
REGROUP: A Robot-Centric Group Detection
and Tracking System

Angelique Taylor
Computer Science & Engineering
University of California, San Diego

amt062@eng.ucsd.edu

Laurel D. Riek
Computer Science & Engineering
University of California, San Diego

lriek@eng.ucsd.edu

Abstract—To facilitate HRI’s transition from dyadic to group
interaction, new methods are needed for robots to sense and
understand team behavior. We introduce the Robot-Centric
Group Detection and Tracking System (REGROUP), a new
method that enables robots to detect and track groups of people
from an ego-centric perspective using a crowd-aware, tracking-
by-detection approach. Our system employs a novel technique
that leverages person re-identification deep learning features
to address the group data association problem. REGROUP is
robust to real-world vision challenges such as occlusion, camera
egomotion, shadow, and varying lighting illuminations. Also, it
runs in real-time on real-world data. We show that REGROUP
outperformed three group detection methods by up to 40% in
terms of precision and up to 18% in terms of recall. Also, we
show that REGROUP’s group tracking method outperformed
three state-of-the-art methods by up to 66% in terms of tracking
accuracy and 20% in terms of tracking precision. We plan to
publicly release our system to support HRI teaming research and
development. We hope this work will enable the development
of robots that can more effectively locate and perceive their
teammates, particularly in uncertain, unstructured environments.

Index Terms—human robot interaction, group detection, group
tracking, social robot navigation, deep learning

I. INTRODUCTION

Increasingly, people expect robots to interact fluently with
them in crowded, real-world settings. For example, assisting
families in public places (e.g., airports and hotels [1], [2],
assisting clinical teams [3], [4] or transporting people via
autonomous vehicles [5], [6], [7], [8]. In these real-world
settings, which have considerable uncertainty, robots need
robust perception methods to accomplish their tasks safely
and effectively [9], [10], [11], [12]. One key feature of these
environments is that people often interact in groups, a fact
which robots can leverage to interact more fluently with human
teammates [13], [14], [15], [16], [17].

The field of Human-Robot Interaction (HRI) has recognized
the importance of transitioning from dyadic, lab-based inter-
actions to group-based, real-world settings teams [18], [19],
[20], [21], [22]. Thus, we need new methods to support this
transition. This motivates us to focus on group perception
methods because they can be used to address critical problems
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Fig. 1: REGROUP enables robots to detect and track groups of
people using a crowd-aware, tracking-by-detection approach.

that robots encounter in real-world group settings, for example,
when robots can potentially harm people around them as
a result of delays or misclassifications in their perception
systems [23], [24], [25].

Prior work in vision and robotics has explored group
detection from exocentric and ego-centric sensing perspectives
[26]. Methods that employ exocentric sensing rely on station-
ary, overhead cameras [27], [28]. These methods represent
pedestrians as points on the ground plane to build models
that learn trajectory patterns. They then employ probabilistic
methods [29], [30], [31], [32], graph-based approaches [33],
[34], [35], or social force models [36], [37], [38] to detect
groups. However, these methods are less helpful for real-
world HRI group applications, as they require placing external
sensors in the environment.

Instead, methods that rely on ego-centric sensors tend to be
more useful. Here, sensors are place on a robot (or person),
and various methods that generate pedestrian detections [39],
[40], [41]. However, most prior work does not consider the
social dynamics in the environment; doing so could enable
more socially-aware navigation. A key difference ego-centric
approaches is that they employ ego-centric image feature
extraction techniques to model a pedestrian’s appearance,
which is particularly useful for mobile robotic applications.

There are several common ego-centric perception methods,
including probabilistic methods such as Multiple Hypothesis
Tracking (MHT) [42], [43], [44], fluid dynamics-inspired
models [45], and clustering [46], [47]. However, we focus on
commonly used methods such as MHT and clustering.

One example of an HRI system that uses MHT for ego-



Fig. 2: Given video data, REGROUP extracts pedestrian patches and extracts appearance descriptors from them using a CNN.
Then, it uses these descriptors to track pedestrians. REGROUP detects detector using the pedestrian tracks followed by tracking
groups using our novel crowd indication feature (CIF), which enables REGROUP to handle high levels of occlusion.

centric perception is Spencer, which is also a group detection
and tracking system [1]. This project focused on designing an
assistive robotic platform that guides people in busy airports.
Under this project, [40] published a framework that employs
various sensor fusion, pedestrian detection, and group tracking
methods. Although this work made great progress to address
the ego-centric group detection and tracking problem, its main
drawback is that it required manually-annotated training data
for group detection, data association, and social groupings.
Additionally, MHT is computationally expensive because it
uses tree-based data structures that grow exponentially with
the number of pedestrians. Other methods used clustering to
predict moving pedestrians in crowds by estimating clusters in
3D point clouds [46]. However, the authors employed a static
sensor setup; this method may fail when employed on mobile
robot as mobility can increase noise in the point cloud.

