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Abstract

For each integral homology sphere Y , a function ΓY on the set of integers is constructed. It is
established that ΓY depends only on the homology cobordism class of Y and it recovers the Frøyshov
invariant. A relation between ΓY and Fintushel-Stern’s R-invariant is stated. It is shown that the
value of ΓY at each integer is related to the critical values of the Chern-Simons functional. Some
topological applications of ΓY are given. In particular, it is shown that if ΓY is trivial, then there is no
simply connected homology cobordism from Y to itself.

1 Introduction

Various Floer homology theories provide powerful tools in 3-manifold topology [Flo88, OS04, KM07].
The definitions of these invariants follow a similar pattern. To a given 3-manifold Y , one associates a
pair of an infinite dimensional space BpY q and a functional CS, defined on BpY q.1 Then the relevant
Floer homology of Y is obtained by applying the Morse homological methods to the functional CS. A
unique feature of instanton homology [Flo88] among other Floer homology theories is that both BpY q
and the functional CS are topological. On the other hand, one needs to fix additional auxiliary structures
for monopole Floer homology (in the form of a Riemannian metric for Y ) and Heegaard Floer homology
(including a Heegaard diagram for Y ) to define BpY q and CS. In the present article, we exploit this
property of instanton Floer homology to introduce an invariant of integral homology 3-spheres which
is preserved by homology cobordisms. The definition of this invariant is partly inspired by ideas from
Min-Max theory.2 This homology cobordism invariant provides a platform to unify works of various
authors including Donaldson [Don83], Fintushel-Stern [FS85, FS90], Frøyshov [Frø02], Furuta [Fur90],
Hedden-Kirk [HK12].
∗The work of the author was supported by NSF Grant DMS-1812033.
1Here CS stands for the Chern-Simons functional, which is the relevant functional in the case of instanton Floer homology.

This is not a standard notation for other 3-manifold Floer homologies. We use this notation to emphasize on formal similarities
among the definitions of these 3-manifold Floer homology theories.

2See Appendix A for an elaboration on this point.
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1.1 Statement of Results

Let Y and Y 1 be two integral homology spheres. A cobordism W from Y to Y 1 is a smooth 4-manifold
with boundary ´Y \ Y 1. The 3-manifolds Y and Y 1 are homology cobordant, if there is a cobordism
W from Y to Y 1 such that H˚pW,Y ;Zq “ H˚pW,Y

1;Zq “ 0. The collection of all integral homology
spheres modulo homology cobordism relation is called the homology cobordism group and is denoted by
Θ3

Z.

Suppose Y is an integral homology sphere. As the main construction of the present article, we
introduce a function ΓY : ZÑ R

ě0, where Rě0 is the extended positive real line Rě0 Y t8u, equipped
with the obvious ordering. The following theorem states some of the basic properties of this function:

Theorem 1. The function ΓY satisfies the following properties:

(i) ΓY is non-decreasing.

(ii) If there is a homology cobordism from the integral homology sphere Y to another integral homology
sphere Y 1, then ΓY “ ΓY 1 .

Both parts of the above theorem can be strengthened. Before stating an improvement of Theorem 1
(i), we need to give a definition:

Definition 1.1. An integral homology sphere Y is SUp2q-non-degenerate, if all SUp2q flat connections
on Y are non-degenerate. That is to say, for any flat connection α on Y , we have H1pY ; adαq “ 0 where
adα is the flat vector bundle of rank 3 associated to the adjoint representation of α.

Theorem 2. Suppose Y is an integral homology sphere. There is a positive constant τpY q such that for
any positive integer i, we have:

ΓY piq ě τpY q.

Moreover, if Y is SUp2q-non-degenerate, then there is a positive constant τ 1pY q such that for any positive
integer i, we have:

ΓY pi` 1q ě ΓY piq ` τ
1pY q.

The constants τpY q and τ 1pY q in the above theorem can be explicitly defined in terms of the moduli
spaces of anti-self-dual SUp2q-connections on Rˆ Y . (See Definitions 3.28 and 3.40.) The following
theorem gives a generalization of part (ii) of Theorem 1:

Theorem 3. Suppose W is a cobordism from an integral homology sphere Y to another homology sphere
Y 1 such that b1pW q “ 0 and the intersection form of W is negative definite, i.e., b`pW q “ 0. Then there
is a non-negative constant ηpW q such that for any positive integer i and non-positive integer j, we have3:

ΓY 1piq ď ΓY piq ´ ηpW q ΓY 1pjq ď maxpΓY pjq ´ ηpW q, 0q.

Moreover, the constant ηpW q is positive unless there is an SUp2q-representation of π1pW q which extends
non-trivial representations of π1pY q and π1pY

1q.

3Here we define8´ k to be8 for k P R
ě0

.
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Gauge theoretical methods provide an important source of tools to study the group Θ3
Z. In his

groundbreaking work [Frø02], Frøyshov introduced a homomorphism h : Θ3
Z Ñ Z which is defined

using Floer’s instanton homology of integral homology spheres. Frøyshov’s construction motivated
the definition of numerical invariants of homology cobordism group in the other Floer homologies
[Frø96, OS03, KM07, Frø10, Man16, Lin18, HM1705], which have many interesting applications in
low dimensional topology. An invariant with similar flavor is introduced in [HHL] by building on the
constructions of [Man16, HM1705]. The invariant ΓY can be regarded as a refinement of Frøyshov’s
h-invariant:

Theorem 4. The function ΓY takes a finite value at an integer k if and only if k ď 2hpY q.

The invariant hpY q gives constraints on the intersection form of 4-manifolds X which fill the 3-
manifold Y . For example, if hpY q ď 0, then there is no negative definite 4-manifold X with boundary
Y such that the intersection form of W is not diagonal [Frø02, Theorem 3]. If we let Y “ S3, then this
result specializes to Donaldson’s groundbreaking diagonalizability theorem [Don83]. Negative definite
4-manifolds can be also used to obtain constraints on ΓY :

Theorem 5. Suppose X is a 4-manifold whose boundary is an integral homology sphere Y . Suppose the
intersection form Q of X on H2pX;Zq{Tor has the following form

Q “ p´1q ‘ ¨ ¨ ¨ ‘ p´1q ‘ L.

Here L is a non-trivial negative definite lattice such that:

mpLq :“ min
αPL, α‰0

t|Qpαq|u (1.2)

is greater than 1. Then we have:

ΓY piq ď
mpLq

4
for i ď t

mpLq
2

u (1.3)

In particular, ΓY p1q is a finite number.

For a slightly more general version of Theorem 5 see Propositions 5.1 and 5.3.

In the case that Y “ S3, we have:

ΓS3pkq “

"

8 k ą 0
0 k ď 0

(1.4)

This is an immediate consequence of the definition of ΓY . It also follows from Theorem 3 applied to the
product cobordism between two copies of S3 and Theorem 4. For an integral homology sphere, we say
ΓY is trivial, if ΓY “ ΓS3 . Theorems 3 and 5 imply that:

Corollary 1. Let W be a homology cobordism from Y to Y 1 such that ΓY is non-trivial (and hence ΓY 1

is non-trivial). Then the inclusion of Y and Y 1 in W induce non-trivial maps of fundamental groups. In
particular, there does not exist a simply-connected homology cobordism from Y to itself if hpY q ‰ 0.
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This corollary is an extension of [Tau87, Proposition 1.7], which was originally proved using gauge
theory on manifolds with periodic ends. (See Remark 3.52 about the relation between Corollary 1 and
[Tan17].) It also answers a variant of the following question asked by Akbulut [Kir95, Problem 4.95]. In
this question, µ denotes the Rokhlin homomorphism:

Question 1.5. Does there exist a simply connected homology cobordism W from Y to Y 1 such that
µpY q ‰ 0 (and hence µpY 1q ‰ 0)?

Remark 1.6 (Levin and Lidman). The following question was raised in [HLL18, Remark 1.13]: given an
integral homology sphere Z which bounds a homology 4-ball and γ P π1pZq, does there exist a homology
4-ball X such that BX “ Z and γ is null-homotopic in X? Corollary 1 may be used to give a negative
answer to this question. Suppose Y is an integral homology sphere with a weight one fundamental group.
Suppose γ is a closed curve in Y which normally generates π1pY q. We also assume that ΓY ‰ ΓS3 .
For example, we may take Y to be the poincaré homology sphere Σp2, 3, 5q. (See Example 3.21.) The
3-manifold Z “ Y# ´ Y bounds a homology 4-ball. However, there is no homology 4-ball X with
BX “ Z such that γ vanishes in π1pXq because Corollary 1.5 asserts that the inclusion map induces a
non-trivial map from π1pY q (and also π1p´Y q) to π1pXq.

Fintushel and Stern introduced an invariant for any Seifert fibered homology sphere Σpa1, . . . , anq in
[FS85], which is denoted by Rpa1, . . . , anq and is defined as follows:

Rpa1, . . . , anq “
2

a
´ 3` n`

n
ÿ

i“1

2

ai

ai´1
ÿ

k“1

cotp
πka

a2
i

q cotp
πk

ai
q sin2p

πk

ai
q. (1.7)

Here a “ a1 ¨ a2 . . . an. It turns out that the above number is an odd integer, not smaller than ´1. The
following theorem states that ΓY is related to Fintushel and Stern’s R-invariant:

Theorem 6. Let Y be an integral homology sphere which has the form:

Y “ Y1#Y2 . . .#Yk

where Yi are (not necessarily distinct) Seifert fibered homology spheres with positive values of the
R-invariant. Let Y1 be the Seifert fibered space Σpa1, a2, . . . anq such that the value of the product
a1a2 . . . an is maximum among all Seifert spaces Yi. Then for 1 ď i ď t

Rpa1,...,anq`3
4 u, we have:

ΓY piq “
1

4a1a2 . . . an
.

In particular, hpΣpa1, . . . , anqq ě
1
2 t
Rpa1,...,anq`3

4 u.

The main theorem of [FS85] asserts that if Rpa1, . . . , anq ą 0, then there is no negative definite
4-manifold X whose boundary is ´Σpa1, . . . , anq. This result follows immediately from Theorems 3 and
6. The following well-known theorem of Furuta is another corollary of Theorem 6.

Corollary 2 ([Fur90]). Suppose tYi “ Σpai,1, . . . , ai,niquiPI is a collection of Seifert fibered homology
spheres with positive R-invariants such that the positive integers ai :“ ai,1ai,2 . . . ai,ni are distinct. Then
the integral homology spheres Yi determine linearly independent elements of Θ3

Z.
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As a special case, Furuta’s result implies that the integral homology spheres tΣpp, q, pqk ´ 1qukPZą0 ,
for coprime positive integers p, q, span a subgroup of Θ3

Z isomorphic to Z8 because Rpp, q, pqk´1q “ 1.

Corollary 3. Suppose DpTp,qq denotes the Whitehead double of the pp, qq-torus knot and Yp,q is the
3-manifold ´ΣpDpTp,qqq, the branched double cover of DpTp,qq with the reverse orientation. Then we
have:

1

4pqp4pq ´ 1q
ď ΓYp,qp1q ď

1

4pqp2pq ´ 1q
(1.8)

More generally, if Y “ n1 ¨ Yp1,q1# . . .#nk ¨ Ypk,qk for integers ni, pi, qi such that pi, qi are coprime
integers greater than 1 and ni is a positive integer, then:

min
1ďiďk

1

4piqip4piqi ´ 1q
ď ΓY p1q ď min

1ďiďk

1

4piqip2piqi ´ 1q
(1.9)

This corollary is a consequence of Theorems 2 and 6 using the ingredients provided by [HK12]. In
[HK12], a lower bound for the positive values of the Chern-Simons functional on the set of flat SUp2q-
connections of Yp,q is given. This lower bound allows us to obtain the lower bound for ΓY in (1.9). The
upper bound in (1.9) is verified with the aid of a negative definite cobordism from Σpp, q, 2pq´ 1q to Yp,q.
In fact, Proposition 1 below implies that ΓYp,qp1q is one of the following values and it is natural to ask
which of these values are equal to ΓYp,qp1q:

1

4pqp4pq ´ 1q

1

2pqp4pq ´ 1q

1

4pqp2pq ´ 1q
.

Corollary 3 can be used to conclude the following theorem proved in [HK12].

Corollary 4 ([HK12]). The knots tDpT2,2n´1quně2 are linearly independent in the smooth concordance
group.

A stronger version of Corollary 4 for a more general family of knots is proved in [PC17]. Analogous to
Corollary 4, it is possible to reformulate the results of [PC17] in terms of ΓY . In particular, the arguments
of [PC17] can be used to obtain information about ΓY where Y is the branched double cover of S3,
branched along one of the knots studied in [PC17].

There are properties and invariants of integral homology spheres which do not respect the homology
cobordism relation. But we can use ΓY to show that the homology cobordism group is not completely
blind to them. For instance, being an SUp2q-non-degenerate integral homology sphere is not preserved by
homology cobordisms. If Y has an irreducible SUp2q flat connection, then Y#´ Y is SUp2q-degenerate
and it is homology cobordant to S3, an SUp2q-non-degenerate integral homology sphere. Nevertheless,
we have the following corollary of Theorems of 2 and 6:

Corollary 5. Suppose Σpa1, a2, . . . anq is a Seifert fibered space with Rpa1, a2, . . . anq ě 5. Then
Σpa1, a2, . . . anq is not homology cobordant to an SUp2q-non-degenerate integral homology sphere. In
particular, Σpa1, a2, . . . anq is not homology cobordant to a Brieskorn homology sphere Σpp, q, rq.

Note that there are Seifert fibered homology spheres Σpa1, a2, . . . anq with arbitrarily large values of
Rpa1, a2, . . . anq. (See Example 4.16.)
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The Chern-Simons functional of an integral homology sphere Y takes finitely many values on the
space of flat SUp2q-connections. The homology cobordism relation might change this set. For example,
the connected sum Y#´ Y , which is homology cobordant to S3, can take non-trivial values on the space
of flat SUp2q-connections. On the other hand, the following proposition implies that if Y is homology
cobordant to Y 1, then the values of Chern-Simons functionals of Y and Y 1 on the space of flat connections
share the set of finite values in the image of ΓY and ΓY 1 :

Proposition 1. For any integral homology sphere Y and any integer k, either ΓY pkq “ 8, ΓY pkq “ 0,
or there is an irreducible flat connection α such that ΓY pkq is equal to CSpαq mod Z.

It is natural to ask whether ΓY takes any irrational value. Proposition 1 implies that if Y is a linear
combination of Seifert fibered homology spheres (or more generally plumbed 3-manifolds), then ΓY is
always rational valued. In order to find Y with an irrational value in the image of ΓY , we firstly need to
find an SUp2q-flat connection α on an integral homology sphere such that CSpαq is an irrational number.
Even the existence of such flat connections is an open question.

We end this part of the introduction by discussing a filtration on Θ3
Z. Given two integral homology

spheres Y , Y 1, we define Y ľΓ Y
1 if ΓY p1q ď ΓY 1p1q. This defines a total quasi-order4 on Θ3

Z. There
is also a well-known quasi-order ľN on Θ3

Z where Y ľN Y 1 if there is a negative definite manifold
cobordism W from Y 1 to Y . Theorem 3 implies that if Y ľN Y 1, then Y ľΓ Y

1. (If W : Y Ñ Y 1 is a
negative definite cobordism, then performing surgery on a set of loops representing a basis for H1pW,Rq
gives rise to a negative definite cobordism from Y to Y 1 with vanishing b1.) Theorem 6 implies that if
we pick the sequence tYk :“ Σpp, q, pqk ´ 1quk, then for any integer N we have Yk ľΓ N ¨ Yk´1. It
would be interesting to study the behavior of this filtration (or some refined version of it) with respect to
connected sums of 3-manifolds. Of course, this requires a better understanding of the invariant ΓY with
respect to connected sums which will be investigated in [DST].

