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Abstract

We study the problem of corralling stochastic
bandit algorithms, that is combining multi-
ple bandit algorithms designed for a stochas-
tic environment, with the goal of devising a
corralling algorithm that performs almost as
well as the best base algorithm. We give two
general algorithms for this setting, which we
show benefit from favorable regret guaran-
tees. We show that the regret of the cor-
ralling algorithms is no worse than that of the
best algorithm containing the arm with the
highest reward, and depends on the gap be-
tween the highest reward and other rewards.

1 Introduction

We study the problem of corralling multi-armed ban-
dit algorithms in a stochastic environment. This con-
sists of selecting, at each round, one out of a fixed
collection of bandit algorithms and playing the action
returned by that algorithm. Note that the corralling
algorithm does not directly select an arm, but only
a base algorithm. It never requires knowledge of the
action set of each base algorithm. The objective of
the corralling algorithm is to achieve a large cumula-
tive reward or a small pseudo-regret, over the course
of its interactions with the environment. This prob-
lem was first introduced and studied by Agarwal et al.
(2016). Here, we are guided by the same motivation
but consider the stochastic setting and seek more fa-
vorable guarantees. Thus, we assume that the reward,
for each arm, is drawn from an unknown distribution.

In the simplest setting of our study, we assume that
each base bandit algorithm has access to a distinct
set of arms. This scenario appears in several applica-
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tions. As an example, consider the online contractual
display ads allocation problem (BasuMallick, 2020):
when users visit a website, say some page of the on-
line site of a national newspaper, an ads allocation al-
gorithm chooses an ad to display at each specific slot
with the goal of achieving the largest value. This could
be an ad for a clothing item, which could be meant for
the banner of the online front page of that newspaper.
To do so, the ads allocation algorithm chooses one out
of a large set of advertisers, each a clothing brand or
company in this case, which have signed a contract
with the ads allocation company. Each clothing com-
pany has its own marketing strategy and thus its own
bandit algorithm with its own separate set of cloth-
ing items or arms. There is no sharing of information
between these companies which are typically competi-
tors. Furthermore, the ads allocation algorithm is not
provided with any detailed information about the base
bandits algorithms of these companies, since that is
proprietary information private to each company. The
allocation algorithm cannot choose a specific arm or
clothing item, it can only choose a base advertiser. The
number of ads or arms can be very large. The number
of advertisers can also be relatively large in practice,
depending on the domain. The number of times the
ads allocation is run is in the order of millions or even
billions per day, depending on the category of items.

A similar problem arises with online mortgage bro-
ker companies offering loans to new applicants. The
mortgage broker algorithm must choose a bank, each
with different mortgage products. The broker brings
a new application exclusively to one of the banks, as
part of the contract, which also entitles them to in-
centives. The bank’s online algorithm can be a bandit
algorithm proposing a product, and the details of the
algorithm are not accessible to the broker; for instance,
the bank’s credit rate and incentives may depend on
the financial and credit history of the applicant. The
number of mortgage products is typically fairly large,
and the number of online loan requests per day is in
the order of several thousands. Other instances of this
problem appear when an algorithm can only select one
of multiple bandit algorithms and, for privacy or reg-
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ulatory reasons, it cannot directly select an arm or re-
ceive detailed information about the base algorithms.

In the most general setting we study, there may be
an arbitrary sharing of arms between the bandit algo-
rithms. We will only assume that only one algorithm
has access to the arm with maximal expected reward,
which implies a positive gap between the expected re-
ward of the best arm of any algorithm and that of
the best algorithm. This is because we seek to devise
a corralling algorithm with favorable gap-dependent
pseudo-regret guarantees.

Related work. The previous work most closely re-
lated to this study is the seminal contribution by Agar-
wal et al. (2016) who initiated the general problem of
corralling bandit algorithms. The authors gave a gen-
eral algorithm for this problem, which is an instance
of the generic Mirror Descent algorithm with an ap-
propriate mirror map (LOG-BARRIER-OMD), (Foster
et al., 2016; Wei and Luo, 2018), and which includes a
carefully constructed non-decreasing step-size sched-
ule, also used by Bubeck et al. (2017). The algo-
rithm of Agarwal et al. (2016), however, cannot in gen-
eral achieve regret bounds better than O(v/T) in the
time horizon, unless optimistic instance-dependent re-
gret bounds are known for the corralled algorithms.
Prior to their work, Arora et al. (2012) presented
an algorithm for learning deterministic Markov deci-
sion processes (MDPs) with adversarial rewards, us-
ing an algorithm for corralling bandit linear optimiza-
tion algorithms. In an even earlier work, Maillard and
Munos (2011) attempted to corral EXP3 algorithms
(Auer et al., 2002b) with a top algorithm that is a
slightly modified version of EXP4. The resulting re-
gret bounds are in O(T2/3).

Our work can also be viewed as selecting the best al-
gorithm for a given unknown environment and, in this
way, is similar in spirit to the literature solving the best
of both worlds problem (Audibert and Bubeck, 2009;
Bubeck and Slivkins, 2012; Seldin and Slivkins, 2014;
Auer and Chiang, 2016; Seldin and Lugosi, 2017; Wei
and Luo, 2018; Zimmert and Seldin, 2018; Zimmert
et al., 2019) and the model selection problem for lin-
ear bandit (Foster et al., 2019; Chatterji et al., 2019).