There are three major limitations in prior group detection
methods which require further investigation. First, most prior
work relies on stationary, exocentric, overhead sensor setups
which cannot be accessed by mobile robots working in new en-
vironments [48], [31], [30]. Second, many existing techniques
require a priori knowledge of groups, and need to be trained
from large datasets that must be manually annotated.Third,
public spaces are often crowded, which causes error propa-
gation over time in modern tracking systems (for pedestrians
and groups) and leads to degrading performance.

The goal of the data association problem is to match objects
from one timestep to the next. Many methods employ Con-
volutional Neural Network (CNN) appearance descriptors for
data association between pedestrians [49], [50], [51]. Person
re-identification CNNs are commonly used to generate such
appearance descriptors as they are invariant to changes in
scale, rotation, and lighting [52], [53]. However, there is a
lack of work that explores this approach for tracking groups.

To address these gaps, we introduce the Robot-Centric
Group Detection and Tracking System (REGROUP), an ego-
centric group detection and tracking system (See Figure 1). In-
spired by Robot-Centric Group Estimation Model (RoboGEM)
[47], we aim to improve upon this prior work by designing a
new group detection system and developing a new group track-
ing system. REGROUP uses a tracking-by-detection approach
with a person re-identification CNN for group data association.
We employ motion and appearance distance metrics to track

group states over time. Additionally, we propose a effective
technique that detects when the environment is crowded, to
enable REGROUP to handle high levels of occlusion in real-
world environments. Furthermore, REGROUP runs at 45.3
frames-per-second on a real-world dataset.

The contributions of this paper are as follows:
1) We introduce a new ego-centric group detection and

tracking system using a crowd-aware, tracking-by-
detection technique. Our system leverages person re-
identification deep learning feature activation maps to
address the group data association problem. We show
that REGROUP is robust to real-world vision challenges
such as occlusion, camera egomotion, and shadow.

2) We show that it runs in real-time on real-world data.
3) We show that REGROUP outperforms three state-of-the-

art group detection and tracking methods [54], [55], [56].
4) We plan to publicly release our system to enable robotics

researchers to design intelligent systems for group HRI.
Our work addresses the problem of group detection and

tracking, which is essential for robots to effectively team with
multiple collocated people. Our work also propels exploration
in the broader robotics community to advance research in areas
including autonomous vehicles and multi-robot systems.

II. REGROUP
REGROUP is an ego-centric group detection and tracking

system that runs on RGB video data, in real-time. It runs online
using an RGB camera or offline with pedestrian detections pre-
computed and stored in memory. We define groups as people
spatially close to each other with a common motion goal [40].
We capture this intuition in our group detection algorithm
using three distance metrics designed particularly for ego-
centric perception. Also, we present a crowd indication feature
(CIF) which enables robots to track in crowded environments.

Figure 2 shows an overview of REGROUP. Starting with
a RGB video, REGROUP detects pedestrians, extracts their
pedestrian patches, and passes those patches to a Convolutional
Neural Network (CNN). The CNN generates an appearance
descriptor which is used for data association of pedestrians
and groups. Then, REGROUP uses these appearance descrip-
tors to track pedestrians. Next, it detects groups using our
distance metrics (See Figure 3). Finally, it performs our new
group data association technique using fused group appearance



Fig. 3: REGROUP’s group detection distance metrics.

descriptors, and tracks groups using Kalman filtering. In this
section, we discuss each of these steps in detail.

A. Ego-centric Group Detection
We introduce a new ego-centric group detection algorithm

that has three main steps. First, it employs a state-of-the-
art pedestrian detection method [57] that achieves real-time
performance on a GPU. This method outputs bounding boxes
(BB) that are parameterized by hx, y, w, hi which are the
center column, center row, width, and height respectively.
Second, we employ the pedestrian tracking method by [58]
that achieves real-time performance. Algorithm 1 shows our
ego-centric group detection method. Consider a scenario in
which pedestrian i, pi and pedestrian j, pj , have bounding
boxes bi and bj (i 6= j), respectively.

We conducted iterative experiments to explore distance
metrics for the ego-centric group detection problem. We
started with the metrics employed in RoboGEM [47]. Then,
we expanded them to explore other distance metrics using
the pedestrian BBs. We made several observations such as
pedestrians that are nearby tend to have larger visual represen-
tations than people far away. We found that the combination
of “inner distance” between pedestrians, the distance between
pedestrians’ lower body (e.g., indicating the ground plane), and
the ratio of the height of two adjacent pedestrians generated
the best performance of all approaches we tested.

