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Abstract

We study the problem of machine unlearning and identify a notion of algorithmic stability, Total

Variation (TV) stability, which we argue, is suitable for the goal of exact unlearning. For convex

risk minimization problems, we design TV-stable algorithms based on noisy Stochastic Gradient

Descent (SGD). Our key contribution is the design of corresponding efficient unlearning algorithms,

which are based on constructing a near-maximal coupling of Markov chains for the noisy SGD

procedure. To understand the trade-offs between accuracy and unlearning efficiency, we give upper

and lower bounds on excess empirical and populations risk of TV stable algorithms for convex risk

minimization. Our techniques generalize to arbitrary non-convex functions, and our algorithms are

differentially private as well.

1. Introduction

User data is employed in data analysis for various tasks such as drug discovery, as well as in third-

party services for tasks such as recommendations. With such practices becoming ubiquitous, there

is a growing concern that sensitive personal data can get compromised. This has resulted in a push

for broader awareness of data privacy and ownership. These efforts have led to several regulatory

bodies enacting laws such as the European Union General Data Protection Regulation (GDPR) and

California Consumer Act, which empowers the user with (among other provisions) the right to

request to have their personal data be deleted (see Right to be forgotten, Wikipedia (2021)). However,

currently it is unclear what it means to be forgotten or have the data deleted in a rigorous sense.

Nonetheless, there is a reasonable expectation that merely deleting a user’s data from the database

without undoing the computations derived from the said data is insufficient. In the settings where

user data are directly utilized to build machine learning models for, say prediction tasks, a reasonable

criterion is that the system’s state is adjusted to what it would have been if the user data were absent

to begin with – this is the criteria we adopt in our work. We refer to it as exact unlearning (see

Definition 1 for a formal definition).

A straightforward way to comply with the requirement of exact unlearning is to recompute (or

retrain, in context of machine learning). This, however, is often computationally expensive, and
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hence the goal is to design efficient unlearning algorithms - herein and afterwards, we use efficient,

in the context of unlearning, to mean that the unlearning runtime is smaller than recompute time.

Most of the prior work focuses on specific structured problems (eg: linear regression, clustering

etc.) and the proposed unlearning algorithms carefully leverage this structure for efficiency - see

a discussion of useful algorithmic principles like linearity, modularity etc. which enable efficient

unlearning, in Ginart et al. (2019). In this work, we consider a larger class of problems: smooth

convex empirical risk minimization (ERM), which includes many machine learning problems, eg:

linear and logistic regression, as special cases (see Section 2 for definitions). This class of smooth

convex ERM is sufficiently rich and arguably lacks structure useful in prior works. Gradient-based

optimization is a key algorithmic technique used for smooth convex ERM (and most of machine

learning and even beyond). Unlike prior works where the (learning) algorithms for specific problems

(like linear regression) are tailored enough to the problem to be amenable to efficient unlearning,

an optimization method hardly has any such useful structure. In particular, the sequential nature

of gradient descent makes it challenging to design non-trivial unlearning algorithms, at least those

which satisfy an exact unlearning criterion. To elaborate, if the point to be deleted participates in

some iteration, then the subsequent steps are dependent on the to-be-deleted point, and there is no

known way but to redo the computations. It is then natural to ask whether we can design unlearning

algorithms with non-trivial guarantees for this class of smooth convex ERM problems.

Problem statement (informal). We consider a smooth convex ERM problem over a given initial

dataset, in a setting wherein we observe a stream of edits (insertion or deletion) to the dataset. The

goal is to design a learning algorithm that outputs an initial model and a (corresponding) unlearning

algorithm that updates the model after an edit request. We require the following properties to hold:

1) exact unlearning – at every time point in the stream, the output model is indistinguishable from

what we would have obtained if trained on the updated dataset (i.e., without the deleted sample or

with the inserted sample); 2) the unlearning runtime should be small; 3) the output models should be

sufficiently accurate (measured in empirical risk).

1.1. Our contributions

Total variation stability. We develop new algorithmic principles which enable exact unlearning

in very general settings. In particular, we identify a notion of algorithmic stability, called total

variation (TV) stability - an algorithmic property, which for any problem, yields an in-principle exact

unlearning algorithm. Such an algorithm might not be efficiently implementable computationally or

due to the data access restriction (sequential nature of edits). To demonstrate the generality of our

framework, we discuss, in Appendix H.2 how the previous work of Ginart et al. (2019) for unlearning

in k-means clustering using randomized quantization can be interpreted as a special case of our

framework - a TV stable method, followed by efficient coupling based unlearning. Finally, we note

that the notion of TV-stability has appeared before in Bassily et al. (2016), although in the seemingly

unrelated context of adaptive data analysis.