Very recently, Pacchiano et al. (2020) also considered
the problem of corralling stochastic bandit algorithms.
The authors seek to treat the problem of model selec-
tion, where multiple algorithms might share the best
arm. More precisely, the authors consider a setting in
which there are K stochastic contextual bandit algo-
rithms and try to minimize the regret with respect to
the best overall policy belonging to any of the bandit
algorithms. They propose two corralling algorithms,
one based on the work of (Agarwal et al., 2016) and

one based on EXP3.P (Auer et al., 2002b). The main
novelty in their work is a smoothing technique for each
of the base algorithms, which avoids having to restart
the base algorithms throughout the 7" rounds, as was
proposed in (Agarwal et al., 2016). The proposed re-
gret bounds are of the order ©(v/T). We expect that
the smoothing technique is also applicable to one of
the corralling algorithms we propose. Since Pacchi-
ano et al. (2020) allow for algorithms with shared best
arms, their main results do not discuss the optimistic
setting in which there is a gap between the reward
of the optimal policy and all other competing poli-
cies, and do not achieve the optimistic guarantees we
provide. Further, they show a min-max lower bound
which states that even if one of the base algorithms is
optimistic and contains the best arm, there is still no
hope to achieve regret better than Q(\/T) if the best
arm is shared by an algorithm with regret Q(v/T). We
view their contributions as complementary to ours.

In general, some caution is needed when designing a
corralling algorithm, since aggressive strategies may
discard or disregard a base learner that admits an arm
with the best mean reward if it performs poorly in the
initial rounds. Furthermore, as noted by Agarwal et al.
(2016), additional assumptions are required on each of
the base learners if one hopes to achieve non-trivial
corralling guarantees.

Contributions. We first motivate our key assump-
tion that all of the corralled algorithms must have fa-
vorable regret guarantees during all rounds. To do so,
in Section 3, we show that if one does not assume any-
time regret guarantees, then even when corralling sim-
ple stochastic bandit algorithms, each with o(v/T) re-
gret, any corralling strategy will have to incur Q(v/T)
regret. Therefore, for the rest of the paper we as-
sume that each base learner admits anytime guaran-
tees. In Section 4 and Section 5, we present two general
corralling algorithms whose pseudo-regret guarantees
admit a dependency on the gaps between base learn-
ers, that is their best arms, and only poly-logarithmic
dependence on time horizon. These bounds are syn-
tactically similar to the instance-dependent guarantees
for the stochastic multi-armed bandit problem (Auer
et al., 2002a). Thus, our corralling algorithm performs
almost as well as the best base learner, if it were to be
used on its own, modulo gap-dependent terms and log-
arithmic factors. The algorithm in Section 4 uses the
standard UCB ideas combined with a boosting tech-
nique, which runs multiple copies of the same base
learner. In Section 4.1, we show that simply using
UCB-style corralling without boosting can incur lin-
ear regret. If, additionally, we assume that each of the
base learners satisfy the stability condition adopted in
(Agarwal et al., 2016), then, in Section 5 we show that
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it suffices to run a single copy of each base learner by
using a corralling approach based on OMD. We show
that UCB-I (Auer et al., 2002a) can be made to satisfy
the stability condition, as long as the confidence bound
is rescaled and changed by an additive factor. In Sec-
tion 6, to further examine the properties of our algo-
rithms, we report the results of experiments with our
algorithms for synthetic datasets. Finally, while our
main motivation is not model selection, in Section 7,
we briefly discuss some related matters and show that
our algorithms can help recover several known results
in that area.

2 Preliminaries

We consider the problem of corralling K stochastic
multi-armed bandit algorithms Ay, ..., Ax, which we
often refer to as base algorithms (base learners). At
each round t, a corralling algorithm selects a base al-
gorithm A;,, which plays action a;, ;,. The corralling
algorithm is not informed of the identity of this ac-
tion but it does observe its reward 7¢(a;, ;). The top
algorithm then updates its decision rule and provides
feedback to each of the base learners A;. We note that
the feedback may be just the empty set, in which case
the base learners do not update their state. We will
also assume access to the parameters controlling the
behavior of each A; such as the step size for mirror
descent-type algorithms, or the confidence bounds for
UCB-type algorithms. Our goal is to minimize the cu-
mulative pseudo-regret of the corralling algorithm as
defined in Equation 1:!

E[R(T)] = Tju1 1 — E

Zrt(aityjt)] s (1)

t=1
where p7 1 is the mean reward of the best arm.

Notation. We denote by e; the ith standard basis vec-
tor, by 0 € RX the vector of all 0s, and by 15 € RX
the vector of all 1s. For two vectors z,y € RX, 2 ®y
denotes their Hadamard product. We also denote the
line segment between = and y as [z,y]. w;; denotes
the i-th entry of a vector w; € RE. AK~1 denotes the
probability simplex in R Dy (x,y) the Bregman di-
vergence induced by the potential ¥, whose conjugate
function we denote by U*. We use I to denote the
indicator function of a set C. For any k € N, we use
the shorthand [k] :={1,2,...,k}.

For the base algorithms Ay,..., Ak, let T;(t) be the
number of times algorithm 4; has been played until
time t. Let T; ;(¢) be the number of times action j
has been proposed by algorithm A; until time ¢. Let

1For conciseness, from now on, we will simply write re-
gret instead of pseudo-regret.

