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Abstract. Redistricting is the problem of partitioning a set of geographic units into a
fixed number of subsets called districts, subject to a list of rules and priorities. These
districts are used for elections, making their delineation highly consequential. It has
been hard for quantitative researchers to orient to an application domain in which rule
vagueness can be a feature rather than a bug—but law and policy often prefer a reasonable
range of values to a paradigm of optimization. In recent years, the use of randomized
methods to sample from the vast space of districting plans has been gaining traction
in U.S. courts of law for identifying partisan gerrymanders, and it is now emerging as
a promising assessment tool for legislatures and independent commissions, even before
districts are enacted. In this article, we set up redistricting as a graph partition problem
and introduce a new family of Markov chains called recombination (or ReCom). We focus
on the use of spanning trees for recombination, an idea introduced by our research group
in 2018 and now in wide use in the redistricting field. ReCom is a large-step random walk
on the space of graph partitions, in contrast with commonly used Flip walks, which change
the assignment label of one or a few nodes at a time. Important points of comparison
concern the speed of convergence to stationarity, the form of the target distribution, and
the characteristics of samples that can be obtained in practical time. We use real-world
data to demonstrate advantages of spanning tree ReCom and its relative weighting of
plans, and we give a broader exposition of both the challenges of this approach and the
analytical tools that it enables. We close with a short case study of race and redistricting
in the Virginia House of Delegates.
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Media Summary

Districts that hold plurality elections are the favored American device for converting votes into political
representation. But control of the district lines can confer a surprising degree of power over the outcomes,
even under real-world conditions—abusing this power is called ‘gerrymandering.’ Computational methods
are quickly gaining traction as a way to understand the magnitude of gerrymandering and to tease its effects
apart from the mere consequences of the system. Proposed districting plans can now be put in context by
comparison to large samples of alternative valid plans, holding the political geography constant. In this
article, we rethink the question of what makes a good sample for this application. We present and motivate
a novel sampling method using spanning trees and use real data to show the method in action. Though the
universe of plausible districting plans is forbiddingly vast, our heuristic tests suggest that we can now use
randomized techniques to construct a representative sample in a reasonable time.

1. Introduction

In many countries, geographic regions are divided into electoral districts, such as when states are
divided into districts that elect individual members to the U.S. House of Representatives. The task
of drawing district boundaries, or redistricting, is fraught with technical, practical, political, and
even philosophical challenges, and the ultimate choice of a districting plan has major consequences
in terms of which groups are able to elect their candidates of choice. Even the best-intentioned map-
drawers have a formidable task in drawing plans whose structure promotes basic fairness principles
set out in law or widely held in public opinion. The ease of achieving an agenda through control
of redistricting makes it common for line-drawers to gerrymander, or to design plans specifically
skewing elections toward that preferred outcome, such as favoring or disfavoring a political party,
demographic group, or collection of incumbents.

One fundamental technical challenge in the study of redistricting is to contend with the sheer
number of possible ways to construct districting plans. State geographies admit enormous numbers
of divisions into contiguous districts; even when winnowing down to districting plans that satisfy
criteria set forth by legislatures, commissions, or voter referenda, the number remains far too large
to enumerate all possible plans in a state. The numbers are easily in the range of googols rather
than billions, as we will explain here.

Recent methods for analyzing and comparing districting plans attempt to do so by placing a plan
in the context of valid alternatives—that is, those that cut up the same jurisdiction by the same
rules and with the structural features of the geography and the pattern of voting held constant.
Modern computational techniques can generate large and diverse ensembles of comparison plans,
even if building the full space of alternatives is out of reach. These ensembles contain samples from
the full space of plans, aiming to help compare a plan’s properties to the range of possible designs.
More than this, we need some assurance of representative sampling; that is, we need to relate the
sampling distribution to the rules and priorities articulated by redistricters.

In one powerful application, ensembles have been used to conduct outlier analysis, or to argue
that a proposed plan has properties that are extreme relative to the comparison statistics of alter-
native plans. Arguments like this have featured in a string of recent legal challenges to partisan
gerrymanders (Pennsylvania, North Carolina, Michigan, Wisconsin, Ohio), all of which were suc-
cessful at the district court or state supreme court level. Outliers also received significant attention
from the U.S. Supreme Court (culminating in Rucho v. Common Cause, 2019), but a 5–4 majority
declared that it was too hard for a federal court to decide how much is too much of an outlier.
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Outside of federal courts, the method is very much alive not only in state-level legal challenges
but as a screening step for the initial adoption of plans, and we expect numerous states to employ
ensemble analysis this year (2021) when new plans are enacted around the country. These methods
can help clarify the influence of each individual state’s political geography—the physical geography,
demographics, and pattern of voting—as well as the tradeoffs between possible rules and criteria.
But the inferences that can be drawn from ensembles rely heavily on the distributions from which
the ensembles are sampled.

In the past 5 years, researchers have turned to Markov chain Monte Carlo, or MCMC, for
sampling. MCMC methods offer strong underlying theory and heuristics, in the form of mixing
theorems and convergence diagnostics. The idea is to form a random walk on the state space and
collect states visited by the walker to build a sample. The first and most natural approach to
defining a random walk on graph partitions is to simply reassign one node at a time through a
random process in a Flip process. In a districting context, this amounts to changing the labeling
of individual geographic units along district borders. In the standard MCMC paradigm, we would
modify the basic Flip step to adjust the ultimate stationary distribution. The traditional ways of
doing that are explored here.

In contrast, we define a new family of random walks called recombination (or ReCom) Markov
chains on the space of partitions, focusing on one variant based on a step that fuses two districts
and randomly repartitions them to form a new plan by cutting an edge of a spanning tree. We
argue that spanning tree ReCom has favorable properties that make it well suited to the study of
redistricting—in particular, it is tied to a new way of thinking about district ‘compactness’ that
represents a major conceptual and practical improvement on the status quo.

Initial Partition 1,000,000 Flip steps 100 ReCom steps

Figure 1. Comparison of the basic Flip proposal to the spanning tree Re-
Com proposal to be described later. Each Markov chain was run from the
initial partition of a 100× 100 grid into 10 parts (left). Flip chains produce
winding, fractal-like districts (center), while ReCom favors ‘compact,’ or
geometrically tame, partitions (right). A typical plan drawn from uniform
distribution will have wild boundaries of the type seen in Flip chains, simply
because there are far more non-compact than compact partitions.

Applied MCMC relies on convergence heuristics to raise confidence in the findings, along with
an explanation of the sampling distribution that is targeted. We present evidence that ReCom
converges efficiently to approximately the spanning tree distribution: a way of weighting plans that
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comports with traditional districting criteria with little or no parameter tuning by the user. The
description of that target distribution is found in Section 5.

In shifting to spanning tree-based sampling methods to overcome the limitations of Flip-based
chains, we were led to a new point of view on compactness that has significant independent value.
Recombination implements compactness in a soft stochastic fashion, rather than selecting and
manually weighting or thresholding a score. We make the case that this spanning tree count favored
by recombination amounts to a new kind of compactness, better suited to the needs of redistricting:
it draws on latent cluster structure in geographical networks rather than treating redistricting as a
Euclidean geometry problem where ideal districts are circles and squares.

1.1. Contributions. First and foremost, we intend this article to be readable as an introduction to
computational redistricting. We compare Markov chain approaches for benchmarking the behavior
of districting plans, with an eye to efficiency and replicability. After some preliminaries, we:
• lay out the practical setup for implementing Markov chains for redistricting (Section 3);
• define the Flip and ReCom random walks on the space of graph partitions (Section 4);
• discuss spanning trees and compactness, describing the distribution targeted by ReCom (Sec-

tion 5);
• offer experimental comparisons on real and idealized data, reviewing various classical techniques

to consider the most promising variants of Flip chains (Section 6); and
• provide a model analysis of racial gerrymandering in the Virginia House of Delegates (Section 7).
To aid reproducibility of our work, open-source implementations of ReCom are available online
(Voting Rights Data Institute, 2018, 2020). The first paper to employ spanning tree recombination
was a 2018 report on the Virginia House of Delegates case study that was written for reform
advocates, legislators, and the general public (DeFord et al., 2018), whose findings we summarize in
Section 7. The present authors and our collaborators have applied recombination chains in numerous
theoretical and applied projects to date (Angulu et al., 2020; Caldera et al., 2020; DeFord & Duchin,
2019; DeFord et al., 2020; Najt et al., 2019; Weighill & Rodden, 2021), and several of the other
computational redistricting research teams have now adopted spanning tree methodology (Autry
et al., 2020; Benade & Procaccia, 2020; Carter et al., 2019; McCartan & Imai, 2020).

One step abstracted from redistricting, recombination chains allow sampling from the space of
graph partitions for which the pieces are balanced with respect to some function on the nodes (in
this case, the districts have nearly equal population). Since balanced graph partitions appear in a
large variety of settings, we expect that spanning tree recombination will find diverse applications.