Convex risk minimization. We make the above ideas of TV stability constructive in the special

case of smooth convex ERM problems. To elaborate, we give a TV stable learning algorithm, and a

corresponding efficient exact unlearning algorithm for smooth convex ERM. Informally, for n data

points, and d dimensional model and a given 0 < ρ ≤ 1, our method retrains only on ρ fraction of

edit requests, while satisfying exact unlearning and maintaining that the accuracy (excess empirical
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risk) is at most min

{
1√
ρn ,
(√

d
ρn

)4/5}
(see Theorem 1 for precise statement). This implies that for

the (useful) regime of accuracy greater than min

{
1√
n
,
(√

d
n

)4/5}
, our algorithms provide a strict

improvement over the only known method of re-computation - see remarks after Theorem 1 for

details. Furthermore, we also give excess population risk bounds by leveraging known connections

between generalization and algorithmic stability (see Appendix J). Finally, to assess how far are

our proposed (TV stable) algorithms from the most accurate, we give preliminary lower bounds on

excess empirical and population risk for TV stable algorithms for convex risk minimization.

Extensions. Our results yield a number of interesting properties and extensions.

• Privacy: Even though privacy is not the goal of this work, as a consequence of our techniques,

some of our ρ-TV stable algorithms, those based on noisy SGD (Algorithm 1, 5) are (ε, δ)-
differentially private (see Definition 3) with ε = ρ

√
log (1/δ), for any δ > 0. It is easy to see that

these parameters can lie in the regime reasonable for good privacy properties i.e. ε = O(1), δ < 1
n2 .

However, not all TV-stable algorithms, for instance Algorithm 3, may have good privacy properties.

Our work therefore demonstrates interesting connections between techniques developed for

differential privacy and the problem of unlearning.

• Beyond Convexity and practical heuristics: Interestingly, our unlearning techniques only require

finite sum structure in the optimization problem (for exact unlearning) and Lipschitzness (for

runtime bounds). Therefore our unlearning algorithms yield provable unlearning for gradient-

descent based methods for any ERM problem. In particular, we can apply the unlearning algorithm

to non-convex (and potentially non-Lipschitz) problems, like deep neural networks, and everytime

the algorithm does not recompute, it still guarantees exact unlearning. In contrast, differential

private training of non-convex models require Lipschitzness or use clipping of gradients - a popular

heuristic in deep learning. We can similarly use clipping to give unlearning runtime bounds in

non-Lipschitz scenarios. As is typical, the accuracy in these cases is verified empirically.

1.2. Related work

The problem of exact unlearning in smooth convex ERM has not been studied before, and therefore

the only baseline is re-computation (using some variant of gradient descent). The most related are

the works of Ginart et al. (2019) and Neel et al. (2020), which we discuss as follows. Ginart et al.

(2019) studied the problem of k-means clustering with exact unlearning in a streaming setting of

deletion requests - we borrow the setting (while also allowing insertions) and the notion of exact

unlearning from therein. We note that in Ginart et al. (2019), the notion of efficiency is based on

the amortized (over edits) unlearning time being at most the training time since that is a natural

lower bound on the overall computational cost. We, on the other hand, do not place such a restriction

and so our methods can have unlearning runtime smaller than the training time. Most importantly,

the general framework here (of TV-stable methods and coupling based unlearning) captures the

quantized-k-means algorithm of Ginart et al. (2019) as a special case (see Appendix H.2 for details).

The work of Neel et al. (2020) focuses on unlearning in convex ERM problems, with a stream of

edit requests, the same as here. However there are two key differences. First, the notion of unlearning

in Neel et al. (2020) is approximate, based on (ε, δ)-differential privacy, whereas we focus on exact

unlearning. Second, the unlearning runtime in Neel et al. (2020) is deterministic, whereas that of

ours is random. These are akin to Monte-Carlo vs. Las Vegas-style of guarantee discrepancy. We
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refer the reader to an extended literature survey along with a detailed comparison to Neel et al. (2020)

in Appendix A. We show therein that with the same unlearning time, the accuracy guarantees of Neel

et al. (2020) are better than us only in regimes where their approximate unlearning parameters and

hence the notion, is very weak.

2. Problem setup and preliminaries

2.1. Streaming edit requests and exact unlearning

We describe the setup very generally. Let Z be the data space, Θ the output/parameter space, and

M be the meta-data/state space. A procedure is a tuple (A(·),U(·)), where A : Z∗ → Θ×M is

the batch learning algorithm, and U : Θ×M×Z → Θ×M is the unlearning algorithm which

updates the current model (first argument) and meta-data (second argument) given an edit request

(third argument). Examples of meta-data could be a compressed sketch of data points, or intermediate

computations/state, which could be used upon edit time. Let A(·) denote the first output of A i.e.

A(·) = A1(·). Similarly, let U(·) denote the first output of U. We remark that when we refer

to the algorithm’s output, we mean the model output and does not include the metadata. Finally,

given two sets S and S′, we define ∆(S, S′) to be the symmetric difference between these sets i.e.

∆(S, S′) = |S\S′|+ |S′\S|. We now define exact unlearning.