[k;] denote the set of arms or action set of algorithm
A;. We denote the reward of arm j in the action set
of algorithm ¢ at time ¢ as r;(a; ;) and denote its mean
reward by u; ;. We also use a; ;, to denote the arm
proposed by algorithm A4; during time t. Further, the
algorithm played at time ¢ is denoted as i;, its action
played at time ¢ is a;, ;, and the reward for that action
is r(a;, j,) with mean p;, ;,. Let i* denote the index
of the base algorithm that contains the arm with the
highest mean reward. Without loss of generality, we
will assume that i* = 1. Similarly, we assume that
a;,1 is the arm with highest reward in algorithm A;.
We assume that the best arm of the best algorithm
has a gap to the best arm of every other algorithm.
We denote the gap between the best arm of A; and
the best arm of A; as A;: A; = pi« 1 — i1 > 0 for
1 # i*. Further, we denote the intra-algorithm gaps
by A;; = pi1 — pij. We denote by Ri(t) an upper
bound on the regret of algorithm A; at time ¢ and
by R;(t) the actual regret of A;, so that E[R;(¢)] is
the expected regret of algorithm A; at time ¢. The
asymptotic notations Q and O are equal to Q and O
up to poly-logarithmic factors.

3 Lower bounds without anytime
regret guarantees

We begin by showing a simple and yet instructive lower
bound that helps guide our intuition regarding the in-
formation needed from the base algorithms {A4;}% in
the design of a corralling algorithm. Our lower bound
is based on corralling base algorithms that only admit
a fixed-time horizon regret bound and do not enjoy
anytime regret guarantees. We further assume that
the corralling strategy cannot simulate anytime regret
guarantees on the base algorithms, say by using the
so-called doubling trick. This result suggests that the
base algorithms must admit a strong regret guarantee
during every round of the game.

The key idea behind our construction is the following.
Suppose one of the corralled algorithms, A;, incurs a
linear regret over the first R;(T") rounds. In that case,
the corralling algorithm is unable to distinguish be-
tween A; and an another algorithm that mimics the
linear regret behavior of A; throughout all T' rounds,
unless the corralling algorithm plays A; at least R;(T)
times. The successive elimination algorithm (Even-
Dar et al., 2002) benefits from gap-dependent bounds
and can have the behavior just described for a base
algorithm. Thus, our lower bound is presented for
successive elimination base algorithms, all with regret
O(T**). Tt shows that, with constant probability, no
corralling strategy can achieve a more favorable regret
than Q(v/T) in that case.
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Theorem 3.1. Let the corralled algorithms be in-
stances of successive elimination defined by a parame-
ter . With probability 1/4 over the random sampling
of a, any corralling strategy will incur regret at least
Q(VT), while the gap, A, between the best and sec-
ond best reward is such that A > w(T~Y*) and all
algorithms have a regret bound of O(1/A).

This theorem shows that, even when corralling natu-
ral algorithms that benefit from asymptotically bet-
ter regret bounds, corralling can incur Q(\/T) regret.
It can be further proven (Theorem B.3, Appendix B)
that, even if the worst case upper bounds on the re-
gret of the base algorithms were known, achieving an
optimistic regret guarantee for corralling would not
be possible, unless some additional assumptions were
made.

4 UCB-style corralling algorithm

The negative result of Section 3 hinge on the fact that
the base algorithms do not admit anytime regret guar-
antees. Therefore, we assume, for the rest of the paper,
that the base algorithms, {A;}, satisfy the following:

I < Ri(t), (2)

t
tnin — » rs(ai, ;)
s=1

for any time ¢t € [T]. For UCB-type algorithms, such
bounds can be derived from the fact that the expected
number of pulls, T;;(t), of a suboptimal arm j, is
bounded as E[T; ;(t)] < c(lzj(jt))% for some time and
gap-independent constant ¢ (e.g., Bubeck (2010)), and

take the following form, R;(t) < c/+\/kstlog (t), for
some constant ¢’.

Suppose that the bound in Equation 2 holds with prob-
ability 1 — ;. Note that such bounds are available
for some UCB-type algorithms (Audibert et al., 2009).
We can then adopt the optimism in the face of uncer-
tainty principle for each p; 1 by overestimating it with
1 S rslaig) + 1R;(t). As long as this occurs with
high enough probability, we can construct an upper
confidence bound for p; 1 and use it in a UCB-type al-
gorithm. Unfortunately, the upper confidence bounds
required for UCB-type algorithms to work need to
hold with high enough probability, which is not readily
available from Equation 2 or from probabilistic bounds
on the pseudo-regret of anytime stochastic bandit al-
gorithms. In fact, as discussed in Section 4.1, we ex-
pect it to be impossible to corral any-time stochastic
MAB algorithms with a standard UCB-type strategy.
However, a simple boosting technique, in which we run
21log (1/8) copies of each algorithm A;, gives the fol-
lowing high probability version of the bound in Equa-
tion 2.

Algorithm 1 UCB-C

Input: Stochastic bandit algorithms Ay, ..., Ak
Output: Sequence of algorithms (i;)7_;.

