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ABSTRACT
We present a system for large-scale image retrieval on everyday
scenes with common objects. Our system leverages advances in
deep learning and natural language processing (NLP) for improved
understanding of images by capturing the relationships between
the objects within an image. As a result, a user can retrieve highly
relevant images and obtain suggestions for similar image queries
to further explore the repository. Each image in the repository is
processed (using deep learning) to obtain the most probable cap-
tions and objects in it. The captions are parsed into tree structures
using NLP techniques, and stored and indexed in a database system.
When a query image is posed, an optimized tree-pattern query
is executed by the database system to obtain candidate matches,
which are then ranked using tree-edit distance of the tree structures
to output the top-k matches. Word embeddings and Bloom filters
are used to obtain similar image queries. By clicking the suggested
similar image queries, a user can intuitively explore the repository.
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1 INTRODUCTION
Content-based image retrieval aims to find images in a database
that are similar to a query image. Typically, there are two stages
during image retrieval, namely, the filtering stage to identify a set
of candidate images and a re-ranking stage, where a small number
of similar candidates are re-ranked based on specific criteria. Re-
cently, several techniques have explored the use of convolutional
neural networks (CNNs) for large-scale image retrieval. These rely
on CNN features for global image representations enabling fast
filtering [6, 7, 9, 12, 20, 25, 27]. For re-ranking, local image represen-
tations from CNNs have been employed through spatial matching
and geometric verification [15–17]. A recent technique extracted
deep local features from CNNs for indexing and ranked based on
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geometric verification [17, 24]. Another instance retrieval tech-
nique [23] leveraged both local and global features from a Faster
R-CNN [21].

Techniques relying onCNN-based featureswere tested on datasets
containing buildings, scenic views, and landmarks along with other
distractor images [2, 10, 18, 19]. The evaluated queries contained
only buildings, landmarks, etc. We argue that images containing
everyday scenes with common objects are quite different from
the aforementioned datasets as they contain objects in the fore-
ground and background. In such an image, certain objects become
the main focus when a human observes it. We observed that prior
techniques [9, 12, 17, 23] failed to precisely capture the main aspect
of an image (depicting an everyday scene) leading to false posi-
tives [28]. For example, people in a query image were absent in the
retrieved images. We remark that human cognition can capture the
key essence of an image and describe it aptly via a caption; it can
ignore objects (or regions) in an image that do not really matter
to describe the main context of the image. Thus, accurate image
captioning can aptly describe everyday scenes.

Motivated by the aforementioned reasons, we propose a sys-
tem called QIK (Querying Images Using Contextual Knowledge) to
achieve superior image retrieval performance on everyday scenes
with common objects. Rather than constructing local/global descrip-
tors of images using CNN-based features, QIK uses the predictions
made by deep networks for image understanding tasks, namely,
image captioning and object detection. We refer to these predictions
(made on an image) collectively as the probabilistic image under-
standing (PIU) of the image. QIK employs modern NLP techniques
for efficient and accurate image retrieval on everyday scenes.

2 ARCHITECTURE OF QIK
The architecture of QIK is illustrated in Figure 1 and contains two
major components: the Indexer and theQuery Processor. The Indexer
generates the PIU of each image in the repository using state-of-
the-art models for image captioning [26] and object detection [22].
A PIU consists of most probable captions and detected objects
in an image. This enables us to capture the context of everyday
scenes and learn the relationships between objects in them. On
each caption, the Indexer constructs a parse tree and a dependency
tree [11]. A parse tree captures the syntactic structure of a caption
by identifying noun phrases, nouns, verb phrases, verbs, adjectives,
determiners, prepositions, etc., using parts-of-speech (POS) tagging.
A dependency tree provides a representation of how words in a
caption are connected by syntactic dependencies. The collection
of these ordered trees are represented as XML (Extensible Markup
Language) documents, which are stored and indexed using an XML
database system. The other contents of a PIU (i.e., detected objects)
are also indexed. The Indexer maintains Bloom filters for POS tags
such as VBG, NN, JJ, and others to quickly test which words appear
under these tags for all the image captions in the repository. It also
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constructs word embeddings by training on the image captions
using word2vec [14]. These are required for fast generation of
similar image queries, which will be discussed later. By design, the
Indexer can index new images in real-time.