Definition 1 (Exact unlearning) We say a procedure (A,U) satisfies exact unlearning if for any

S, S′ ⊂ Z∗ such that ∆(S, S′) = 1, A(S′) = U(A(S), S′\S ∪ S\S′). For randomized procedures,

we want that for any measurable event E ⊆ Θ×M, we have

P
[
A(S′) ∈ E

]
= P

[
U(A(S), S′\S ∪ S\S′) ∈ E

]

Remark 1

1. We emphasize that the above definition not only considers the (useful) output but the meta-data

as well. This, with a slight difference, is referred to as perfect unlearning in Neel et al. (2020).

2. Even though the above definition is for one edit request, it can be generalized for a stream of k
edit requests, by having that this condition holds inductively for every point in the stream.

Let S = S0 = {z1, z2, . . . , zn} , zi ∈ Z be the initial dataset of n points. We observe k edit requests,

each being either an insertion or deletion request. We use Si to denote the set of data points available

at time i in the stream. For simplicity, as in Neel et al. (2020), we assume that at any point in the

stream, the number of available data points is at least n/2 and at most 2n.

2.2. Convex risk minimization

We recall some basics from convex optimization. Let W ⊂ R
d be a closed convex set such that

diameter(W) ≤ D where the diameter is measured in Euclidean distance. Let Z be the instance

space and let f : W × Z → R be an G-Lipschitz, L-smooth convex function in its first argu-

ment. Recall that function f is L-smooth (in its first argument) if ‖∇wf(w1, z)−∇wf(w2, z)‖ ≤
L ‖w1 − w2‖ ∀w1,w2 ∈ W, z ∈ Z . We will drop the subscript w in ∇ from here on. For

the constraint set W , given a point w, a projection function P : R
d → R

d returns P(w) ∈
argminv∈W ‖w − v‖.
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Empirical Risk Minimization (ERM). Given data points S = {z1, z2, . . . , zn}, we consider the

following class of problems, known as empirical risk minimization (ERM).

min
w∈W



F̂S(w) :=

1

n

n∑

j=1

f(w, zi)



 (1)

Let A(S) be the output of algorithm A on dataset S. For measuring accuracy, we will give

guarantees on expected excess empirical risk, which is EF̂ (A(S)) − F (w∗
S), where w∗

S is the

minimizer: w∗
S ∈ argminw∈W F̂S(w) and the expectation is taken with respect to the randomness

in algorithm A.

We discuss the related notion of population risk and the problem of risk minimization along with

our results in Appendix J.

2.3. Total variation stability and maximal coupling

We first state the definition of Total Variation (TV) distance between two distributions P and Q.

TV(P,Q) = sup
measurable sets R

|P (R)−Q(R)| = 1

2
‖φP − φQ‖1

where the second equality holds if both distributions have probability densities with respect to a

base measure which are denoted by φP an φQ respectively. We now define total variation stability

(TV-stability), which is the notion of algorithmic stability we will use.

Definition 2 (ρ-TV-stability) An algorithm A is said to be ρ-TV-stable if

sup
S,S′:∆(S,S′)=1

TV(A(S),A(S′)) ≤ ρ

Remark 2

1. The above definition considers the marginals of output and does not include the metadata.

2. Suppose S is a dataset of n points, and S′ is a dataset of n+ k2 points such that |S\S′| = k1.

Then, if algorithm A is ρ-TV stable, then by triangle inequality of TV and repeated applications

of the above definition, we have that TV(A(S),A(S′)) ≤ (2k1 + k2)ρ

We discuss the maximal coupling characterization of total variation distance, which is a key ingredient

in the design of our unlearning algorithms.

Coupling and total variation distance: A coupling between two probability distributions P
and Q over a common measurable space (X ,B), where B denotes the sigma-algebra on X , is a

distribution π ∈ P(X × X ,B ⊗ B) such that the marginals along the projections (x, y) 7→ x and

(x, y) 7→ y are P and Q respectively. Let Π(P,Q) denotes the set of couplings between P and Q.

The following describes the maximal coupling characterization of total variation distance.

1. For any coupling π ∈ Π(P,Q), if the random variable (p, q) ∼ π, then TV(P,Q) ≤ P [p 6= q].

2. There exists a “maximal” coupling π∗ such that if (p, q) ∼ π∗, then TV(P,Q) = P [p 6= q]
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The above establishes that TV(P,Q) = infπ∈Π(P,Q) P(p,q)∼π [p 6= q].
As a final remark, in this work, we routinely deal with distances and divergence between

probability distributions. In some cases, we abuse notation and write a divergence between random

variables instead of probability distributions - these should be interpreted as the law of the random

variables.

3. Main results

We state our main result on designing learning and unlearning algorithms in a stream of edit requests.

Theorem 1 (Main Theorem) For any 1
n ≤ ρ < ∞, there exists a learning and a corresponding

unlearning algorithm such that for any f(·, z), which is L-smooth and G-Lipschitz convex function

∀ z, and a stream of edit requests,

1. Satisfies exact unlearning at every time point in the stream of edit requests.

2. At time i in the stream, outputs ŵSi with excess empirical risk bounded as,

EF̂Si(ŵSi)− F̂Si(w∗
Si) . min





GD√
ρn

,

(
L1/4GD3/2

√
d

(ρn)

)4/5




3. For k edit requests, the expected unlearning runtime is

O(max {min {ρ, 1} k · Training time, k}).