We generate three Nt ⇥ Nt adjacency matrices (AM) for
the width Dw between bi and bj , height ratio Dh between
bi and bj , and ground plane distance Dgp between bi and bj ,
where Nt is the number of pedestrians at time t (See Figure
3). The adjacency matrix captures different distance metrics
between pedestrians in the scene. We define Dw as the inner
distance between bi and bj which groups pedestrians with a
small space between them. Dh measures how close the height
of bi matches bj which groups pedestrians that are close to
the robot together and it groups those that are far away from
the robot together. Finally, Dgp measures the ground plane
distance between bi and bj which groups pedestrians based
on how close they are walking near each other.

Algorithm 1: Ego-centric Group Detection
Input : Pedestrian Detection BB = {bn|n = 1, . . . , Nt}

Height and Ground Plane Thresholds ↵ and 
Output: Group detection IDs G = {1, . . . , Nt}
D = Dw = Dh = Dgp = {} // adjacency matrices of width,

height ratio, and ground plane distance between pedestrians.
for i 2 {1, . . . , Nt} do

for j 2 {1, . . . , Nt} do
if i 6= j then

Di,j
w =

(
|bix � bjx|�

|biw+bjw|
2 , if Di,j

w  �

0, otherwise

Di,j
h =

8
<

:

min(bih,bjh)

max(bih,bjh)
, if Di,j

h  ↵

0, otherwise

Di,j
gp =

(
|(biy � bih)� (bjy � bjh)|, if Di,j

gp  

0, otherwise

D = Dw�Dh�Dgp

G DFS(D)
Return G

The AMs capture whether pi and pj are in the same group.
We apply numerical thresholds �, ↵, and  to Dw, Dh, and
Dgp respectively such that we exclude group candidates that
clusters pedestrians that are not physically close to each other.
� is the mean of biw and bjw. ↵ 2 [0, 1] is the height ratio
between bih and bjh.  2 [1, Ih] is the ground plane distance
(in pixels) between bi and bj where Ih is the image height.

Next, we normalize Dw, Dh, and Dgp; therefore, a value
of 1 would indicate a group candidate and a value of 0
means that bi and bj are not in a group. REGROUP combines
all the metrics into a single matrix D (Hadamard product)
with group candidates. By detecting cycles in the adjacency
matrix, we can find connections between people i.e., groups.
Then, we employ Depth First Search to detect cycles in an
adjacency matrix as commonly done [54]. Thus, potential
groups detections G 2 R1xNt are defined as pedestrians within
a cycle and assigned a cluster ID.

B. State Estimation

We consider the group tracking problem for a mobile robot
that works in real-world environments to support teams which
requires robots to track their teammates from both a stationary
and mobile platform. Recent work using Kalman Filters (KF)
shows great promise to predict pedestrian states under high
egomotion [59]. It models dynamics and uncertainty in learned
latent space and performs long-term forecasting [60], [61].
While prior work shows that KFs achieve good tracking perfor-
mance of pedestrians, there’s a lack of work that employs KFs
for groups. We adopt the track handling and KF mechanism
from [58] for pedestrians and build on it to track groups. We
assume that no camera calibration or egomotion information
is available and the robot must detect and track groups solely
from its onboard sensor (i.e., RGB).

In preliminary experiments, we found that a constant veloc-
ity model and linear observation model achieved better group



tracking performance than the comparative tracking methods.
Thus, we employ these models in our work. States are updated
using a linear velocity model when no detection is assigned
to a track. The track state is updated using the BB detection.

We represent pedestrian tracks k 2 K with an eight-
dimensional state space hpkx, pky , pk� , pkh, pkẋ, pkẏ , pk�̇ , pkḣi which is
the x, y, aspect ratio, height, and their respective velocities. We
compute a set of pedestrian detections l 2 L at each timestep
and merge the bounding boxes of pedestrians in groups using
Equ. 1 to generate group detections u 2 U .

bu  
[

l2u

bl (1)

We represent group tracks v 2 V with an eight-dimensional
state space hgvx, gvy , gv� , gvh, gvẋ, gvẏ , gv�̇ , gvḣi which is the x, y,
aspect ratio, height, and their respective velocities. Pedestrian
and group tracks are initiated when they are observed for
three consecutive image frames. We introduce a new tech-
nique which stores a pedestrian’s group track ID history in
phist = {ht|t = �1,�2, . . . ,�T} to be used for crowd
handling where T is the window size (See II-C). When
tracks are not observed for Amax frames they are removed
from track history. We use Amax = 100 which achieved
good performance in empirical experiments. Tracks that are
successfully associated for the first three frames continue to
be tracked until they exit the frame.