1:t=1

2: fori=1,..., K

3:  A; =0 % contains all copies of A,

4: fors=1,...,[2log(T)]

5 Initialize A;(s) as a copy of A;, fi;(s) =0
6: Append (A;(s), 11i(s)) to A;
7
8

Foreach (A;(s),11:(s)) € A;, play A;(s), update
empirical mean fi;(s), t =t + 2log (T')

9 Jimea, = Median({z;(s)}/205™)

10: whilet < T
. B \/QRmcdl (Tmcdg (t))+\/2Tmcd£ (t) log(t)
11: be(t) = Trned, (1)

VLl € [K]

12: i = argmax,¢ g {Timed, +be(t)}
13:  Foreach (Ai(s), lii(s)) € A4, play A;(s), update em-
pirical mean [i;(s), t = ¢ + 2log (T)

14: fimea, = Median({fii(s)} 27T

Lemma 4.1. Suppose we run 2log (1/6) copies of al-
gorithm A; which satisfies Equation 2. If Apea, is the
algorithm with median cumulative reward at time t,
then Pltp; — Zi:l Ts(@med,. j.) = 2Ri(t)] < 6.

We consider the following variant of the standard UCB
algorithm for corralling. We initialize 2log (T") copies
of each base algorithm A;. Each A; is associated with
the median empirical average reward of its copies. At
each round, the corralling algorithm picks the A; with
the highest sum of median empirical average reward
and an upper confidence bound based on Lemma 4.1.
The pseudocode is given in Algorithm 1. The algo-
rithm admits the following regret guarantees.

Theorem 4.2. Suppose that algorithms A1,..., Ak
satisfy the following regret bound E[R;(t)] <
ak;tlog (t), respectively for i € [K]. Algorithm 1
selects a sequence of algorithms i1,...,i7 which take
actions Q;, j,,- - -, Qip jr, TESpectively, such that

Bl <0 | Y Elee @)
ii* ¢

E[R(T)] <O <log (T) \/KTlog (T) max(kﬂ) .

i€[K]

+log (T)E [R;-(T)] | »

We note that both the optimistic and the worst case
regret bounds above involve an additional factor that
depends on the number of arms, k;, of the base al-
gorithm A;. This dependence reflects the complex-
ity of the decision space of algorithm A;. We conjec-
ture that a complexity-free bound is not possible, in
general. To see this, consider a setting where each
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A;, for i # i*, only plays arms with equal means
i = p1,1—A;. Standard stochastic bandit regret lower
bounds, e.g. (Garivier et al., 2018b), state that any
strategy on the combined set of arms of all algorithms
will incur regret at least Q(3, ;. kilog (T') /A;). The
log (T') factor in front of the regret of the best al-
gorithm comes from the fact that we are running
Q(log (T')) copies of it.

4.1 Discussion regarding tightness of bounds

A natural question is if it is possible to achieve bounds
that do not have a log (T)? scaling. After all, for the
simpler stochastic MAB problem, regret upper bounds
only scale as O(log (7)) in terms of the time hori-
zon. As already mentioned, the extra logarithmic fac-
tor comes from the boosting technique, or, more pre-
cisely, the need for exponentially fast concentration of
the true regret to its expected value, when using a
UCB-type corralling strategy. We now show that, in
the absence of such strong concentration guarantees,
if only a single copy of each of the base algorithms in
Algorithm 1 is run, then linear regret is unavoidable.

Theorem 4.3. There exist instances Ay and Ay of
UCB-I and a reward distribution, such that, if Al-
gorithm 1 runs a single copy of Ay and As, then
E[R(T)] > Q(ALT).

Further,  for any algorithm Ay  such that
P[Rl(t)Z%ALQT] > %, there exists a reward
distribution such that if Algorithm 1 runs a single
copy of Ay and Ag, then E[R(T)] > Q((A12)°AsT).

The proof of the above theorem and further discus-
sion can be found in Appendix C.1. The require-
ment that the regret of the best algorithm satisfies
P[Ry(t) > £A127] > % in Theorem 4.3 is equiva-
lent to the condition that the regret of the base al-
gorithms admit only a polynomial concentration. Re-
sults in (Salomon and Audibert, 2011) suggest that
there cannot be a tighter bound on the tail of the re-
gret for anytime algorithms. It is therefore unclear
if the log (T)* rate can be improved upon or if there
exists a matching information-theoretic lower bound.

5 Corralling using Tsallis-INF

In this section, we consider an alternative approach,
based on the work of Agarwal et al. (2016), which
avoids running multiple copies of base algorithms.
Since the approach is based on the OMD framework,
which is naturally suited to losses instead of rewards,
for the rest of the section we switch to losses.

We design a corralling algorithm that maintains a
probability distribution w € AX~! over the base al-

gorithms, {A;}X . At each round, the corralling algo-
rithm samples i, ~ w. Next, A;, plays a;, j, and the
corralling algorithm observes the loss ¢;(a;, ;). The
corralling algorithm updates its distribution over the
base algorithms using the observed loss and provides
an unbiased estimate ¢;(a; ;,) of £:(a; ,) to algorithm

A;: the feedback provided to A; is Z\t(aimjt) = M,

Wt,iy
and for all a;j, # ai,j,» Zt(aw-t) = 0. Notice that
E € RE as opposed to ¢; € [0, 1]Hz‘ ki Essentially, the
loss fed to A;, with probability wy;, is the true loss
rescaled by the probability w;; to observe the loss,
and is equal to O with probability 1 — wy .