We make some remarks about the result.

Training time: Informally, what the above theorem says is that the algorithms satisfy exact

unlearning and are accurate while only recomputing a ρ fraction of times - this is indeed the nature

of our proposed algorithms. ”Training time” in the above theorem is the runtime of the learning

algorithm (for the aforementioned accuracy). If we measure training time in terms of number of

gradient (oracle) computations, as is typical in convex optimization, then for the above accuracy, our

algorithm has optimal oracle complexity in most regimes (see details in Appendix G.1).

Role of ρ: The external parameter ρ controls the trade-off between accuracy and unlearning

efficiency. In the extreme case where we don’t care about unlearning efficiency and are fine with

paying retraining computation for every edit request, then we can set ρ > 1 as large as we want to

get, as expected, arbitrary small excess empirical risk. However, the interesting case is when we set

ρ < 1: herein, we get an improved (see below) unlearning time and yet a non-trivial accuracy, upto

ρ & 1
n .

Strict improvement: The above result may seem like a trade-off, but, as we argue below, is a

strict improvement over the baseline of retraining after every edit request (which is the only other

known method for exact unlearning for this problem). Let the target excess empirical risk be

α > α0 = min

{
GD√
n
,
(
L1/4GD3/2

√
d

n

)4/5}
. For any such α, from the above result, there exists

a ρ < 1, such that our algorithms have ρk · Training time(α) expected unlearning time, which

is smaller than k · Training time(α) - the cost of retraining after every edit request. Furthermore,
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as remarked above, since our training time is optimal in number of gradient computations (for

the said accuracy), the aforementioned improvement holds for re-computation with any first-order

optimization algorithm. A small caveat is that we are comparing our expected unlearning time with

deterministic runtime of retraining. To summarize, with this caveat, we have a strict improvement in

the low accuracy regime, whereas in the high accuracy regime: α < α0, our unlearning algorithms are

as good as trivial re-computation. However, this low accuracy regime is often the target in machine

learning problems. To elaborate, the goal is to minimize the population risk rather than empirical

risk, and it is well known that this statistical nature of the problem results in an information-theoretic

lower bound of 1√
n

on excess population risk. We show in Appendix J that our algorithm guarantees

an excess population risk of 1√
n
+ α, and so a very small α only becomes a lower order term in

excess population risk.

Algorithms: The first upper bound on accuracy in Theorem 1 is obtained by standard SGD, which,

in each iteration samples a fraction of datapoints, called mini-batch, to compute the gradient, and

performs the descent step - we call this sub-sample-GD. The second upper bound is obtained using

noisy accelerated mini-batch-SGD (noisy-m-A-SGD), which is also used for differentially private

ERM. Our unlearning algorithm for sub-sample-GD is rather straightforward, and most of the work

is design of unlearning algorithm for noisy-m-A-SGD, which is based of efficient coupling of Markov

chains corresponding to the learning algorithm. We describe the algorithms in detail in Section 5.

Sub-optimality within the TV stability framework: If we consider L,G,D = O(1), and a

simple model of computation wherein we pay a unit computation when we recompute, otherwise not,

then the unlearning problem is equivalent to design of TV -stable algorithms, and a corresponding

(maximal) coupling (see Appendix B.1 for more details). Our coupling construction for unlearning in

noisy-m-A-SGD, though efficient, is not maximal - this gap shows up in the accuracy bound (second

term), which is
(√

d
ρn

)1/5
worse than what we would have obtained via a maximal coupling i.e

√
d

ρn .

We also note that in case we don’t use acceleration, but rather vanilla noisy mini-batch SGD, and the

”same” coupling construction for unlearning, then we obtain a worse accuracy bound of
(√

d
ρn

)2/3

(see Appendix H.1 for details). Finally, apart from closing the gap with the maximal coupling,

another potential improvement is by giving ρ-TV stable algorithms with better accuracy. We discuss

such upper and lower bounds as follows.

As pointed out, intermediate to the result in Theorem 1 is the design and analysis of TV -stable

algorithms for smooth convex ERM. Our main result on upper bounds on accuracy of such algorithms

is the following.

Theorem 2 (Upper bound) For any 0 < ρ < ∞, there exists an algorithm which is min {ρ, 1}-TV

stable, such that for any function f(·, z) which is L-smooth and G-Lipschitz convex ∀ z, and any

dataset S of n points, outputs ŵS which satisfies the following.

EF̂S(ŵS)− F̂S(w
∗
S) . GDmin

{
1√
ρn

,

√
d

ρn

}

We show that the condition ρ ≥ 1
n in Theorem 2 is fundamental for any non-trivial accuracy, as

evidenced by our lower bounds, with a matching dependence on ρ. Furthermore, we omit the regime
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ρ ≥ 1 in our lower bound since it puts no constraint on the algorithms to exhibit a non-trivial lower

bound.