We employ the Hungarian algorithm (HA) to solve the
assignment problem for groups, as commonly done in multiple
object tracking (MOT) [58], [40], [62]. We define c as a
metric which incorporates two distance metrics into the HA
to represent motion and appearance (see Eq. 2 from [58]).
The motion metric, m, which is standard in KF, tracks the
state of a group’s position on the image plane over time and
generally performs well when egomotion uncertainty is low
(i.e., a stationary sensor). The appearance metric a computes
the cosine distance between appearance descriptors of group
detections u and group tracks v that are generated from a
person re-identification CNN (see II-D). We use parameter
� 2 [0,1] which is the fraction of detections that have been
matched to group tracks using the appearance metric a. Next,
we employ an indicator function cind which finds tracks
admissible when they are within the gating region of both the
appearance metric aind and motion metric mind (see Equs. 3
and 4). In practice, REGROUP associates tracks using a and
matches the remaining tracks using m.

c(u, v) (1� �)m(u, v) + �a(u, v) (2)

cind(u, v) mind(u, v)⇥ aind(u, v) (3)

mind, aind  
(
1, if u and v in the same gating region
0, otherwise

(4)
We define the bounding box coordinates of group detection

u as bu = hx, y, �, hi which are the (x, y) coordinates

representing the center of the bounding box, aspect ratio, and
height respectively. Also, we define yv as the track distribution
which is a vector of the mean values of the bounding box
coordinates for group track v. To compute the motion metric
m, we use the squared Mahalanobis distance between new
group detections bu and yv with inverse covariance S�1

v . The
benefit of using Mahalanobis distance is that it computes
the z � score statistic, which standardizes the distribution
to a mean of 0 and a standard deviation of 1 (See Equ.
5 from [58]). Thus, this property makes it easy to compare
the distance from one distribution to another and it captures
motion characteristics of groups. m follows the �2 distribution
with four degrees of freedom (Recall: observation model uses
bounding boxes coordinates hx, y, �, hi) with a critical value
of 0.05. Thus, we apply an indicator function mind to m which
assigns detections to tracks by thresholding the Mahalanobis
distance at 95% confidence interval computed from inverse �2

distribution which results in ⌧ (1) = 9.4877.

m(u, v) (bu � yv)
TS�1

v (bu � yv) (5)

mind(u, v) 1[m(u, v)  ⌧ (1)] (6)

We define the appearance descriptor of pedestrian detection
l as apl where ||apl|| = 1 which is the Euclidean norm of the
feature vector generated by the CNN defined in Section 3.4.
We collect a gallery of appearance descriptors for pedestrians
which we defined as APk = {apik|i = 1, . . . , Ak} where Ak is
the number of appearance descriptors for the pedestrian track
k. Also, we introduce a new appearance descriptor agu as the
descriptor for group detection u where ||agu|| = 1 which is
the Euclidean norm generated by combining the appearance
descriptors of pedestrians apl in u (See Equ. 7). We collect a
gallery of appearance descriptors for groups which we defined
as AGv = {agiv|i = 1, . . . , Av} where Av is the number of
appearance descriptors for group track v.

agu  
NtX

l=1
forl2u

apl (7)

To account for camera motion, we use an appearance
distance metric a which performs well when egomotion un-
certainty is high, such as in mobile robotics applications.
First, REGROUP matches pedestrian detection l to pedestrian
track k using the cosine distance between their respective
appearance descriptors, denoted a⇤ (See Equ. 8). This metric
keeps track of how a pedestrian’s appearance changes over
time, even after long moments of occlusion, which is useful for
recovering tracks when camera motion is dynamic. Then, the
system performs a new technique for group data association.
It combines the appearance descriptors on pedestrian tracks
within group tracks to generate the appearance descriptor of
group tracks agv (See Equ. 9).

a⇤  argmin
i

{1� apTl ap
(i)
k |ap(i)k 2 APk} (8)



Fig. 4: Example instances of REGROUP (⌘ = 4) when the
scene is not crowded (CIF=0, shown in the left) and it is
crowded (CIF=1, shown in the right).

agv  
NtX

k=1
8k2v

apa
⇤

k (9)

Next, REGROUP computes the cosine distance between
group detections u and group tracks v using a similar mecha-
nism for the pedestrian appearance metric. Then, we employ
an indicator function aind which assigns group detections to
group tracks within the gating region (See Equ. 11. In practice,
we make this selection using the group detection that produces
the minimum cosine similarity from Equ. 10 [58].

a(u, v) min{1� agTu ag
(i)
v |ag(i)v 2 AGv} (10)

aind(u, v) 1[a(u, v)  ⌧ (2)] (11)

C. Crowd Indication Feature (CIF)
When large groups gather together, they are often passing by

each other. This typically results in group track mismatches
because the ego-centric distance metrics (i.e., Dw, Dh, and
Dgp) converge for short periods of time. By detecting this
situation, we can leverage past track states to preserve group
tracks over time. To mitigate this, we introduce a Crowd
Indication Feature (CIF) 2 {0, 1} which detects when the
scene is crowded (See Figure 4). We use Dw from Section
3.1 to detect when multiple groups are in close proximity
to each other. Then, we apply � to Dw which generates an
adjacency matrix. Next, we run depth first search (DFS) on Dw

to find cycles, and we select the largest cycle/group, which has
a cardinality denoted Gw.

