Understanding cytoskeletal avalanches using mechanical stability analysis
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Eukaryotic cells are mechanically supported by a polymer network called the cytoskeleton, which
consumes chemical energy to dynamically remodel its structure. Recent experiments in vivo have re-
vealed that this remodeling sometimes occurs through anomalously large displacements, reminiscent
of earthquakes or avalanches [1, 2]. These cytoskeletal avalanches may imply that the cytoskeleton’s
structural response to a changing cellular environment is highly sensitive, and they are therefore of
significant theoretical interest. However, the physics underlying “cytoquakes” is poorly understood.
Here, we use agent-based simulations of cytoskeletal self-organization to study fluctuations in the
network’s mechanical energy. We robustly observe non-Gaussian statistics and asymmetrically large
rates of energy accumulation compared to release in a minimal cytoskeletal model, suggesting that
avalanche-like dynamics are intrinsic to these systems. These large events of energy release are
found to correlate with large, collective filament displacements. Using normal mode decomposition
and a neural network model, we also show that cytoquakes are preceded by mechanical instability,
deform primarily along the soft vibrational modes, and then induce a spatial homogenization of
tension sustained by the network. We validate our simulations against experimental displacement
measurements, and we study the system size scaling of the non-Gaussian energy fluctuations and
filament displacements. Our evidence suggests that cytoquakes are not scale-free, being attenuated
by non-conservative spreading through the network. Overall, our results provide a new, energy-
focused perspective on the cytoquake phenomenon which can be leveraged in future investigations
of the cytoskeleton’s structural susceptibility.

Significance: The cytoskeleton plays a central role in the life of a cell, serving both as a scaffold to
support the cell’s shape and as an engine that allows the cell to exert large-scale mechanical forces.
A key feature of the cytoskeleton is that it is dynamic, continually remodeling itself to respond to
changing cellular needs. We use computer simulations to study this remodeling process, focusing
on the fluctuations in system’s mechanical energy. We observe a tendency for energy to accumulate
slowly in the network and then dissipate in sudden events that involve large collective network
motions. This observation is consistent with recent experiments and suggests that the cytoskeleton
is a very responsive system.

The actin-based cytoskeleton is an active biopoly-
mer network that plays a central role in cellular
physiology, providing the cell with a means to con-
trol its shape and produce mechanical forces dur-
ing processes such as migration and cytokinesis [3—
6]. These cellular-level forces arise from the collec-
tive non-equilibrium activity of molecular motors in-
teracting with the actin filament scaffold, enabling
dynamic, driven-dissipative cytoskeletal remodeling
[7-9]. Recent experimental efforts have uncovered

a remarkable phenomenon exhibited by cytoskele-
tal networks in vivo: these networks undergo large,
sudden structural rearrangements significantly more
frequently than predicted by a Gaussian distribu-
tion [1, 2]. Heavy-tailed distributions of event sizes
are well-known in seismology, where the Gutenberg-
Richter law describes the power-law relationship be-
tween the energy released by an earthquake and such
an earthquake’s frequency [10, 11]. Due to this anal-
ogy the term “cytoquake,” which we adopt here,



has been coined by experimenters to describe large
cytoskeletal remodeling events. In previous work
we have reported the first in silico observations of
this phenomenon, appearing as heavy tails in the
distributions of mechanical energy released by cy-
toskeletal networks [12]. These findings suggest that
avalanche-like processes may play a fundamental role
in cytoskeletal dynamics.

The physics underlying cytoquakes is not well un-
derstood, as current explanations based on experi-
mental data are mostly speculative and rely on quali-
tative comparisons to systems amenable to computa-
tional study which similarly exhibit non-exponential
relaxation, such as jammed granular packings and
spin glasses [1, 2, 13, 14]. In addition, in previous
studies little emphasis has been given to the possible
biological roles played by cytoquakes. We propose
one such role, that, as suggested by the fluctuation-
dissipation theorem, these large mechanical fluctu-
ations are concomitant with a large susceptibility,
allowing the cytoskeleton to be highly sensitive to
physiological cues arriving via various cell signaling
pathways [15]. Dynamic instability is already an ac-
knowledged feature of certain cytoskeletal compo-
nents such as microtubules and filopodia [16]. A
similar design principle may also apply to larger cy-
toskeletal structures to allow fast remodeling. For
instance, avalanche-like dynamics may serve a useful
purpose in the lamellipodia of migrating cells, which
probe local chemical gradients and must quickly col-
lapse protrusions in unsuccessful search directions
[4]. However, to investigate such possible biological
roles we first need a more detailed account of cyto-
quake physics, which is the subject of this paper.