Theorem 3 (Lower bound) For any ρ-TV-stable algorithm A, there exists a G-Lipschitz convex

function f and a dataset S of n points such the expected excess empirical risk is lower bounded as:

1. For any 0 < ρ < 1, and any dimension d, EF̂S(A(S))− F̂S(w
∗
S) & GDmin

{
1, 1

ρn

}

2. Assuming that A(S) has a probability density function upper bounded by K ≤ O(2d), then

for n > 72, 1
n ≤ ρ ≤ 1

4 and large enough d, EF̂S(A(S))− F̂S(w
∗
S) & GDmin

{
1, 1√

ρn

}

In each of the lower bounds, the term GD is trivial as it is attained if an algorithm outputs a

constant regardless of the problem instance. The first lower bound holds for all problem instances

without any assumptions on the relationship between the problem parameters d, n and ρ. Note that

if we assume that the upper bound given by Theorem 2 were tight, in that case we would expect

to derive a lower bound of
√
d

ρn whenever
√
d

ρn ≤ 1√
ρn ⇐⇒ d ≤ 1

ρn - we would therefore need to

shrink the class of problem instances explicitly. Unfortunately, our techniques currently do not show

improvement with this restriction. The second result is obtained by a direct analysis, where the key

ingredient is the fact that normalized volume of spherical cap of a hypersphere goes to 0 as d → ∞,

for a fixed width of the cap. The condition that the probability distribution A(S) has bounded density

prevents it to have discrete atoms - this is not desirable especially since our (upper bound) algorithm

sub-sample-SGD outputs a mixture of discrete distributions, and therefore does not lie in this class.

Please see Appendix I for derivations of the lower bounds.

4. Main ideas

In this section, we discuss the key ideas to our approach. The first is identifying a notion of stability.

The key idea is maximal coupling characterization of total variation distance. Note that if the outputs

on neighbouring datasets S (original) and S′ (after an edit) are close in TV distance, then there exists

a maximal coupling under which, the output on S can likely be reused while still satisfying exact

unlearning. Our approach is to make this idea constructive for convex ERM problem. We also note

that the notion of TV stability for unlearning can be motivated from and cast in a more general

framework based on optimal transport (see for Appendix B.1 more details). The second ingredient is

the design of TV stable algorithms for convex ERM. One of the algorithms we propose is an existing

differential private solution, which we show to be TV stable as well. Finally, the bulk of the work, is

the design and analysis of efficient unlearning algorithms. We show that this problem can be reduced

to efficiently constructing couplings between Markov chains, and we give such a construction using

rejection sampling and reflection mappings.

4.1. TV-stable learning algorithms and differential privacy

In this section, we discuss the ideas underlying the design of TV-stable learning algorithms. We first

give the definition of differential privacy (DP), which will be a key tool. Differential privacy is a

notion of data privacy, introduced in Dwork et al. (2006), defined as follows.

8
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Definition 3 (Differential privacy (DP)) An algorithm A satisfies (ε, δ)-differential privacy if for

any two datasets S and S′, differing in one sample, for any measurable event E ∈ Range(A),

P(A(S) ∈ E) ≤ eεP(A(S′) ∈ E) + δ

Intuitively, a differentially private algorithm promises that the output distributions are close in a

specific sense: the likelihood ratios for all events for two neighbouring datasets is uniformly close to

e±ε, upto a failure probability δ. Note that we have identified that we want our outputs to be ρ-TV

stable. A natural question is whether we can relate the (ε, δ)-DP notion to ρ-TV-stability. An easy to

see direction is that any ρ-TV stable method is (at least) (0, ρ)-DP. Similarly, for the other direction,

under additional assumptions, such relations can be derived. The important part is that certain widely

used DP methods are TV stable as well. The primary example, which we will use in this work, is

Gaussian mechanism. It is known that adding Gaussian noise of standard deviation

√
log(1/δ)

ε to a

1-sensitive function, provides (ε, δ)-DP (Dwork et al., 2014). It can be shown that the same method

also provides ρ-TV stability, with ρ = ε√
log(1/δ)

.

TV-stable algorithm: For the problem of TV-stable convex empirical risk minimization, we

propose two algorithms: sub-sample-GD and noisy-m-A-SGD. We show that the expected excess

empirical risk of noisy-m-A-SGD is better than that of sub-sample-GD, in regimes of small dimension.

The algorithm noisy-m-A-SGD is essentially noisy-SGD algorithm of Bassily et al. (2014) for DP

convex ERM, with an additional (Nesterov’s) acceleration on top. In noisy-m-A-SGD, at iteration

t, we sample a mini-batch bt uniformly randomly, use it to compute the gradient at iterate ẘt =
(1− αt)wt + αtwt−1 denoted as ∇F̂S(ẘt, zbt) and update as follows:

wt+1 = ẘj − η
(
∇F̂S(ẘj , zbj ) + θt

)

where θj ∼ N (0, σ2
Id) and σ is set appropriately. This procedure can be viewed as sampling from

a Markov chain depicted in Figure 1.

Mini-batches b1 b2 b3 bT

w2w1 w3 w4 wT+1Iterates

. . .

. . .