1.2 Outline of Contents

For the purpose of this paper, we need to work with a version of instanton Floer homology which is
defined with coefficients in a Novikov field. This version of instanton Floer homology is discussed in
Section 2. Subsection 2.2 is devoted to a review of the functoriality of instanton Floer homology with
respect to negative definite cobordisms with vanishing b1. In [Don02], various equivariant instanton
Floer homology theories for integral homology spheres are introduced. In Subsection 2.3, we introduce
three such equivariant theories and show that they fit into an exact triangle. The construction of this exact
triangle is inspired by similar objects in the context of monopole Floer homology [KM07] and Heegaard
Floer homology [OS04].

The definition of ΓY is given in Subsection 3.1 using the exact triangle of equivariant instanton Floer
homologies. As it is explained there, one can avoid equivariant theories in the definition of ΓY . However,
I find it more instructive to use the language of equivariant instanton Floer theories. I also believe that this
approach would be more efficient in studying the behavior of ΓY with respect to topological constructions

4A quasi-order ľ is a reflexive and transitive binary relation. A total quasi-order on a set S is a quasi-order ľ on S such that
for any two elements a, b of S at least one of the relations a ľ b or b ľ a holds.
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such as surgery along a knot and taking connected sum. In Subsection 3.2, we verify the basic properties of
ΓY claimed above. In Section 4, we study the relation between ΓY and Fintushel and Stern’s R invariant.
Section 5 is devoted to the proof of Theorem 5 and its generalizations. In Appendix A, we discuss a finite
dimensional toy model to motivate the main construction of the paper.

Acknowledgements. This work is partly inspired by the ongoing collaboration of the author with Kenji
Fukaya. I am grateful to him for many enlightening discussions. The definition of the exact triangle of
Subsection 2.3 is motivated by the author’s discussions with Michael Miller. I am thankful to him for
explaining to me his work on instanton Floer homology of rational homology spheres. I thank Masaki
Taniguchi for brining his work to the author’s attention. I am also grateful to Simon Donaldson, Peter
Kronheimer and Christopher Scaduto for many interesting conversations about the present work.

2 A Review of Instanton Floer Homology

2.1 Instanton Floer Chain Complexes

Suppose Y is an integral homology sphere and P is an SUp2q-bundle on Y , which is necessarily a trivial
bundle. Let ApY q be the space of SUp2q-connections on P . We fix a trivialization of P and denote the
associated trivial connection by Θ. Other connections on P are given by adding elements of Ω1pY, sup2qq
to the trivial connection. Here Ω1pY, sup2qq is the space of smooth 1-forms on Y with coefficients in
sup2q, the Lie algebra of SUp2q. For a connection A “ Θ` a, with a being an element of Ω1pY, sup2qq,
the Chern-Simons functional of A is defined to be:

ĂCSpAq :“ ´
1

8π2

ż

Y
trpa^ da`

2

3
a^ a^ aq

Suppose GpY q is the space of smooth automorphisms of P . Given an element of g P GpY q, we can
pull-back a connection using the automorphism g´1. This determines an action of GpY q on ApY q. A
connection in ApY q is called irreducible if its stabilizer with respect to the action of GpY q is ˘id. The
action of each element of GpY q changes the value of the Chern-Simons functional by an integer. Therefore,
we have an induced map CS : BpY q Ñ R{Z where BpY q is the quotient space ApY q{GpY q.

Instanton Floer homology of Y can be regarded as the “Morse homology group” associated to the
Chern-Simons functional CS. The critical points of CS are represented by flat SUp2q-connections on
Y and form a compact subspace of BpY q. The trivial connection (more precisely, the class represented
by Θ) is a singular point of BpY q, because the stabilizer of Θ consists of constant automorphisms of
P . On the other hand, all non-trivial flat connections on P are irreducible. The trivial connection is a
non-degenerate critical point of CS, namely, the Hessian of CS at Θ is non-degenerate modulo the action
of the gauge group. For now, we assume that the other critical points are also non-degenerate and hence
isolated. Consequently, there are only finitely many critical points of CS.

We can form the analogues of downward gradient flow lines for the Chern-Simons functional. Fix two
critical points α and β of CS which are represented by flat connections rα, rβ P ApY q. Suppose A0 is a
smooth connection on Rˆ Y , which is equal to the pull-backs of rα and rβ on the ends p´8,´1s ˆ Y
and r1,8q ˆ Y , respectively. The restrictions of A0 to ttu ˆ Y determines a path z in BpY q from α

7



to β. Fix an integer l ě 3 and define Azpα, βq to be the set of Sobolev connections A on R ˆ Y such
that ||A ´ A0||L2

l
ă 8. As the notation suggests, this space depends only on the path z. We define the

topological energy of an element A P Azpα, βq to be:

1

8π2

ż

RˆY
trpF pAq ^ F pAqq

The topological energy is independent of A, and we will denote it by Epzq. It is also related to the
Chern-Simons functional as follows:

Epzq ” CSpαq ´ CSpβq mod Z (2.1)

Suppose Gzpα, βq denotes the group of automorphisms g of the trivial SUp2q-bundle on Rˆ Y such that
||∇A0g||L2

l
ă 8. This group acts on Azpα, βq and the quotient is denoted by Bzpα, βq.

Fix a metric on Y and equip R ˆ Y with the product metric. A connection A P Azpα, βq is Anti-
Self-Dual, if the self-dual part of its curvature, F`pAq, vanishes. The path tA|ttuˆY utPR, for an ASD
connection A, can be regarded as the downward gradient flow line of the Chern-Simons functional where
we use the following metric on ApY q:

xa, by :“
1

8π2

ż

Y
´ trpa^ ˚bq a, b P Ω1pY, sup2qq

The ASD equation is invariant with respect to the action of Gzpα, βq and the quotient space of the space of
solutions is denoted by Mzpα, βq. The space Mzpα, βq is non-empty only if Epzq ą 0 or z is homotopic
to the constant path. In the latter case, Epzq “ 0 and α “ β. We say a point of Mzpα, βq is regular
if a representative connection (and hence any representative connection) is a regular point of the map
AÑ F`pAq. The space Mzpα, βq is an orientable smooth manifold in a neighborhood of any regular
point. For now, we assume that all elements of the moduli spaces Mzpα, βq are regular, and address the
general case below.

To any α in BpY q, we can associate deg`pαq,deg´pαq P Z{8Z such that [Flo88, Don02]:

dimpMzpα, βqq ” deg`pαq ´ deg´pβq mod 8 (2.2)

Moreover, deg`pΘq “ ´3, deg´pΘq “ 0, and deg`pαq “ deg´pαq for an irreducible flat connection α
(under the standing assumption that the irreducible flat connections are non-degenerate). The grading
on the elements of BpY q defined by deg´ is called the Floer grading. Translation along the R direction
gives an action of R on Mzpα, βq. Unless α “ β and z is homotopic to the constant path, this action is
free and M̆pα, βq denotes the quotient space with respect to the R-action.

Suppose Λ is the following field:

Λ :“ t
8
ÿ

i“0

aiλ
ri | ai P Q, ri P R, lim

iÑ8
ri “ 8u.

Define C˚pY q to be the Λ-module generated by non-trivial flat connections on Y . Define the endomor-
phism d : C˚pY q Ñ C˚pY q by:

dpαq :“
ÿ

z:αÑβ

#M̆zpα, βq ¨ λ
Epzqβ (2.3)
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where α and β are generators of C˚pY q and z is a path from α to β. In the above expression, #M̆zpα, βq
denotes the signed number of the points in M̆zpα, βq, with the understanding that this sum is non-zero
only if the moduli space is 0-dimensional. In the case that M̆zpα, βq is 0-dimensional, this moduli space
is compact and hence it consists of finitely many points. Moreover, for a general path z, the moduli space
Mzpα, βq is orientable. However, to make (2.3) rigorous, we need to fix an orientation of Mzpα, βq for
each α, β and z. We refer to [Don02] for a consistent way of fixing orientations for these moduli spaces.
The flat connection β contributes to the sum (2.3) only if deg´pαq ´ deg´pβq “ 1. Therefore, the degree
of d with respect to the Floer grading is equal to ´1. The subspace of the elements of degree i in C˚pY q
is denoted by CipY q.

The moduli spaces of ASD connections asymptotic to the trivial connection on one end can be utilized
to construct two other maps. Following [Don02], let D1 : C˚pY q Ñ Λ and D2 : Λ Ñ C˚pY q be
Λ-homomorphisms defined as follows:

D1pαq :“
ÿ

z:αÑΘ

#M̆zpα,Θq ¨ λ
Epzq D2p1q :“

ÿ

z:ΘÑβ

#M̆zpΘ, βq ¨ λ
Epzqβ

From the definition, it is clear that D1 is non-zero only on C1pY q, and D2 takes values in the summand
C4pY q of C˚pY q.

There is another interesting operator U which acts on C˚pY q. The map U is defined with the same
formula as (2.3) except that M̆zpα, βq is replaced with Nzpα, βq, a co-dimension 4 submanifold of
Mzpα, βq,

Upαq :“
ÿ

z:αÑβ

´
1

2
#Nzpα, βq ¨ λ

Epzqβ. (2.4)

The factor ´1
2 does not have a great significance and is included to simplify subsequent formulas. Each

homology class σ P HipY q gives rise to a cohomology class µpσq P H4´ipBzpα, βqq [DK90, Don02].
The submanifold Nzpα, βq of Mzpα, βq can be regarded as a subspace of Mzpα, βq representing the
cohomology class µp4 ¨xq where x is the generator ofH0pY q. To be more specific, let B˚pp´1, 1qˆY q be
the configuration space of irreducible SUp2q-connections on p´1, 1qˆY with finite L2

l norms. Associated
to the base point p0, y0q P p´1, 1q ˆ Y , there is a base point fibration E on B˚pp´1, 1q ˆ Y q, which is
a rank 3 real vector bundle with structure group SOp3q. We fix two sections s1, s2 of the complexified
bundle EbC and define Nzpα, βq as follows:

Nzpα, βq :“ trAs PMzpα, βq | s1prprAsqq and s2prprAsqq are linearly dependent.u (2.5)

Here r : Mzpα, βq Ñ B˚pp´1, 1q ˆ Y q is given by the restriction of a connection to p´1, 1q ˆ Y and is
well-defined because of unique continuation. We also assume that s1 and s2 are chosen generically such
that Nzpα, βq is cut down transversely. We refer the reader to [Don02] and [Frø02] for more details5. By
definition, U has degree ´4 because Nzpα, βq is 0-dimensional only if deg´pαq ´ deg´pβq “ 4.

Let rC˚pY q :“ C˚pY q ‘ Λ ‘ C˚´3pY q. Here C˚´3pY q is the same Λ-module as C˚pY q whose
grading is shifted up by 3. The summand Λ is in correspondence with the trivial connection and we define

5The corresponding operator in [Don02] is equal to ´ 1
4
U and the corresponding operator in [Frø02] is ´2U .
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its Floer grading to be 0. The above maps can be combined to form an operator rd : rC˚pY q Ñ rC˚pY q:
»

–

d 0 0
D1 0 0
U D2 ´d

fi

fl (2.6)

Proposition 2.7. The map rd defines a differential of degree ´1 on rC.

Proof. The same proposition with the coefficient ring Q is proved in [Don02]. (See also [Frø02].) The
argument there can be easily adapted to our case where the coefficient ring is Λ and the differential is
weighted by powers of λ. We only need to observe that the topological energy of the concatenation of two
paths z1 and z2 in BpY q is equal to the sum of the topological energies.

Define the minimal-degree of a non-zero element η “
ř8
i“0 aiλ

ri of Λ by

valpηq “ min
i
tri | ai ‰ 0u

We can also extend the minimal-degree to the case that η “ 0 by defining that valp0q “ 8. The
minimal-degree of pη1, . . . , ηkq P Λk is defined as:

valpη1, . . . , ηkq :“ min
i
tvalpηiqu

In particular, val can be defined on rC˚pY q. The differential rd increases the minimal degree, because
the moduli spaces involved in the definition of this differential are non-empty only if the energy of the
corresponding path is positive.

One is often faced with homology spheres Y such that the Chern-Simons functional has degenerate
critical points or the moduli spaces Mzpα, βq are not regular. In these cases, we need to perturb the
Chern-Simons functional. The classical choice of such perturbations are given by holonomy perturbations
[Don87, Tau90, Flo88, Don02, Kro05, KM11b]. Without going into details of holonomy perturbations, we
explain what such perturbations provide for us. Here we follow the approach in [Don02, KM11b]. For
each 3-manifold Y , one can define a family of holonomy perturbations parametrized by a Euclidean space
P: to each π P P , one can associate a bounded continuous function fπ : BpY q Ñ R and this association
is linear. If α and β are two critical points of CS`fπ and z is a path from α to β, then the moduli space of
downward gradient flow lines from α to β is denoted by Mπ

z pα, βq. More precisely, Mπ
z pα, βq consists

of the gauge equivalence classes of connections A P Azpα, βq such that:

F`pAq ` pdt^∇Atfπq
` “ 0

where At :“ A|ttuˆY and ∇Atfπ is the formal gradient of fπ at the connection At.

Proposition 2.8 ([Don02, KM11b]). For any positive real number ε, there is an element π P P such that
the following properties hold:

(i) |π|P ă ε;
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(ii) the non-trivial critical points of the functional CS` fπ are non-degenerate and irreduicble;

(iii) for any two critical points α and β of CS` fπ and any path z with indexpzq ă 8, the moduli space
Mπ

z pα, βq consists of regular solutions, i.e., any element of this space is cut down transversely;

(iv) if a flat connection is already non-degenerate, then we can assume that fπ vanishes in a neighbor-
hood of this flat connection.

Remark 2.9. Strictly speaking, the proof of part (iv) of Proposition 2.8 does not appear in [Don02,KM11b].
However, the proofs there can be easily adapted to treat this part. The functions fπ are defined in terms
of the holonomies of connections in BpY q along a set of loops embedded in Y . If a flat connection α is
non-degenerate, then there is an open neighborhood of the equivalence class of this connection in BpY q,
which does not contain any other flat connection. In fact, we can pick this neighborhood such that for any
flat connection in the complement of the class of α there is a finite set of loops in Y such that holonomies
along these loops distinguish this connection from the connections in the chosen neighborhood. Using
this observation one can easily adapt the arguments in [Don02, Chapter 5] to obtain the desired result.

Fix a positive real number ε, and let fπ be a perturbation given by Proposition 2.8. The trivial
connection is always a critical point of CS` fπ, and if ε is small enough, all the other critical points are
irreducible. Any such π is called an ε-admissible perturbation. We also say a perturbation is admissible
if it is an ε-admissible perturbation for some ε. By replacing CS with CS ` fπ, we can construct a
chain complex p rCπ˚ pY q, rdq in an analogous way. The chain group can be also equipped with the Floer
grading and val. The differential decreases the Floer grading by ´1. However, the differential rd does not
necessarily increase the minimal-degree anymore. Nevertheless, there is an upper bound in terms of ε on
how much rd decreases val.

Lemma 2.10. For any positive real number δ, there exists a positive ε such that for any ε-admissible
perturbation π and any ζ P rCπ˚ pY q, we have:

valprdζq ď valpζq ` δ.

Proof. For critical points α, β of CS` fπ, an element of the moduli space Mπ
z pα, βq can be regarded as

a downward gradient flow line of CS` fπ. In particular, the non-emptiness of this moduli space implies
that:

Epzq ` fπpαq ´ fπpβq ě 0.

If ε is small enough, then we can assume that |fπ| at any point of BpY q is less than δ
2 . Therefore,

Epzq ě ´δ, which implies that the differential rd decreases the minimal-degree on rCπ˚ pY q by at most
δ.