RESULTS

Energy fluctuations are heavy-tailed and
self-affine

We study a subsystem of the full cytoskeleton
called an actomyosin network. This consists of semi-
flexible actin filaments and associated proteins, in-
cluding active molecular motors (e.g. minifilaments
of non-muscle myosin ITA) and passive cross-linkers
(e.g. a-actinin). The actin filaments hydrolyze
ATP molecules in a directed polymerization process
which reaches a steady state called “treadmilling”
[52]. The myosin minifilaments (~200 nm in length)
transiently bind to pairs of actin filaments and also
hydrolyze ATP as fuel to walk along the filaments,
generating motion and mechanical stresses. These
active process drive the network away from equilib-

FIG. 1. A snapshot from a MEDYAN trajectory of an ac-
tomyosin network in a 1 um?® box for the condition Cs 3.
Actin filaments are shown in red, a-actinin is shown in
green, and myosin motors are shown in blue. Beads rep-
resenting the joined points (i.e. hinges) of thin cylinders
(here 54 nm long) are visualized as red spheres. The cyan
filaments represent motion of the network corresponding
to a soft, delocalized vibrational mode determined from
Hessian analysis, as described below. In the inset we
zoom in on part of the network and exclude associated
proteins to show greater detail of this vibrational motion.

rium. The cross-linkers (~35 nm) bind more stably
to nearby filaments, serving to transmit the force
produced by motors and to both store and through
unbinding dissipate the resulting energy, heating
the environment [22, 32, 35, 53-56]. Dissipation of
stored mechanical energy also occurs as filaments re-
lax out of strained configurations, in a manner which
can depend on constraints from bound cross-linkers
and motors. Additionally, the rates of motor walk-
ing and unbinding as well as of cross-linker unbind-
ing depend exponentially on the forces sustained by
these molecules, giving rise to non-linear coupling
between the mechanical state of the network and
its chemical propensities [57, 58]. These means by



which the ability of the network to mechanically re-
lax depends on its current state set the stage for
avalanche-like dynamics. An actomyosin network as
represented in simulation is visualized in Figure 1.

Using MEDYAN (Mechanochemical Dynamics of
Active Networks), we performed simulations of small
cytoskeletal networks consisting of 50 actin fila-
ments in 1 pm? hard-walled cubic boxes with vary-
ing concentrations of a-actinin cross-linkers ([a])
and of NMITA myosin motor minifilaments ([M])
[12, 17-20]. We omit here other associated proteins,
such as the branching agent Arp2/3, finding that
our minimal system is sufficient to produce heavy-
tailed distributions of event sizes, although it has
recently been discovered that branching acts to en-
hance avalanche-like processes [21]. MEDYAN sim-
ulations combine stochastic chemical dynamics with
a mechanical representation of filaments and asso-
ciated proteins (see the Supplementary Material for
a detailed description of the MEDYAN model and
the experimental system). Simulations proceed it-
eratively in a sequence of four steps: 1) stochastic
chemical simulation for a time ¢ (here 0.05 s), 2)
computation of the resulting new forces, 3) equili-
bration via minimization of the mechanical energy,
and 4) updating of force-sensitive reaction rates such
the as slip-bonds of cross-linkers, catch-bonds of mo-
tors, and motor stalling.

We first characterize the observed occurrence of
avalanche-like dynamics in these simulations. The
simulations begin with short seed filaments that
quickly polymerize (tens of seconds) to their steady-
state lengths. Following this, the slower process
(hundreds of seconds) of dominantly myosin-driven
self-organization occurs which for most conditions
results in geometric contraction to a percolated net-
work (see Movie 1) [22, 23]. The mechanical en-
ergy U(t) fluctuates near a quasi-steady state (QSS)
value, which we analyze as a stochastic process. In
Figure 2.A we display the trajectory of U(t) for con-
dition C5 3 (with a-actinin concentration [a] = 2.82
uM, and motor concentration [M] = 0.04 pM;
see the Supplementary Material for a description of
the experimental conditions). We tracked the net
changes of the mechanical energy AU(t) = U(t +
dt) — U (t) resulting from each complete cycle of sim-
ulation steps 1) - 4). For the purpose of analyz-
ing the observed asymmetric heavy tails in the dis-
tribution of AU, we treat the negative increments
AU_ (energy release) and positive increments AU
(energy accumulation) as samples from separate dis-
tributions with semi-infinite domains. The comple-
mentary cumulative distribution functions (CCDFs
or “tail distributions”, the probability P(X > x) of

observing a value of the random variable X above
a threshold z, as a function of ) of the observed
samples collected from all five runs at QSS are il-
lustrated in Figure 2.B. Both distributions display
striking heavy tails relative to a fitted half-normal
distribution. The CCDFs are better fit by stretched
exponential (Weibull) functions of the form P(X >
x) = e=(@/N" [24]. We justify this choice of dis-
tribution using Weibull plots, as discussed in the
Supplementary Material. We find & = 0.60 &+ 0.06
for |AU_| and k = 0.83 £ 0.07 for AU, with un-
certainty taken over the five runs, indicating shal-
lower tails for energy release compared to energy
accumulation. We also measured the non-Gaussian
parameter 1 = % — 1, where (z™) is the m™®
moment about zero; for a half-normal distribution
n = 0, and > 0 quantifies heavy-tailedness. We
find n = 11.37 £ 5.37 for |AU_| and n = 1.96 £ 0.58
for AU,. This, along with the shallower tails of
the fitted stretched exponential functions, indicates
greater deviation from Gaussianity for energy release
compared to energy accumulation. These results
support the picture that typically energy accumu-
lates comparatively slowly and is released via large
avalanche-like events.