1.2. Distinctive Features of the Redistricting Problem. The mathematization of redistrict-
ing that we study here is the problem of sampling from the state space of balanced partitions of a
graph into a fixed number of connected subgraphs. (The graph formulation of redistricting is laid
out in Section 3.1.) Although this sounds similar to successful settings for standard Markov chain
methods, some essential features of the redistricting problem combine to present great challenges
that can cause classical techniques to fail.

Non-uniform sampling. It is crucial to understand that sampling uniformly from all valid partitions
is not a goal that fits the application to redistricting, nor has uniform sampling ever been credibly
attempted in any legal application. (For example, Wesley Pegden’s expert work (Pegden, 2017),
based on the rigorous theorems from Chikina et al. (2017), bounds the probability that a plan was
chosen from the uniform distribution but does not rely on even approximately uniform sampling
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to do so. Jonathan Mattingly’s expert work (Mattingly, 2017) targets a prescribed nonuniform
distribution.)

Although the uniform distribution over graph partitions might seem to be the canonical choice,
nonuniform sampling is needed for two fundamental reasons: an ensemble drawn from the uniform
distribution would be regarded as prohibitively non-compact in the application domain, and there
are in any case obstructions to uniform sampling at the practical scale of redistricting problems.
Put simply, there is no hope to accomplish near-uniform sampling on a state-sized problem using a
practical algorithm, and even if a uniform sampler could be implemented, it would produce samples
with features that make them unusable for redistricting.
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Figure 2. Ensemble statistics for plans partitioning the 7 × 7 grid into 7

districts of 7 units each, based on a complete enumeration of all 158,753,814
valid plans. We use a compactness statistic called cut edges, explained
further in the text, for the comparison. The uniform distribution is shown
in red; the nonuniform (spanning tree) distribution is shown in blue. An
empirical sample of 100,000 plans from a recombination chain is shown
in gray, confirming success in approximately targeting the spanning tree
distribution.
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A uniform sample will be dominated by wildly shaped districts (as illustrated in Figure 1 and
in Section 5.1). If any reasonable shape score is specified and a threshold is set, then the vast
bulk of a uniform sample will consist of plans close to the worst-allowable score, as in Figure 9
and Appendix Figure 14. (For instance, the so-called Polsby-Popper score is the most used in
redistricting litigation. It is just an isoperimetric ratio—area by perimeter squared—so the pictures
make clear that typical uniform samples will have scores near zero.) This makes a uniform ensemble
poorly suited to draw usable comparisons. In terms of tractability, it is known that the existence of
an efficient uniform sampler, even for planar graphs of bounded degree, would imply RP = NP (Najt
et al., 2019). Like most complexity results, this is proved by building stylized graph gadgets that
do not resemble naturalistic examples, but the experiments here (and the experimental evidence in
a range of other papers discussed here) corroborate the slow convergence of Flip walks—and their
uniform variants—in practice. Since we cannot (and should not) target the uniform distribution,
we must specify an alternative target. When ReCom is run with the bipartition method described
later, it approximately targets a closed-form expression called the spanning tree distribution, so that
plans are weighted according to the number of spanning trees of their districts. Similar spanning
tree counts appear widely in the network science literature and are commonly used to pick out
clusters or ‘communities’ in graphs. In Section 5.1, we explain why this favors plans that look
plump and compact to the eye.

Limits to analogies from statistical physics. The motivating intuition for a range of MCMC applica-
tions comes from statistical physics, where Markov chain methods have been successfully applied for
many decades. These physics-style analyses traditionally seek to explore the behavior of so-called
Hamiltonian energy functions associated to labelings of lattice nodes with values representing phys-
ical quantities. A fundamental example is the Ising model, where each node of a lattice is assigned
a ‘spin’ and the associated Hamiltonian is the sum over the edges of ±1 according to whether the
endpoint values agree. In this case, as in many statistical physics models, it is easy to sample
uniformly, by assigning spins independently at each node—this is used repeatedly in building the
theory. But the preceding discussion should alert us to a likely source of problems: approaches that
leverage uniform sampling will transfer poorly to redistricting.

In our setting we require that the pieces with a common label be connected and have a prescribed
total weight—the contiguity and balance constraints of redistricting. These are large-scale properties
of each district, which cannot be validated within a local neighborhood of a reassigned node. The
fact that so much structure is non-local creates a long-range dependence that is not a common
feature of statistical physics problems, and this impedes the effectiveness of Markov chains that
act by making local changes to the districting plan like those in the Flip family. And even for
computations that can be evaluated locally in the redistricting context, the number of neighboring
states can be prohibitively large.

Relatedly, the space of districting plans exhibits a surprising rigidity that is not present in the
motivating problems. Techniques that are meant to accelerate Flip chains encounter combinatorial
obstructions: The sequence of changes that would be needed to travel between qualitatively distinct
plans becomes exponentially unlikely at scale. For instance, MCMC practitioners have had great
success with a suite of techniques that work by varying a ‘temperature’ parameter, alternating
between (1) hot: transiting the state space quickly by loosening or setting aside other constraints,
and (2) cool: tightening the constraints to improve to states with specified features. But in our
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setting (Section 6.3), the high-temperature regime turns out to produce plans that are fractal-
shaped and quite rigid. Tame plans (low temperature) are rare and well-separated. This makes
the temperature variation techniques less effective than one would expect, and can even cause
temperature variation to produce near-loops returning close to their starting position rather than
exploring the state space effectively. One view of this phenomenon can be found in Abrishami
et al. (2020, figure 12) where MDS plots show that the annealing procedure does not allow the
Markov chain to move a large distance through the state space. We will provide a visual example
in Figure 10.

1.3. Review of Computational Approaches to Redistricting. Computational methods for
generating districting plans have been proposed since at least the work of Weaver, Hess, and Nagel
in the 1960s (Nagel, 1965; Weaver & Hess, 1963). Like several of the modern approaches, Nagel’s
algorithm works by incrementally improving districting plans in some metric while taking into
account criteria like population balance, compactness, and partisan balance. Many basic elements
that are still relevant for modern computational redistricting approaches were already in place in
that work. Contiguity is captured using a graph structure or "touchlist" (see our Section 3.1);
quantitative criteria are extracted from redistricting rules (see our Section 3.2); a greedy hill-
climbing strategy improves plans from an initial configuration; and randomization is used to improve
the results. A version of the Flip step (called "the trading part") even appears in Nagel’s optimization
procedure. Their particular stochastic algorithm made use of hardware available at the time: "[R]un
the same set of data cards a few times with the cards arranged in a different random order each
time."

Since this initial exploration, computational redistricting has co-evolved with the development of
modern algorithms and computing equipment. In the following, we highlight a few incomplete but
representative examples; see Altman and McDonald (2010), Cirincione et al. (2000), Ricca et al.
(2013), and Tasnádi (2011) for broader surveys; only selected recent work is cited here.

Optimization. Perhaps the most common redistricting approach discussed in the technical literature
is the optimization of districting plans. Optimization algorithms are designed to extremize objective
functions measuring plan properties, while satisfying some set of constraints. Most commonly,
algorithms proposed for this task maintain contiguity and population balance of the districts and
try to maximize the ‘compactness’ through some measure of shape (Jin, 2017; Kim, 2011). Many
authors have followed Weaver and Hess by using Voronoi or power diagrams with some variant
of k-means (Cohen-Addad et al., 2017, 2018; Fryer Jr & Holden, 2011; Levin & Friedler, 2019);
there is a lineage of approaches through integer programming with fluid-flow constraints to impose
contiguity (Buchanan et al., 2019); and there is even a partial differential equations approach with
a volume-preserving curvature flow (Jacobs & Walch, 2018).

Optimization algorithms have not so far become a significant element of reform efforts around
redistricting practices, partly because of the difficulty of using them in assessment of proposed
plans that take many criteria into account besides those reflected in the objective function. More-
over, most formulations of global optimization problems for full-scale districting plans are likely
computationally intractable to solve, as most of the above-listed authors clearly acknowledge.

Assembly. Here, a randomized process is used to create a plan from scratch, and this process is
repeated to create a collection of plans that will be used as a basis for comparison. Note that an op-
timization algorithm with some stochasticity could be run repeatedly as an assembly algorithm, but
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generally the goals of assembly algorithms are to produce diversity while the goals of optimization
algorithms are to find one or a few best examples.