2.2 Cobordism Maps

In this subsection, we discuss the functorial properties of instanton Floer homology with respect to
cobordisms. Suppose Y , Y 1 are two integral homology spheres with base points, and π, π1 are ε-
admissible perturbations of the Chern-Simons functional on Y , Y 1, respectively. The associated chain
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complexes to these perturbations are denoted by p rCπ˚ pY q, rdq and p rCπ
1

˚ pY
1q, rdq. Let W : Y Ñ Y 1 be

a cobordism with a choice of a path between the base points of Y , Y 1 such that b`pW q “ 0 and
H1pW,Zq “ 0. We define below a chain map rCW : rCπ˚ pY q Ñ

rCπ
1

˚ pY
1q, which has the following matrix

form with respect to the standard direct sum decompositions of rCπ˚ pY q and rCπ
1

˚ pY
1q:

»

–

ϕpW q 0 0
∆1pW q 1 0
µpW q ∆2pW q ϕpW q

fi

fl (2.11)

As in the case of of the differentials of the Floer complexes, these maps are defined by the moduli
space of ASD connections. Firstly, we need to fix a Riemannian metric on W . We assume that this metric
is the product metric in a collar neighborhood of its boundary corresponding to the chosen metrics on Y
and Y 1. Let also W` be the non-compact manifold that is given by gluing the cylinders p´8, 0s ˆ Y and
r0,8q ˆ Y 1 with the product metric to W .

Let α, α1 be respectively generators of Cπ˚ pY q, C
π1
˚ pY

1q and fix connections representing these
elements of BpY q, BpY 1q. Let A be a connection on the trivial SUp2q-bundle over W` which is equal
to the pull back of the chosen representatives on the cylindrical ends. If A1 is another connection with
the similar properties, then we say A and A1 are equivalent to each other if there is an automorphism g
of the trivial SUp2q-bundle such that g˚pAq ´ A1 is compactly supported. An equivalence class of this
relation is called a path from α to α1 along W . The fundamental group of BpY q (resp. BpY 1q), based
at the connection α (resp. α1), acts faithfully and transitively on the space of paths from α to α1 by
concatenation. The topological energy of a path z, represented by a connection A, is defined to be:

Epzq :“
1

8π2

ż

W`

trpF pAq ^ F pAqq.

This energy is well-defined and only depends on z. Moreover, we have the following generalization of
(2.1):

Epzq ” CSpαq ´ CSpα1q mod Z (2.12)

For a path z from α to α1 represented by a connection A0, define AzpW ;α, α1q to be the space
of SUp2q-connections on W` such that ||A ´ A0||L2

l
ă 8. Let GzpW ;α, α1q be the group of the

automorphisms g of the trivial SUp2q-bundle such that ||∇A0g||L2
l
ă 8. The group GzpW ;α, α1q acts on

AzpW ;α, α1q and the quotient space is denoted by BzpW ;α, α1q. We consider perturbations of the ASD
equation on the space BzpW ;α, α1q compatible with the perturbations π and π1. This equation has the
following form:

F`pAq `G0pAq `G1pAq “ 0. (2.13)

The term G0pAq is defined using π and π1 in the following way:

G0pAq :“ φptqpdt^∇Atfπq
` ` φ1ptqpdt^∇Atfπ1q

`

where φ (respectively, φ1) is a smooth function on R that is equal to 1 on p´8,´2s (respectively, r2,8q)
and equal to 0 on r´1, 0s (respectively, r0, 1s). The functions φ and φ1 clearly determine functions on W`

which are respectively supported on the incoming end and the outgoing end of W`. The term G1pAq
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in (2.13) is a secondary holonomy perturbation which is supported on a compact subspace of W`. The
parametrizing space for this secondary holonomy perturbation is a Euclidean space P . Let Mπ

z pW ;α, α1q
be the moduli space of solutions to the equation in (2.13).

As in the case of cylinders, we can associate an integer indexpzq to the path z, which is the expected
dimension of the moduli space Mπ

z pW ;α, α1q. This integer is defined to be the index of the linearization
of the equation in (2.13) modulo the action of the gauge group and it satisfies the following identity:

indexpzq ” deg`pαq ´ deg´pα1q mod 8 (2.14)

The maps involved in the cobordism map rCW are defined using low dimensional moduli spaces of the
form Mπ

z pW ;α, α1q where π is chosen such that all these moduli spaces are cut down transversely:

Proposition 2.15 ([Don02]). Given a positive real number ε, there is a secondary perturbation term
π P P such that |π| ă ε and all the moduli spaces Mπ

z pW ;α0, α1q with indexpzq ă 8 consist of regular
solutions.

Any secondary perturbation π that satisfies the properties of Proposition 2.15 is called an ε-admissible
secondary perturbation. We say π is admissible if it is ε-admissible for some choice of ε. For an
ε-admissible perturbation, Mπ

z pW ;α, α1q is a smooth manifold whose dimension is equal to indexpzq.

We start with the definition of the map ϕ : Cπ˚ pY q Ñ Cπ
1

˚ pY
1q. We firstly fix an an ε-admissible

secondary perturbation π. Let α be a generator of Cπ˚ pY q and define:

ϕpαq :“
ÿ

z:αÑα1

#Mπ
z pW ;α, α1q ¨ λEpzqα1 (2.16)

where the sum is over all paths z that the moduli space Mπ
z pW ;α, α1q is 0-dimensional. In fact, for each

α1 there is at most one path z from α to α1 such that the moduli space Mπ
z pW ;α, α1q is 0-dimensional

and for this choice of z, the moduli space is compact. Therefore, it consists of finitely many points. As in
the case of differentials, there is a canonical choice of orientation for this moduli space [Don02] and for
this choice ϕ is a chain map.

The other terms in (2.11) are defined in an analogous way. For example, µ : Cπ˚ pY q Ñ Cπ
1

˚´3pY
1q

is defined similar to the map ϕ in (2.16) by replacing #Mπ
z pW ;α, α1q with ´1

2#N π
z pW ;α, α1q where

N π
z pW ;α, α1q is a codimension 3 submanifold of Mπ

z pW ;α, α1q. The definition of N π
z pW ;α, α1q is

similar to Nzpα, βq and uses the path between base points. We refer the reader to [Frø02, Theorem 6]
for the definition of µ. The maps ∆1pW q : Cπ˚ pY q Ñ Λ and ∆2pW q : Λ Ñ Cπ

1

˚ pY
1q are also defined by

considering the moduli spaces Mπ
z pW ;α, α1q where either α or α1 is equal to the trivial connection. A

standard argument using 1-dimensional moduli spaces over W` verifies the following proposition:

Proposition 2.17. rCW : rCπ˚ pY q Ñ
rCπ

1

˚ pY
1q is a chain map.

In the following, when the choice of the cobordism W is clear from the context, we drop W from our
notation and denote the above maps with ϕ, ∆1, ∆2 and µ.

The chain map rCW behaves well with respect to the Floer grading and val. Identity (2.14) implies
that the map rCW preserves the Floer grading. In order to study the behavior with respect to val, let

13



Mπ
z pW ;α, α1q be a non-empty moduli space that contains the class represented by a connection A. Then

Epzq can be written as the sum of three terms E0pzq, E1pzq and E2pzq, which are defined in the following
way:

E0pzq :“
1

8π2

ż

p´8,´T sˆY0

trpF pAq ^ F pAqq E1pzq :“
1

8π2

ż

rT,8qˆY1

trpF pAq ^ F pAqq

E3pzq :“
1

8π2

ż

W c

trpF pAq ^ F pAqq

where W c is the complement of p´8,´T s ˆ Y0 and rT,8q ˆ Y1 in W`, and T is chosen such that the
secondary perturbation term is supported on W c. We can argue as in the previous subsection that for any
positive constant δ there is ε such that E0pzq, E1pzq ě ´2δ. We also have:

E3pzq “
1

8π2

ż

W c

|F´pAq|2 ´ |F`pAq|2 ě ´
1

8π2

ż

W c

|G0pAq `G1pAq|
2

Therefore, if π is given by Proposition 2.15 and ε is small enough, then we can conclude that E3pzq ě ´δ.
Consequently, we can ensure that rCW does not decrease val by more than a given positive number once ε
is small enough.

We can relax the condition H1pW,Zq “ 0 to b1pW q “ 0 using the ideas of [Don87]. In the case that
b1pW q “ 0, we have two additional types of reducible flat connections on W`:

(i) flat connections induced by representations of π1pW q into Z{2Z. The stabilizer of any such
reducible connection is a copy of SUp2q;

(ii) flat connections induced by representations ρ of π1pW q into S1 such that there are elements in the
image of ρ which do not have order 2. The stabilizer of any such reducible connection is a copy of
S1. The flat connections obtained from ρ and ρ´1 are gauge equivalent to each other.

Using holonomy perturbations we may assume that any reducible flat connection of type (i) is regular.
Moreover, we may assume that the linearization of the perturbed ASD equation at any reducible connection
of type (ii) has 1-dimensional co-kernel. See [Don87] and [CDX17, Subsection 7.3] for more details on
the proofs of these facts.

The presence of flat connections of types (i) and (ii) requires us to modify the proof of Proposition
2.17. More specifically, we have the following new equations:

D11 ˝ λ “ cpW q ¨D1 `∆1 ˝ d, λ ˝D2 “ cpW q ¨D12 ´ d
1 ˝∆2, (2.18)

where cpW q is the number of the elements of H1pW,Zq, which is a finite positive integer. The first
equation in (2.18) is obtained by looking at the 1-dimensional moduli space associated to a path z along
W from a generator of Cπ˚ pY q to the trivial connection Θ1 on Y 1. The first term on the right hand side
of the first equation in (2.18) is obtained by counting the ends associated to gluing an element of the
0-dimensional moduli space M̆π

z pY ˆR, α,Θq to flat connections of type (i) and (ii). Using the arguments
of [Don87], any flat connection of type (i) contributes one end to the glued up moduli space and any
flat connection of type (ii) contributes two ends. Therefore, in total we have the coefficient cpW q in our
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formula. A similar explanation applies to the second equation in (2.18). In summary, Proposition 2.17
holds if we replace (2.11) with (2.19):

»

–

ϕpW q 0 0
∆1pW q cpW q 0
µpW q ∆2pW q ϕpW q

fi

fl (2.19)

2.3 Equivariant Instanton Floer Homology Groups

In this section, we review the definition of three different equivariant Floer homology groups pI˚pY q,
qI˚pY q and I˚pY q for any integral homology sphere Y . These Floer homology groups are Λrxs-modules
and are constructed algebraically from the Floer chain complexes of Subsection 2.1 without any other
geometrical input. The Floer homology groups pI˚pY q and qI˚pY q are essentially the same as the Floer
homology groups HFpY q, HFpY q introduced in [Don02]. The notation here is motivated by the notations
used in the context of monopole Floer homology [KM07]. Similar to the three flavors of monopole Floer
homology, the Floer homology groupspIpY q,qIpY q and IpY q are modules over Λrxs and they fit into an
exact sequence of the form:

qI˚pY q
j˚ // pI˚pY q

p˚{{
I˚pY q

i˚

cc
(2.20)

Following Subsection 2.1, we fix an ε-admissible perturbation π for the Chern-Simons functional
of Y and form the chain complex pCπ˚ pY q, dq and the maps U , D1 and D2. The Floer homology group
pI˚pY q (pronounced as “I-from”) is the homology of the following chain complex:

pCπ˚ pY q :“ Cπ˚ pY q ‘ Λrxs pdpα,
N
ÿ

i“0

aix
iq “ pdα´

N
ÿ

i“0

U iD2paiq, 0q

The Λrxs-module structure is also induced by the map:

x ¨ pα,
N
ÿ

i“0

aix
iq :“ pUα,D1pαq `

N
ÿ

i“0

aix
i`1q

It is helpful to think about the summand Λrxs in pCπ˚ pY q as a free Λrxs-module generated by the trivial
connection. Similar comments apply toqI˚pY q and I˚pY q described below.

The Floer homology group qI˚pY q (pronounced as “I-to”) is the homology of the following chain
complex:

qCπ˚ pY q :“ Cπ˚ pY q ‘ Λrrx´1, xs{Λrxs qdpα,
´1
ÿ

i“´8

aix
iq “ pdα,

´1
ÿ

i“´8

D1U
´i´1pαqxiq
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Here Λrrx´1, xs is the ring of Laurent power series in x´1. The action of x P Λrxs on this vector space
over Λ is given by multiplication by x. The quotient module Λrrx´1, xs{Λrxs can be identified in an
obvious way with the set of power series in x´1 with vanishing constant terms. The Λrxs-module structure
on qCπ˚ pY q is given by the map:

x ¨ pα,
´1
ÿ

i“´8

aix
iq :“ pUα`D2pa´1q,

´2
ÿ

i“´8

aix
i`1q

The Floer homology group I˚pY q (pronounced as “I-bar”) has a very simple form, analogous to the
monopole Floer homology group HMpY q. Let Cπ˚pY q “ Λrrx´1, xs with the obvious Λrxs-module
structure and d “ 0. In particular, Cπ˚pY q is independent of the choice of the perturbation term π. Then
I˚pY q, defined as the homology of the complex pCπ˚pY q, dq, can be simply identified with Λrrx´1, xs.

Next, we define chain maps:

qCπ˚ pY q
j // pCπ˚ pY q

pzz
C˚pY q

i

dd
(2.21)

by the formulas:

ip
N
ÿ

i“´8

aix
iq “ p

N
ÿ

i“0

U iD2paiq,
´1
ÿ

i“´8

aix
iq, (2.22)

jpα,
´1
ÿ

i“´8

aix
iq “ pα, 0q, (2.23)

ppα,
N
ÿ

i“0

aix
iq “

´1
ÿ

i“´8

D1U
´i´1pαqxi `

N
ÿ

i“0

aix
i. (2.24)

Lemma 2.25. The maps i and p are Λrxs-module homomorphisms which are also chain maps, and j is a
chain map which commutes with the action of x up to a chain homotopy. That is to say, there is a map
h : qCπ˚ pY q Ñ

pCπ˚ pY q such that:

i ˝ x “ x ˝ i, j ˝ x´ x ˝ j “ pd ˝ h` h ˝ qd, p ˝ x “ x ˝ p. (2.26)

In particular, if i˚, j˚ and p˚ are the maps induced by i, j and p at the level of homology, then they are
Λrxs-module homomorphisms. Moreover, i˚, j˚ and p˚ form an exact triangle as in (2.20).

Proof. It is straightforward to check that the first and the third identifies in (2.26) hold. If we define:

hpα,
´1
ÿ

i“´8

aix
iq :“ p0,´a´1q.
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then we obtain the second identity in (2.26). We define maps k, l and r as in the diagram:

qCπ˚ pY q

k $$

pCπ˚ pY q
loo

C˚pY q

r

::
(2.27)

using the formulas:

kpα,
´1
ÿ

i“´8

aix
iq “ ´

´1
ÿ

i“´8

aix
i, lpα,

N
ÿ

i“0

aix
iq “ pp´1q|α|α, 0q, (2.28)

and:

rp
N
ÿ

i“´8

aix
iq “ p0,

N
ÿ

i“0

aix
iq. (2.29)

In the definition of l, the term |α| denotes the Z{8-grading of α. In particular, we assume that α is a
homogenous element. These maps satisfy the identities:

p ˝ j ` k ˝ qd “ 0 i ˝ p` l ˝ pd` qd ˝ l “ 0 j ˝ i` pd ˝ r “ 0 (2.30)

It is also straightforward to check that the following maps are respectively isomorphisms of the chain
complexes qCπ˚ pY q, pC

π
˚ pY q and C˚pY q:

l ˝ j ` i ˝ k r ˝ p` j ˝ l k ˝ i` p ˝ r

This implies that (2.21) determines an exact triangle at the level of homology groups. (See [OS05, Lemma
4.2] and [KM11a, Lemma 7.1].)