When Gw < ⌘, this indicates that a crowd is not detected;
otherwise, a crowd is detected. We use parameter ⌘ to indicate
the number of people which constitute a crowd. When con-
ducting experiments with our ego-centric dataset (See Section
5.3.1), we found that ⌘ = 4 generates the best performance.
This is likely the result of possible combinations of the number
of people passing in groups (e.g., 1-3, 2-2, 1-1-2, etc). When
the scene is crowded, we use the past group track history phist
to update group states with a window size T to find the most
frequently seen group track IDs. We found that a window size
of T = 10 timesteps generates good tracking performance.

D. Deep Appearance Descriptors for Group Data Association
There has been recent work that aims to re-identify groups

of people over time. For instance, [63] uses multi-grain object
representations to characterize the appearance and spatial

attributes of individuals and subgroups of two people. Multi-
grain objects are individual people and subgroups of two and
three people inside a group image. [64] uses sparse dictionary
learning to transfer knowledge from person re-identification
to group re-identification. However, most recent techniques
assume that group detections are provided a priori, and do
not address the problem of data association. Data association
is important for group tracking systems because they enable
systems to model how group composition changes over time.

REGROUP addresses both of these gaps. First, it learns
group detections using our ego-centric group detection system
(Discussed in Section 3.1). Then, REGROUP uses a tracking-
by-detection technique to track groups of people over time.

A novel strength of REGROUP is that it introduces a new
way to do group re-ID to address the group data association
problem. The intuition is that a person’s appearance does not
change much from one timestep to the next. Therefore, by
leveraging appearance descriptors, we can design our system
to handle high uncertainty due to camera egomotion. Here,
we use a person re-ID Convolutional Neural Network (CNN)
which is well-suited to re-identify people for data association.

We used a CNN that learns appearance descriptors that
discriminate well between people (pretrained on [59]). The
CNN architecture consists of two 3x3 convolution layers, a
3x3 max pooling layer, six 3x3 residual layers, a dense layer,
followed by a batch and `2 normalization layer which projects
features onto a unit hypersphere [65], [59]. It takes RGB pixels
within a pedestrian detection as input and outputs a 1x128
appearance descriptor which we use for data association.

REGROUP generates an appearance descriptor for groups
using the appearance descriptor of pedestrians. As mentioned
in Section 3.2, we keep a gallery of a pedestrian’s appearance
descriptors for K timesteps. REGROUP searchers for the best
appearance descriptor for each pedestrian in a group (See Equ.
8). Then, it merges the CNNs activation maps of people within
groups and uses this as an appearance metric to track groups
of people over time (See Equ. 9).

Finally, REGROUP employs a matching cascades (MC)
technique [58] to solve the measurement-to-track associations
for pedestrians. MC is used to solve the measurement-to-track
associations for groups by giving priority to more frequently
seen groups when it matches tracks to detections. It starts by
computing an association matrix and admissible associations
between tracks and detections as defined in Equ. 2 and 3.
Then, it solves the linear assignment problem by iterating
over the most recent tracks to least recent tracks followed by
solving for and updating the matched and unmatched tracks.
We conducted all of our experiments on a Dell Inspiron Intel
Core i7 laptop, with 16GB RAM, 1TB HDD, and NVIDIA
GeForce GTX960M GRU. The machine ran Ubuntu 16.04.
We implemented our framework in Python using Tensorflow.

III. EXPERIMENTS

A. Dataset Acquisition
To evaluate REGROUP, we required an ego-centric video

dataset captured from a mobile robot in a real-world environ-



Fig. 5: Group detection performance. Precision (left) and recall
(right) measured over IoU threshold (higher is better).
ment (See Figure 6 for an example). There are many publically
available group tracking datasets [66], [67], [68]. However,
they do not provide spatio-temporal group track annotations,
and many are taken from stationary, exocentric cameras.

We augmented the dataset collected by [47] to include
additional challenging observations of groups, including dif-
ferent levels of elevation and dynamic pedestrian motion.
We mounted a ZED Stereo vision sensor onto a Double
Telepresence Robot, which we teleoperated in a public place.
The location contained crowds, as well as shaded and open
areas1. The collection site contains several key computer vision
challenges including indoor and outdoor observations, varying
lighting conditions, and different degrees of crowdedness.

The total dataset contained 28,094 RGB-D images which
we split into training (12,000), validation (6,000), and testing
(6,000) sets. The entire dataset contains 8118 unique pedes-
trians and 52 unique group tracks.