The most basic assembly technique is to use a greedy agglomerative strategy, such as starting
from k random choices among the geographical units as the seeds of districts and growing outward
by adding neighboring units until the jurisdiction has been filled up and the plan is complete, or
combining the units by successive merges until a plan has the required number of districts, then
possibly trading units to rebalance. These are colorfully called "Petri dish" methods in Duchin and
Spencer (2021). Typically, these algorithms abandon a plan and restart if they reach a dead-end
configuration (one that cannot be completed into a valid plan), which can happen often. Examples
include Chen and Rodden (2013, 2016), Haas et al. (2020), and Magleby and Mosesson (2018). We
are not aware of any theory to characterize the support and qualitative properties of the sampling
distributions that result from these procedures.

Random walks. A great deal of mathematical attention has recently focused on random walk ap-
proaches to redistricting. These methods use a step-by-step modification procedure to begin with
one districting plan and incrementally transform it. Examples include Chikina et al. (2020), Chik-
ina et al. (2017), and Fifield, Higgins, et al. (2020), Herschlag et al. (2020), Herschlag et al. (2017).
An evolutionary-style variant with the same basic step can be found in W. Cho and Liu (2016) and
Liu et al. (2016). The use of random walks for sampling is well developed across scientific domains
in the form of MCMC techniques. This is what the bulk of the present paper will consider.

We emphasize that while many of the techniques used in litigation have been Flip-based, they in-
evitably involve customizations, such as carefully tuned constraints and weighting, crossover steps,
and more. The experiments here are not intended to reproduce the precise setup of any of these im-
plementations (in part because the detailed specifications and code are not always public). Many of
the drawbacks, limitations, and subtleties of working with flip chains are well known to practitioners
but not yet present in the literature.

Benchmarking sampling techniques is challenging but fundamentally important. For instance,
Fifield, Imai, et al. (2020) offer a complete enumeration of partitions in a very small problem, with 70
rather than thousands of units. The logic in that paper is heavily premised on uniform sampling, but
our Figure 2 illustrates benchmarking with respect to an alternative target distribution. (Similar
reweighting of a test set for benchmark purposes is presented in Carter et al. (2019).) These
demonstrations should be read with caution because it is unclear if complete enumerations will ever
be possible on a large enough geography for all the relevant phenomena of realistic redistricting
problems to become apparent. Nonetheless, having spent a great deal of time attempting to compare
different implementations of redistricting samplers, we are convinced that this is valuable, especially
because alternative implementations in code will be all but impossible to fully vet. In particular,
anyone claiming to use spanning tree ReCom should demonstrate its alignment with the spanning
tree distribution on the largest available validation data sets.

2. Markov Chains

A Markov chain is simply a process for moving between positions in a state space according to a
transition rule under which the probability of arriving at a particular position at time n+1 depends
only on the position at time n. That is, it is a random walk without memory. A basic but powerful
example of a Markov chain is the simple random walk on a graph: from any node, the process
chooses a neighboring node uniformly at random for the next step. More generally, one could take



Recombination: A Family of Markov Chains for Redistricting 9

a weighted random walk on a graph, imposing different probabilities on the incident edges. One of
the fundamental facts in Markov chain theory is that any Markov chain can be accurately modeled
as a (not necessarily simple) random walk on a (possibly directed) graph. Markov chains are used for
a huge variety of applications, from Google’s PageRank algorithm to speech recognition to modeling
phase transitions in physical materials. In particular, MCMC is a class of statistical methods that
are used for sampling, with a vast and fast-growing literature and a long track record of modeling
success, including in a range of social science applications. See the classic survey by Diaconis (2009)
for definitions, an introduction to Markov chain theory, and a lively guide to applications.

The theoretical appeal of Markov chains comes from the convergence guarantees that they pro-
vide. The fundamental theorem says that for any ergodic Markov chain there exists a unique
stationary distribution, and that iterating the transition step causes any initial state or probability
distribution to converge to that steady state. The number of steps that it takes to pass a threshold
of closeness to the steady state is called the mixing time; in applications, it is extremely rare to be
able to rigorously prove a bound on mixing time; instead, scientific authors often appeal to a suite
of heuristic convergence tests and diagnostics, as we do here.

This article is devoted to investigating Markov chains for a global exploration of the universe of
valid redistricting plans. From a mathematical perspective, the gold standard would be to define
Markov chains for which we can (1) characterize the stationary distribution π and (2) compute
the mixing time. In most scientific applications, the stationary distribution is specified in advance
through the choice of an objective function and a Metropolis–Hastings or Gibbs sampler that weights
states according to their scores. From a practical perspective in redistricting, confirming mixing
to a distribution with a simple closed-form description is neither necessary nor sufficient. Over
the last several years, our research group has reoriented to what we view as a domain-specific gold
standard: (1′) explanation of the distributional design and the weight that it places on particular
kinds of districting plans, matched to the law and practice of redistricting, and (2′) convergence
heuristics and sensitivity analysis that give researchers confidence in the robustness and replicability
of their techniques. Though far from completing that research program, the use of spanning trees
has opened up many fruitful directions for exploration.

Stronger sampling and convergence theorems are available for reversible Markov chains, those for
which the steady-state probability of being at state P and transitioning to Q equals the probability of
being at Q and transitioning to P for all pairs P,Q from the state space. In particular, a sequence of
elegant theorems from the 1980s to now (Besag & Clifford, 1989; Chikina et al., 2020; Chikina et al.,
2017) shows that samples from reversible Markov chains admit conclusions about their likelihood of
having been drawn from a stationary distribution π long before the sampling distribution approaches
π. For redistricting, this theory enables what we might call local search: While only sampling a
relatively small neighborhood, we can draw conclusions about whether a plan has properties that
are typical of random draws from π. Importantly, these techniques can circumvent the mixing and
convergence issues, but they must still contend with issues of distributional design and sensitivity
to user choice.

In applications, MCMC runs are often carried out with burn time (i.e., discarding the first m

steps) and subsampling (collecting every r samples after that to create the ensemble). If r is set
to match the mixing time, then the draws will be approximately uncorrelated and the ensemble
will be distributed according to the steady-state measure. Experiments in the present article can
be interpreted as exploring the choice of a suitable design for a Flip chain—for instance, Appendix
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Figures 13 and 15 show that the subsampling parameter would have to be well into the millions to
achieve approximate independence for a Flip chain in Virginia.

Though the possibility of pseudo-convergence is always a caveat, the experiments also lend
support to the use of ReCom chains with no burn-in or subsampling. (For a discussion of burn
time, pseudo-convergence, and the applicability of the Markov chain central limit theorems to the
m = 0, r = 1 case, see Geyer (2011).)

Some of the performance obstructions described here have led researchers to use extremely fast
and/or parallelized implementations, serious computing (or supercomputing) power, and various
highly tuned or hybrid techniques that sometimes sacrifice the Markov property entirely or make
external replicability impossible. In contrast, on full-scale problems, a ReCom chain with run length
in the tens of thousands of steps produces ensembles that pass many tests of quality, both in terms
of convergence and in distributional design. Depending on the details of the data, this can be run
in a matter of hours on a standard laptop. Indeed, since this article was first drafted, there is a
new implementation in the high-performance language Julia that can get to millions of steps within
minutes (Voting Rights Data Institute, 2020).

3. Setting Up the Redistricting Problem

Before providing the technical details of Flip and ReCom, we set up the analysis of districting
plans as a discrete problem and explain how Markov chains can be designed to produce plans that
comply with the rules of redistricting.

3.1. Redistricting as a Graph Partition Problem. The earliest understanding of pathologies
that arise in redistricting was largely contour-driven. Starting with the original ‘gerrymander,’
whose salamander-shaped boundary inspired a famous 1812 political cartoon, irregular district
boundaries on a map were understood to be signals that unfair division had taken place. Several
contemporary authors now argue for replacing the focus on contour-based compactness with discrete
compactness (Duchin & Tenner, 2018), and in practice the vast majority of algorithmic approaches
discussed here adopt the discrete model for the problem overall. There are many reasons for
this shift in perspective. In practice, a district is an aggregation of a finite number of census
blocks (defined by the Census Bureau every 10 years) or precincts (defined by state, county, or
local authorities, and aligned to census geography only once every 10 years). District boundaries
extremely rarely cut through census blocks and typically preserve precincts,1 making it reasonable
to compare a proposed plan to alternatives built from block or precinct units. Furthermore, these
discretizations give ample granularity; for instance, most states have several thousand precincts and
several hundred thousand census blocks.

From the discrete perspective, our basic object is the dual graph to a geographic partition of the
state into units. We build this graph G = (V,E) by designating a vertex for each geographic unit
(e.g., block or precinct) and placing edges in E between those units that are geographically adjacent;
Figure 3 shows an example of this construction on the counties of Iowa. With this formalism, a
districting plan is a partition of the nodes of V into subsets that induce connected components of
G. This way, redistricting can be understood as an instance of graph partitioning, a well-studied
problem in combinatorics, applied math, and network science (Nascimento & de Carvalho, 2011;

1For example, the current Massachusetts plan splits just 1.5% of precincts. But measuring the degree
of precinct preservation is very difficult in most states because precincts change frequently and may in some
cases be adjusted to match the districts rather than the other way around.
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Figure 3. Dual graph of Iowa’s counties together with the current Iowa
congressional districts. Iowa is currently the only state whose congressional
districts are made of whole counties.