The change of environment induced by the rescaling of
the observed losses is analyzed in Agarwal et al. (2016).
Following Agarwal et al. (2016), we denote the envi-
ronment of the original losses (¢;); as £ and that of the
rescaled losses (£;); as &'. Therefore, in environment
&, algorithm A; observes £,(a;, ;,) and in environment
&', A, observes Zt(aihjt). A few important remarks
are in order. As in (Agarwal et al., 2016), we need to
assume that the base algorithms admit a stability prop-
erty under the change of environment. In particular, if
W > p% for all s <t and some p; € R, then E[R;(t)]
under environment £ is bounded by E[,/p; R;(t)]. For
completeness, we provide the definition of stability by
Agarwal et al. (2016).

Definition 5.1. Let v € (0,1] and let R: N — R,
be a mon-decreasing function. An algorithm A with
action space A is (v, R(-))-stable with respect to an
environment & if its regret under £ is R(T) and its
regret under £’ induced by the importance weighting is

maxaen B |7, li(ai, j,) — le(a)| < El(pr) R(T)).

We show that UCB-I (Auer et al., 2002a) satisfies the
stability property above with v = % The techniques
used in the proof are also applicable to other UCB-
type algorithms. Other algorithms for stochastic ban-
dits like Thompson sampling and OMD/FTRL vari-
ants have been shown to be 1/2-stable in (Agarwal

et al., 2016).

The corralling algorithm of Agarwal et al. (2016) is
based on Ounline Mirror Descent (OMD), where a key
idea is to increase the step size whenever the proba-
bility of selecting some algorithm A; becomes smaller
than some threshold. This induces a negative regret
term which, coupled with a careful choice of step size
(dependent on regret upper bounds of the base algo-
rithms), provides regret bounds that scale as a func-
tion of the regret of the best base algorithm.

Unfortunately, the analysis of the corralling algo-
rithm always leads to at least a regret bound of
Q(VT) and also requires knowledge of the regret
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bound of the best algorithm. Since our goal is to
obtain instance-dependent regret bounds, we cannot
appeal to this type of OMD approach. Instead, we
draw inspiration from the recent work of Zimmert
and Seldin (2018), who use a Follow-the-Regularized-
Leader (FTRL) type of algorithm to design an algo-
rithm that is simultaneously optimal for both stochas-
tic and adversarially generated losses, without requir-
ing knowledge of instance-dependent parameters such
as the sub-optimality gaps to the loss of the best arm.
The overall intuition for our algorithm is as follows.
We use the FTRL-type algorithm proposed by Zim-
mert and Seldin (2018) until the probability to sam-
ple some arm falls below a threshold. Next, we run
an OMD step with an increasing step size schedule
which contributes a negative regret term. After the
OMD step, we resume the normal step size schedule
and updates from the FTRL algorithm. After carefully
choosing the initial step size rate, which can be done
in an instance-independent way, the accumulated neg-
ative regret terms are enough to compensate for the
increased regret due to the change of environment.

5.1 Algorithm and the main result

We now describe our corralling algorithm
in more detail. The potential function W,
used in all of the wupdates is defined by
U (w) = —4X K n% (yw; — w;),  where

n = [nt71,77t72, ... ,nt’K] is the step-size schedule
during time ¢. The algorithm proceeds in epochs and
begins by running each base algorithm for log (T") + 1
rounds. Each epoch is twice as large as the preceding,
so that the number of epochs is bounded by log,(T),
and the step size schedule remains non-increasing
throughout the epochs, except when an OMD step is
taken. The algorithm also maintains a set of thresh-
olds, p1,p2,...,pn, where n = O(log(T)). These
thresholds are used to determine if the algorithm
executes an OMD step, while increasing the step size:

w1 = argmin ({, w) + Dy, (w, wy),
weAK -1

Net1, = BN (for i 0wy < 1/ps,),

Wiyo = argmin (Cey 1, w) + Dy, (W, wiy1), ps, = 2ps,
weAK-1
(3)

or the algorithm takes an FTRL step

Wiy = argmin (Ly, w) + Uyyq (w), (4)
weAK—l

where Et = Et,l + Zt, unless otherwise specified by
the algorithm. We note that the algorithm can only
increase the step size during the OMD step. For tech-
nical reasons, we require an FTRL step after each
OMD step. Further, we require that the second step of

Algorithm 2 Corralling with Tsallis-INF

Input: Mult. constant §, thresholds {p;}? ,, initial
step size 7, epochs {7;}1,, algorithms {A;} £ .

Output: Algorithm selection sequence (i;)7_;.