In order to generate group track IDs and bounding boxes,
we adopted the definition of groups from [54]. Three members
from our team labeled our data using Image Labeler, a built-
in MATLAB 2017b application. We validated our labels in a
manner consistent with other popular benchmarks in computer
vision (e.g. COCO dataset [69], [70]). Thus, two of our team
members labeled 3,000 randomly sampled batches of images
for label validation. We use Intersection-over-Union (IoU)2 to
evaluate the quality of our labels. Our validation procedure
resulted in precision of 78.2 and recall of 71.5 with an IoU of
0.5 which is comparable to COCO’s expert annotators.

B. Experimental Metrics
We evaluate REGROUP using the widely used standard

classification of events, activities, and relationships (CLEAR)

1ZED has 20 meters max range and runs at 20 fps at 640x360 resolution
2IOU measures the overlap ratio between two bounding boxes. An IoU of

1 means two boxes perfectly overlap and an IoU of 0 means no overlap.

multiple object tracking (MOT) metrics [70].
• Multiple Object Tracking Accuracy (MOTA "): combines

false positives, false negatives, and ID switches.
• Multiple Object Tracking Precision (MOTP "): misalign-

ment in BBs between ground truth and predicted tracks.
• Mostly Tracked Targets (MT "): number of ground truth

BBs covered by a track hypothesis at least 80% of time.
• Mostly Lost Targets (ML #): number of ground truth BBs

covered by track hypothesis for at most 20% of time.
• False Positives (FP #): number of false positives in BBs.
• False Negatives (FN #): number of false negatives in BBs.
• Total Number of ID Switches in BBs (IDsw #).
• Runtime (t(s) #): total time to run a system.

C. Comparison to State-of-the-Art

We seek to compare REGROUP to state-of-the-art methods
and investigate how well our system performs in terms of
group detection and group tracking. To facilitate this, we
follow evaluation procedures from [47] which employs similar
metrics such as precision and recall in terms of group detection
performance. Additionally, we follow the tracking evaluation
procedures from [71], [72], [40] which employ metrics to
demonstrate our system’s ability to track groups long-term.
While group detection metrics indicate the performance on a
frame-by-frame basis, the group tracking metrics indicate how
well the group tracking methods perform long-term.

We tested the group detection and tracking methods inde-
pendently to evaluate their performance on our challenging
dataset. Furthermore, we conducted ablation studies across all
methods to evaluate the effectiveness of these methods when
different group detection and tracking methods are combined.

1) Group Detection. We compared REGROUP’s group
detection method against three group detection methods:

Normalized Cuts (NCuts) [73] group pedestrians based on
proximity until it reaches K partitions (denoted NCuts+K). We
used an off-the-shelf implementation from [73]. We conducted
empirical experiments and found that NCuts+K perform best
with K=2, so we report those results.

Self-Tuning Spectral Clustering (Self-Tuning-SC) builds
on NCuts+K by predicting the number of groups at time t.
It predicts K by solving for the eigenvectors and using the
eigenvalues to generate K. We created our own implementa-
tion3 following the method presented in [74].

Spencer Group Detector detects groups using social re-
lation features of pedestrians including position, speed, and
direction of motion. Then, it trains a Support Vector Machine
(SVM) to perform binary classification to detect if two pedes-
trians are in a group. We created our own implementation
following the method presented in [54].

RoboGEM Group Detector [75] clusters pedestrians into
groups using agglomerative hierarchical clustering [47], [75]

3For many of these methods, they either did not have publicly available
code or had implementations we could not get to work. However, we spent
months carefully following the methods presented in the papers to ensure a
fair comparison.



Group-LSTM Tracker
Group Detector Group Tracker Precision " Recall " MT " ML # FP # FN # IDsw # MOTA " MOTP " t(s) #
Spencer Group-LSTM 30.5 22.8 1 96 4781 7105 284 -32.3 65.9 2254.4
NCuts+K Group-LSTM 19.6 2.5 0 152 949 8969 18 -7.9 60.7 129.2
Self-Tuning-SC Group-LSTM 48.4 4.4 0 144 428 8800 0 -0.3 67.2 336.1
REGROUP Group-LSTM 55.1 29.1 2 87 2181 6521 282 2.4 67.1 94.5

Group-LSTM-Obst Tracker
Group Detector Group Tracker Precision " Recall " MT " ML # FP # FN # IDsw # MOTA " MOTP " t(s) #
Spencer Group-LSTM-Obst 34.8 26.3 2 100 4534 6784 291 -26.2 67.2 2267.0
NCuts+K Group-LSTM-Obst 21.3 2.6 0 152 896 8958 11 -7.2 62.6 110.3
Self-Tuning-SC Group-LSTM-Obst 55.8 5.1 0 146 370 8734 0 1.1 67.5 356.5
REGROUP Group-LSTM-Obst 66.4 35.1 4 79 1634 5974 307 14.0 71.2 94.7