Schaeffer, 2007). Equivalently, a districting plan is an assignment of each node to one of k districts
via a labeling map V → {1, . . . , k}. The nodes (and sometimes the edges) of G are decorated with
assorted data, especially the population associated to each vertex, which is crucial for plan validity.
Other attributes for vertices may include the assignment of the unit to a municipality or a vector
of its demographic statistics. Relevant attributes attached to edges might include the length of the
boundary shared between the two adjacent units.

Generating seed plans. To run our Markov chains, we need a valid initial state—or seed—in addition
to the proposal method that transitions from state to state. Although in some situations we may
want to start chains from the currently enacted plan, we will need other seed plans if we wish to
demonstrate that our ensembles are adequately independent of starting point. Thus, it is useful to
be able to construct starting plans that are at least contiguous and tolerably population balanced.
Agglomerative methods (see Section 1.3) or spanning tree methods (see Section 4.3) can be used
for generation of seed plans, and both are implemented in our codebase.

3.2. Sampling from the Space of Valid Plans. Increasing availability of computational re-
sources has fundamentally changed the analysis and design of districting plans by making it pos-
sible to explore the space of valid districting plans much more efficiently and fully. It is now clear
that any literal reading of the requirements governing redistricting permits an enormous number
of potential plans for each state, far too many to build by hand or to consider systematically. The
space of valid plans only grows if we account for the many possible readings of the criteria.

To illustrate this, consider the redistricting rule present in 10 states that dictates that state
House districts should nest perfectly inside state Senate districts, either two-to-one (AK, IA, IL,
MN, MT, NV, OR, WY) or three-to-one (OH, WI). One tight interpretation of this mandate would
be to fix the House districts in advance and admit only those Senate plans that group appropriate
numbers of adjacent House districts. If even this narrow interpretation is applied to Minnesota, for
example, a perfect matching analysis indicates that there are still 6,156,723,718,225,577,984, or over
6× 1018, ways to form valid state Senate plans just by pairing the current House districts (Caldera
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et al., 2020). The actual choice left to redistricters, who in reality control House and Senate lines
simultaneously, is far more open, and 10100 seems to us to be a modest estimate.

Operationalizing the rules. Securing operational versions of rules and priorities governing the redis-
tricting process requires a sequence of modeling decisions, with major consequences for the prop-
erties of the ensemble. Constitutional and statutory provisions governing redistricting are never
precise enough to admit a single unambiguous mathematical interpretation. We briefly survey the
operationalization of important redistricting rules:
• Population balance. For each district, we can limit its percentage deviation from the ideal

size (state population divided by k, the number of districts). The case law around tolerated
population deviation is thorny and still evolving (Hebert et al., 2010, ch. 1).2 Excessively tight
requirements for population balance can spike the rejection rate of the Markov chain and impede
its efficiency or even disconnect the search space entirely. Even for Congressional districts, which
are often balanced to near-perfect equality in enacted plans, a precinct-based ensemble with ≤ 1%

deviation can still provide a good comparator, because those plans typically can be quickly tuned
by a mapmaker at the block level without breaking their other measurable features.
• Contiguity. Most states require district contiguity by law, and it is the standard practice even

when not formally required. But even contiguity has subtleties in practice, because of water,
corner adjacency, and the presence of pieces that are themselves disconnected. Unfortunately,
this means that contiguity must be handled by building and cleaning dual graphs for each state
on a case-by-case basis.
• Compactness. Many states have a ‘compactness’ rule in law indicating a loose preference for

regular district shapes, but few attempt a definition, and several of the conventional definitions are
naive and problematic. There are several standard scores in litigation, especially an isoperimetric
score ("Polsby-Popper") and a comparison to the circumscribed circle ("Reock"), each one applied
to single districts. It is easy to critique these scores, which are readily seen to be under-defined,
unstable, and inconsistent (Bar-Natan et al., 2020; Barnes & Solomon, 2020; DeFord, Lavenant,
et al., 2019; Duchin & Tenner, 2018; Zhang et al., 2020). In practice, compactness is almost
everywhere ruled by the proverbial eyeball test. We will handle compactness in a mathematically
natural manner for a discrete model: we count the number of cut edges in a plan, that is, the
number of edges in the dual graph whose endpoints belong to different districts (see Section 5).
This gives a notion of the discrete perimeter of a plan, and it corresponds well to informal visual
standards of regular district shapes (the eyeball test that is used in practice much more heavily
than any score). The cut edges count is closely (inversely) correlated to the number of spanning
trees of the districts.
• Splitting rules. Many states express a preference for districting plans that ‘respect’ or ‘preserve’

areas that are larger than the basic units of the plan, such as counties, municipalities, and (often
underdefined) communities of interest. There is no consensus on best practices for quantifying
the relationship of a plan to a sparse set of geographical boundary curves. Simply counting the
number of units split (e.g., counties touching more than one district) or employing an entropy-like
splitting score are two alternatives that have been used in prior studies (DeFord & Duchin, 2019;
Mattingly, 2017). See Duchin and Spencer (2021) for a comparison of several alternatives.

2For years, the basis of apportionment has been the raw population count from the decennial census,
but there are clear moves to change to a more restrictive population basis, such as by citizenship.
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• Voting Rights Act (VRA). The Voting Rights Act of 1965 is standing federal law that requires
districts to be drawn to provide qualifying minority groups with the opportunity to elect candi-
dates of choice (Hebert et al., 2010, ch. 3-5). Since the VRA legal test involves assessing "the
totality of the circumstances," including local histories of discrimination and patterns of racially
polarized voting, this is extraordinarily difficult to model in a Markov chain. A new attempt to
operationalize the core notion of effective districts, built collaboratively with data scientists and
a voting rights attorney, can be found in Becker et al. (2021).

• Neutrality. Often state rules will dictate that certain considerations should not be taken into
account in the redistricting process, such as partisan data or incumbency status. This is easily
handled in algorithm design by not recording or inputting associated data, like election results
or incumbent addresses.

Finally, most of these criteria are subject to an additional decision:
• Aggregation and combination. Many standard metrics used to analyze districting plans (as

described above) are computed on a district-by-district basis, without specifying a scheme to
aggregate scores across districts that would make plans mutually comparable. If, for instance,
we use an L∞ or sup norm to summarize the compactness scores of the individual districts, then
all but the worst district can be altered with no penalty. Choosing L1 or L2 aggregation takes
all scores into account, but to some extent allows better districts to cover for worse ones. Pegden
(2017) has argued for L−1 aggregation (i.e., adding reciprocals) to heavily penalize the worst
abuses for scores measured on a [0, 1] scale. A modeler with multiple objective functions must
also decide whether to combine them into a fused objective function, whether to threshold them
at different levels, how to navigate a Pareto front of possible trade-offs, and so on.

Our discussion in Section 6 provides details of how we approach these decisions in our experiments.

4. The Flip and Recombination Chains

4.1. Notation. Given a dual graph G = (V,E), a k–partition of G is a collection of disjoint subsets
P = {V1, V2 . . . , Vk} such that

⊔
Vi = V . The Vi are thought of as ‘districts’ and the partition P

as a ‘districting plan’ on the graph G. The full set of k–partitions of G will be denoted Pk(G).
We may abuse notation by using the same symbol P to denote the labeling function P : V →

{1, . . . , k}. That is, P (u) = i means that u ∈ Vi for the plan P . In a further notational shortcut, we
will sometimes write P (u) = Vi to emphasize that the labels index districts. This labeling function
allows us to represent the set of cut edges in the plan as ∂P = {(u, v) ∈ E : P (u) 6= P (v)}. We
denote the set of boundary nodes by ∂V P = {u ∈ e : e ∈ ∂P}. In the dual graphs derived from
real-world data, our nodes are weighted with populations or other demographic data, which we
represent with functions w : V → R.

This notation allows us to express constraints on the districts efficiently. For example, contiguity
can be enforced by requiring that the induced subgraph on each Vi is connected. The cut edge
count used here as a measure of compactness is written |∂P |. A condition that bounds population
deviation can be written as

(1− ε)

∑
V w(v)

k
≤ |Vi| ≤ (1 + ε)

∑
V w(v)

k
.