Equivariant instanton Floer homology groups and the exact triangle in (2.20) are functorial with
respect to cobordisms. Suppose Y and Y 1 are two integral homology spheres and W : Y Ñ Y 1 is a
cobordism with b1pW q “ b`pW q “ 0. Suppose ε-admissible perturbations π and π1 of the Chern-Simons
functionals of Y and Y 1 are fixed, and these perturbations are extended to an ε-admissible perturbation
of the ASD equation on W`. As in the previous subsection, we can associate the maps ϕ, µ, ∆1 and
∆2 to W by the chosen perturbations. We use these maps as the only geometrical input to obtain the
functoriality of the exact triangle in (2.20). We firstly define a homomorphism pCW : pCπ˚ pY q Ñ

pCπ
1

˚ pY
1q

as follows:

pCW pα,
N
ÿ

i“0

aix
iq “

˜

ϕpαq `
N
ÿ

i“0

pU 1qi∆2paiq `
N
ÿ

i“0

i´1
ÿ

k“0

pU 1qkµU i´1´kD2paiq, cpW q¨
N
ÿ

i“0

aix
i

`

N´1
ÿ

i“0

p

N
ÿ

k“i`1

D11pU
1qk´i´1∆2pakqqx

i `

N´1
ÿ

i“0

p

N
ÿ

k“i`1

∆1U
k´i´1D2pakqqx

i

`

N´2
ÿ

i“0

p

N´1
ÿ

j“i`1

N
ÿ

k“j`1

D11pU
1qj´i´1µUk´j´1D2pakqqx

i

¸
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Here cpW q denotes the number of the elements of H1pW,Zq. Similarly, qCW : qCπ˚ pY q Ñ
qCπ

1

˚ pY
1q is

defined to be:

qCW pα,
´1
ÿ

i“´8

aix
iq “

˜

ϕpαq,
´1
ÿ

i“´8

∆1U
´i´1pαqxi `

´2
ÿ

i“´8

´1
ÿ

j“i`1

D11pU
1q´j´1µU j´i´1pαqxi

` p

´1
ÿ

i“´8

aix
iq ¨ pcpW q `

´1
ÿ

j“´8

∆1U
´j´1D2p1qx

j `

´1
ÿ

j“´8

D11pU
1q´j´1∆2p1qx

j

`

´1
ÿ

j“´8

´1
ÿ

k“´8

D11pU
1q´j´1µU´k´1D2p1qx

j`kq

¸

Finally, we define CW : C
π
˚pY q Ñ C

π1

˚ pY
1q:

CW p

N
ÿ

i“´8

aix
iq “p

N
ÿ

i“´8

aix
iq

˜

cpW q `
´1
ÿ

i“´8

∆1U
´i´1D2p1qx

i `

´1
ÿ

i“´8

D11pU
1q´i´1∆2p1qx

i

`

´1
ÿ

k“´8

´1
ÿ

j“´8

D11pU
1q´j´1µU´k´1D2p1qx

k`j

¸

Proposition 2.31. The maps pCW , qCW and CW are chain maps. The map CW is a Λrxs-module
homomorphism, and pCW and qCW commute with the action of x up to chain homotopies. That is to say,
there are maps K : and L such that:

x ˝ pCW ´ pCW ˝ x “ K ˝ pd` pd1 ˝ K x ˝ qCW ´ qCW ˝ x “ L ˝ qd` qd1 ˝ L

Moreover, there are maps K : pCπ˚ pY q Ñ C
π
˚pY

1q and L : C
π
˚pY q Ñ

qCπ˚ pY
1q such that:

p1 ˝ pCW ´ CW ˝ p “ K ˝ pd j1 ˝ qCW “ pCW ˝ j i1 ˝ CW ´ qCW ˝ i “ qd1 ˝ L

In particular, pCW , qCW and CW induce a Λrxs-module homomorphism of exact triangles at the level of
homology.

Proof. The first part is easy to verify. For the remaining parts, we can define K, L, K and L as follows:

Kpα,
N
ÿ

i“0

aix
iq “ pµpαq,∆1pαqq, Lpα,

´1
ÿ

i“´8

aix
iq “ pµpαq `∆2pa´1q, 0q, (2.32)

Kpα,
N
ÿ

i“0

aix
iq “

´1
ÿ

i“´8

∆1U
´i´1pαqxi `

´1
ÿ

k“´8

´1
ÿ

j“´8

D11pU
1q´j´1µU´k´1pαqxk`j , (2.33)

Lp
N
ÿ

i“´8

aix
iq “ p

N
ÿ

i“0

pU 1qi∆2paiq `
N
ÿ

i“0

i´1
ÿ

j“0

pU 1qjµU i´1´jD2paiq, 0q. (2.34)
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Remark 2.35. Suppose W : Y Ñ Y 1 is a negative definite cobordism with trivial b1. Standard
continuation maps can be used to show that if one changes the perturbation term π and the Riemannian
metric on Y , then rCW changes by a chain homotopy of the following form:

»

–

ψ 0 0
K1 0 0
ν K2 ´ψ

fi

fl . (2.36)

This input can be used to show that the chain homotopy type of the maps pCW , qCW and CW are also
independent of the perturbation term and the metric.

Suppose W 1 : Y 1 Ñ Y 2 is another negative definite cobordism with trivial b1. Then we can form the
composite cobordismW#W 1 : Y Ñ Y 2. Standard neck stretching argument shows that the map rCW#W 1

is chain homotopic to rCW 1 ˝ rCW . Using this input, it is straightforward (but slightly cumbersome) to
show that pCW#W 1 is chain homotopic to pCW 1 ˝ pCW . Similar results hold for qCW#W 1 and sCW#W 1 . We
do not attempt to write down these chain homotopies here partly because we do not need them. In fact,
there are larger models for the homology groupspI˚pY q,qI˚pY q and I˚pY q where these results are easier to
verify. In particular, these alternative models will behave better with respect to connected sum of integral
homology spheres [DST].

We can extend the definition of the grading val to the non-zero elements of the complexes pCπ˚ pY q,
qCπ˚ pY q and Cπ˚pY q:

valpα,
N
ÿ

i“0

aix
iq “

#

valpa0, a1, . . . , aN q if
řN
i“0 aix

i ‰ 0,

valpαq if
řN
i“0 aix

i “ 0,

valpα,
´N
ÿ

i“´8

aix
iq “

"

valpαq if α ‰ 0,
valpa´N q if α “ 0 and a´N ‰ 0,

and

valp
N
ÿ

i“´8

aix
iq “

"

valpa0, a1, . . . , aN q if
řN
i“0 aix

i ‰ 0,
valpaN q if N ă 0.

We define val of the zero element in these three complexes to be8. It is also useful to pick a notation for
the standard notion of degree for non-zero elements of Cπ˚pY q “ Λrrx´1, xs:

Degp
N
ÿ

i“´8

aix
iq “ N if aN ‰ 0.

The following lemma is a straightforward consequence of our analysis of the previous subsection on the
behavior of cobordism maps with respect to val:

Lemma 2.37. For any positive real number δ, there is a positive constant ε such that if the perturbations
π, π1 and the secondary perturbation on W are ε-admissible, then the maps pCW and qCW do not decrease
val by more than δ. Moreover, for any z P Cπ˚pY q, the difference |valpCW pzqq ´ valpzq| is at most δ and
DegpCW pzqq “ Degpzq.
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Note that the claim DegpCW pzqq “ Degpzq holds for any choices of admissible perturbations and we do
not need any assumption on ε.

We end this subsection with some speculations about equivariant instanton Floer homology groups.
An immediate consequence of the claimed properties in Remark 2.35 is that the exact triangle (2.20) is a
topological invariant of Y and does not depend on the choices of the perturbation term and the Riemannian
metric on Y . By dropping the powers of λ in our definitions, we can similarly define the analogue of the
exact triangle (2.20) with rational coefficients.

The three flavors of monopole Floer homology yHMpY q, }HMpY q and HMpY q are also 3-manifold
invariants which fit into an exact triangle of Qrxs-modules6[KM07]. Moreover, for integral homology
spheres, the invariant HMpY q is always isomorphic to Qrx´1, xss “ HompQrrx´1, xs,Qq. These
similarities motivate the following question. An affirmative answer to this question would be in the sprit of
Witten’s conjecture relating Donaldson invariants and Seiberg-Witten invariants [Wit94, GNY11, FL02].

Question 2.38. Is there a relationship between the instanton invariants pIpY q, qIpY q and the monopole
invariants yHMpY q, }HMpY q? What about the exact triangle (2.20) and its monopole counterpart [KM07,
Section 3.1]?

As it is pointed out in Remark 3.25, Fróyshov’s instanton h-invariant can be reformulated using the
exact triangle (2.20). This definition of h-invariant is similar to the definition of Monopole h-invariant
[Frø96, KM07, Frø10]. As a follow up to Question 2.38, one can ask:

Question 2.39. Is there a relationship between instanton and monopole h-invariants?

3 Homology Cobordism Invariants

3.1 Definition of ΓY

We are ready to give the definition of ΓY . For any k, define:

ΓY pkq :“ maxp

¨

˚

˚

˝

lim
|π|PÑ0

inf
zPC

π
˚pY q, wP

qCπ˚pY q,
qdpwq“ipzq,Degpzq“´k

pvalpzq ´ valpwqq

˛

‹

‹

‚

, 0q (3.1)

Here the limit is taken over a sequence of perturbations tπiu where πi is εi-admissible and εi converges
to 0. We use the convention that the infimum of an empty set is equal to8. In particular, if there is no
z P C

π
˚pY q with ipzq “ 0 and Degpzq “ ´k, then the infimum in the above expression is equal to 8.

In the following proposition, we show that the definition of ΓY pkq is independent of the choice of the
sequence of perturbations tπiu. Later in this subsection, we give equivalent definitions of ΓY pkq which is
more in line with the original definition of the h-invariant in [Frø02].

6In the context of monopole Floer homology, Qrxs should be regarded as the cohomology ring of BS1. On the other hand,
equivariant instanton Floer homologies (with rational coefficients) are modules over the cohomology ring of BSOp3q, which is
again isomorphic to Qrxs.
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Proposition 3.2. For any integer k, ΓY pkq is well-defined and depends only on k and the homology
cobordism class of Y .

Proof. Suppose Y and Y 1 are integral homology spheres and W : Y Ñ Y 1 is a homology cobordism.
Suppose π and π1 are ε-admissible perturbations for the Chern-Simons functional of Y and Y 1. We extend
these perturbations to W` using a secondary ε-admissible perturbations. Thus we can associate the chain
complexes pCπ˚ pY q, qC

π
˚ pY q, C

π
˚pY q to Y , the chain complexes pCπ

1

˚ pY
1q, qCπ

1

˚ pY
1q, Cπ

1

˚ pY
1q to Y 1 and the

chain maps pCW , qCW and CW to W .

Let z P C
π
˚pY q and w P qCπ˚ pY q be chosen such that Degpwq “ ´k and qdpwq “ ipzq. Let

w1 “ qCW pwq and z1 “ CW pzq. Proposition 2.31 and Lemma 2.37 assert that:

Degpz1q “ ´k, ipz1q “ qdpw1 ` Lpzqq,

where L is defined in (2.34). We fix a positive constant δ. Using Lemma 2.37, we can conclude that there
is a positive constant ε0 such that if ε ď ε0, then:

valpw1q ě valpwq ´ δ, |valpz1q ´ valpzq| ď δ. (3.3)

We can apply a similar argument to show that if ε0 is small enough, then:

valpLpzqq ě valpzq ´ δ. (3.4)

Identities (3.3) and (3.4) imply that:

valpw1 ` Lpzqq ě minpvalpw1q, valpLpzqqq

ě minpvalpwq, valpzqq ´ δ

Therefore, we have:

valpz1q ´ valpw1 ` Lpzqq ď valpzq ´minpvalpwq, valpzqq ` 2δ

ď maxpvalpzq ´ valpwq, 0q ` 2δ

By taking infimum over all pairs of pw, zq as above we have:

inf
z1PC

π1

˚ pY
1q, w1P qCπ

1

˚ pY
1q,

qdpw1q“ipz1q,Degpz1q“´k

pvalpz1q´valpw1qq ď

maxp inf
zPC

π
˚pY q, wP

qCπ˚pY q,
qdpwq“ipzq,Degpzq“´k

pvalpzq ´ valpwqq, 0q ` 2δ (3.5)

By reversing the cobordism W , we obtain a similar inequality where the roles of Y and Y 1 are reversed.
Thus the limit in (3.1) converges to a finite number for any sequence of holonomy perturbations tπiu with
|πi|P being convergent to zero. Moreover, this limit is independent of the chosen sequence, and only
depends on the homology cobordism class of Y and the integer k.
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Next, we attempt to unravel the definition of ΓY . Fix a positive integer k, and let α P Cπ˚ pY q be
chosen such that:

dα “ 0, D1U
k´1pαq ‰ 0, D1U

jpαq “ 0 for any j ă k ´ 1. (3.6)

We can form a pair:

z “
´k
ÿ

i“´8

D1U
´i´1pαqxi P C

π
˚pY q w “ pα,

´1
ÿ

i“´8

aixiq P qCπ˚ pY q (3.7)

where the constants ai P Λ are chosen arbitrarily. Then z has degree ´k and ipzq “ qdpwq. In fact, any
pair of z with degree ´k and w, satisfying qdpwq “ ipzq, are given as in (3.7) for an appropriate choice of
α and taiu. In particular, the definition of ΓY at a positive integer can be rewritten as:

ΓY pkq “ lim
|π|PÑ0

inf
α
pvalpD1U

pk´1qpαqq ´ valpαqqq (3.8)

where the infimum is taken over all α P Cπ˚ pY q that satisfy (3.6). Given any positive constant δ, there is ε
such that if π is an ε-admissible perturbation, then the difference valpD1U pk´1qpαqq ´ valpαq is greater
than ´δ. This is the reason that we do not need to take the maximum of the expression in (3.8) and 0. The
possibility to drop the maximum in (3.1) for positive values of k can be also explained using the fact that
for any z with negative degree, we have Lpzq “ 0 where L is defined in (2.34).

The infimum in (3.8) can be taken over an even smaller set. We firstly need to introduce a new
terminology:

Definition 3.9. Let i be an integer and r be a real number. Let π be an admissible perturbation of the
Chern-Simons functional of an integral homology sphere Y . Let α1, . . . , αk be the critical points of the
perturbed Chern-Simons functional whose Floer gradings are equal to i mod 8. For each αl, there is up to
homotopy, a unique path zl from the trivial connection Θ to αl such that indexpzq is equal to ´i´ 3. Let
also rl denote the topological energy of zl, which is an integer lift of ´CSpαlq. (See the identity in (2.1).)
A homogenous element of Cπ˚ pY q with weight pr, iq is defined to be an element of the following form:

λrps1λ
r1α1 ` s2λ

r2α2 ` ¨ ¨ ¨ ` skλ
rkαkq

where si are rational numbers. The set of all homogenous elements of Cπ˚ pY q with weight pr, iq is denoted
by Cπ

pr,iqpY q.

Definition 3.10. Let r, i and αl be given as above and rl be defined as in in Definition 3.9. Given:

α “
k
ÿ

l“1

8
ÿ

j“0

sl,jλ
rl,jαl P C

π
i pY q

with sl,j P Q, define:

Pr,ipαq :“
k
ÿ

l“1

8
ÿ

j“0

sl,jPr,ipλ
rl,jαlq P C

π
i pY q
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where Pr,ipλ
rl,jαlq is equal to λrl,jαl if rl,j “ r` rl, and is equal to 0 otherwise. We extend Pr,i to a map

on Cπ˚ pY q by requiring Pr,ipβq “ 0 if β is an element with Floer grading j such that j ı i mod 8. The
map Pr,i is called projection to homogenous elements of weight pr, iq. Similarly, we define a projection
map Pr : Λ Ñ Λ which maps an element a of Λ to sλr where s is the rational coefficient of λr in a.

The following lemma is a straightforward consequence of additivity of indices and topological
energies:

Lemma 3.11. Any homogenous element of weight pr, iq of Cπ˚ pY q is also a homogenous element of
pr ` 1, i` 8q. We also have:

(i) d maps a homogenous element of weight pr, iq to a homogenous element of weight pr, i´ 1q, and
we have d ˝ Pr,i “ Pr,i´1 ˝ d;

(ii) U maps a homogenous element of weight pr, iq to a homogenous element of weight pr, i´ 4q, and
we have U ˝ Pr,i “ Pr,i´4 ˝ U ;

(iii) D1 maps a homogenous element of weight pr, 1q to a rational multiple of λr, and we haveD1˝Pr,1 “
Pr ˝D1;

(iv) D2 maps λr to a homogenous element of weight pr,´4q, and we have D2 ˝ Pr “ Pr,´4 ˝D2.