We next analyze the temporal correlations of U (t)
at QSS. A self-affine stochastic time series G(t), for
which G(t) and ||+ G(t/() have the same statistics
for any scaling parameter (, has a power spectral
density S(f) exhibiting a power-law dependence on
frequency f: S(f) oc f=7, where the spectral ex-
ponent S is the persistence strength, related to the
color of the signal [25, 26]. We find 8 = 1.72 4 0.02
for U(t) as shown in Figure 2.C, painting U(t) as
a pinkish brown signal; thus U(t) is non-stationary
and has temporally anti-correlated increments AU.
Self-affine time series further obey the theoretical re-
lationship 8 = 2H,+1 when 1 < g < 3, where H, is
the Hausdorff exponent determined from the scaling
of the semivariogram (1) = $(G(t + 1) — G(t)* ~
72Ha and where the bar represents temporal av-
eraging [27, 28]. We find that this relationship is
satisfied by U(t), as shown in Figure 2.D, yielding
H, = 0.36 + 0.01 and confirming that U(t) is self-
affine. Such non-Markovian and self-affine time se-
ries and spatial patterns commonly arise in various
complex geophysical processes (e.g. the temporal
variation of river bed elevation), further supporting
the connection between the cytoskeleton and earth
systems [29, 30].
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FIG. 2. Statistics of AU. A: Trajectory of the net-
work’s mechanical energy U (t) for condition Cs 3. Inset:
A blow-up of the trajectory to show instances of rare
events (|AU| > 100 kgT) of energy release (blue) and
accumulation (green). B: CCDFs of |[AU_| (blue) and
AU (green) collected from five runs when the system is
at QSS after 1000 s. Dotted lines in lighter colors repre-
sent fits to the data of a half-normal CCDF, and dashed
lines represent fits of stretched exponentials. C: The nor-
malized power spectral density of U(t) for a single run at
QSS from which the spectral exponent 5 = 1.72 is deter-
mined by fitting a power-law, shown offset in red. D: The
semivariogram obeys the scaling relationship ~ ~ 72Ha
over the scaling range.

Distinguishing features of cytoquakes

We find that cytoquakes are correlated with sev-
eral changes in the state of the network. In Figure
3 we show that rare large events of energy accumu-
lation correspond to a greater than usual number of
myosin motor steps whereas rare large events of en-
ergy release correspond to greater than usual total
displacement of the actin filaments and a slightly
greater number of linker unbinding events. These
large total displacements do not come from highly
localized motions, and instead depend on many fila-

ments each being displaced more than usual (Figure
4). This agrees with the notion of cytoquakes as
collective structural rearrangements of the network.

We also observe cytoquakes to induce a spatial
homogenization of the tension sustained by the net-
work during large events of energy release, as quanti-
fied by changes in the Shannon entropy of the spatial
tension distribution H(t) = — 3>, Pijr(t) In Pijr(t)
(see Figure 7?.D). The tension distribution P is
constructed by discretizing the simulation volume of
1 pm? into a grid of 10® voxels indexed by i, j, k,
and computing the proportion of the total network
tension belonging to the mechanical elements (fil-
ament cylinders, cross-linkers, and motors) inside
each voxel; additional details can be found in Meth-
ods.

Asymmetric statistics are robust across
concentrations and system-size

We next discuss how these results generalize to
different concentrations of associated proteins and
different system sizes, and then connect our results
to existing experiments. Five concentrations of a-
actinin (ranging from 0.17 to 5.48 uM) and five
concentrations of myosin miniflaments (ranging from
0.003 to 0.08 uM) were tested with a constant G-
actin monomer concentration of 13.3 pM, in the
regime of physiological concentrations [31]. At the
lowest concentrations of cross-linkers and motors,
the network did not contract, representing a very dif-
ferent actomyosin phase which we omit comparisons
to. For all of the conditions producing contracting
networks, we found that asymmetric heavy-tailed
distributions of AU persist, with large values of the
non-Gaussian parameter for |AU_| (n ~ 5 —20) and
AU, (n ~ 2-5), although 7 for negative increments
was observed to decrease with the motor concen-
tration (see Supplementary Material). We conclude
that the avalanche-like energy fluctuations discussed
above are not highly sensitive to associated protein
concentrations. These fluctuations may depend on
the parameters of the force-sensitive reaction rates
(which are taken here to correspond to experimen-
tal values), but we leave this interesting question for
future work.