For a given analysis or experiment, once the constraints have been set and fixed, we will make use
of a function C : Pk(G) 7→ {True, False} to denote the validity check. This avoids cumbersome
notation to make explicit all of the individual constraints.
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Next, we set out proposal methods for comparison, that is, procedures for transitioning between
states of Pk(G) according to a probabilistic rule. Formally, each XP is a [0, 1]Pk(G)-valued random
variable with coordinates summing to one, describing the transition probabilities. Since Pk(G) is a
gigantic but finite state space, the proposal distribution can be viewed as a stochastic matrix with
rows and columns indexed by the states P , such that the (P,Q) entry XP (Q) is the probability of
transitioning from P to Q in a single move. The resulting process is a Markov chain: each successive
state is drawn according to XP , where P is the current state. Since these matrices are too large to
build, we may prefer to think of the proposal distribution as a stochastic algorithm for modifying
the assignment of some subset of V . This latter perspective does not require computing transition
probabilities explicitly, but rather leaves them implicit in the algorithm.

In this section, we introduce the main Flip and ReCom proposals analyzed in the paper and
describe some of their qualitative properties, with particular attention to the spanning tree method.

(a) Sequence of four flip steps

(b) Before and after 500,000 flip steps

Figure 4. Flip steps. A single node on the boundary changes assignment
at each move, preserving contiguity. This is illustrated schematically on a
5×4 grid and then the end state of a long run is depicted on a 50×50 grid.

4.2. Flip Proposals. At its simplest, a Flip proposal changes the assignment of a single node at
each step in the chain in a manner that preserves the contiguity of the plan. See Figure 4 for a
sequence of steps in this type of Markov chain and a randomly generated 2–partition of a 50× 50

grid, representative of the types of partitions generated by Flip and its variants. This procedure
provides a convenient vehicle for exploring the complexity of the partition-sampling problem.
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To implement Flip, we must decide how to select a node whose assignment will change, for
which we define an intermediate process called Node Choice. To ensure contiguity, it is intuitive to
begin by choosing a vertex of ∂V P or an edge of ∂P , but because degrees vary, this can introduce
nonuniformity to the process. To construct a reversible flip chain we follow Chikina et al. (2017)
and instead sample uniformly from the set of (node, district) pairs (u, Vi) where u ∈ ∂V P and there
exists a cut edge (u, v) ∈ ∂P with P (v) = Vi. This procedure amounts to making a uniform choice
among the partitions that differ only by the assignment of a single boundary node. Pseudocode for
this method is presented in Algorithm 1. The associated Markov chain has transition probabilities
given by

XP (Q) =

{
1

|{(v,P (w)):(v,w)∈∂P}| |{P (u) 6= Q(u) : u ∈ ∂P}| = 1 and |{P (u) 6= Q(u) : u /∈ ∂P}| = 0;

0 otherwise.

This can be interpreted as a simple random walk on Pk(G) where two partitions are connected
if they differ at a single boundary node. Thus, the Markov chain is reversible. Its stationary
distribution is nonuniform, since each plan is weighted proportionally to the number of (node,
district) pairs in its boundary. Evaluating this steady state is further complicated by the fact that
each of these potential neighbors may fail constraint checks governed by θ.

Algorithm 1: Node Choice
Input: Dual graph G = (V,E) and
current partition P

Output: A new partition Q

Select: A (node, district) pair (u, Vi)

uniformly from
{(v, P (w)) : (v, w) ∈ ∂P}

Define: Q(v) =

{
Vi if u = v

P (v) otherwise.

Return: Q

Algorithm 2: Flip
Input: Dual graph G = (V,E) and
the current partition P

Output: A new partition Q

Initialize: Allowed = False
while Allowed = False do

Q = Node Choice(G,P )

Allowed = C(Q)

end

Return: Q

At each step, the Node Choice algorithm grows one district by a node and shrinks another. One
can quickly verify that a Node Choice step maintains contiguity in the district that grows but may
break contiguity in the district that shrinks. In fact, after many steps it is likely to produce a plan
with no contiguous districts at all. To address this, we adopt a rejection sampling approach, only
accepting contiguous proposals. This produces our basic Flip chain (see Algorithm 2 for pseudocode
and Figures 1 and 4 for visuals). The rejection setup does not break reversibility of the associated
Markov chain, since it now amounts to a simple random walk on the restricted state space.

Rejection sampling is practical because it is far more efficient to evaluate whether or not a
particular plan is permissible than to determine the full set of adjacent plans at each step. Both
the size of the state space and the relatively expensive computations that are required at the scale of
real-world dual graphs contribute to this issue. If the proposal fails contiguity or another constraint
check, we simply generate new proposed plans from the previous state until one passes the check.

These methods have the advantage of explainability in court and step-by-step efficiency for
computational purposes, since each new proposed plan is only a small perturbation of the previous
one. The same property that allows this apparent computational advantage, however, also makes it
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difficult for Flip-type proposals to explore the space of permissible plans efficiently. Figure 1 shows
that after 1 million steps the structure of the initial state is still clearly visible, and we will present
evidence that one billion steps is enough to improve matters significantly, but not to the point of
approximate convergence of the ensemble. Thus, the actual computational advantage is less clear,
as it may take a substantially larger number of steps of the chain to provide reliable samples. This
issue is exacerbated when legal criteria impose strict constraints on the space of plans, which may
easily cause disconnectedness of the state space under this proposal. A user can choose to ensure
connectivity by relaxing even hard legal constraints during the run and winnowing to a valid sample
later, which requires additional choices and tuning.

Researchers have attempted to address this slow-mixing issue in practice, including using simu-
lated annealing or parallel tempering in Fifield, Higgins, et al. (2020) and Herschlag et al. (2020),
Herschlag et al. (2017) and a Swendsen-Wang variant in Fifield, Higgins, et al. (2020) that changes
the assignments of several nodes at a time. However, we will show in Section 6 that on the scale
of real-world problems, these fixes are not immediately sufficient to overcome the fundamental bar-
rier to successful sampling that is caused by the combination of extremely slow mixing and the
domination of distended shapes.

4.3. ReCom Proposals. The performance obstructions for the Flip chain motivate the move to
a new Markov chain on partitions, which changes the assignment of many vertices at once while
preserving contiguity. Our new proposal is more computationally costly than Flip at each step in the
Markov chain, but this tradeoff is net favorable thanks to superior convergence and distributional
design.

In maximum generality, each step of these chains will merge some ` out of k districts and
then repartition them into new connected pieces. We call this procedure recombination (ReCom),
motivated by the biological metaphor of recombining genetic information. This general procedure
is summarized in Algorithm 6 in the Appendix.

The focus of the present paper is recombination with a spanning tree method of bipartitioning,
which we now describe. Recall that a spanning tree of a graph is a connected subgraph containing
all n vertices but only n − 1 of the edges, so that there are no cycles in the subgraph. This form
of recombination fuses two adjacent districts (i.e., ` = 2), draws a spanning tree of the merged
subgraph, and cuts it to form two new districts.

Figure 5 shows a schematic of a single step with this proposal; the middle image shows a spanning
tree of the 5× 4 grid.
• First, draw a spanning tree uniformly at random from among all of the spanning trees of the

merged region. The implementation used in the experiments here employs the loop-erased random
walk method of Wilson’s algorithm (Wilson, 1996). Wilson’s algorithm is notable in that it
samples uniformly from all possible spanning trees in polynomial time. The GerryChain package
Voting Rights Data Institute (2018) also has an implementation of minimal spanning trees with
randomized weights, which is faster and qualitatively similar.
• Next, seek an edge to cut from the spanning tree so that the complementary components have

population balance within the permitted tolerance. For an arbitrary spanning tree, it is not
always possible to find such an edge, in which case we draw a new tree; this is another rejection
step in our implementation. In practice, the rejection rate is low enough that this chain runs
efficiently. If there are multiple edges that could be cut to generate partitions with the desired
tolerance, we sample uniformly from among them.
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Figure 5. A schematic of a ReCom spanning tree step for a small grid with
k = 2 districts that are merged (` = 2) and resplit. Deleting the indicated
edge from the spanning tree leaves two connected components with an equal
number of nodes.

Pseudocode for this technique is provided in Algorithm 3.

Algorithm 3: ReCom (Spanning tree bipartitioning)
Input: Dual graph G = (V,E), the current partition P , population tolerance ε

Output: The next partition Q

Select: (u, v) ∈ ∂P uniformly
Set W1 = P (u) and W2 = P (v)

Form the induced subgraph H of G on the nodes of W1 ∪W2.
Initialize: Cuttable = False
while Cuttable = False do

Sample a spanning tree T of H
Let EdgeList = []
for edge in T do

Let T1, T2 = T \ edge
if |T1| − |T2| < ε|T | then

Add edge to EdgeList
Cuttable = True

end
end

end
Select cut uniformly from EdgeList
Let R = T \ cut

Define Q(v) =

{
R(v) v ∈ H

P (v) otherwise
Return: Q

A similar spanning tree approach to creating initial seeds is available: draw a spanning tree for
the entire graph G, then recursively seek edges to cut that leave one complementary component of
appropriate population for a district.
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5. Distributional Design

In Section 6, we will conduct experiments that demonstrate the behavior of the chains. First,
we discuss what is known about their target distributions, and about prospects for approximate
sampling from the target in a reasonable time.