Suppose α P Cπ˚ pY q satisfies (3.6), and valpD1U
k´1pαqq “ r0. We define α0 to be λ´r0 ¨

Ppr0,4pk´1q`1qpαq, which is a homogenous element of weight p0, 4pk ´ 1q ` 1q. By Lemma 3.11,
α0 satisfies the identities in (3.6) and valpD1U

k´1pα0qq “ 0. Since the projection maps Pr,i do not
decrease val, we can conclude:

valpD1U
k´1pα0qq ´ valpα0q ď valpD1U

k´1pαqq ´ valpαq

This inequality implies that to find the value of ΓY pkq, it suffices to take the infimum in (3.8) over the
following set:

Lπk :“ tα P Cπ˚ pY q | α P C
π
p0,4k´3qpY q, dα “ 0, pk ´ 1q “ mintj | D1U

jpαq ‰ 0uu (3.12)

We can give a similar description for ΓY pkq in the case that k is non-positive. Let:

α P Cπ˚ pY q A “ ta0, a1, . . . , a´ku Ă Λ (3.13)

be given such that:

dα “
´k
ÿ

i“0

U iD2paiq. (3.14)

Then for any arbitrary sequence tbiu´1
i“´8 the pair:

z “
´k
ÿ

i“0

aix
i `

´1
ÿ

i“´8

D1U
´i´1pαqxi P C

π
˚pY q w “ pα,

´1
ÿ

i“´8

bix
iq P qCπ˚ pY q (3.15)
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satisfies the identity ipzq “ qdpwq, and any such pair with z being of degree ´k is given as in (3.15). Then
we have:

ΓY pkq :“ max

ˆ

0, lim
|π|PÑ0

inf
pα,ta0,a1,...,a´kuq

pvalpa0, a1, . . . , a´kq ´ valpαqq

˙

(3.16)

where the infimum is taken over all pairs pα,Aq which satisfy (3.14).

We can work with a smaller set of pairs pα,Aq in (3.16). Let pα,Aq be as in (3.13) satisfying (3.14).
We also assume that ai0 has the minimum val among the elements of A, which is equal to r0. We define:

α0 :“ λ´r0Pr0,´3´4i0pαq bi “

#

λ´r0P
r0`

i0´i
2

paiq i ” i0 mod 2

0 i ı i0 mod 2

Our assumption on i0 implies that bi “ 0 if i ą i0. Projection of (3.14) to homogenous elements of
weight pr0,´4´ 4i0q shows that:

dα0 “

´k
ÿ

i“0

U iD2pbiq. (3.17)

We also have valpb0, b1, . . . , b´kq “ 0 and valpα0q is not less than valpαq ´ r0 . Consequently, we have:

pvalpb0, b1, . . . , b´kq ´ valpα0qq ď pvalpa0, a1, . . . , a´kq ´ valpαqq

This analysis shows that when k ď 0, it suffices to take the infimum in (3.8) over the following set:

Lπk :“ tpα, ta0, a1, . . . , a´kuq |α P C
π
p0,4k´3qpY q, dα “

´k
ÿ

i“0

U iD2paiq, ai is a rational multiple

of λ
´k´i

2 if i ” k mod 2, and is zero otherwise.u (3.18)

Remark 3.19. The author does not know any example where the value of ΓY at a non-positive integer is a
finite positive number. However, one can easily construct chain complexes over Λ with the similar formal
properties as rCπ˚ pY q such that the analogue of ΓY takes non-trivial values at non-positive integers. For
instance, let pC˚, dq be a Z{8Z-graded complex generated by two generators α and β in degrees 5 and 4
such that:

dα “ λr1β dβ “ 0

We also define U : C˚ Ñ C˚´4 and D1 : C˚ Ñ Λ to be trivial maps. Let also D2 : Λ Ñ C˚ be defined
as follows:

D2p1q “ λr2β

where r2 is a real number smaller than r1. As in (3.1), we can associated a map Γ : ZÑ R
ě0. The value

of this function at 0 is equal to the positive number r1 ´ r2 (and this is the only non-trivial value of Γ).
We hope that the understanding the behavior of ΓY with respect to various topological constructions, such
as surgery along knots, would be helpful to study whether there are complexes as above with non-trivial
values of ΓY at non-positive integers.

Motivated by the definition of Lπk in (3.12) and (3.18), we also give the following definition:
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Definition 3.20. Let π be an admissible perturbation for the Chern-Simons functional of an integral
homology sphere Y . We say w P qCπ˚ pY q and z P Cπ˚pY q form a special pair of degree N if the following
conditions are satisfied:

(i) Degpzq “ N ;

(ii) w “ pα, 0q and z “
řN
j“´8 ajx

j ;

(iii) if N ă 0, then α P Lπ´N and if N ě 0, then pα, ta0, . . . , aNuq P Lπ´N .

(iv) For j ď ´1, we have aj “ D1U
´j´1pαq.

In particular, any special pair of degree N satisfies the identity ipzq “ qdpwq. The above discussion
shows that to compute the value of ΓY at ´N , it suffices to take the infimum in (3.1) over all special pairs
pz, wq of degree N .

Example 3.21. In the case that Y “ S3, Σp2, 3, 5q or ´Σp2, 3, 5q, we fix the metrics on Y which are
induced by the standard metric on the 3-dimensional sphere, the universal cover of Y . Then all critical
points are non-degenerate and all moduli spaces are regular. Therefore, we can use the trivial perturbation
π0 to compute ΓY . In the case that Y “ S3, the set Lπ0k is empty for any positive k and consists of
elements of the form p0, ta0, . . . , a´kuq for negative values of k. This implies that:

ΓS3pkq “

"

8 k ą 0
0 k ď 0

The complex Cπ0˚ pΣp2, 3, 5qq is generated by two flat connections α and β with Floer gradings 1 and
5. Then we have:

D1pαq “ λ
1

120 Upβq “ 8λ
2
5α D2 “ 0

The above identities after evaluating λ at 1 are verified in [Frø02]. The calculation of the index and the
Chern-Simons functional which determines the powers of λ in the above identities can be found, for
example, in [FS90]. For an exposition of the method of [FS90], we refer the reader to [DX17, Subsection
3.4] where the same conventions as here for the definition of the Chern-Simons functional and Floer
grading is used. These calculations show that the complex Cπ0˚ p´Σp2, 3, 5qq is generated by two flat
connections α˚ and β˚ with Floer gradings 4 and 0. We also have:

D2p1q “ λ
1

120α˚ Upα˚q “ 8λ
2
5β˚ D1 “ 0

These identities show that:

ΓΣp2,3,5qpkq “

$

’

’

&

’

’

%

8 k ą 2
49
120 k “ 2
1

120 k “ 1
0 k ď 0

and Γ´Σp2,3,5q “ ΓS3 .
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3.2 Properties of ΓY

In this subsection, we review some of the basic properties of ΓY .

Proposition 3.22. ΓY is a non-decreasing function with values in R
ě0.

Proof. It is obvious from the definition that ΓY takes values in R
ě0. To show monotonicity of ΓY , fix

an admissible perturbation π of the Chern-Simons functional and let pz0, w0q be a special pair of degree
´k. In particular, z0 has degree ´k, w0 “ pα, 0q for an appropriate α P Cπ˚ pY q and qdpw0q “ ipz0q. We
define z1 :“ x ¨ z0 and w1 :“ x ˝w0. Then z1 is an element of Cπ˚pY q with degree ´k` 1. We also have
ipz1q “ qdpw1q because i and qd are Λrxs-module homomorphisms.

It is clear that valpz1q ď valpz0q. Moreover, for a given δ, there is ε such that for any ε-admissible
perturbation:

valpw1q ě valpw0q ´ δ.

These inequalities imply that:

valpz1q ´ valpw1q ď valpz0q ´ valpw0q ` δ

Consequently, taking infimum over all choices of of pz0, w0q and letting |π|P go to 0 allow us to conclude
that ΓY pk ´ 1q ď ΓY pkq.

Proposition 3.23. Suppose h denotes Fróyshov’s invariant of an integral homology sphere Y . Then
ΓY pkq is a finite number if and only if k ď 2hpY q.

Before giving the proof of the above proposition, we give an interpretation for h in terms of some of
the terminology introduced in this paper:

Lemma 3.24. For any integral homology Y and any admissible perturbation π, the integer 2hpY q is
equal to the largest value of k such that the set Lπk is non-empty.

Proof. For any admissible perturbation π, let pCπ˚pY q, dq be the standard Floer chain complex defined
over rational numbers. The definition of this complex is similar to Cπ˚ pY q with the difference that we
use rational numbers as the coefficient ring and we do not include any power of λ in the definition of the
differential d. By dropping the powers of λ from the definition of D1, D2 and U , we can also define:

D1 : Cπ1 pY q Ñ Q D2 : QÑ Cπ4 pY q U : Cπ˚pY q Ñ Cπ˚´4pY q

Using these operators, we define:

Kπ
k :“ tα | α P Cπ4k´3, dα “ 0, pk ´ 1q “ min

D1Ujpαq‰0
pjqu

for positive values of k, and:

Kπ
k :“ tpα, ts0, s1, . . . , s´kuq |α P C

π
4k´3pY q, , si P Q, dα “

´k
ÿ

i“0

UiD2psiq,

si ‰ 0 only if i ” k mod 2.u
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Evaluation of λ at 1 gives a bijective map from Lπk to Kπ
k for any integer k. It is also shown in [Frø02,

Proposition 4] that the set Kπ
k is non-empty only if k ď 2hpY q.7 Thus the largest k with Lπk being

non-empty is equal to 2hpY q.

Proof of Proposition 3.23. Lemma 3.24 shows that if k ą 2hpY q, then Lπk is empty for any admissible
perturbation π. This lemma also implies that if k ď 2hpY q, then Lπk is non-empty for any given ε-
admissible perturbation π. Therefore, the infimum in (3.8) or (3.16) is finite for any given π. Now we can
follow the argument in the proof of Proposition 3.2 and obtain a uniform upper bound for the infimum of
(3.8) or (3.16) for any other ε-admissible perturbation. Thus ΓY pkq is a finite number.

Remark 3.25. Combining Lemma 3.24 and the discussion of the previous section shows that hpY q is
given by the following identity:

hpY q “ maxtk | Dz P I˚pY q with Degpzq “ ´k and i˚pzq ‰ 0u

“ mintk | @z P I˚pY q with Degpzq “ ´k and z P imagepj˚qu ´ 1

This definition of h is similar to the standard definition of monopole h-invariant [KM07, Section 39] and
the correction term in Heegaard Floer homology [OS03].

Proposition 3.26. For any integral homology sphere Y and any integer k, either ΓY pkq “ 8, ΓY pkq “ 0,
or there is an irreducible flat connection α such that ΓY pkq is equal to CSpαq mod Z.

Proof. Suppose π is an admissible perturbation of the Chern-Simons functional of Y . Firstly let k be a
positive number and α P Lπk . The condition α P Cπ

p0,4k´3qpY q implies that:

α “ s1λ
r1α1 ` s2λ

r2α2 ` ¨ ¨ ¨ ` sjλ
rjαj

where α1, . . . , αk are the critical points of CS` fπ with Floer grading 4k ´ 3, s1, . . . , sk are rational
numbers. The exponent ri is introduced in Definition 3.9 and is equal to ´CSpαiq mod Z. Since
α P Cπ

p0,4k´3qpY q, we have valpD1U
k´1pαqq “ 0. We also have:

valpαq “ min
si‰0

priq.

In particular, we have:

inf
αPLπk

´

valpD1U
k´1pαqq ´ valpαq

¯

P t´r1, . . . ,´rku.

Therefore, there is an irreducible critical point αi of CS ` fπ with index 4k ´ 3 such that the above
infimum is equal to CSpαiq mod Z. As we let π Ñ 0, the values of the Chern-Simons functional on the
critical points of CS`fπ converge to the finite set of values of the Chern-Simons functional on irreducible
SUp2q flat connections [KM11b, Lemma 3.8].

7In [Frø02], the cohomological convention is used in the definition of Floer chain complexes. The reader should take that
into account for comparing [Frø02] and the present article.
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Remark 3.27. It is natural to ask whether there is an integral homology sphere Y such that ΓY takes
irrational values. Proposition 3.26 implies that if ΓY takes an irrational value, then the value of the
Chern-Simons functional of an SUp2q-flat connection is irrational. Currently, it is unknown whether there
is such a flat connection on a 3-manifold Y . For example, the values of the Chern-Simons functional
for any plumbed 3-manifold takes rational values on SUp2q-flat connections. Consequently, if ΓY is not
rational valued, then Y is not a linear combination of plumbed 3-manifolds.

Definition 3.28. For any integral homology sphere Y , τpY q is defined to be:

τpY q :“ inf
z
tEpzqu (3.29)

where the infimum is taken over all paths z along RˆY from an irreducible flat connection α to the trivial
connection Θ such that the moduli space of (unperturbed) ASD connections Mzpα,Θq is non-empty.

Given a path z from α to Θ as in (3.29), Epzq is equal to CSpαq mod Z. Thus τpY q takes values
in a discrete set because the Chern-Simons functional takes only finitely many values on the set of
flat SUp2q-connections. This implies that τpY q can be realized by the topological energy of an ASD
connection from an irreducible flat connection α to the trivial connection. In particular, this constant is
positive and we have:

τpY q ě mintr | r P Rą0, r ” CSpαq mod Z for a flat connection αu (3.30)

We can use τpY q to give a constraint for the values of ΓY at positive integers:

Proposition 3.31. For any integral homology sphere Y , we have ΓY p1q ě τpY q. Consequently, for any
positive integer k, we have ΓY pkq ě τpY q.

The proof of the above proposition needs some preparation. Firstly we start with a standard exponential
decay result about instantons on tubes:

Lemma 3.32. Let α be a non-degenerate SUp2q-flat connection on an integral homology sphere Y . There
are constants ε0, ε1, Cl and δ such that the following holds:

(i) Suppose A is an ASD connection on p0,8q ˆ Y such that the L2-distance between A|ttuˆY , for
t P p0, 1q, and α is less than ε0 and ||F pAq||L2pp0,8qˆY q ă ε1. Then A is gauge equivalent to a
connection of the form α` a where a is a 1-form on p0,8q ˆ Y with values in sup2q and:

|∇la|pt, yq ď Cle
´δ¨t||F pAq||L2pp0,1qˆY q. (3.33)

for t P p1
2 ,8q.

(ii) Suppose A is an ASD connection on p´T, T q ˆ Y , for T ą 1, such that the L2-distance between
A|ttuˆY , for t P p´T,´T ` 1q, and α0 is less than ε0 and ||F pAq||L2pp´T,T qˆY q ă ε1. Then A
is gauge equivalent to a connection of the form α` a where a is a 1-form on p´T, T q ˆ Y with
values in sup2q and:

|∇la|pt, yq ď Cle
´δpT´|t|q

`

||F pAq||L2pp´T,´T`1qˆY q ` ||F pAq||L2ppT´1,T qˆY q

˘

. (3.34)

for t P p´T ` 1
2 , T ´

1
2q.

28



Proof. This lemma is essentially proved in [Don02, Theorem 4.2, Proposition 4.3 and Proposition 4.4].
In [Don02], it is assumed that Y is SUp2q-non-degenerate. We weaken this assumption by requiring
that only the given flat connection α is non-degenerate and make the additional assumption that the L2

distance of A|ttuˆY and α for appropriate values of t is bounded by ε0. Since α is non-degenerate, the
L2-distance of α and any other flat connection is greater than a positive number κ. Let ε0 be equal to κ

2 .
We claim that for any positive constant η smaller than ε0 and any positive integer k, there is a constant ε1
such that for any ASD connection A as in part (i) (resp. part (ii)) of the lemma, the L2

k-distance between
the connections A|ttuˆY and α is less than η for any t P p1

2 ,8q (resp. t P p´T ` 1
2 , T ´

1
2q).