We performed a finite-size scaling study by hold-
ing the concentrations of condition Cj 3 fixed (with
a-actinin concentration [a] = 2.82 yM and motor
concentration [M] = 0.04 pM) and varying the sys-
tem volume V. Stretched exponential functions ap-
proximately fit the distributions of AU, and |AU_|
for all system sizes (see Figure 5.A for the fits of
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FIG. 3. A: Differences in the total filament displace-
ment between simulation cycles for which AU is less than
—100 kT, cycles for which AU € (—100 kgT, 0 kgT),
cycles for which AU € (0 kgT, 100 kgT), and finally
cycles for which AU is greater than 100 kgT. To com-
pare these distributions, the two-sided p-value of the
Wilcoxon rank-sum test between pairs of cycle types is
reported as being either not significant: - (p > 0.05),
significant at level 1: * (p < 0.05), at level 2: **
(p < 0.01), or at level 3: *** (p < 0.001). The total
filament displacement is computed as the sum over all
filaments of the distance between a filament at time ¢
and that filament at time ¢ 4+ d¢t. The calculation of dis-
tance between filaments is described in Figure ??. Since
there many more simulation cycles for the categories
AU € (—100 /CBT,O /CBT) and AU € (0 kBT, 100 kBT),
we took a random sub-sample (~ 300 each) of all events
for these categories to be roughly equal to the number
of events for which AU < —100 kT and for which
AU > 100 kgT. In these combination violin and box-
and-whisker plots, the red circle represents the mean,
the red bar represents the median, and the notches in the
box represent the 95% confidence interval of the median.
B: Differences in the number of motor walking events
between the different cycle types as just described. C:
Differences in the number of a-actinin unbinding events
between the different cycle types. D: Differences in the
Shannon entropy of the spatial tension distribution of
network tension.

|AU_]|). Larger systems displayed steeper tails as
indicated by the observed power-law decay of 7 for
|AU_| and AU, (Figure 5.B), although interestingly
n for |AU_| is larger than that for AUy by a con-
stant factor of roughly 3 for all systems sizes. The
steeper tails are also evidenced by the slow growth
of the Kohlrausch exponents k with V' (Figure 5.C).
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FIG. 4. Rank-size distribution of the displacements

experienced by each of the 50 filaments during simu-
lation cycles when AU is in different ranges, in units
of kgT. For each cycle, the filaments are ranked ac-
cording to their displacement and these ranks are plot-
ted against the corresponding displacement. The aver-
age and standard deviation of these rank-displacement
curves are taken over each cycle in a given category. The
curves for the categories AU € (—100 kgT, 0 kgT) and
AU € (0 kT, 100 kpT) are almost exactly coincident.
This data is collected from one run of condition C3 3 at

Qss.

Thus, the distributions of energy release and ac-
cumulation across the entire network become nar-
rower and more Gaussian for large systems. This, in
contrast to driven-dissipative systems that exhibit
self-organized criticality, suggests the existence of
some intrinsic and finite scale for avalanche-like re-
leases of energy in cytoskeletal networks. By sum-
ming over many local energy fluctuations of this fi-
nite scale, the distribution of the fluctuations in the
total energy U becomes increasingly Gaussian for
large systems owing to the central limit theorem.
This intrinsic scale may be partly determined by the
non-conservative transfer (dissipation) of mechani-
cal energy as it spreads through the network during
avalanches [32, 33].

Local vs. global filament displacements

Existing experimental definitions of cytoquakes
define them as large local displacements of the cy-
toskeleton probed using transmembrane attached
microbeads or flexible micropost arrays, rather than
as large changes in the cytoskeleton’s total energy
U as done here [1, 2]. To compare our results to
experiments, we make the corresponding local mea-
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FIG. 5. A: CCDFs of |AU_| normalized by the sys-
tem volume V' collected for 5 runs for increasing sys-
tem sizes plotted against the fitted stretched exponential
functions. B: The non-Gaussian parameter 7 for |[AU_|
and AU are plotted with uncertainty taken over the dif-
ferent runs. C: The Kohlrausch exponents k for |[AU_|
and AU;.

surements of the displacements of individual fila-
ments, finding that the resulting distributions are
heavy-tailed with values of the non-Gaussian param-
eter for most filaments in the range n ~ 1 — 5, in
semi-quantitative agreement with in vivo measure-
ments (see Supplementary Material) [2]. We also
find our estimate of typical actin filament displace-
ment speeds (~ 10 nm/s) to be consistent in or-
der of magnitude with separate in witro measure-
ments of contractile networks [34]. In addition, we
find that the heavy tails of these local measurements
persist even for large system sizes, whereas global
measurements such as the total energy or total fil-
ament displacement become increasingly Gaussian
for large systems. This distinction between local
and global measurements may be important in in-
terpreting future studies of anomalous statistics in
cytoskeletal self-organization. We finally mention in
connection to experiments that it has recently been
argued that more detailed understanding of mechan-
ical dissipation by cytoskeletal networks should help
to more precisely control traction-based measure-
ments of cellular force production [35].