Figure 1: QIK’s architecture

The Query Processor can either use image captions or detected
objects for image retrieval. When using captions for retrieval, the
filtering step begins with the generation of the most probable cap-
tion of a query image and the associated parse and dependency
trees. The parse tree is processed to generate an optimized XPath
query [8] containing only essential keywords in the caption while
preserving the ordering between these keywords and their rela-
tionships. Essentially, the Query Processor ignores prepositions,
determiners, conjunctions, etc., in the caption. After executing the
optimized XPath query on the XML documents, the candidate im-
ages are fetched. For the ranking step, the Query Processor relies
on the tree edit distance between the parse tree (or dependency
tree) of a candidate image’s caption and the parse tree (or depen-
dency tree) of the query image’s caption. The candidate images are
ranked in increasing order of the computed tree edit distance, and
the top-k matches are returned to the user. When using objects for
retrieval, the filtering step begins with the detection of objects in
an image using an object detection model with probability greater
than a user-specified threshold. The set of candidate images that
contain all of the detected objects are retrieved. For ranking, the
probabilities of the detected objects in the query image and in a
candidate image are combined to compute a score for the candidate
image. The candidate images are ranked in decreasing order of the
score, and the top-k matches are returned to the user.

To suggest similar image queries for a query image, the Query
Processor does the following: Using the optimized XPath query,
it generates different XPath queries by replacing the XPath text
nodes with similar words. To obtain words similar to a given word,
its nearest neighbors are computed using word embeddings con-
structed on image captions. This can lead to an exponential number
of possibilities. Further, to ensure that by replacing a word with a
similar word will yield an XPath query that produces a non-empty
result, Bloom filters are checked based on the XML element name
enclosing the word. Only new XPath queries that produce non-
empty results are executed. Only one candidate image for a similar
query is shown. (This process requires only the filtering step but not
the ranking step.) For instance, if a user posed a query depicting “a

group of zebras standing on a field," a similar image query depicting
“a group of giraffes standing on a field" is suggested to the user. Thus,
the user can click on these queries to explore the repository.

Figure 2: A screenshot of QIK

3 IMPLEMENTATION
QIK was developed in Java and compiled using Java 1.8. It uses
Show and Tell [26] for generating image captions and the Stanford
Parser package (version 3.9.2) for generating the parse/dependency
trees of the captions. BaseX [1] is used to store and index the XML
data generated from images and executing XPath queries. The user
interface for querying and navigating over the results is built using
Django [3]. A screenshot of QIK is shown in Figure 2. The QIK
software and errata are available on GitHub [4].

4 DEMONSTRATION SCENARIOS
A user can interact with QIK using a web browser. Two datasets will
be used: MS COCO [13] (with 123K images) and everyday scenes
from Unsplash [5], a website hosting free high-resolution images.
(The indexes on these datasets will be built ahead of time.) The user
can select a query image. QIK will output the most relevant top-k
matches ranked based on tree-edit distance. It will also return a
set of similar image queries w.r.t. the context of the query image.
The user can select the retrieval approach (i.e., using captions or
detected objects), the ranking scheme (i.e., parse tree vs. dependency
tree), and the value k for top-k matches. The user can click and
execute any of the similar image queries. The relevant matches
along with similar image queries for the executed query will be
displayed. This way, the user can intuitively explore a large-scale
image repository. The user can update the repository by adding a
new image and indexing its PIU. Finally, the user can examine the
execution plan of a query and observe how similar image queries
were generated for the query image.
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