Spencer Tracker
Group Detector Group Tracker Precision " Recall " MT " ML # FP # FN # IDsw # MOTA " MOTP " t(s) #
Spencer Spencer 45.3 40.1 5 62 4454 5509 264 -11.2 75.7 2309.8
NCuts+K Spencer 39.0 33.1 4 68 4766 6149 459 -23.7 74.2 131.5
Self-Tuning-SC Spencer 45.9 29.2 8 67 3163 6507 399 -9.5 77.7 340.4
REGROUP Spencer 54.0 60.2 35 34 4717 3656 466 3.9 78.7 117.1

REGROUP Tracker
Group Detector Group Tracker Precision " Recall " MT " ML # FP # FN # IDsw # MOTA " MOTP " t(s) #
Spencer REGROUP 63.8 26.6 1 91 1388 6752 112 10.3 77.0 2377.4
NCuts+K REGROUP 66.4 29.4 6 75 1369 6487 190 12.5 77.0 269.0
Self-Tuning-SC REGROUP 71.1 24.5 8 88 918 6938 144 13.0 77.7 494.3
REGROUP REGROUP 80.4 48.4 27 54 1090 4744 197 34.5 80.7 132.4

TABLE I: Ablation Study Findings with group detectors and group trackers (See Section III-C).

with features such as pedestrian position, velocity, orientation,
and distance from the robot to people in the environment.

2) Group Tracking. We compared REGROUP’s group
tracking method against three group tracking methods:

Group-LSTM segments pedestrians by clustering trajecto-
ries of individuals that have similar motion trends. It tracks
groups using an Long-Short Term Memory Recurrent Neural
Network network to predict the motion of the pedestrians. We
used an off-the-shelf implementation by [55].

Group-LSTM-Obst builds on Group-LSTM by predicting
the future motion trajectory of pedestrians after n timesteps
(n >= 1) by leveraging grouping behaviors and obstacles in
the environment. Group-LSTM-Obst leverages the layout of
the environment to predict the trajectory of groups over time.
We used an off-the-shelf implementation by [56].

Spencer’s Group Tracker uses a Multi-Hypothesis Tracker
to track groups over time from an ego-centric perspective. We
used an off-the-shelf implementation by [54] 4.

We conducted ablation experiments to understand how dif-
ferent group detection methods impact the performance of the
group tracking methods. Here, we explored the combination
of the group tracking methods, including Group-LSTM [55],
Group-LSTM-Obst [56], and REGROUP with the group de-
tection methods including NCuts+K [73], Spencer [54], Self-
Tuning-SC [74], and REGROUP’s group detector.

IV. RESULTS

A. Group Detection
Figure 5 shows the overall group detection results. Over-

all, REGROUP outperformed all other methods by up to
40% in terms of precision and up to 18% in terms of
recall. Self-Tuning-SC outperformed Spencer, and Spencer
outperformed NCuts+K in terms of precision. Spencer outper-
formed NCuts+K and Self-Tuning-SC in terms of recall. For

4https://github.com/spencer-project/spencer people tracking

IoU < 0.5, NCuts+K outperformed Self-Tuning-SC, but for
IoU � 0.6, Self-Tuning-SC performed better than NCuts+K.
REGROUP’s detector outperforms RoboGEM’s detector in
terms of precision by up to 30% and recall by up to 18%.

B. Group Tracking

Table I shows the group tracking results. Overall, RE-
GROUP outperformed all other methods by up to 66% in terms
of MOTA and 20% in terms of MOTP.

Group-LSTM Tracking Table I shows the Group-LSTM
ablation results. Overall performance of Group-LSTM im-
proves using REGROUP’s group detection method in terms of
precision, recall, MT, ML, and FN, MOTA, and MOTP. Also,
the performance declines using the Self-Tuning-SC group
detection method in terms of across all metrics except FP.
The performance declines further using the Spencer group
detection method in terms of precision, FP, IDsw, and MOTA;
although it achieves better performance than NCuts+K and
Self-Tuning-SC in terms of recall, MT, ML, FN, and MOTP.
Lastly, the performance of Group-LSTM using NCuts+K
achieves the poorest performance of all group detection meth-
ods. In terms of runtime, the Group-LSTM tracker achieves
the shortest total runtime using REGROUP’s group detector,
and the longest runtime using the Spencer group detector.

Group-LSTM-Obst Tracking Table I shows the Group-
LSTM-Obst results. Overall performance of Group-LSTM-
Obst improves using REGROUP’s group detection method in
terms of precision, recall, MT, ML, FN, MOTA, and MOTP.
The performance of Group-LSTM-Obst declines using Self-
Tuning-SC in terms of all metrics except FP. Also, the perfor-
mance declines using Spencer group detection method in terms
of precision, FP, IDsw, and MOTA; although, the performance
improves in terms of recall, MT, FN, and MOTP compared to
NCuts+K and Self-Tuning-SC methods. The performance of
Group-LSTM-Obst declines most using NCuts+K. In terms of

https://github.com/spencer-project/spencer_people_tracking


Fig. 6: Example REGROUP results on our dataset.

runtime, Group-LSTM-Obst achieves the shortest total runtime
using REGROUP’s group detector.