Previous in vivo studies have framed cytoquakes
as large local displacements of the cytoskeleton,
which were measured by tracking the motion of api-

cally attached microbeads as well as the deflection
of micropost arrays under the basal surface [1, 2].
Here, we have leveraged the information accessible
from simulation to frame cytoquakes as large re-
leases of stored mechanical energy, which we show
typically correspond to large global displacements.
This energy-centered point of view deepens the anal-
ogy between cytoquakes and earthquakes, which are
thought to result from an avalanche-like process
of energy accumulation and release in the earth’s
crust that manifests as occasional large displace-
ments [27, 28]. Our measurements of displacements
in Figure 2 of the main text and Figure 4 above are
global in the sense of being summed for each sim-
ulation cycle over all filament in the network, cap-
turing more modes of network buckling than the lo-
cal displacement measurements obtained experimen-
tally, e.g. using attached microbeads. However, we
can also make a similar local measurement to com-
pare to experiments. Rather than summing over all
filaments, we track each filament individually and
measure the set {nf}jcvil, where Ny = 50 is the
number of filaments, of the non-Gaussian parame-
ter corresponding to each filament f’s distribution
of displacements from 300 to 800 s. Displacements
are calculated according to Figure 7?7 above. The
displacements experienced by a filament should de-
pend on the filament’s location in the network, but
we observe for nearly all filaments a heavy-tailed
distribution characterized by ny > 0, as shown in
Figure 6. In addition, we find the distribution of ny
itself to be heavy-tailed, which appears to agree with
experiments using micropost arrays [2]. Finally, we
observe similar values of n; across simulation vol-
umes V.

These local measurements, obtained by track-
ing each filament individually, can be compared to
global measurements, obtained by summing over ev-
ery filament to get the total displacement. The dis-
tribution of total displacements is closer to Gaus-
sian, characterized by 7 = 0 for most volumes tested
(Figure 6). As with the increasing Gaussianity of
AU for large systems, this can be attributed to
the central limit theorem since many filaments were
summed over to determine the total displacement.
We therefore conclude that in large systems, met-
rics can be heavy-tailed when measured locally but
Gaussian when measured globally.
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FIG. 6. Plots of the distributions of non-Gaussian pa-
rameter 7y for the distributions of displacements of indi-
vidual filaments, for different simulation volumes V. For
a single run of each V, the displacement of each filament
from time point to time point in the system is tracked
and, from these time series, 7y is determined for each
filament f. The box and whisker plots summarize the
distribution of ny for all filaments in the system, with the
median shown as the red bar, the box extending from the
first to the third quartiles, and the whiskers extending
across the range of 7, omitting outliers. The diamonds
indicate the value of 1 obtained when, instead of track-
ing each filament’s displacement individually, the total
summed displacement of all filaments from time point
to time point is tracked. These global measurements of
displacement are more Gaussian (with n ~ 0) than the
corresponding local measurements obtained from track-
ing filaments individually.

Normal mode decomposition probes network’s
mechanical state

Having described the statistics of the increments
AU, we next aim to connect the occurrence of cy-
toquakes, defined as large values of |AU_|, to the
cytoskeletal network’s mechanical stability. To this
end we implemented a method to compute the Hes-
sian matrix H of the mechanical energy function
U (see the Supplementary Material). The eigen-
decomposition of H is A = {\}3Y,, where 3N
is the number of mechanical degrees of freedom in
the system, which comprises N “beads” that are
used to discretize the actin filaments. A is re-
lated to the mechanical stability of the cytoskele-
tal network: the eigenvectors v; are the normal
vibrational modes of the network, and the eigen-
values ) indicate the stiffness (|Ax|) and stabil-
ity (sgn(Ag)) of the corresponding mode. Exam-
ple vibrational modes are illustrated in Movies 2-
5. We draw inspiration for studying A in the cur-

rent context from several sources: in single-molecule
molecular dynamics studies, the saddle-points of U
(i.e. points in the landscape with some imaginary
frequencies) are associated with transition states
[36, 37]; studies of polymer networks show that in-
ternal stresses produce non-floppy vibrational modes
even below the isostatic threshold [38]; in simula-
tions of glass-forming liquids, the instantaneous nor-
mal mode spectrum allows inference about proxim-
ity to the glass transition and determination of in-
cipient plastic deformation regions [39-41]; in deep
learning models for predicting earthquake aftershock
distributions, it was found that certain metrics also
related to stability (e.g. the von-Mises criterion) are
informative model inputs [42, 43].