We prove this claim for part (i). The proof for the other case is similar. Suppose there is a sequence of
ASD connections Ai on p0,8q ˆ Y such that ||F pAiq||L2pp0,8qˆY q Ñ 0, the L2-distance of Ai|ttuˆY for
t P p0, 1q is less than ε0, and there is ti P r1,8q such that the L2

k-distance between Ai|ttuˆY and the space
of flat connections is equal to η. By Uhlenbeck compactness theorem, the connections Ai|pti´1,ti´1qˆY ,
after passing to a subsequence and changing gauge, areC8loc-convergent to a flat connection on p´1, 1qˆY .
However, this is a contradiction because the L2

k distance between Ai|ttuˆY and any flat connection is at
least ε0. This verifies the claim. Given this claim, the arguments of [Don02] can be applied to prove the
lemma without any change.

Lemma 3.35. Suppose tπiui is a sequence of admissible perturbations of the Chern-Simons functional of
Y such that |πi|P Ñ 0. Suppose Ai PMπi

zi pαi,Θq where αi is an irreducible critical point of CS` fπi
and zi is a path with index 1. We also assume that there is a constant ν such that fπi vanishes for
connections whose L2-distance to Θ is less than ν. Then there exists an irreducible flat connection α0, a
path z0 from α0 to Θ, and a (non-perturbed) ASD connection A0 PMz0pα0,Θq such that:

EpA0q ď lim sup
i

EpAiq (3.36)

Proof. The connection A can be constructed as a limit of a sequence of connections associated to the
connections tAiu. The argument is an adaptation of [Don02, Theorem 5.4]. We divide the proof into
several steps:

Step 1: The sequence ||F pAiq||L2pRˆY q is bounded.

It suffices to show that the topological energies of paths between critical points of CS ` fπi with
index less than a fixed integer N are uniformly bounded by a constant K which does not depend on i. In
the case that we are concerned only with the trivial perturbation, this is standard. The case of non-trivial
perturbations tπiu can be reduced to the case of the trivial perturbation using the following trick.

Each SUp2q-flat connection α has a path-connected open neighborhood such that the index and the
topological energy of paths in this neighborhood are uniformly bounded. We cover the space of flat
connections by finitely many such open neighborhoods. If |πi|P is small enough, then each end point of
the path zi belong to one of the chosen open sets. Now we can use additivity of indices and topological
energies with respect to concatenation of paths to verify the claim.

Step 2: There is a positive constant ε and for any connection Ai in the above sequence, there is a
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constant Ti such that Ai|pTi,8qˆY is an ASD connection and:
ż

pTi,8qˆY
|F pAiq|

2dvol “ ε (3.37)

Suppose ε0 and ε1 are given as in Lemma 3.32. As in the proof of Lemma 3.32, we assume that ε0
is smaller than half of the L2-distance of the trivial connection and the space of irreducible flat SUp2q-
connections of Y . Let ε1 :“ minpε0, ε1,

ν
2 q and T 1i be the largest real number such that the L2 distance

between A|tT 1iuˆY and Θ is at least ε1. Then the connection Ai|pT 1i ,8qˆY is an ASD connection. We claim
that there is a constant N0, independent of i, such that:

ż

pT 1i ,8qˆY
|F pAiq|

2dvol ě
ε1

N0
. (3.38)

Given i, if the above inequality does not hold for N0 ě 1, then part (i) of Lemma 3.32 implies that there
is ai such that Ai is gauge equivalent to α` ai and:

|∇lai|pt, yq ď Cle
´δ¨t||F pAiq||L2pp0,1qˆY q.

In particular, we have:

|ai|pT
1
i , yq ď C0

ε1

N0

If N0 is large enough in compare to C0, then the L2 norm of ai is less than κ
2 , which is a contradiction.

Thus the inequality holds for an appropriate value of N0 and we define ε :“ ε1

N0
. There is also a unique

value of Ti greater than T 1i such that (3.37) holds.

Step 3: There is a connection A0 PMz0pα0,Θq satisfying (3.36).

Let A1i be given by translating Ai in the R direction by the parameter Ti. Then we have:
ż

p0,8qˆY
|F pA1iq|

2dvol “ ε (3.39)

Using Lemma 3.32, the connection A1i is gauge equivalent to a connection of the form α` a1i where a1i
satisfies the inequalities in (3.33). Thus the Arzela-Ascoli theorem implies that there is a subsequence8 of
the connections which is C8-convergent on p0,8qˆ Y . We can also employ the Uhlenbeck compactness
theorem to show that there is an ASD connection A10 and a finite subset S of RˆY such that the sequence
A1i, after passing to a subsequence and changing gauge, is Lp1-convergent9 on compact subsets of RˆY zS
to an ASD connection A10. Moreover, we have:

EpA10q ď lim sup
i

EpAiq

8Here and in what follows, we always denote a subsequence with the same notation as the original sequence.
9The weaker Lp1-convergence instead of C8-convergence is due to non-locality of holonomy perturbations. For a discussion

related to adapting the Uhlenbeck compactness theorem to the ASD equation perturbed by holonomy perturbations, see [Kro05].
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These two observations show that A1i is strongly convergent (resp. weakly convergent) on p0,8q ˆ Y
(resp. R ˆ Y ) to A10. In particular, A10 is asymptotic to Θ on the outgoing end of R ˆ Y . Since A10 is
an ASD connection, it is convergent to a flat connection on the incoming end [Don02, Theorem 4.18].
If this flat connection is irreducible, then we are done. In the case that A10 P Mz10

pΘ,Θq, the term
||F pA10q||L2pp´8,´hqˆY q is strictly less than lim infi ||F pA

1
iq||L2pp´8,´hqˆY q for any value of h. Otherwise,

the incoming flat connection of A1i is convergent to the trivial connection which is a contradiction. The
connection A10 is non-trivial and hence its energy is at least 8π2, the energy of a single instanton.

Let h be chosen large enough such that S is disjoint from p´8,´hq ˆ Y and the distance between
Ai|ttuˆY and Θ is less than ε0 for t P p´h´ 1,´hq. Define:

η “ minpε1,
lim infi ||F pA

1
iq||L2pp´8,´hqˆY q ´ ||F pA

1
0q||L2pp´8,´hqˆY q

2
q

where ε1 is given by Lemma 3.32. For large values of i, we may pick a constant Si such that:
ż

pSi,´hqˆY
|F pA1iq|

2 “ η `

ż

p´8,´hqˆY
|F pA10q|

2

The constants Si are convergent to ´8 and we define a new sequence of connections A2i by translating
A1i in the R direction by the parameter Si. Another application of Uhlenbeck compactness implies that
A2i , after passing to a subsequence and changing gauge, is convergent to an ASD equation which satisfies:

EpA10q ` EpA20q ď lim sup
i

EpAiq

Moreover, part (ii) of Lemma 3.32 implies that A20 is asymptotic to the trivial connection on the outgoing
end. If A20 is asymptotic to an irreducible flat connection on the incoming end, then we are done.
Otherwise, we repeat the above process. This process terminates because the energy of a non-trivial ASD
connection asymptotic to the trivial connection on both ends is at least 8π2.

Proof of Proposition 3.31. Let tπiu be a sequence of admissible perturbations such that |πi|P Ñ 0.
Since the trivial connection is a non-degenerate critical point of the (non-perturbed) Chern-Simons
functional of Y , we may also assume that fπi is trivial for connections whose L2-distance to the trivial
connection is less than a fixed constant κ. If αi P Lπi1 pY q, then the difference valpD1pαiqq ´ valpαiq
is equal to the topological energy of an element Ai of Mπi

zi pα
1
i,Θq for an irreducible flat connection α1i.

Therefore, we can pick the connections Ai such that EpAiq Ñ ΓY p1q. Applying Lemma 3.35 to this
sequence of connections implies that there is an irreducible flat connection α0 and an ASD connection
A0 PMz0pα0,Θq such that ΓY p1q ě EpA0q which verifies our claim.

Definition 3.40. Suppose Y is an SUp2q-non-degenerate integral homology sphere. We define:

τ 1pY q :“ inf
z1
tEpz1qu (3.41)

where the infimum is taken over all paths z1 such that z1 is obtained by concatenation of paths z1, . . . ,
zk satisfying the following properties. There are flat connections α0, . . . , αk such that α0 and αk are
irreducible, zi is a path from αi´1 to αi, the sum of the indices of paths zi is equal to 4 ´ 8n for a
non-negative integer n and there is an ASD connection Ai PMzipαi´1, αiq.
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Given a path z1 from α´ to α` as in (3.41), Epz1q is equal to CSpα0q ´ CSpαkq mod Z. Therefore,
τ 1pY q takes values in a discrete set. This implies that τ 1pY q can be realized by a tuple pA1, . . . , Akq of
ASD connections as in the above definition. We also have:

τ 1pY q ě mintr | r P Rą0, r ” CSpα´q ´ CSpα`q mod Z for irreducible flat connections α˘u

Lemma 3.42. Suppose Y is an SUp2q-non-degenerate integral homology sphere. Suppose tπiui is a
sequence of perturbations of the Chern-Simons functional of Y such that |πi|P Ñ 0, the critical points of
CS` fπi are the same as the critical points of the unperturbed Chern-Simons functional and fπi “ 0 in a
neighborhood of flat connections. Suppose Ai PMπi

zi pαi,´, αi,`q where αi,´ and αi,` are irreducible
flat connections and zi is a path from αi,´ to αi,` with index 4. Then there are distinct flat connections
α0, . . . , αk, a path z0,j from αj´1 to αj , and a (non-perturbed) ASD connection Aj PMz0,j pαj´1, αjq
such that α0 and αk are irreducible, the sum of the indices of z0,1, . . . , z0,k is equal to 4 ´ 8n for a
non-negative integer n and:

Epz0,1q ` ¨ ¨ ¨ ` Epz0,kq ď lim sup
i

Epziq. (3.43)

Proof. The proof is similar to that of Proposition 3.35. Since Y is SUp2q-non-degenerate, there are only
finitely many SUp2q-flat connections. Using this observation and the fact that the index of connections Ai
are at most 4, we may assume that Ai PMπi

z pα´, α`q for a fixed path z and irreducible flat connections
α´, α`. Following the argument of Proposition 3.35, we can construct nontrivial ASD connections
Aj PMz0,j pαj´1, αjq where αj is a flat connection, α0 “ α´, αk “ α`, z0,j is a path from αj´1 to αj
and the inequality (3.43) is satisfied.

Proposition 3.44. If Y is an SUp2q-non-degenerate integral homology sphere, then for any positive
integer i we have ΓY pi` 1q ě ΓY piq ` τ

1pY q.

Proof. We fix a sequence of admissible perturbations πi such that |πi|P Ñ 0, the critical points of
CS ` fπi are the same as the critical points of the unperturbed Chern-Simons functional and fπi “ 0
in a neighborhood of flat connections. For each admissible perturbation πi and any α P Lπik`1pY q, we
have Upαq P Lπik pY q. Furthermore, there are flat connections αi,´, αi,` with Floer gradings 4k ´ 3,
4pk ´ 1q ´ 3 and Ai PMπi

zi pαi,´, αi,`q with index 4 such that:

valpUpαqq ´ valpαq ě EpAiq.

By taking infimum over all α P Lπik`1pY q, we conclude that :

inf
αPLπik`1pY q

´

valpD1U
k´1pαqq ´ valpαq

¯

ě inf
α1PLπik pY q

´

valpD1U
k´2pα1qq ´ valpα1q

¯

` inf
Ai

EpAiq.

where the infimum is taken over all index 4 connections Ai P Mπi
zi pαi,´, αi,`q where αi,´, αi,` are

irreducible flat connections. By taking the limit of the above inequality as iÑ8 and using Lemma 3.42,
we can conclude that ΓY pi` 1q ě ΓY piq ` τ

1pY q.

Next, we use the argument in the proof of Theorem 3.2 to obtain a more general result. The constant
η in the following theorem is introduced in Definition 3.46:
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Theorem 3.45. Suppose W : Y Ñ Y 1 is a cobordism of integral homology spheres with b1pW q “
b`pW q “ 0. Then ΓY 1pkq ď ΓY pkq ´ ηpW q for any positive integer k. For a non-positive k, we have
the weaker inequality ΓY 1pkq ď maxpΓY pkq ´ ηpW q, 0q.

Definition 3.46. LetW be a cobordism from an integral homology sphere Y to another integral homology
sphere Y 1. Let:

ηpW q :“ inf
A
tEpAqu (3.47)

where the infimum is taken over all ASD connections A on W which is asymptotic to irreducible flat
connections on Y and Y 1. Here we allow A to be a broken ASD connection. That is to say, A might have
one of the following forms for irreducible flat connections α and α1:

(i) A PMzpW,α, α
1q;

(ii) A “ pA0, A1q where A0 PMz0pRˆ Y, α,Θq and A1 PMz1pW,Θ, α
1q;

(iii) A “ pA0, A1q where A0 PMz0pW,α,Θq and A1 PMz1pRˆ Y
1,Θ, α1q;

(iv) A “ pA0, A1, A2q where A0 P Mz0pR ˆ Y, α,Θq, A1 P Mz1pW,Θ,Θq and A2 P Mz2pR ˆ

Y 1,Θ, α1q.

The constant ηpW q is a non-negative number. The set of possible values for the energy of ASD
connections on W is a discrete subset of non-negative integers. Therefore, if ηpW q is finite, then it can be
realized by the energy of a (possibly broken) ASD connection on W which is asymptotic to non-trivial
connections on both ends. We have:

ηpW q ě mintr | r P Rě0, r ” CSpαq ´ CSpα1q mod Z

for irreducible flat connections α, α1 on Y, Y 1u

We also make the observation that if ηpW q “ 0, then there is a flat connection extending non-trivial flat
connections on Y and Y 1. Consequently, if W is simply connected, such a flat connection does not exist,
and hence ηpW q ą 0.

Lemma 3.48. Let tπiu, tπ1iu be sequences of εi-admissible perturbations for the Chern-Simons functionals
of Y , Y 1 such that fπi and fπ1i vanish in fixed neighborhoods of the trivial connections on Y and Y 1. Let
πi and π1i be extended to an εi-admissible perturbation πi on the cobordism W : Y Ñ Y 1, which satisfies
b1pW q “ b`pW q “ 0. Let Ai PMπi

zi pW,αi, α
1
iq be chosen such that αi, α1i are respectively irreducible

critical points of CS` fπi , CS` fπ1i , and zi is a path along W with index 0. If εi Ñ 0, then there is a
(possibly broken) ASD connection A0 on W which is asymptotic to irreducible flat connections α0, α10 on
Y , Y 1 and:

EpA0q ď lim sup
i

EpAiq. (3.49)

Proof. Firstly as in Step 1 of the proof of Lemma 3.35 we can show that the terms ||F pAiq||L2pW`q are
uniformly bounded. Thus the Uhlenbeck compactness theorem implies that the connections Ai, after
passing to a subsequence and changing gauge, are weakly convergent to an ideal instanton pA0, Sq on
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W`, where S Ă W` is a finite subset and A0 is an ASD connection. The weakly convergence of Ai
implies that Ai, after possibly changing the gauge, is Lp1 convergent on compact subsets of W`zS to A0,
and:

EpA0q ď lim sup
i

EpAiq

If the connection A0 is asymptotic to non-trivial flat connections on both ends, then there is nothing
left to prove. If it is asymptotic to the trivial connection on one of the ends, say the outgoing end,
then we can argue as in Step 3 of Lemma 3.35 to find an instanton A1 in a moduli space of the form
Mz1pRˆ Y

1,Θ, α1q where α1 is an irreducible flat connection on Y 1. The pair pA0, A1q also satisfy the
analogue of the inequality in (3.49). The other cases can be treated similarly.