Spencer Tracking Table I shows the Spencer ablation
results. Overall performance of Spencer improves using RE-
GROUP’s group detection method in terms of precision,
recall, MT, ML, FN, MOTA, and MOTP. The performance
of Spencer declines using Self-Tuning-SC and Spencer group
detectors in terms of all metrics except FP and IDsw. Also, the
performance declines using NCuts+K group detection method
in terms of precision, recall, MT, ML, FP, IDsw, MOTA, and
MOTP; although, the performance improves in terms of recall,
FN, and MOTP compared to the Self-Tuning-SC method. In
terms of runtime, Spencer achieves the shortest total runtime
using REGROUP’s group detector.

REGROUP Tracking Table I shows the REGROUP’s
ablation results. Overall REGROUP achieved the best tracking
performance when compared to Group-LSTM methods [55],
[56] across all metrics except FP and IDsw. The performance
of Spencer declines in terms of precision, MT, ML, and MOTA
performance which is likely due to its poor group detection
performance (See Figure 5). NCuts+K outperforms Spencer
across all metrics. Lastly, our method achieves the shortest
total runtime using REGROUP’s group detector.

V. DISCUSSION

In this work, we introduced REGROUP, a group detection
and tracking system for mobile robots working in real-world
environments. We demonstrated that deep learning appearance
descriptors have the potential to address the group detection
and tracking problem. Even with no a priori knowledge
(i.e., for training group detectors), REGROUP outperforms
Spencer [54], Self-Tuning-SC [74], NCuts+K [73], Group-
LSTM [55], and Group-LSTM-Obst [56] methods in terms
of group detection and tracking on our dataset.

Our ablation studies showed how well both the group
detector and tracker of REGROUP performed in comparison
to the other methods. For instance, Figure 5 shows that
REGROUP achieves the best group detection performance in

terms of precision and recall across all methods. REGROUP’s
detector also improves the performance of all other tracking
methods in terms of precision, recall, MT, ML, FN, MOTA,
and MOTA, including Spencer, Group-LSTM, Group-LSTM-
Obst and REGROUP (See Table I). Also, Self-Tuning-SC
achieves the second best performance in terms of precision,
which also reflects the results of this method when combined
with Group-LSTM and Group-LSTM-Obst group tracking
methods. Spencer achieves the second best performance in
terms of recall, MT, ML, FN, and MOTP.

As shown in Table I, Group-LSTM and Group-LSTM-
Obst performance declines with MT=0 using NCuts+K and
Self-Tuning-SC group detection methods. This indicates that
Group-LSTM and Group-LSTM-Obst methods do not track
any groups for at least 80% of the time they are observed in the
scene. This is likely caused by inconsistent group detections
where groups are detected in one frame and not the next frame
which results in generating a new group track ID even when
groups are detected in the future. As a consequence, Group-
LSTM methods often swapped IDs between groups.

All tracking methods achieve the shortest runtime using
REGROUP’s group detector. As aforementioned, REGROUP
achieves the best performance of all group tracking methods.
This shows that REGROUP is beneficial because it achieves a
shorter runtime without sacrificing precision, recall, or MOTA.

Our group tracking approach is beneficial to HRI in several
ways. First, REGROUP is able to track groups in real-world,
human-centered environments where people are moving and
the robot is moving, a well-known problem in robotics.
Second, it uses group data association that leverages deep
learning features, which enable robots to leverage appearance
features when egomotion uncertainty is high [76], [77], [52].
Third, REGROUP can enable navigation systems operating
in human-centered environments to engage in more socially
aware interaction with human groups.

In the future, we plan to continue building on REGROUP
to reach our goal of designing robots that safely and fluently
with groups. There are many exciting domains to deploy
REGROUP, such as in retail settings, work sites, and in
hospitals, to support teams. We are particularly interested in
deploying REGROUP in conjunction with navigation systems
to enable robots to support human teams in safety critical
environments. For instance, robots can use REGROUP to track
healthcare workers as it works alongside them (e.g., delivering
supplies, helping patients stand), and can be helpful in other
teaming contexts such as manufacturing and search and rescue
[78], [79]. Furthermore, this work is useful in other areas
of robotics, such as in last-mile and personal transportation
applications [6], where understanding what groups of people
are doing can enable robots to make intelligent decisions.

To help support reproducability, code for REGROUP can be
found at: https://github.com/UCSD-RHC-Lab/regroup-public.

We hope this work will prove useful for the HRI community,
as it contributes a new system to investigate how groups
move throughout an environment and it can enable robots to
seamlessly work in human-robot teaming situations.

https://github.com/UCSD-RHC-Lab/regroup-public
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