We next describe some interesting observed trends
of metrics defined on A. We distinguish between
unstable, stable, soft, and stiff modes: for unstable
modes A\, < 0, for stable modes A\, > 0, for soft
modes 0 < Ax < Ar, and for stiff modes Ay > Ar,
where we define the threshold Ay = 40 pN/nm to
discriminate between the twin peaks in the density
of states (Figure 7.B). The set {\;}3Y, is visualized
with these modes labeled in Figure 7.A for a QSS
time point of condition Cs 3. A very small number
of unstable modes persist after each minimization
cycle, later iterations stopping once the maximum
force on any bead is below a threshold Frp (here 1
pN). Thus the minimized configurations are in fact
saddle-points of U; this is expected as it is known
from the theory of minimizing loss functions that the
ratio of saddle-points to true local minima increases
exponentially with the dimensionality of the domain
[44]. We expect that in the space of all possible net-
work topologies (i.e. patterns of cross-linkers and
motors binding to filaments), the energy landscape
will be rugged, leading to the well-appreciated glassy
dynamics of non-equilibrium cross-linked networks
[45, 46]. For a fixed topology, however, which is the
result of the chemical reactions occurring during step
1) of the iterative simulation cycle, the energy land-
scape should be smooth (i.e. non-rugged) with re-
spect to the beads’ positions, with a single nearby lo-
cal minimum being sought during mechanical mini-
mization in step 3). The residual unstable modes are
therefore thought to be an unimportant artifact of
thresholded stopping in the conjugate-gradient min-
imization routine, and not representative of some
physical feature of cytoskeletal networks. The ob-
served quantitative dependence of the number of
residual unstable modes on Fp supports this con-
clusion and is illustrated in Figure ?7?.

We quantify the number of degrees of freedom in-
volved in a given normalized eigenvector vj using



the inverse participation ratio [39]:

N 3 -1
Tk:<ZZ(Uk,iu)4> : (1)

i=1 pu=1

If the eigenmode involves only one degree of freedom,
then one component of vy will be one and the rest
will be zero, and ry = 1. On the other hand, if
the eigenmode is evenly spread over all 3N degrees
of freedom, then each component vy ;, = (3N)~1/2,
and rp, = 3N. In Figure 7.B we plot 7 for the
unstable, soft, and stiff modes along with the density
of states, showing that the soft modes involve many
degrees of freedom while the stiff and unstable modes
are comparatively localized.

We find that the mean value (ry) varies non-
monotonically with myosin motor concentration [M]
and a-actinin concentration [a] (Figure 7.C). To
understand this trend we implemented a mapping
from the cytoskeletal network into a graph and mea-
sured its mean node connectivity, a purely topologi-
cal measure of network percolation. We construct a
graph to represent the cross-linker binding topology
of cytoskeletal networks. Nodes in the graph corre-
spond to actin filaments, and weighted edges (which
may be thresholded and converted to binary edges
in an unweighted graph) correspond to the number
of cross-linkers connecting the pair of filaments. The
mean node connectivity is defined as the average
over all pairs of nodes in the unweighted graph of
the number of edges necessary to remove in order to
disconnect them, thus quantifying the typical num-
ber of force chains between filaments, or equivalently
the extent of network percolation [47, 48]. Reveal-
ingly, the mean node connectivity correlates closely
with (ry) for the stable modes across the various con-
ditions C; ; (Figure 7.D). We also find the number
of connected components of H and of the graph’s
adjacency matrix to match for most time points,
supporting this connection between network topol-
ogy and stable mode delocalization. Intermediate
concentrations of myosin motors enhance the net-
work percolation, but as [M] continues to increase
the motors act to disconnect cross-linked network
structures causing the mean node connectivity and
(rk) to decrease.

We observe that as a network contracts and be-
comes percolated during the process of myosin-
driven self-organization, the stable modes steadily
delocalize ((ry) increases) and stiffen (the geomet-
ric mean (\g), increases), as shown in Figures 7.E
and Figures 7.F. During this process we also wit-
ness a qualitative change in the level spacing statis-
tics of the very soft and delocalized modes (A\; <
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FIG. 7. Metrics defined on Hessian eigen-decomposition.
A: Ordered eigenspectrum {\}2Y, at a QSS time point
for condition Cs5 3. B: Scatter plot of the pairs |Ax|, 7%
(circles) plotted against the density of states (solid lines),
i.e. the proportion of eigenvalues between \ and X\ + dA.
C: The mean value at QSS of (ry) for the stable modes
for various conditions Cj ;. The conditions Cp,; with
low linker concentrations are not visualized as these net-
works did not percolate and obscure visualization for the
remaining conditions. The mean is taken over the last
500 s and over different runs. D: The mean value of the
mean node connectivity for various conditions. E: Tra-
jectories of (ry) of the stable modes as the network self-
organizes for the conditions Cs 3, Cs3, C4,3, and Cs 3,
with the mean and standard deviation taken over the
different runs. F: Similar trajectories of (\g)g of the
stable modes.

10 pN/nm, r, > 100) from a Poisson to a Wigner-
Dyson distribution (Figure ??). This indicates that
in the percolated state these vibrational modes inter-
act and exhibit level repulsion, similar to soft par-
ticles near the jamming transition [2, 13, 49, 50].
Future studies may reveal further similarities be-
tween these systems and other marginally stable
solids [46, 51].