Proof of Theorem 3.45. We follow a similar argument as in Theorem 3.2. Let w “ pα, 0q and z form a
special pair of degree ´k. Then the pair w1 “ pϕpαq ` Lpzq, 0q and z1 “ CW pzq satisfies the identity
qdpw1q “ ipz1q. Here ϕ : Cπ˚ pY q Ñ Cπ

1

˚ pY
1q is the cobordism map associated to W . Recall that Lpzq “ 0

if k is a positive integer. The first inequality in (3.3) can be modified as follows:

valpw1q ě valpwq ` EpAq

for a connection A P Mπ
z pα, α

1q of index 0 where α, α1 are irreducible critical points of CS ` fπi ,
CS` fπ1i and z is a path over W from α to α1 with index 0. This the inequality in (3.5) can be improved
as follows:

inf
z1PC

π1

˚ pY
1q, w1P qCπ

1

˚ pY
1q,

qdpw1q“ipz1q,Degpz1q“´k

pvalpz1q´valpw1qq ď

maxp inf
zPC

π
˚pY q, wP

qCπ˚pY q,
qdpwq“ipzq,Degpzq“´k

pvalpzq ´ valpwqq ´ inf
A

EpAq, 0q ` δ

where the second infimum on the right hand side is over all elements of the moduli spaces Mπ
z pα, α

1q

with α, α1 being irreducible critical points and z being a path along W of index 0 from α to α1. By taking
the limit of the above inequalities as the norms of perturbations π, π1 and π converge to zero and using
Lemma 3.48, we can conclude:

ΓY 1pkq ď maxpΓY pkq ´ ηpW q, 0q.

In the case that k is a positive integer, the above argument can be modified to obtain the desired stronger
inequality using the fact that Lpzq “ 0.

Example 3.50. There are negative definite cobordismsW : S3 Ñ Σpp, q, pqk`1q andW 1 : Σpp, q, pqk`
1q Ñ S3 with b1 “ 0 [CG88]. Therefore, Theorem 3.45 implies that ΓΣpp,q,pqk`1q “ ΓS3 .

Corollary 3.51. Suppose W : Y Ñ Y 1 is a homology cobordism and ΓY (and hence ΓY 1) has a finite
positive value in its image. Then the inclusions of Y and Y 1 in W induce non-trivial maps of fundamental
groups. In particular, if hpY q is non-trivial, then there is no simply connected homology cobordism from
Y to another integral homology sphere.
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Proof. Let W : Y Ñ Y 1 be a homology cobordism and the fundamental group of Y or Y 1 map trivially
to that of W . On one hand, ΓY “ ΓY 1 . On the other hand, ηpW q ą 0 and ΓY , ΓY 1 satisfy the inequality
given in Theorem 3.45. Thus a positive value in the image of ΓY is a contradiction.

If hpY q ‰ 0, then either hpY q ą 0 or hp´Y 1q ą 0. Propositions 3.23 and 3.31 imply that either ΓY
or Γ´Y 1 has a finite positive values in its image. Since W can be also regarded as a cobordism from ´Y 1

to ´Y , it cannot be a simply connected.

Remark 3.52. In his groundbreaking work [Tau87], Taubes proves that if Y is an integral homology
sphere and W : Y Ñ Y is a simply connected homology cobordism (or more generally a definite
cobordism), then Y cannot bound a simply connected negative definite smooth manifold with a non-
standard intersection form. As it is stated in Theorem 5 and will be proved in Section 5, if Y bounds a
manifold X with non-standard negative definite form (without any assumption on π1pXq), then ΓY p1q is
a finite positive number. Therefore, Theorem (3.45) gives a new proof of Taubes’ result.

Taubes’ method (gauge theory on manifolds with periodic ends) can be adapted to prove the second
half of Corollary 3.51. This was firstly pointed to the author by Chris Scaduto. The author learnt later
from Masaki Taniguchi that this method is also used in [Tan17] and a proof of the second half of Corollary
3.51 is implicit there. Given a simply connected homology cobordism W : Y Ñ Y , we can form a
4-manifold M with a periodic end and a cylindrical end in the following way. For each non-negative
integer i, let Wi be a copy of W . We fix a metric on W which is cylindrical in a neighborhood of the
boundary components corresponding to a fixed metric on Y . For each positive integer i we identify the
outgoing end of Wi`1 with the incoming end of Wi. We also glue a copy of r0,8q ˆ Y to the outgoing
end of W0. Applying the method of [Tau87] to the moduli spaces of ASD connections on M , which are
asymptotic to the trivial connection on the cylindrical end and have finite energy, shows that hpY q has to
vanish.

Corollary 3.51 implies that the answer to Question 1.5 is negative if the Rokhlin homomorphism
µ : Θ3

Z Ñ Z{2Z is replaced with ΓY . In general, there are integral homology spheres with non-trivial
Rokhlin invariant whose ΓY does not take any positive value. For example, ΓΣp2,3,7q does not take any
finite positive value by Example 3.50. However, µpΣp2, 3, 7qq is non-trivial. In [Dae], we shall show that
Corollary 3.51 can be extended to other families of integral homology spheres including Σp2, 3, 7q.

4 Relation to Fintushel and Stern’s R-invariant

For n ě 3, suppose a1, . . . , an are relatively prime positive integers. Throughout this section, we
denote the Seifert fibered homology sphere Σpa1, a2, . . . anq by Y unless otherwise is specified. The
following elementary results about topology of Seifert fibered homology spheres is standard. (See, for
example, [FS85].) The 3-manifold Y admits a standard S1-action and the quotient space is S2. Suppose
W “ Y ˆD2{S1 where the action of S1 is induced by the Seifert action on Y and the standard action on
the 2-dimensional discD2. ThenW has n singular points, one for each special fiber of Y . A neighborhood
of the ith singular point is given by a cone over the lens space Lpai, biq where the constants bi satisfy the
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following identity:
n
ÿ

i“1

bi
ai
“

1

a

and a “ a1 ¨ a2 . . . an. Let W0 denote the complement of regular neighborhoods of the singular points of
W . Then W0 is a 4-manifold such that:

BW0 “ Y \´Lpa1, β1q \ ¨ ¨ ¨ \ ´Lpan, βnq.

There is an obvious projection map from L “ Y ˆD2 to W , that induces a Up1q-bundle on W0. We
will write L0 for this Up1q-bundle on W0. Then w0 “ c1pL0q generates H2pW0;Zq and its restriction to
the lens space boundary component Lpai, biq is bi times the standard generator of the second cohomology
of this lens space. Moreover, W0 is negative definite and c1pL0q

2 “ ´ 1
a . In particular, if we add

cylindrical ends to W0 and form W`
0 , then standard Hodge theory implies that there is an abelian ASD

connection B on the bundle L0. We assume that the metric on W`
0 is compatible with the standard

spherical metrics on the lens space ends. The main goal of this section is to prove Theorem 6. At the
outset, we mention how Rpa1, . . . , anq enters into the proof of this theorem. Suppose θ is the trivial
connection on the the trivial line bundle C over W0. Then we can form the path10 z0 along pW0, w0q

which is represented by the ASD connection B ‘ θ. Then the index formula [MMR94, Tau93] imply
that the expected dimension of the moduli space Mz0pW0, w0q, which contains the reducible connection
B ‘ θ, is equal to Rpa1, . . . , anq of (1.7). Suppose βi is the unique positive integer less than ai such that
1 ` βi

a
ai

is divisible by ai. Then the formula for Rpa1, . . . , anq can be simplified to 2b ´ 3 where b is
given by [NZ85]:

b “
1

a
`

n
ÿ

i“1

βi
ai
. (4.1)

We fix an ε-admissible perturbation π of the Chern-Simons functional of Y . As in Subsection 2.2,
we can fix a secondary perturbation π of the ASD equation on W`

0 which is compatible with the chosen
perturbation of the Chern-Simons functional of Y and the trivial perturbations of Chern-Simons functional
of the lens space boundary components of W0. Moreover, we can assume that the norm of the perturbation
term π is less than ε and all moduli spaces with dimension less than 8 consist of regular elements [Don02].
The following proposition can be used to prove half of Theorem 6.

Lemma 4.2. Suppose b is an integer greater than 1 and n0 denotes t b2 u ´ 1. Define γ0 P C
π
˚ pY q as

follows:

γ0 :“

$

’

&

’

%

ÿ

α

#Mπ
z pW0, w0;αqλEpzqα b is even,

ÿ

α

#pMπ
z pW0, w0;αq X V pΣ0qqλ

Epzqα b is odd.
(4.3)

10Previously, we defined paths along a cobordism W , which are given by equivalence classes of SUp2q-connections on
W with respect to an appropriate equivalence relation. More generally, we can define paths for a pair pW,wq where W is
a 4-dimensional cobordism and w P H2

pW,Zq. The cohomology class w determines a Up1q-bundle on W and we fix a
connection B on this bundle. Similar to the case of SUp2q-connections, we define an equivalence relation on Up2q-connections
whose central parts are equal to B. Any equivalence class of this relation is called a path along pW,wq. For more details see
[Don02, Section 5.6] and [KM11b, Subsection 3.10].
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where z is a path along pW0, w0q that restricts to a generator α of Cπ˚ pY q on Y and to the same flat
connections on the lens space boundary components as B ‘ θ. Moreover, Σ0 is an embedded surface
representing a generator of H2pW q and V pΣ0q denotes a divisor representing the homology class µpΣ0q

on the configuration spaces of connections on W0 [DK90]. Then γ0 satisfies the following properties:

(i) dpγ0q “ 0;

(ii) D1 ˝ U
kpγ0q “ 0 where k ă n0;

(iii) D1 ˝U
n0pγ0q ‰ 0. Moreover, if δ is an arbitrary positive number, then by choosing ε small enough,

we have:
valpD1 ˝ U

n0pγ0qq ´ valpγ0q ď
1

4a
` δ. (4.4)

Proof. We firstly assume that b is even. The coefficient of β in dpγ0q can be identified with the number of
the boundary points of the compactification of the moduli space:

Mπ
z pW0, w0, βq

where z is a path along pW0, w0q such that the above moduli space is 1-dimensional, the restriction of z
to Y is β, and z has the same restriction to the lens space boundary components as B ‘ θ. Note that the
compactified moduli space does not have any boundary component coming from the instantons which are
broken along one of the lens space boundary components because any flat connection on a lens space is
reducible and the index of any such broken instanton is at least two.

For a non-negative integer k, if D1 ˝ U
kpz0q is non-zero, then there is a pk ` 2q-tuple of ASD

connections pA0, A1, . . . , Ak, Ak`1q such that A0 is an ASD connection contributing to the sum in (4.3),
Ai, for 1 ď i ď k, is an ASD connection on R ˆ Y between irreducible flat connections αi´1 and
αi contributing to Upαi´1q, and Ak`1 is an ASD connection on R ˆ Y from αk to Θ contributing to
D1pαkq. In particular, the index of A0 is 0, the index of Ai, for 1 ď i ď k, is 4 and the index of Ak`1 is
1. Therefore, the sum of the indices of these ASD connections is 4k ` 1. We can glue the connections Ai
to obtain a connection which has the same asymptotic flat connections as B ‘ θ on the boundary of W0.
Therefore, the additivity of ASD index with respect to composition of cobordisms implies that:

4k ` 1 “ 8p
k`1
ÿ

i“0

EpAiq ´ EpB ‘ θqq ` 2b´ 3

“ 8
k`1
ÿ

i“0

EpAiq `
2

a
` 2b´ 3

In particular, if k ă n0, then the sum of the topological energies of the connections Ai is at most
´1

2 `
1
4a .11 Since the connections Ai are solutions of perturbed ASD equation, this is impossible if ε is

small enough. This verifies the claim in part (ii). In the case that k “ n0, the above identity implies that
the sum of EpAiq is equal to 1

4a . Therefore, the inequality in (4.4) holds for a small enough ε, if we show
that D1 ˝ U

n0pγ0q does not vanish.

11In fact, this inequality can be improved to ´1` 1
4a

because k and n0 have the same parity.

37



Fix a positive integer k smaller than b
2 . In order to address the last part of the proposition, we introduce

γk P C
π
˚ pY q which is defined similar to γ0. Fix n0 distinct points x1, . . . , xn0 onW0. For any 1 ď i ď n0,

a standard construction in Donaldson theory allows us to form a co-dimension 4 divisor V pxiq in the
configuration space of irreducible connections on W0, which is a geometric representative for µppointq
[KM95]. Define:

γk :“
ÿ

α

#
`

Mπ
z pW0, w0;αq X V px1q X ¨ ¨ ¨ X V pxkq

˘

λEpzqα (4.5)

Here we may assume that the divisors are chosen such that the intersection (4.5) is transversal. In
particular, a path z contributes to the above sum, if the dimension of the moduli space Mπ

z pW0, w0;αq is
equal to 4k. A similar argument as in the case of γ0 shows that γk is a cycle. Moreover, we can show
that γk`1 and Upγkq differ by a co-boundary element in Cπ˚ pY q. To see this, we allow xk`1 to move
off the boundary component Y of W0 and consider the associated 1-parameter family of moduli spaces.
Cutting this moduli space by the divisors V px1q, . . . , V pxkq and studying its ends give the desired relation
between γk`1 and Upγkq.12 In particular, D1U

n0´kpγkq is independent of k.

Consider the moduli space Mπ
γ0pW0, w0q which contains the class of the reducible connection B ‘ θ.

The divisors V pxiq is defined only on the complement of the reducible connection. In fact, a neighborhood
of the reducible connection is a cone over the projective space CPb´2 and the restriction of V pxiq to
the boundary of this cone represents the cohomology class ´h2 where h is the generator of H2pCPb´2q

[DK90, Subsection 5.1.2]. Let M1 be the complement of this neighborhood of the reducible element
of Mπ

γ0pW0, w0q and N 1 denotes the boundary of this neighborhood. Therefore, we can form the
1-dimensional moduli space:

Z “M1 X V px1q X ¨ ¨ ¨ X V pxn0q.

We compactify Z in the standard way to form a compact 1-manifold whose boundary is given by
N 1 X V px1q X ¨ ¨ ¨ X V pxjq and

ž

γ#γ1“γ0

pMγpW0, w0;αq X V px1q X ¨ ¨ ¨ X V pxjqq ˆ M̆γ1pα,Θq (4.6)

Since the count of points in N 1 X V px1q X ¨ ¨ ¨ X V pxjq does not vanish, the count of elements in (4.6) is
also non-zero. The latter count is equal to D1pγn0q by definition. Thus we conclude that D1 ˝ U

n0pγ0q is
nonzero. Analogous arguments can be used to prove similar claims in the case that b is odd. The only
required new ingredient is that the restriction of the cohomology class V pΣ0q to CPb´2 is a non-zero
multiple of h. (In fact, it is equal to ´xc1pL0q,Σ0yh [DK90, Subsection 5.1.2].)

Proposition 4.7. For Y as above and 1 ď i ď t b2 u, we have:

ΓY piq “
1

4a
.

Proof. Lemma 4.2 asserts that ΓY piq ď
1
4a . It is shown in [FS90] that the value of the Chern-Simons

functional for SUp2q-flat connections on Y has the form l
4a where l is an integer13. (See also [Auc94].)

12The essential points here are the fact that any flat connection on a lens space is reducible and we also do not face any
reducible connection on W0 in our analysis of the relevant moduli spaces.

13In fact, the 4-manifold W0 plays a key role in this part, too. The main point is that any SUp2q flat connection on Y extends
to a flat connection on W0.
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Since ΓY piq is positive by Proposition 3.31, Proposition 3.26 implies that ΓY piq ě
1
4a . This completes

the proof.

Theorem 6 is a generalization of Proposition 4.7 to the case that we consider a connected sum of
Seifert fibered spaces with positive R-invariants:

Proof of Theorem 6. Let M be the standard cobordism from the disjoint union of 3-manifolds Yi to
Y1# . . .#Yk obtained by gluing 1-handles. For each i, we follow the above construction to construct a
cobordism Wi,0 from a disjoint union of lens spaces to Yi. We can glue W1,0, . . . , Wk,0 to M and obtain
ĂM a cobordism from a disjoint union of lens spaces to Y1# . . .#Yk. For each i, we also constructed a
Up1q-bundle Li,0 on Wi,0. We extend the bundle L1,0 on W1,0 trivially to ĂM and denote the resulting
bundle by rL. By applying the same argument as in the proof of Lemma 4.2 where W0 and L0 are replaced
with ĂM and rL, we can show that for 1 ď i ď t

Rpa1,...,anq`3
4 u:

ΓY piq ď
1

4a1a2 . . . an
.