Figure 1: Markov chain for noisy-m-A-SGD Algorithm

A detailed discussion of challenges and certain subtleties in applying DP algorithms to our

problem is provided in Appendix B.2

4.2. Unlearning via (un)couplings

The final, though the most important piece, is the design of unlearning algorithms. Let S be the initial

dataset, S′ is the dataset after one edit request, and we want to design a transport from P = A(S)
to Q = A(S′), which means that we want to construct a coupling of P and Q. Broadly, there are
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two challenges: the first is the data access restriction - when generating a sample from P , we don’t

know what Q would be, therefore, the coupling cannot be based on efficiently sampling from the

joint distribution directly, but is limited to work with samples generated from P . The other is that

construction of the coupling should be computationally more efficient than drawing independent

samples from P and Q, which essentially amounts to our baseline of re-computation.

Framework of verification and re-computation: We encapsulate some desirable design proper-

ties while constructing couplings as a framework which gives efficient unlearning algorithms. We

first setup some terminology - the diagonal of a coupling π of two probability distributions, is the set

{(p, q) : p = q} and similarly, the non-diagonal is the set {(p, q) : p 6= q}. We have that the measure

of the non-diagonal, under a maximal coupling π∗, is P(p,q)∼π∗1 {(p, q) : p 6= q} = TV(P,Q). This

implies that when using ρ-TV stable algorithms, the probability measure of the diagonal under a

maximal coupling, is large: at least 1−ρ. At a high-level, our unlearning algorithms comprise of two

stages: verification and recomputation. We first verify whether our output on dataset S (i.e. sample

from P ) falls on the diagonal of any maximal coupling of P and Q or not - if that is indeed the

case, then the same sample for Q suffices. Importantly, for computational efficiency, we require that

verification be computationally much cheaper then recomputing (smaller that ρ · recompute cost).

If the verification fails, we sample from the non-diagonal of any maximal coupling P and Q, so

that we have a valid transport. As the name suggests, the computational cost of recomputation that

we will shoot for is to be of the same order as (full) recompute. If we are able to design such a

method, then we will show that for k edit requests, the expected computational cost for unlearning is

k · verification cost + kρ · recompute cost ≈ kρ · recompute cost.

Coupling of Markov chains: Our approach for unlearning is to construct a coupling of the

optimization trajectories on neighbouring datasets. We have discussed that the iterates from noisy-

m-A-SGD can be seen as generated from a Markov chain, depicted in Figure 1. Hence, for two

neighbouring datasets, the iterates are sampled from two different Markov chains P and Q. Moreover,

by design, we know that these Markov chains are ρ-TV close - we measure the total variation distance

between the marginals of outputs. The task is now to maximally couple these two Markov Chains.

We remark that in the Markov chain literature, maximal coupling of Markov chains does not refer

to the above but rather the setting wherein we have one Markov chain, but started at two different

states, and the goal is to design a coupling such that their sampled states become and remain equal as

soon as possible. In contrast, our notion of coupling of two Markov chains has also been recently

studied by Völlering (2016) and Ernst et al. (2019), wherein they refer to this problem as design of

uncoupling or maximal agreement/exit couplings. However, the ideas in the aforementioned works

are analytical and arguably not computationally efficient in general.

5. Algorithms

In this section, we present the algorithms for learning and unlearning. In our algorithms, we use

functions “save” and “load”, which vaguely means saving and loading the variables to and from

memory respectively. In Appendix G, we explain what data structures to use for computational

efficiency. The main result Theorem 1 is obtained by combination of two algorithms: sub-sample-GD

(superior in high dimensions) and noisy-m-A-SGD (superior in low dimensions). We note that

subsample-GD is just standard mini-batch SGD and unlearning therein is simple. Hence, due to

10
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space constraints, we defer its description to Appendix C and focus here on noisy-m-A-SGD. The

proofs of results in this section are deferred to Appendix E.

5.1. TV-stable learning algorithm: noisy-m-A-SGD

The algorithm, superior in low dimensions, called noisy-m-A-SGD, is accelerated mini-batched SGD

(Lan, 2012) with appropriate Gaussian noise added at each iteration. In the literature, this algorithm

(with or without acceleration) is used for DP training of (non) convex models. In each iteration, we

save the mini-batch indices, the models, the gradients as well as the noise vectors to memory.

Algorithm 1 noisy-m-A-SGD(wt0 , t0)

Input: Initial model wt0 , data points {z1, . . . , zn}, T , η, m
1: w0 = 0
2: for t = t0, t0 + 1 . . . , T do

3: Sample mini-batch bt of size m uniformly randomly

4: Sample θt ∼ N (0, σ2
Id)

5: ẘt = (1− αt)wt + αtwt−1

6: gt =
1
m

∑
j∈bt ∇f(ẘt, zj)

7: wt+1 = P (ẘt − η (gt + θt))
8: Save(bt, θt,wt, ẘt, gt)
9: end for

Output: ŵS = wT+1

We now state our main result for noisy-m-A-SGD.

