 and 3.1 would provide a better finite dimensional approximation to I'y-.
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