The reverse inequality is also a consequence of Lemma 4.8 below.

Lemma 4.8. For integral homology spheres Y and Y 1, we have:

ΓY#Y 1p1q ě mintτpY q, τpY 1qu (4.9)

This lemma strengthens Lemma 3.31 for integral homology spheres which are homology cobordant to
connected sum of two integral homology spheres.

Proof. Consider the standard cobordism N from Y#Y 1 to Y \ Y 1 given by gluing a 3-handle. Let εi be
a sequence of positive real numbers converging to 0. We fix εi-admissible perturbations π, π1 and π# on
Y , Y 1 and Y#Y 1 and extend them to an εi-admissible perturbation π on N . Suppose γ “

řk
i“1 siλ

riαi
is an element of Lπ#

1 pY#Y 1q. For each i, there is a path zi of index 1 along N from the connection αi to
the trivial connections Θ and Θ1 on Y \ Y 1. Let Mπ,`

zi pN,αi,Θ,Θ
1q be the standard compactification of

the 1-dimensional moduli space Mπ
zipN,αi,Θ,Θ

1q. Clearly, we have:

k
ÿ

i“1

siλ
ri`Epziq ¨#BpMπ,`

zi pN,αi,Θ,Θ
1qq “ 0.

We can also analyze the boundary components of the moduli space Mπ,`
zi pN,αi,Θ,Θ

1q to show that the
above identity implies that:

F ˝ dpγq `D1pγq `
ÿ

i

siλ
ri`Epziq

ÿ

x1#x2“zi

Mπ
x1pN,αi, β,Θq ˆ M̆π

x2pRˆ Y, β,Θq`

ÿ

i

siλ
ri`Epziq

ÿ

y1#y2“zi

Mπ
y1pN,αi,Θ, β

1q ˆ M̆π1

y2pRˆ Y
1, β1,Θq “ 0 (4.10)
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Here F : Cπ
#

˚ pY#Y 1q Ñ Λ is induced by counting solutions of the perturbed ASD equation on N
corresponding to paths of index 0 along N which restrict to an irreducible connection on Y#Y 1 and trivial
connections on Y and Y 1. The path x1 (respectively, y1) along N has index 0 and restricts to the trivial
connection on the end Y 1 (respectively, Y ) and to irreducible connections on the remaining ends. The path
x2 along Rˆ Y (respectively, y2 along Rˆ Y 1) has index 1 and restricts to an irreducible connection
on the incoming end and to the trivial connection on the outgoing end. Since dpγq “ 0 and D1pγq ‰ 0,
(4.10) implies that either there is a path x2 along Rˆ Y such that the moduli space Mπ

x2pRˆ Y, β,Θq
contains an element Ai with:

valpD1pγqq ´ valpγq ě EpAiq ´ δ

or there is a path y2 along Rˆ Y 1 such that the moduli space Mπ1
y2pRˆ Y

1, β1,Θ1q contains an element
A1i with:

valpD1pγqq ´ valpγq ě EpA1iq ´ δ.

Here δ is a constant which converges to 0 as iÑ8. Now by letting i go to8 and using Lemma 3.35, we
can verify (4.9).

Remark 4.11. Theorem 6 and Lemma 4.8 give some instances of relations among ΓY#Y 1 , ΓY and ΓY 1 . In
[DST], we study this relationship more systematically.

Corollary 4.12 ([Fur90]). Suppose tYi “ Σpai,1, . . . , ai,niquiPI is a collection of Seifert fibered homology
spheres with positive R-invariants such that the positive integers ai :“ ai,1 ¨ ai,2 . . . ai,ni are distinct.
Then the integral homology spheres Yi determine linearly independent elements of Θ3

Z.

Proof. If there is a linear relation among Yi we can assume that we have a relation of the following form:

n1Yi1 ` ¨ ¨ ¨ ` nkYik “ m1Yj1 ` ¨ ¨ ¨ `mlYjl

such that all integers nr and ms are positive, and ir and js are all distinct elements of I . Evaluating the
invariant Γ at 1 for the 3-manifolds given above implies that:

1

4 maxtai1 , . . . , aiku
“

1

4 maxtaj1 , . . . , ajlu

which is in contradiction with the assumption that the integers ai are distinct.

Example 4.13. If p, q are coprime positive integers and k is another positive integer, thenRpΣpp, q, pqk´
1qq “ 1. Therefore, Proposition 4.7 implies that:

ΓΣpp,q,pqk´1qp1q “
1

4pqppqk ´ 1q
.

Corollary 4.12 implies that tΣpp, q, pqk ´ 1qukPZą0 spans a Z8 subgroup of Θ3
Z. This result is proved

by Furuta [FS90] and Fintushel and Stern [Fur90].

Example 4.14. Let Kk be the pretzel knot P p´2k ´ 1, 4k ` 1, 4k ` 3q. This knot has Alexander
polynomial 1, and hence it is topologically slice. On the other hand, it is shown in [End95] that the
family of knots tKku are linearly independent as elements of the the smooth concordance group C and
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generate a Z8 subgroup of C. The proof of this result in [End95] can be reformulated in terms of ΓY
in the following way. The branched double cover of S3 along Kk is the Brieskorn homology sphere
Σp2k ` 1, 4k ` 1, 4k ` 3q. As it is observed in [End95], RpΣp2k ` 1, 4k ` 1, 4k ` 3qq “ 1 and hence:

ΓΣp2k`1,4k`1,4k`3qp1q “
1

4p2k ` 1qp4k ` 1qp4k ` 3q
.

Therefore, Corollary 4.12 implies that tΣp2k ` 1, 4k ` 1, 4k ` 3qukPZą0 spans a Z8 subgroup of Θ3
Z.

This shows the claimed linear independence of the knots Kk.

Example 4.15. If p, q, k are as in Example 4.13, then Rpp, q, pqk` 1q “ ´1. Therefore, Proposition 4.7
does not say anything about ΓY when Y “ Σpp, q, pqk ` 1q. This is in line with Example 3.50 where it
is shown that ΓY “ ΓS3 .

Example 4.16. Suppose p and q are coprime numbers, and a1, a2, . . . , a2n`1 is a sequence of positive
integers with a1 “ p, a2 “ q and for i ě 3:

ai “ kia1a2 . . . ai´1 ´ 1.

Here ki is an arbitrary positive integer. ThenRpa1, . . . , a2n`1q “ n. In particular, theR-invariant can take
arbitrarily large values. As it is discussed in the introduction, if Rpa1, . . . , a2n`1q ě 5, then Propositions
3.44 and 4.7 imply that Σpa1, . . . , a2n`1q is not homology cobordant to an SUp2q-non-degenerate integral
homology sphere.

Corollary 3 provides another family of 3-manifolds that similar techniques can be used to obtain
information about ΓY . Next, we give the proof of this corollary which recasts the arguments of [HK12].

Proof of Corollary 3. There is a negative definite cobordism with trivial first integral homology from
Σpp, q, 2pq ´ 1q to Yp,q [HK12, Lemma 3.6]. Thus Theorem 3 and Example 4.13 imply that:

ΓYp,qp1q ď ΓΣpp,q,2pq´1qp1q “
1

4pqp2pq ´ 1q
.

The study of the Chern-Simons functional of Yp,q in [HK12] shows that τpYp,qq ě 1
4pqp4pq´1q , which can

be used to verify the other inequality in (1.8). The proof of the more general inequalities in (1.9) is similar.
(See the proof of Theorem 6.)

5 4-manifolds and Reducible Connections

The following theorem is the counterpart of [Frø02, Theorem 3 and Proposition 1] which generalizes
Donaldson’s celebrated diagonalizability theorem [Don83]:

Proposition 5.1. Suppose Y is a homology sphere, and X is a 4-manifold with boundary Y such
that b1pXq “ 0, and the intersection form Q of X on H2pX,Zq{Tor is negative-definite. Suppose a
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cohomology class e P H2pX,Zq is fixed such that Qpeq is an even integer, |Qpeq| ě 2, |Qpeq| ď |Qpe1q|
for any e1 with e1 ” e mod 2, and:

ÿ

p´1qp
e`e1

2
q2 ‰ 0. (5.2)

where the sum is over all pairs te1,´e1u such that e1 P H2pX,Zq, e1 ” e mod 2, and Qpeq “ Qpe1q.
Then ΓY pn0q ď ´

1
4Qpeq where n0 “ ´

1
2Qpeq. The equality holds only if the fundamental group of X

admits a representation to SUp2q with non-trivial restriction to the boundary.

Proof. We follow the proof of [Frø02, Proposition 1]. Since the proof is also similar to the proof of
Lemma 4.2, we only sketch the main steps. Suppose L is the complex line bundle on X which represents
the cohomology class e. We also fix a metric with cylindrical ends on X . The bundle L admits an ASD
connection B such that ||F pBq||L2pXq is finite. Let εi be a sequence of positive numbers converging 0,
and for each i, fix an εi-admissible perturbation πi of the Chern-Simons functional of Y . We also pick a
compatible perturbation πi of the ASD equation on X as in the previous section. Define:

γi :“
ÿ

z

#Mπi
z pX, e;αqλ

Epzqα

where the sum is over all paths along pX, eq of index 0 which restricts to a generator α of Cπi˚ pY q.

Following the same argument as in the proof of Lemma 4.2, we can show that dpγiq “ 0 and
D1U

kpγiq “ 0 for k ă n0 ´ 1. Moreover, the inequality in (5.2) implies that D1Un0´1pγiq is a non-zero
multiple of λ´

1
4
e2 . To be a bit more detailed, we consider the moduli space that contains the ASD

connection B ‘ θ and as in Lemma 4.2, we cut down the complement of a small neighborhood of
the reducible connections with n0 ´ 1 codimension 4 divisors representing µpptq. This determines a
1-dimensional moduli space. Clearly, the signed count of the boundary points of this moduli space is
zero. This count has contribution from D1Un0´1pγiq and reducible connections. The count associated
to the reducible connections is a non-zero multiple of (5.2), and hence it is non-zero. Consequently,
D1Un0´1pγiq is non-zero. The dimension formula implies that this non-zero number is a multiple of
λ´

1
4
Qpeq. There is also an element Ai of the moduli space of the form Mπi

z pX, e;αq such that valpγq is
equal to EpAiq. In particular, we have:

valpD1U
n0´1pγiqq ´ valpγiq “ ´

1

4
Qpeq ´ EpAiq

By letting iÑ8, we have:

ΓY pn0q ď ´
1

4
Qpeq ´ lim sup

i
EpAiq

The analogue of Lemma 3.48 for 4-manifolds with one boundary component implies that there is a
(possibly broken) ASD connection A0 on X which is asymptotic to an irreducible flat connection on Y
such that:

ΓY pn0q ď ´
1

4
Qpeq ´ EpA0q

In particular, ΓY pn0q ď ´
1
4Qpeq and if the equality holds then A0 has to be flat. Therefore, there is an

SUp2q-representation of π1pXq, which extends a non-trivial representation of π1pY q.
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Proposition 5.3. Suppose Y and X are given as in Proposition 5.1. Suppose also a non-negative integer
m, a homology class Ξ P H2pX,Zq and a cohomology class e P H2pX,Zq are fixed such that Qpeq ” m
mod 2, |Qpeq| ě 2, |Qpeq| ď |Qpe1q| for any e1 with e1 ” e mod 2 and:

ÿ

p´1qQp
e`e1

2
qpΞ ¨ e1qm ‰ 0. (5.4)

where the sum is over all pairs te1,´e1u such that e1 P H2pX,Zq, e1 ” e mod 2, and Qpeq “ Qpe1q.
Then ΓY pn0q ď ´

1
4Qpeq where n0 “ ´

Qpeq`m
2 . The equality holds only if the fundamental group of X

admits a representation to SUp2q with non-trivial restriction to the boundary.

Proof. Essentially the same proof as in Proposition 5.1 verifies this claim. We just need to modify the
definition of γi as follows:

γi :“
ÿ

z

#pMπi
z pX, e;αq X V pΣ1q X . . . V pΣmqqλ

Epγqα

where Σj is an embedded surface14 in X representing the homology class Ξ and V pΣjq is the standard
codimension 2 divisor in the configuration space of irreducible connections on X representing µpΞq
[DK90].

Proof of Theorem 5. Let e be a cohomology class which represents a non-zero element of with minimum
|Qpeq|. In particular, Qpeq “ ´mpLq where mpLq is defined in (1.2). If e1 P H2pX,Zq is another
cohomology class that e ” e1 mod 2 and Qpeq “ Qpe1q, then either e´ e1 or e` e1 is a torsion element.
In particular, in the case that Qpeq is an even number, the condition in (5.2) holds and we can conclude
that ΓY p´

1
2Qpeqq ď ´1

4Qpeq. In the case that Qpeq is an odd number, we set m “ 1 and Ξ to be a
cohomology class that Ξ ¨ e “ 1 and apply Proposition 5.3 to conclude that ΓY p´

Qpeq`1
2 q ď ´1

4Qpeq.
This inequality completes the proof.

A Evaluating a Function at Cohomology classes

Suppose M is a compact topological space, f : M Ñ R is a continuous function and σ P H˚pM,Zq. Let
Mprq :“ f´1pp´8, rsq and define:

fpσq :“ inftr | σ P imagepi˚ : H˚pMprq,Zq Ñ H˚pM,Zqqu

We say fpσq is the evaluation of f at the homology class σ.

In the case that M is a smooth manifold and f is a smooth function, we can reformulate the above
definition using the language of Morse homology. We firstly assume that f is a Morse function and fix
a Riemannian metric on M such that f is a Morse-Smale function. Suppose pC˚pfq, dq is the Morse

14As it is customary in the definition of Donaldson invariants, we assume that these surfaces intersect generically to avoid the
issue of instanton bubbles.
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complex associated to f . Then C˚pfq is generated by critical points of f , and d is defined using down-
ward gradient flow lines of f . Moreover, the homology of the complex pC˚pfq, dq, denoted by H˚pfq, is
naturally isomorphic to H˚pM,Zq. For each homology class σ, we have:

fpσq “ min
σ“r

ř

i aiαis
max
i
tfpαiqu (A.1)

Here the minimum is over all linear combinations
ř

i aiαi of critical points of f which represents the
homology class σ. The above identity is a consequence of the fact that for any r, the sub-complex
generated by critical points α of f with fpαq ď r has the same homology as the singular homology of
Mprq. Clearly, the above min-max formula is independent of the choice of the metric because it is equal
to fpσq. Alternatively, one can use standard continuation maps to show the independence of the left hand
side of (A.1) from the choice of the metric.

Example A.2. If f is a self-indexing Morse function, then for any σ P HipM,Zq, we have fpσq “ i.

The above definition can be modified easily for the functions which are not necessarily Morse. Given
a function f , we fix a smooth function πi : M Ñ R for each positive integer i such that f ` πi is a Morse
function and |πi|C0 Ñ 0. Then we have:

fpσq “ lim
iÑ8

min
ř

i aiαiPC˚pf`πiq
σ“r

ř

i aiαis

max
i
tfpαiqu (A.3)

In particular, the term on the min-max formula on the right hand side of (A.3) is independent of the choice
of the perturbations πi. One can also observe from the definition of fpσq that this number is equal to a
critical value of f .

The definition of ΓY has some formal similarities with the expression on the left hand side of (A.3),
where M is replaced with the configuration space BpY q and f is replaced with the S1-valued Chern-
Simons functional CS. Another similarity is that ΓY , modulo integers, essentially takes values in the
set of critical values of the Chern-Simons functional, i.e., the values of the Chern-Simons functional
on SUp2q-flat connections. However, one should not go too far in this analogy. To have a better finite
dimensional approximation to the construction of this paper one should consider a manifold M with an
SOp3q action which has one fixed point and otherwise it is free. We also need to fix an SOp3q-invariant
function on M . Working with an appropriate model for the homology of M , we can produce a chain
complex with coefficients in Λ which has the form in (2.6). Then repeating the construction of Subsections
2.3 and 3.1 would provide a better finite dimensional approximation to ΓY .
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