Proposition 1 Let f(., z) be an L-smooth G-Lipschitz convex function ∀ z. For any 0 < ρ < ∞,

Algorithm 1, run with t0 = 1, η = min

{
1
2L ,

D
(

G√
m
+σ

)

T 3/2

}
, α0 = 0, αt =

1−t
t+2 , σ = 8

√
TG

nρ , and

T ≥ (nρ)2

16m2 outputs ŵS which is min {ρ, 1}-TV stable and satisfies

EF̂S(ŵS)− F̂S(w
∗
S) .

LD2

T 2
+

GD√
Tm

+
GD

√
d

nρ
.

Choosing T (number of iterations) and m (mini-batch size) appropriately gives an excess

empirical risk of O
(
GD

√
d

ρn

)
– see Corollary 1.

5.2. Unlearning algorithm for noisy-m-A-SGD

We now discuss the algorithm to handle edit requests which is based on efficiently constructing near-

maximal couplings. As discussed before, an important component on constructing such couplings is,

what we call verification, wherein we check if the current model suffices after the edit request or not.

If the verification is successful, we don’t do any additional computation, otherwise we do a partial or

full recompute (i.e. retrain), which we call recomputation. The key idea is that verification can be

done efficiently, and fails with small probability (depending on the TV-stability parameter).

Our unlearning algorithm for noisy-m-A-SGD is based on efficiently constructing a coupling of

Markov chain describing noisy-m-A-SGD, with large mass on its diagonal. The proof of result in this

11
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Algorithm 2 Unlearning for noisy-m-A-SGD

Input: Data point index j to delete or data point z to insert (index n+ 1)

1: for t = 1, 2 . . . , T do

2: Load(θt,wt, ẘt, bt, gt)
3: if deletion and j ∈ bt then

4: Sample i ∼ Uniform([n]\bt)
5: g′t = gt − 1

m (∇f(ẘt, zj)−∇f(ẘt, zi))
6: Save(g′t, bt\ {j} ∪ {i})

7: else if insertion and Bernoulli
(

m
n+1

)
then

8: Sample i ∼ Uniform(bt)
9: g′t = gt − 1

m (∇f(ẘt, zi)−∇f(ẘt, z))
10: Save(g′t, bt\ {i} ∪ {n+ 1})

11: else

12: continue

13: end if

14: ξt = gt + θt

15: if Uniform(0, 1) ≥
φN (g′t,σ2I)(ξt)

φN (gt,σ
2I)(ξt)

then

16: ξ′t = reflect(ξt, g
′
t, gt)

17: wt+1 = wt − ηξ′t
18: Save(ξ′t)
19: noisy-m-A-SGD(wt+1, t+ 1) // Continue retraining on current dataset

20: break

21: end if

22: end for

section is deferred to Appendix F. We first describe how Algorithm 2 couples mini-batch indices

while handling edit request.

Coupling mini-batch indices: After observing a deletion request, in Algorithm 2, we look at all

iterations in which the deleted point was sampled. We then replace the deleted point with a uniformly

random point not already sampled in that iteration. For insertion, at each step, we again replace a

uniformly sampled point in the mini-batch of that step by the inserted point with probability m
n+1 .

Reflection maps: We define the notion of reflection map, which will be used in our coupling

construction.

Definition 4 (Reflection map) Given a vector u and two vectors x and y, the reflection of u under

(x, y), denoted as reflect(u, x, y), is defined as

reflect(u, x, y) = x + (y − u)

Reflection coupling is a classical idea in probability, used to construct couplings between

symmetric probability distributions (Lindvall et al., 1986). The reflection map, given u, x, y, reflects

u about the mid-point of x and y. The context in which we will use it is u would be a sampled

point from a Gaussian under old dataset S (on which the model was trained on), and x and y

12
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being the means of the Gaussian under new dataset S′ (after edit request) and S respectively. The

map essentially exploits the spherical symmetry of the Gaussian to generate a good sample for the

distribution under S′. Please see Section F.2.2 for properties of the reflection map, which are used in

the final proofs.

Iterative rejection sampling: Our unlearning algorithm is based on iteratively verifying each

model wt+1 using rejection sampling. To elaborate, at each iteration, we check if the noisy iterate,

defined as w̄t+1 = ẘt − η(gt + θt) is a good sample for the dataset S′, where gt is the gradient

computed on ẘt using a uniformly sub-sampled mini-batch from S. To do this, we need to compute

a ratio of estimated marginal densities (we just use conditional density under the coupled mini-batch,

more details below) of wt+1 (line 15 in Algorithm 2) for both datasets, evaluated at the noisy iterate,

and compare it with Uniform(0, 1). It it succeeds, we move to the next iteration and repeat. If any of

the rejection sampling fails, we use the reflection map (line 16) to obtain a new wt+1, and continue

retraining on S′.

Verification and recompuation stages: Herein, the rejection sampling steps comprise the veri-

fication stage, and if any of the rejection sampling fails, we move to re-computation. The reason

why verification can be done efficiently is due to the finite sum structure of the ERM problem.