1: Initialize t = 1, wy = Unif(AK=Y), m =1
2: Initialize current threshold list 6 € [n]% to 1
3: while t < K'log (T) + K
4:  for i € [K]
5: A; plays Qi gy s El,i‘i‘ = Et(ai,jt),t—k =1
6: t =2,wy = V®s(—Ly), 1/n2,, =1/ + 1
7: while j <m
8 for t € 7;
9 R; = 0,0, = PLAY-ROUND(w;)
10: if t is first round of 7; and Jw,; < i
11: for i: wy; < p%
12: 0; = min{s € [n|: w,; > i}, R: =
R UA{Z} R R
13: (wets, Leqo) = NRS(we, le, 1, Ry, Li—1), t =
t+2, f, = PLAY-ROUND(w; )
14: if di:wy; < p—ii and prior step was not NRS
15: for i: w; < i
16: bit+ =1, Ry =Ry U{i}- -
17: (wets, Leqo) = NRS(we, Le, 1, Ry, Ly—1), t =
t+2, f, = PLAY-ROUND(w; )
18: else .
19: Unie =1/ +1, wepr = VO (—Ly)

each epoch be an OMD step if there exists at least one
Wy, < p%. The algorithm also can enter an OMD step
during an epoch if at least one w;; becomes smaller
than a threshold 1 which has not been exceeded so

Ps;
far.

We set the probability thresholds so that p; = O(1),
p; = 2pj—1 and p% > 1, so that n < logy(T). In the
beginning of each epoch, except for the first epoch,
we check if wy; < o If it is, we increase the step
size as M1, = PN and run the OMD step. The
pseudocode for the algorithm is given in Algorithm 2.
The routines OMD-STEP and PLAY-ROUND can be found
in Algorithm 6 and Algorithm 7 (Appendix D) respec-
tively. OMD-STEP essentially does the update described
in Equation 3 and PLAY-ROUND samples and plays an
algorithm, after which constructs an unbiased estima-
tor of the losses and feeds these back to all of the
sub-algorithms. We show the following regret bound
for the corralling algorithm.

Theorem 5.2. Let R;(+) be a function upper bounding
the expected regret, E[R;(-)], of A; for all i € [K].
For g = el/108(1)” gng for m such that for all i €

(17cxp<*m))ﬁ’ the expected

[K]7 771,i S mintG[T] 50Ri(t)
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Algorithm 3 NEG-REG-STEP(NRS)

Input: Prior iterate wy, loss E, step size 7, set of
rescaled step-sizes R;, cumulative loss L;_1

Output: Plays two rounds of the game and returns
distribution w43 and cumulative loss Lyyo

1: (Awt_,_l,Lt) = DMD‘STEP(U}t,é,nt,Rt/,\Lt_/l\)

2: €t+1 = PLAY—R.OUND(’LUt+1), Lt+1 == Lt + €t+1

3: for all 7 such that w;; < ,711

4 Myos = B, Re = RyU{i} and restart A; with
updated environment 6; = ﬁ

5: Wiy = V& o(—Lit1)

6: ‘€t+2 = PLAY—ROUND(wt+2)

7o Liyo = Lipr + bego, Megs = Mot =1+ 2

8: Wi+1 = V(I)t+1(—Lt)7t =t+1

regret of Algorithm 2 is bounded as follows: E[R(T')] <
O (S WL + B[R (D)]) -

To parse the bound above, suppose {A;}icix) are
standard stochastic bandit algorithms such as UCB-
I. In Theorem 5.4, we show that UCB-I is indeed %—
stable as long as we are allowed to rescale and in-
troduce an additive factor to the confidence bounds.
In this case, a worst- Case upper bound on the re-
gret of any A; is E[R < cv/kilog (t)t for all
t € [T] and some unlversal constant c. We note
that the min-max regret bound for the stochas-
tic multi-armed bandit problem is ©(vKT) and
most known any-time algorithms solving the prob-
lem achieve this bound up to poly-logarithmic fac-

: ' 1 —exp (—71%(?)2)) >
a1 This suggests that the bound in Theo-
rem 5.2 on the regret of the corralling algorithm is at
most O(Z#i* M + E[R;+(T)]). In particular,
if we instantiate ]E[R (T)] to the instance-dependent

bound of 0(2#1 lzg(*T_)) the regret of Algorithm 2

is bounded by O(ZZ#* hi log(T) + 241 IZgET_)>. In
general we cannot exactly compare the current bound
with that of UCB-C (Algorithm 1), as the regret bound
in Theorem 5.2 has worse scaling in the time horizon
on the gap-dependent terms, compared to the regret
bound in Theorem 4.2, but has no additional scaling
in front of the E[R;«(T')] term. In practice we observe
that Algorithm 2 outperforms Algorithm 1.

tors. Further we note that

Since essentially all stochastic multi-armed bandit al-
gorithms enjoy a regret bound, in time horizon, of the
order O(/T), we are guaranteed that 1/ 17 ; scales only
poly-logarithmically with the time horizon. What hap-
pens, however, if algorithm A; has a worst case regret
bound of the order w(v/T)? For the next part of the

discussion, we only focus on time horizon dependence.
As a simple example, suppose that A4; has worst case
regret of T%/3 and that A;+ has a worst case regret of
VT. In this case, Theorem 5.2 tells us that we should
set 171, = O(1/T"/%) and hence the regret bound scales
at least as Q(T/3/A; + E[R;(T)]). In general, if the
worst case regret bound of A; is in the order of T
we have a regret bound scaling at least as T2*71/A;.
This is not unique to Algorithm 2 and a similar scaling
of the regret would occur in the bound for Algorithm 1
due to the scaling of confidence intervals.

Corralling in an adversarial environment. Be-
cause Algorithm 2 is based on a best of both worlds
algorithm, we can further handle the case when the
losses/rewards are generated adversarially or whenever
the best overall arm is shared across multiple algo-
rithms, similarly to the settings studied by Agarwal
et al. (2016); Pacchiano et al. (2020).