5.1. Spanning Trees and Compactness. As we have discussed already, ‘compactness’ is a vague
but important term of art in redistricting: compact districts are those with tamer or plumper shapes.
This can refer to having high area relative to perimeter, shorter boundary length, fewer spikes or
necks or tentacles, and so on. In the experimental treatment in the current paper, we focus on
the discrete perimeter as a way to measure compactness, and we refer the reader to Duchin and
Tenner (2018) for a deeper discussion of how this fits with the literature in law, political science,
and geography.

Recall from Section 4.1 that for a plan P that partitions a graph G = (V,E), we denote by
∂P ⊂ E its set of cut edges, or the edges of G whose endpoints are in different districts of P . A
slight variant is to count the number of boundary nodes ∂V P ⊂ V (those nodes at the endpoint
of some cut edge, representing geographic units on the frontier of a district). There is a great
deal of mathematical literature connected to concepts of combinatorial perimeter, from the Min
Cut problem to the Cheeger constant to expander graphs. Although we focus on the discrete
compactness scores here, a dizzying array of compactness metrics has been proposed in connection
to redistricting, and the analysis here—that Flip must contend with serious compactness problems—
would apply to any reasonable score, as the visuals throughout this article illustrate.

Figure 6. ReCom and compactness. The recombination proposal tends to
produce compact districts. Each of these plans was selected after only 100
ReCom steps starting from the same vertical-stripes partition. Unlike the
Flip samples, these partitions have relatively short boundaries in addition to
displaying low correlation with the initial state. The picture is suggestive
that the performance of ReCom is more keyed to the number of districts
than the number of constituent units.

The reason that the uniform distribution is so dominated by non-compact districts is a simple
matter of counting: there are far more chaotic than regular partitions. As an illustration, consider
bipartitioning an n× n square grid into pieces of nearly the same number of nodes. If the budget
of edges you are allowed to cut is roughly n, there are polynomially many ways to bipartition, but
the number grows exponentially as you relax the limitation on the boundary size. This exponential
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growth also explains why the imposition of any strict limit on boundary length will leave almost
everything at or near the limit.

As an alternative, let us define sp(G) to be the number of spanning trees of the graph G, and
sp(P ) =

∏
i sp(Vi) to be the product of the number of spanning trees of the parts of a partition.

We will aim to sample from the distribution in which the probability of selecting partition P is
proportional to sp(P ). We first explain why this is desirable and then how ReCom is tailored to
this goal.

Why spanning tree weighting is desirable. First, the mathematics: Kirchhoff’s matrix-tree theorem
tells us that the precise number of spanning trees of any graph G on N nodes is sp(G) = det(∆′),
where ∆′ is any (N−1)×(N−1) minor of the combinatorial Laplacian ∆ of G. Equivalently, sp(G)

is 1
N times the product of the nonzero eigenvalues of the Laplacian. For instance, for an n×n grid,

the number of spanning trees is asymptotic to Cn2

= CN , where C is a constant whose value is
roughly 3.21 (Temperley, 1972). There are deep theorems suggesting that squares are optimal—i.e.,
n×n subgraphs of grids have more spanning trees than any other subgraphs with n2 nodes (Chinta
et al., 2010; Kenyon, 2000). For more discussion, see the open questions in Section 8.1. This means
that if a block-like district is altered by creating a simple ‘neck’ or ‘tentacle’ with just two or three
nodes, it will reduce the number of possible spanning trees by roughly a factor of C2 or C3, making
the district 10 or 30 times less likely to appear when selection is proportional to sp(P ).

The long snaky districts that are observed in the Flip ensembles are nearly trees themselves, and
therefore have a dramatically lower sp(P ) because they admit far fewer spanning trees than their
plumper cousins. For example, the initial partition of the 50× 50 grid in Figure 4 has a spanning
tree score of roughly 101210 while the final partition scores roughly 10282. That means that the tame
partition is over 10900 times preferred by spanning-tree weighting, while the uniform distribution
weights them exactly the same. This explains why districts with a greater number of spanning trees
are more compact to the eye, assuming that the building-block units are roughly comparable.

For another point of view on the spanning tree distribution, consider the vast literature on
clustering and so-called ‘community structure’ in graphs and networks. Combinatorial methods are
very frequently used to identify clusters with high internal connectivity and a low number of exterior
connections; for instance, spanning tree methods to find clusters are exposited in Kleinberg and
Tardos (2006, Section 4.7). From this point of view, ReCom is an efficient way to produce diverse
examples of balanced partitions that draw out the latent cluster structure in a geographical network.

Redistricting is performed by assigning units of census geography to districts, so the analysis
of the district shapes will succeed better and more naturally if it takes that discrete structure
into account while still conforming to the eyeball test. Spanning tree weighting favors districts
that are well clustered and well separated, and it has the added bonus of admitting fast algorithms.
Crucially, it operates without user-defined thresholds, which is an excellent fit for legal applications,
since the law itself prefers ranges to thresholds.

Why ReCom targets the spanning tree distribution. For a partition P to be proposed in a ReCom
chain, we must have selected a spanning tree of G that restricts to each district as a spanning
tree of that district. This means that the probability of selecting a partition P will be roughly
proportional to sp(P ). (The idea that one can cut spanning trees to create partitions, and that
the resulting distribution will have factors proportional to the number of trees in a block, is a very
natural one and appears for instance in this ArXiv note.) We can think of this relationship between

https://arxiv.org/abs/1808.00050
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spanning trees of G and districting plans as projection by the edge deletion map that sends trees
to partitions.

To illustrate, consider the k = 2 case. The number of ways for a recombination step to produce
a bipartition of a graph G into subgraphs H1 and H2 is the number of spanning trees of H1 times
the number of spanning trees of H2 times the number of edges between H1 and H2 that exist in G.

New work of Cannon et al. (Cannon et al., 2020), building on the research in the present
paper, introduces a variant of ReCom that is proven to have precisely this stationary distribution.
By slightly modifying the method of selecting district pairs and adding a correction term to the
acceptance probability, the authors create a modified chain whose steady state is proportional to
sp(P ) and establish detailed balance, which means that the chain is reversible. Long runs with
reversible ReCom show that its convergence speed is significantly slower (both in terms of step
count and runtime) than the unweighted version described in the present paper, but that it obtains
very similar summary statistics on grids and on real data at scale.

Figure 2 shows that ReCom succeeds at approximating the exact spanning tree distribution on
a small grid with respect to the cut edges count. This explicit comparison is not possible on a
full-scale problem because of the lack of a complete enumeration of plans, but we note that the
ability of ReCom to target the sp distribution will likely get better on large problems because the
discrepancy is driven by boundary effects between districts, and those effects become relatively
smaller as the districts grow large.

5.2. Complexity and Efficiency. We turn to tractability considerations next. In the study of
computational complexity, P ⊆ RP ⊆ NP are complexity classes (polynomial time, randomized
polynomial time, and nondeterministic polynomial time); it is widely believed that P = RP, and
RP 6= NP. Recent theoretical work of DeFord–Najt–Solomon (Najt et al., 2019) shows that flip
and uniform flip procedures mix exponentially slowly on several families of graphs, including planar
triangulations of bounded degree. That paper also shows that even approximately uniform sampling
is intractable, in the sense that an efficient solution would imply RP = NP. Thus, methods that
target the uniform distribution may face complexity obstructions, particularly with respect to worst-
case scenarios. This should trigger increased scrutiny of the quality of sampling. We remark that in
Fifield, Imai, et al. (2020), the authors attempt to approximate uniform sampling by reweighting a
Gibbs sample with normalizing coefficients that are imposed after the sample is collected. For this
to succeed, the Gibbs chain would need to be run for long enough to accept significant numbers
of exponentially unlikely proposals into the ensemble. Because the sample size needed would to
obtain good estimates would therefore explode, this scheme does not circumvent the complexity
obstructions to uniform sampling.

Our experiments in Section 6 highlight some of these challenges in a practical setting by showing
that Flip ensembles continue to give unstable results—with respect to starting point, run length,
and summary statistics—at lengths in the many millions. Practitioners must opt for fast imple-
mentations and very large subsampling time; even then, the Flip approach requires dozens of tuning
decisions, which undermines any sense in which the associated stationary distribution is canonical.