To elaborate, at any iteration, to compute the estimated marginal density, we need to compute the

gradient with the new dataset S′ - this, using the gradient of the old dataset only requires subtracting

the gradient at the deleted point, so Od(1) runtime as opposed to Od(m), if we were to compute from

scratch, where m is the mini-batch size. Moreover, throughout verification, this computation is done

only for iterations which used the deleted point which are roughly Tm
n iterations. Hence the total

runtime of verification is Od

(
Tm
n

)
as opposed to Od (Tm) for re-computation. Similar reasoning

applies to the insertion case.

Fast algorithms and maximal coupling: The above procedure generates a coupling but not a

maximal coupling - the measure of the diagonal under the coupling, and hence the probability to

recompute, is
√
T worse then the optimal, where T is the number of iterations run of noisy-m-A-

SGD. This gives us that the faster the algorithm (in terms of iteration complexity) is, the smaller

the probability to recompute, when using our coupling construction. This motivates why we use

accelerated mini-batch SGD, since it has a quadratically faster iteration complexity than vanilla

mini-batch SGD. In Appendix G.1, we also remark that using even faster variance-reduction based

algorithms like Katyusha (Allen-Zhu, 2017) do not yield further improvements.

Estimation of marginals: We explain what we mean by estimated marginal densities in the

previous paragraph. Ideally, we want to create maximal coupling of marginals of the output, and

therefore measure TV distance between marginals, rather than the entire algorithmic state. In

particular, fix all iterates before iteration t, and consider noisy iterate w̄t+1 = ẘt − η(gt + θt). If we

also fix the sampled mini-batch bt, then w̄t+1 is distributed as N (ẘt − ηgt, η
2σ2

I). However, once

we unfix bt, then wt+1 is mixture of Gaussians, with the number of components being exponential in

m. and therefore even evaluating the marginal density is infeasible. One solution is to just consider

m = n i.e. full gradient descent, and then there is no additional state. However, this makes the

training runtime worse, which means that we would be using a slower learning algorithm than what

we would have used if we were to simply recompute to unlearn. Hence, to tackle this, as alluded

to in the previous paragraph, we evaluate the ratio of conditional probability densities, where the

conditioning is on the coupled mini-batch indices (say bSt and bS
′

t ) i.e.
φS′ (w̄t|bSt )
φS(w̄t|bSt )

– this is done in

13
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line 15 of Algorithm 2, with a small change that we evaluate the ratio of conditional densities of

noisy gradients rather than iterates, but it can be verified that the ratio is invariant to this shift and

scaling. This use of conditional density corresponds to using unbiased estimates of the marginals

densities. It is easy to verify, using convexity of the pointwise supremum for instance, that

TV((w̄S
t , b

S
t ), (w̄

S′
t , bS

′
t )) ≥ E

(bSt ,b
S′
t )

TV(w̄S
t |bSt , w̄S′

t |bS′
t ) ≥ TV(w̄S

t , w̄
S′
t )

However, in general, this might still not be ideal since we are estimating with just one sample from

the mixture and hence the estimation error would be large. However, we will show that since we are

anyway not able to construct maximal couplings, we don’t pay extra with this coarse estimate.

Please see Section F.2.3 for a more formal treatment of the coupling procedure. We now state the

main result for this section.

Proposition 2 (Algorithm 1, Algorithm 2) satisfies exact unlearning. Moreover, for k edits, Algo-

rithm 2 recomputes with probability at most
kρ

√
T

4

In the above proposition, we state unlearning efficiency in terms of probability to recompute.

In Appendix G.2, we provide more details on runtime (analytical complexity bounds on total

unlearning time, which is O(ρk
√
T Training time)) as well as space complexity with an efficient

implementation.

6. Conclusion

In this work, we presented the TV stability framework for machine unlearning and instantiated it to

develop unlearning algorithms for convex risk minimization problems. Currently, our results indicate

two gaps, and motivate the following future directions.

1. Optimal TV-stable algorithm: Our upper and lower bound on excess empirical risk of TV

stable algorithms don’t match. Hence, we either need to establish stronger lower bounds or

search for better algorithms.

2. Maximal coupling for unlearning: Our coupling procedure for unlearning for noisy-m-A-

SGD is sub-optimal, in measure of its diagonal, by a
√
T factor. A natural question is whether

we can design an efficient (i.e. unlearning time smaller than re-computation time) maximal

coupling. We note that if efficiency were not a criterion, then this can be done - briefly, do

a one step rejection sampling by computing the ratio of joint distribution of all iterates, if it

fails, keep retraining, until the iterates generated is accepted by a rejection sampling. However,

in this case, the expected number of retrains can be shown to be one, and so is trivial. The

challenge in this case is to give an efficient procedure when the first rejection sampling fails.

3. Beyond smooth convex functions: The focus of this work was on smooth convex (loss) func-

tions, but our techniques, and results for unlearning, extend to general non-convex functions.

However, a careful investigation of trade-offs between accuracy and unlearning efficiency,

in classes of, say strongly-convex, non-smooth or even some non-convex functions, is an

interesting future direction.
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