Theorem 5.3. Let R;-(-) be a function upper bound-
ing the expected regret of A;«, E[R;(-)]. For

(1o (i)

1
log(T)?

any M < omingg[ B0R.x (1) and B =
el/108(1)* it holds that the expected regret of Al-
gorithm 2 is bounded as follows: E[R(T) <

O<maxweAK VTYE, Y% 4 B[R (T)])

The bound in Theorem 5.3 essentially evaluates to
O(max(VTK, max;e(x) Ri(T))+E[R; (T)]). Unfortu-
nately, this is not quite enough to recover the results in
(Agarwal et al., 2016; Pacchiano et al., 2020). This is
attributed to the fact that we use the %—Tsallis entropy
as the regularizer instead of the log-barrier function. It
is possible to improve the above bound for algorithms
with stability v < 1/2, however, because model selec-
tion is not the primary focus of this work, we will not
present such results here.

Stability of UCB-I. We now briefly discuss how
the regret bounds of UCB-I and similar algorithms
change whenever the variance of the stochastic losses
is rescaled by Algorithm 2. Let us focus on base
learner A; during epoch 7;. During epoch 7, there
is some largest threshold ps, which is never exceeded
by the inverse probabilities, i.e., minger, we; > 1/ps,.
This implies that the rescaled losses are in [0, ps,].
Further, their variance is bounded by E[(;(i)?] =
E[¢(a; j,)?/wii] < ps,. Using a version of Freedman’s
inequality (Freedman, 1975), we show the following.

Theorem 5.4 (Informal). Suppose that during epoch
7; of size T;, UCB-I (Auer et al., 2002a) uses an

upper confidence bound 1/4’)}1 E(Zf)(t) + 42?11055(;) for
arm j at time t. Then, the expected regret of A;
under the rescaled rewards is at most E[R;(T;)] <

8o kT, 108 (7).
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Table 1: Regret for corralling when A; = 0.2

We expect that other UCB-type algorithms (Audibert
et al., 2009; Garivier and Cappé, 2011; Bubeck et al.,
2013; Garivier et al., 2018a) should also be 3-stable.

6 Empirical results

In this section, we further examine the empirical prop-
erties of our algorithms via experiments on syntheti-
cally generated datasets. We compare Algorithm 1 and
Algorithm 2 to the Corral algorithm (Agarwal et al.,
2016)[Algorithm 1], which is also used in (Pacchiano
et al., 2020). We note that Pacchiano et al. (2020) also
use Exp3.P as a corralling algorithm. Recent work
(Lee et al., 2020) suggests that Corral exhibits similar
high probability regret guarantees as Exp3.P and that
Corral would completely outperform Exp3.P.

Experimental setup. The algorithms that we cor-
ral are UCB-I, Thompson sampling (TS), and FTRL
with %—Tsallis entropy reguralizer (Tsallis-INF). When
implementing Algorithm 2 and Corral, we make an
important deviation from what theory prescribes: we
never restart the corralled algorithms and run them
with their default parameters. In all our experiments,
we corral two instances of UCB-I, TS, and Tsallis-INF
for a total of six algorithms. The algorithm contain-
ing the best arm plays over 10 arms. Every other
algorithm plays over 5 arms. The rewards for each
base algorithm are Bernoulli random variables with
expectations set so that for all ¢ > 2 and 7 > 1,
A;; = 0.01. We run two sets of experiments with
A; equal to either 0.2 or 0.02. This setting implies
that Algorithm 1 always contains the best arm and
that the best arm of each base algorithm is arm one.
Even though A;; = 0.01 implies large regret for all
sub-optimal algorithms, it also reduces the variance of
the total reward for these algorithms thereby making
the corralling problem harder. Finally, the time hori-
zon is set to 7' = 10%. For a more extensive discussion,
about our choice of algorithms and parameters for the
experimental setup we refer the reader to Appendix A.

Table 2: Regret for corralling when A; = 0.02

Large gap experiments. Table 1 reports the regret
(top) and number of plays of each algorithm found in
our experiments when A; = 0.2. The plots represent
the average regret, in blue, and the average number of
pulls of each algorithm (color according to the legend)
over 75 runs of each experiment. The standard devi-
ation is represented by the shaded blue region. The
algorithm that contains the optimal arm is A; and is
an instance of UCB-I. The red dotted line in the top
plots is given by 4/ KT +E[R;(T)], and the green dot-
ted line is given by 43, %‘%}T) +E[R1(T)]. These
lines serve as a reference across experiments and we
believe they are more accurate upper bounds for the
regret of the proposed and existing algorithms. As
expected, we see that, in the large gap regime, the
Corral algorithm exhibits Q(v/T) regret, while the re-
gret of Algorithm 2 remains bounded in O(log (T)).
Algorithm 1 admits two regret phases. In the initial
phase, its regret is linear, while in the second phase it
is logarithmic. This is typical of UCB strategies in the
stochastic MAB problem (Garivier et al., 2018b).