The second major design feature of recombination, alongside its natural relationship to com-
pactness, is its efficiency. The ReCom chain is designed so that each step completely destroys the
boundary between two districts, in the sense that the previous pairwise boundary has no impact on
the next step. As there are at most

(
k
2

)
boundaries in a given k-partition, this observation suggests

that we can lose most memory of our starting point in a number of steps that is polynomial in
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k and does not depend on n at all. The Markov chain literature has examples of processes on
grids with constant scaling behavior, such as the Square Lattice Shuffle (Håstad, 2006). That chain
has arrangements of n2 different objects in an n × n grid as its set of states; a move consists of
randomly permuting the elements of each row, then of each column—or just one of those, then
transposing. Its mixing time is constant, that is, independent of n. Chains with logarithmic mixing
time are common in statistical mechanics: a typical fast-mixing model, like the discrete hard-core
model at high temperature, mixes in time n log n with local moves (because it essentially reduces
to the classic coupon collector problem), but just log n with global moves. See Section 8.1 for more
discussion of research questions in this direction for exploring recombination.

Our experiments here suggest that the time needed for effective sampling has moderate growth
in the problem size: tens of thousands of recombination steps give stable results on practical-scale
problems whether we work with the roughly 9,000 precincts of Pennsylvania or the roughly 100,000
census blocks in our Virginia experiments. We turn to these experiments now.

6. Experimental Comparison

In this section, we run experiments on the standard toy examples for graph problems, including
n × n grids as well as empirical dual graphs generated from census data. All of our experiments
were carried out using the GerryChain Python package (Voting Rights Data Institute, 2018), with
additional source code available for inspection (DeFord, Duchin, & Solomon, 2019). The state
geographic and demographic data was obtained from the Census TIGER/Line geography program
accessed through the National Historical Geographic Information System (NHGIS) (Manson et al.,
2018). The real-world graphs can be large, but they share key properties with lattices—they tend
to admit planar embeddings, and most faces are triangles or squares. Figure 7 shows the state of
Missouri at four different levels of census geography, providing good examples of the characteristic
structures we see in our applications.

Counties
115 nodes

County Subunits
1,395 nodes

Census Tracts
1,393 nodes

Census Blocks
343,565 nodes

Figure 7. Four dual graphs for Missouri at different levels of geography
in the census hierarchy.

6.1. Projection to Summary Statistics. The space of districting plans is wildly complicated
and high-dimensional. For the redistricting application, we seek to understand the measurable
properties of plans that have political or legal relevance, such as their partisan and racial statistics;
this amounts to projection to a much lower-dimensional space. In the language of Geyer (2011),
these push-forward statistics are called functionals.
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# A Seats V seed H seed V seed H seed V seed H seed V seed H seed

0 878,400 0 1,430,511 0 1 0 1 0
1 121,600 0 13,223,704 0 2 0 2 0
2 0 0 38,333,268 61,711 1 0 1 0
3 0 0 262,315,135 183,597,693 1,656 1,626 2,751 2,978
4 0 1,000,000 480,049,699 605,371,790 7,022 7,364 14,462 15,309
5 0 0 197,367,357 208,772,091 1,318 1,010 2,783 1,713

≥ 6 0 0 7,280,326 2,196,715 0 0 0 0

Figure 8. Boxplots and summary statistics for a synthetic election on a
100 × 100 grid with k = 10 districts, comparing Flip runs to ReCom runs
from two different starting positions. The boxplots show the proportion of
A votes by district, where the districts are ordered from smallest A share
to largest A share. Though this multistart heuristic does not rigorously
guarantee the convergence of ReCom, we can be certain that one billion
steps is not enough for Flip.
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Many of the metrics of interest on districting plans are formed by summing some value at each
node of each district. For example, the winner of an election is determined by summing the votes
for each party in each geographic unit that is assigned to a given district, and so ‘Democratic seats
won’ is a summary statistic that is real- (in fact integer-) valued. It is plausible that chains that
mix slowly in the space of partitions will converge much more quickly in their projection to some
summary statistics.

To investigate this possibility, we begin with a toy example with synthetic vote data on a grid,
comparing the behavior of the Flip and ReCom proposals (Figure 8). For each Markov chain, we
evaluate statistics using a vote distribution on a 100 × 100 grid—that is, each node is assigned a
voting outcome. In this example, each node is assigned to vote for a single party and the votes
for Party A are placed in the top 40 rows of the grid. We use two initial districting plans: the
familiar vertical-stripes partition and the counterpart horizontal-stripes partition. We collect every
state visited by each Markov chain into an ensemble; as we extend the chain, the sample statistics
over that ensemble will converge to the push-forward of the stationary distribution, irrespective of
starting point. This appeals generally to the family of results called Markov Chain Central Limit
Theorems. See Geyer (2011, Section 1.8) for an introduction and some literature pointers. In the
figure, the boxes show the 25th–75th percentile statistics over the ensemble and the whiskers span
from 1st to 99th. The table records the number of districts with an A majority for each plan; if A
were a political party, an A majority in three districts would mean that the party won 3 seats out
of 10.

Our results confirm that in this example the Flip chain is unable to produce diverse election
outcomes from either starting point after 1,000,000 steps; the Flip ensemble primarily reported one
seat outcome in each scenario, giving four seats in the first setup and zero seats in the second.
Matters have changed after 1,000,000,000 steps, where the ensemble seeded at the vertical partition
has diffused to many possible seat outcomes, but still does not match the summary statistics
gathered from the corresponding horizontal-seeded run. The ReCom ensemble nearly exclusively
records outcomes of three, four, or five seats, and the histograms from the two seeds are in qualitative
agreement after only 10,000 steps. The corresponding boxplots show a more detailed version of this
story, highlighting the ways in which each ensemble captures the spatial distribution of voters. The
recombination walk takes just a few steps to forget its initial position and then returns consonant
answers from the two initial positions. We note that this Flip ensemble is far from convergence
after a billion steps, so the evidence here does not offer a conclusive comparison of its stationary
distribution to that of ReCom, though it suggests a marked difference.

6.2. Imposing Constraints. We begin by noting that the tendency of Flip chains to draw non-
compact plans is not limited to grid graphs but occurs on geographic dual graphs just as clearly.
The first run in Figure 9 shows that Arkansas’s block groups admit the same behavior, with upwards
of 90% of nodes on the boundary of a district, and roughly 45% of edges cut, for essentially the
entire length of the run. The initial plan has under 20% boundary nodes, and around 5% of edges
cut; the basic recombination chain (Run 3) stays well within range of those statistics.

Using thresholds or constraints to ensure that the Flip proposals remain reasonably criteria-
compliant requires a major tradeoff. While this enforces validity, it is difficult for Flip Markov
chains to generate substantively different partitions under tight constraints. Instead the chain can
flip the same set of boundary nodes back and forth and remain in a small neighborhood around the
initial plan. See the second run in Figure 9 for an example. Sometimes, this is because an overly
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Run 1: 100K Flip steps, shown every 25K, no compactness constraint

Run 2: 100K Flip steps, shown every 25K, limited to 5% total cut edges

Run 1 boundary statistics Run 2 boundary statistics

Run 3: 10K ReCom steps, shown every 2500, no compactness constraint

Run 4: 10K ReCom steps, shown every 2500, limited to 5% total cut edges

Run 3 boundary statistics Run 4 boundary statistics

Figure 9. Arkansas block groups partitioned into k = 4 districts, with
population deviation limited to 5% from ideal. Imposing a compactness
constraint makes the Flip chain unable to move very far.
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tight constraint disconnects the state space entirely and leaves the chain exploring a small connected
component. (An example of this behavior was presented in W. K. T. Cho and Rubinstein-Salzedo
(2019, figure 2), though its significance was misinterpreted by the authors with respect to the
test in Chikina et al. (2017).) Recombination often responds better to sharp constraints, because
large changes at each step mean that ReCom chains do not tend to run at the limit values when
constrained. Still, the interactions between various choices of constraints and priorities are so far
vastly underexplored. In Section 6.3, we will consider the use of preferential acceptance functions
rather than hard rejection constraints on the chains.

6.3. Temperature Variation. As we have shown, the Flip proposal tends to create districts with
extremely long boundaries, which does not produce a comparison ensemble that is practical for our
application. To overcome this issue, we could attempt to modify the proposal to favor districting
plans with shorter boundaries. As noted already, this is often done with a standard technique in
MCMC called the Metropolis–Hastings algorithm: fix a compactness score, such as a notion of
boundary length |∂P |, prescribe a distribution proportional to x|∂P | on the state space, and use
the Metropolis–Hastings rule to preferentially accept more compact plans. Even if we are unable
to achieve a sample that approximates this distribution, it could be the case that targeting short
boundaries with an accelerated Flip strategy generates a suitably diverse ensemble in reasonable
time for our applications.

The Flip distribution was already slow to mix, and Metropolis–Hastings adds an additional score
computation and accept/reject decision at every step to determine whether to keep a sample; this
typically implies that this variant runs more slowly than the unweighted proposal distribution. To
aid in getting reliable results from slow-mixing systems, it is common practice to employ another
technique from the statistical physics literature called simulated annealing, which iteratively tightens
the prescribed distribution toward the desired target—effectively taking larger and wilder steps
initially to promote randomness, then becoming gradually more restrictive.