Cytoquakes are preceded by mechanical
instability and deform along soft modes

Can the eigen-decomposition of the Hessian ma-
trix be used to forecast cytoquake occurrence? In-
tuition suggests that, in analogy with the connec-
tion between imaginary frequencies (i.e. unstable
modes) and molecular transition states, the vibra-
tional modes of the cytoskeletal network may con-
tain information that a large structural rearrange-
ment is poised to occur [36, 37]. To test this
idea, and without detailed a priori knowledge about
which features in A would be informative, we imple-
mented a machine learning model using the eigen-
decomposition as the input and outputting the pre-
dicted probability of observing a large event of en-
ergy release (AU < —100 kgT) occurring within
the next 0.15 s. As detailed in the Supplementary
Material, we found that, indeed, the Hessian eigen-
spectrum A contains sufficient information to fore-
cast cytoquake occurrence with significant accuracy
compared to a random model. We first reduced the
dimensionality of A(t) using principal component
analysis, finding that 30 dimensions sufficed to ex-
plain > 95% of the variance across time points, and
then used the reduced input in a three layer feed-
forward neural network. We validated our model us-
ing receiver operating characteristic curves, achiev-
ing an area under the curve (AUC) of 0.70 when
using data from five runs of condition C33. This
improvement in prediction performance over a ran-
dom model (which would have an AUC of 0.5) im-
plies that mechanical instability, as encoded in the
Hessian eigenspectrum, precedes the occurrence of
cytoquakes.

To further study the connection between cyto-
quakes and mechanical stability, we measured the
projections of the network’s displacements onto the
vibrational normal modes {v;}3Y . Network dis-
placements d(¢) were found by tracking the move-
ment of each of the N(¢) beads during simulation
cycles. As a working approximation, beads that de-
polymerized during a cycle were assigned a displace-
ment of 0, and beads that newly polymerized were
not assigned elements in d(¢). The 3N-dimensional
displacement vectors d were then normalized to have
unit length. We define d = d - vi as the pro-
jections of d onto the eigenmodes vi, which obey
>, di = 1 owing to the normalization of d and
vi. Thus the quantity di is the weight of the dis-
placement d along the k*" eigenmode. With this
we define the effective stiffness A\p = >, di)\k as
the displacement-weighted average of the eigenval-
ues. In Figure 8 we display a scatter plot of the pairs

AU(t), Ap(t) measured during QSS for a run of con-
dition C3 3, along with a kernel density estimate of
their joint probability density function (PDF). We
distinguish between soft (0 < A\p < Ar) and stiff
(Ak = Ar) eigenmodes, where Ar = 40 pN/nm sep-
arates the twin peaks in the density of states (Sup-
plementary Material). The structure of the joint
PDF is markedly asymmetric about AU = 0 and
shows that Ap during cytoquake events is almost al-
ways soft, whereas for all other simulation cycles Ap
could be soft or stiff with similar probabilities. We

also consider ny = % as the weight of the displace-
ment along eigenmode k per degree of freedom in-
volved in the eigenmode, where 7y, is the inverse par-
ticipation ratio (Supplementary Material) [39]. We
define ngof, and ngig as the mean of ny over the soft
and stiff subsets. Values of ngof /nsige for different
simulation cycle types are displayed in the inset of
Figure 8, showing that ngs < nstig typically only
during cytoquakes. Based on this analysis, we con-
clude that during the large collective rearrangements
corresponding to cytoquakes, cytoskeletal networks
exhibit enhanced displacement along the soft vibra-
tional modes. We qualify these results by observ-
ing that, since cytoquakes involve particularly large
network displacements, it may be inappropriate to
interpret them using the local harmonic approxima-
tion to U implicit in Hessian analysis [41]. In ad-
dition, changes in network topology from linker and
motor (un)binding cannot be captured using normal
mode decomposition of instantaneous network con-
figurations. The eigenspectrum A(t) still informs on
the stability of the energy minimized configuration
before a cytoquake, but caution should be used in
interpreting the cytoquake motion from ¢ to t + dt
as decomposing cleanly into non-interacting motions
along the normal modes vi. We leave a detailed
analysis of the anharmonicity of cytoquake defor-
mations to future work.

DISCUSSION

We have presented evidence supporting the fol-
lowing picture of active cytoskeletal network self-
organization: cytoskeletal networks explore a rugged
mechanical energy landscape in a stochastic process
characterized by occasional, sudden jumps out of
metastable configurations [45, 46]. These jumps en-
tail non-Gaussian dissipation of mechanical energy
and are accomplished by an avalanche-like process
of spreading destabilization, resulting in a collective
structural rearrangement and a homogenization of
tension. These collective motions have large projec-
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tions along the soft, delocalized vibrational modes,
and furthermore, properties of these modes can be
used to predict when such relaxation events will oc-
cur. Future research could help elucidate the role of
force-sensitive reactions in controlling collective re-
laxation as well as the importance of anharmonicites
in the energy landscape of cytoskeletal networks.