Small gap experiments Table 2 reports the results
of our experiments for A; = 0.02. The setting of the
experiments is the same as in the large gap case. We
observe that both Corral and Algorithm 2 behave ac-
cording to the O(v/T) bounds. This is expected since,
when A; = 0.02, the optimistic bound dominates the
v T-bound. The result for Algorithm 1 might be some-
what surprising, as its regret exceeds both the green
and red lines. We emphasize that this experiment does
not contradict Theorem 4.2. Indeed, if we were to plot
the green and red lines according to the bounds of The-
orem 4.2, the regret would remain below both lines.

Our experiments suggest that Algorithm 2 is the best
corralling algorithm. A tighter analysis would poten-
tially yield optimistic regret bounds in the order of

0 (Zi#* %gi(ﬁf) + E[R;- (T)]) Furthermore, we ex-
pect that the bounds of Theorem 4.2 are tight. For

more detailed experiments, we refer the reader to Ap-
pendix A.
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7 Model selection for linear bandits

While the main focus of the paper is corralling MAB
base learners when there exists a best overall base algo-
rithm, we now demonstrate that several known model
selection results can be recovered using Algorithm 2.

We begin by recalling the model selection problem for
linear bandits. The learner is given access to a set of
loss functions F: X XA — R mapping from contexts X
and actions A to losses. In the linear bandits setting,
F is structured as a nested sequence of classes F; C
Fo C ... C Fg = F, where each F; is defined as

Fi= {(x,a) — <5zv¢z($va)> : ﬂl € Rdi}?

for some feature embedding ¢;: X x A — R%. It
is assumed that each feature embedding ¢; contains
¢;_1 as its first d;_; coordinates. It is further as-
sumed that there exists a smallest i* < K to which
the optimal parameter £* belongs, that is the ob-
served losses for each context-action pair (z,a) satisfy
li(z,a) = E[(*, ¢q,. (x,a))]. The goal in the model
selection problem is to identify * and compete against
the smallest loss for the t-th context in R%* by mini-
mizing the regret:

T

Ri(T) = Z (E[<5*7 Gi- (21, ar))]

t=1

~ min (3", ¢i- (v1,0))))

where the expectation is with respect to all random-
ness in the sampling of the contexts x; ~ D, actions
and additional noise. We adopt the standard assump-
tion that, given x;, the observed loss for any a can be
expressed as follows: (3, ¢;(x¢,a)) + &, where & is a
zero-mean, sub-Gaussian random variable with vari-
ance proxy 1 and for each of the context-action pairs
it holds that (8, ¢i(z, a)) € [0, 1].

7.1 Algorithm and main result

We assume that there are K base learners {A;}X
such that the regret of A;, for ¢ > i*, is bounded by
O(df\/f ). That is, whenever the model is correctly
specified, the i-th algorithm admits a meaningful re-
gret guarantee. In the setting of Foster et al. (2019),
A; can be instantiated as LINUCB and in that case
« = 1/2. Further, in the setting of infinite arms, A;
can be instantiated as OFUL (Abbasi-Yadkori et al.,
2011), in which case « = 1. Botha=1/2 and a =1
govern the min-max optimal rates in the respective
settings. Owur algorithm is now a simple modifica-
tion of Algorithm 2. At every time-step ¢, we update

ft = Et_l + Zt + d, where d; = ‘f;; Intuitively, our

modification creates a gap between the losses of A;«
and any A; for i > i* of the order d?®. On the other
hand for any 7 < ¢*, perturbing the loss can result
in at most additional dff‘ﬁ regret. With the above
observations, the bound guaranteed by Theorem 5.2
implies that the modified algorithm should incur at
most O(d?f“ T') regret. In Appendix F, we show the
following regret bound.

Theorem 7.1. Assume that every base learner Aj;,
i > i*, admits a O(d®\T) regret. Then, there exists
a corralling strategy with expected regret bounded by
O(dff‘\/f + K\/T). Moreover, under the additional
assumption that the following holds for any i < i*, for
all (z,a) € X x A

: . dze — @2«
E[(Bi, ¢i(z, a))] — %IQ]E[W s @i (z,a))] > 27,

the expected regret of the same strategy is bounded as

O(da VT + KVT).

Typically, we have K = O(log(T)) and thus Theo-
rem 7.1 guarantees a regret of at most O(dff‘ T). Fur-
thermore, under a gap-assumption, which implies that
the value of the smallest loss for the optimal embed-
ding ¢* is sufficiently smaller compared to the value
of any sub-optimal embedding ¢ < ¢*, we can actually
achieve a corralling regret of the order R;«(T). In par-
ticular, for the setting of Foster et al. (2019), our strat-
egy yields the desired O(\/di*T) regret bound. Notice
that the regret guarantees are only meaningful as long
as di= = o(TY(®). In such a case, the second as-
sumption on the gap is that the gap is lower bounded
by o(1). This is a completely problem-dependent as-
sumption and in general we expect that it cannot be
satisfied.

8 Conclusion

We presented an extensive analysis of the problem of
corralling stochastic bandits. Our algorithms are ap-
plicable to a number of different contexts where this
problem arises. There are also several natural exten-
sions and related questions relevant to our study. One
natural extension is the case where the set of arms
accessible to the base algorithms admit some over-
lap and where the reward observed by one algorithm
could serve as side-information to another algorithm.
Another extension is the scenario of corralling online
learning algorithms with feedback graphs. In addition
to these and many other interesting extensions, our
analysis may have some connection with the study of
other problems such as model selection in contextual
bandits (Foster et al., 2019) or active learning.
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