METHODS
Simulation setup and conditions

To computationally study cytoskeletal networks
at high spatio-temporal resolution, we use the sim-
ulation platform MEDYAN [12, 17-20]. MEDYAN
simulations combine stochastic chemical dynamics
with a mechanical representation of filaments and
associated proteins (see below for a detailed descrip-
tion of the MEDYAN model and the experimental
conditions). Simulations proceed iteratively in a se-
quence of four steps: 1) stochastic chemical simula-
tion for a time 0t (here 0.05 s), 2) computation of the
resulting new forces, 3) quasi-equilibration via min-
imization of the mechanical energy, and 4) updating
of force-sensitive reaction rates. Recent extensions
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to the MEDYAN platform allow calculation of the
change in the system’s Gibbs free energy during each
of these steps [12, 59], originally applied to study the
thermodynamic efficiency of myosin motors in con-
verting chemical free energy to mechanical energy
under various conditions of cross-linker and motor
concentration. We employ this methodology here
and focus on the statistics of the system’s mechani-
cal energy U as it self-organizes.

We performed MEDYAN simulations of small cy-
toskeletal networks consisting of 50 actin filaments
in 1 um3 cubic boxes with varying concentrations of
a-actinin cross-linkers ([a]) and of NMITA minifila-
ments ([M]). The boundaries of the box exert an
exponentially repulsive force against the filaments
with a short screening length of 2.7 nm. Five con-
centrations of a-actinin (ranging from 0.17 to 5.48
M) and five concentrations of myosin miniflaments
(ranging from 0.003 to 0.08 pM) were used with
a constant G-actin monomer concentration of 13.3
uM, in the regime of physiological concentrations
[31]. This led to a steady-state filament length dis-
tribution with mean 0.48 pm and standard devia-
tion 0.26 pm. We label these conditions C; ;, where
¢t = 1,...,5 represents the rank of the cross-linker
concentration and j = 1,..., 5 represents the rank of
the myosin motor concentration. The length of the
simulation cycle dt was chosen as 0.05 s, although we
explore dependence on this parameter below (Figure
??). Five runs of each condition C;; were simu-
lated. In the main text we focus primarily on con-
dition Cj3 3, whereas the other conditions are used
to demonstrate the robustness of heavy-tailed dis-
tributions of AU and various mechanical properties
probed by Hessian analysis.

Entropy of spatial tension distribution

The simulation volume of 1 gm? is discretized into
103 cubic voxels, each 0.1 pm in linear dimension.
Let 4,4,k =1, ..., 10 index these voxels, which are an
analysis tool and not related to the reaction-diffusion
compartments used in MEDYAN. After each simu-
lation cycle, the mechanical components of the cy-
toskeletal network (i.e. the filament cylinders, the
myosin motors, and the passive cross-linkers) are
each under some compressive or tensile force T,
where n indexes the mechanical component. There
are other mechanical potentials involving these com-
ponents, but we focus here only on the tensions 7;,.
Each mechanical component has a center of mass
ry, and we introduce the indicator function x;jx(r,)
which is equal to 1 if r,, is inside voxel ¢, 7,k and 0



otherwise. The total tension magnitude inside voxel
1,7,k is

ITlije = > | Tulxisn(rn). (2)

The discrete non-negative scalar field |T|;; is con-
verted to a probability distribution P;;; by normal-
ization:

|5k
Zijk|T‘ijk
Finally, we introduce the discrete Shannon entropy
of this distribution at time ¢ as

H(t) ==Y Pis(t) In Py (t). (4)

ijk

Piji = (3)

The units of H are nats, and large values indicate
a homogeneous spatial distribution of tension mag-
nitudes throughout the network. Reported trends
using this metric are essentially independent of the
discretization length.

Constructing the Hessian matrix

In MEDYAN, semi-flexible filaments are repre-
sented as a connected sequence of thin cylinders
whose joined endpoints (i.e. hinges) are called
beads. The set of potentials defining the mechan-
ical energy of the filaments and associated proteins
is outlined below. The mechanical energy U is a
function of these beads’ positions, and elements of
the Hessian matrix are defined as

2
T 0°U _ oF; _ OF} (5)

- - )
8:67;/L8xju 6:Cju 8xm

where x;, is the uth Cartesian component of the
position of the " bead. We have p = z,y,z
and ¢ = 1,..., N where N is the number of beads
in the network, so H is a square symmetric 3/V-
dimensional matrix. The number of beads N (t) will
change as filaments (de)polymerize; in these simu-
lations, at QSS a single filament of length 0.5 um
comprises ~ 10 cylinders (11 beads), each ~ 50 nm
in length. After each mechanical minimization, #(t)
is constructed by numerically computing the deriva-
tives on the right of Equation 5. The derivative

OF;, - . .
5. is found using a second-order central difference
v

approximation by moving the j* bead in the 4v
directions by a small amount and determining the
changes in the force component F;, [60]. Due to
issues of numerical accuracy, we do not assume the
symmetry of the matrix H, but instead directly com-
pute each component #;, ;, and then symmetrize
the result: $(HT+H) — H.
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