To test the properties of a simulated annealing run based on a Metropolis-style weighting, we run
chains to partition Tennessee and Kentucky block groups into nine and six Congressional districts,
respectively. We run the Flip walk for 500,000 steps beginning at a random seed drawn by the
recursive tree method. The first 100,000 steps use an unmodified Flip proposal; Figure 10 shows
that after this many steps, the perimeter statistics are comparable to the Arkansas outputs shown
here, with over 90% boundary nodes and nearly 50% cut edges. This initial phase is equivalent
to using an acceptance function proportional to 2β|∂P | with β = 0. The remainder of the chain
linearly interpolates β from 0 to 3 along the steps of the run.

Figure 10 shows how these Tennessee and Kentucky chains evolved. Ultimately, there is a
relatively small difference between the initial and final states in both examples: the simulated
annealing has caused the random walk to return to very near its start point. This is due to the
properties of the Flip proposal. The districts grow tendrils into each other, but the boundary
segments rarely change assignment. Thus, when the annealing forces the tendrils to retract, they
collapse near the original districts, and this modified Flip walk fails to move effectively through
the space of partitions. These examples do not imply that no annealing-based method can work
in practice, but rather that care must be taken to verify that a diverse collection of plans is being
created, as the choice of energy function, length of annealing schedule, and choice of state space
constraints can all have a major impact on the success and effectiveness of this sampling approach.
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TN Boundary Nodes TN Cut Edges KY Boundary Nodes KY Cut Edges

Figure 10. Snapshots of the TN and KY annealing ensembles after each
100,000 steps. Comparing the starting and ending states shows only slight
changes to the plans as a result of the boundary segments mostly remaining
fixed throughout the chain.

Other ensemble generation approaches such as Fifield, Higgins, et al. (2020) use parallel tempering
(also known as replica exchange), a related technique in MCMC also aimed at accelerating its
dynamics. In this algorithm, chains are run in parallel from different start points at different
temperatures, then the states are occasionally exchanged between temperatures. Exactly the issues
highlighted already apply to the individual chains in a parallel tempering run, so this strategy may
also struggle to introduce meaningful new diversity.
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These experiments suggest that the tendency of Flip chains to produce fractal-esque shapes is
extremely difficult to remediate and that direct attempts to do so end up impeding the progress of
the chain through the state space. On moderate-sized problems, this can conceivably be countered
with careful tuning and extremely long runs. By contrast, ReCom generates plans with relatively few
cut edges (usually comparable to human-made plans) by default, and our experiments indicate that
its samples are approximately uncorrelated after far fewer steps of the chain—hundreds rather than
billions. Weighted variants of ReCom can then be tailored to meet other principles by modifying the
proposal or the acceptance probabilities to favor higher or lower compactness scores, or to favor the
preservation of larger units like counties and communities of interest. With the use of constraints
and weights, one can effectively use ReCom to impose and compare operational versions of the
redistricting rules and priorities described in Section 3.2 (Becker et al., 2021; Caldera et al., 2020;
DeFord & Duchin, 2019; DeFord et al., 2018; Duchin & Spencer, 2021).

7. Case Study: Virginia House of Delegates

Finally, we offer a brisk demonstration of what a high-quality comparator ensemble can do in
a redistricting problem of current legal interest. We look at the Virginia House of Delegates plans
that were recently debated in the Bethune-Hill cases that went to the Supreme Court in 2017 and
2019. We include a brief discussion here, with supporting materials in Appendix B. For full details,
see DeFord et al. (2018).

The districting plan for Virginia’s 100-member House of Delegates was commissioned and enacted
by its Republican legislative caucus in 2011, following the 2010 census. That plan was challenged in
complicated litigation that went before multiple federal courts, with the ultimate finding that the
plan was an unconstitutional racial gerrymander. The core of the courts’ reasoning was that it is
impermissible for the state to have expressly elevated the Black voting age population (BVAP) in 12
districts to the 55% mark. (See Figure 11 to see this conspicuous feature.) Defending the enacted
plan, the state variously claimed that the high BVAP was necessary for compliance with the Voting
Rights Act and that it was a natural consequence of the state’s geography and demographics. The
courts disagreed, finding that 55% BVAP was unnecessary for VRA compliance in 11 of 12 districts,
and that it caused dilution of the Black vote elsewhere in the state.

We can use a ReCom ensemble to investigate whether the BVAP > 0.55 property might happen
by chance, as a mere consequence of human geography. (It does not.) What’s more, we can home
in on this last question, investigating how and where the ‘packing’ in the high-BVAP districts leads
to ‘cracking’ in others. In the figure, we can locate the costs to electoral opportunity across the
remaining districts: it is the next four districts and even the nine after that that exhibit depressed
BVAP, supporting claims of vote dilution.

We emphasize that ensemble analysis cannot stand alone in the study of gerrymandering, but it
provides a unique ability to identify outliers against alternative valid plans, holding political and
physical geography constant. It is also important to note that this proposed use of ensembles is
strictly for assessment, and we in no way endorse the use of randomly sampled plans for enactment.
The use of modeling to assess human judgment does not demand the excision of human judgment.



Recombination: A Family of Markov Chains for Redistricting 28

12 Districts4 Districts9 Districts4 Districts4 Districts

Figure 11. Black voting age population (BVAP) in the 33 districts affected
by the court challenge. To facilitate comparison, districts are sorted from
lowest BVAP to highest in each plan. Dots show the BVAP levels in the
challenged plan, and the box-and-whiskers show the ensemble of alternative
plans. The ‘packing’ of the top 12 districts has an unmistakable cost in
the following four districts, and even the next nine, which diminishes the
opportunity of Black voters to elect candidates of choice.

8. Discussion and Conclusion

Ensemble-based analysis provides much-needed machinery for understanding districting plans in
the context of viable alternatives. By assembling a diverse and representative collection of plans, we
can learn about the range of possible district properties along several axes, from partisan balance
to shape to demographics. When a proposed plan is shown to be an extreme outlier relative to a
population of alternatives, we might infer that the plan is better explained by goals and principles
that were not stated (and so were not incorporated in the model design).

Due to the extremely large space of possible plans for most realistic redistricting problems,
we can come nowhere close to complete enumeration of alternatives. For this reason, we turn to
algorithmic sampling, but the design of an ensemble-generation algorithm is a subtle task with
major mathematical, statistical, and computational challenges. Comparator plans must be legally
viable and pragmatically plausible to draw power from the conclusion that a proposed plan has
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very different properties. Moreover, to promote consistent and reliable analysis, we should strive
to connect the sampling method to a well-defined distribution on the space of plans that not only
has favorable qualitative properties but also can be sampled tractably. This consideration leads us
to study design and diagnostics for Markov chains.

In this article we have introduced and surveyed ReCom, focusing on a spanning tree bipartition
implementation, discussing it in theoretical and empirical terms. Across a range of small and large
experiments with synthetic and observed data, we find that a run assembled in hours to days on a
standard laptop produces large, diverse ensembles of plausible districting plans. As we write in early
2021, the new redistricting cycle has begun, and we expect these methods to have a practical impact
as line-drawers—and the watchdogs that hold them to high standards—gear up for a districting
reboot around the country. At the same time, the associated research questions are very much
alive.

8.1. Open Questions. We end with a sampling of the many interesting questions and research
directions that remain to be explored.

Mathematics.
• Explore the mathematical properties of spanning tree bipartitioning. For instance, what propor-

tion of spanning trees in a grid have a balanced cut—an edge whose complementary components
have the same number of nodes? How about in a triangular lattice?
• Following Akitaya et al. (2019) and Akitaya et al. (2020), study the ergodicity of the chain, that

is, the connectivity of the state space by Flip and ReCom moves, under various constraints on
district population balance. In particular, estimate the ReCom diameter of the state space of
exactly balanced k-partitions of n × n grids—the most steps that might be required to connect
any two partitions. We conjecture that the diameter is sublinear (in fact, logarithmic) in n for
fixed k, despite the super-exponential growth of the state space itself.
• Building on the same two papers and on Najt et al. (2019) and Cohen-Addad et al. (2020),

develop our understanding of computational complexity of sampling from various distributions
on balanced partitions. Those authors collectively prove results for planar graphs and for bounded
tree width; it would be valuable to continue to propose smaller classes of graphs that come closer
to the lattice-like structure observed in geographic dual graphs.
• Prove rapid mixing of ReCom for the n × n grid case—that is, show that the chain approaches

stationarity in a number of steps that is polynomial in n.
• Experiments show that the number of cut edges appears to be normally distributed in a ReCom

ensemble (see Appendix Figure 14(B)). Prove a central limit theorem for boundary length in
ReCom sampling of n× n grids into k districts, with parameters depending on n and k. Clelland
et al. (2020) find a nearly linear relationship between cut edges and sp in an empirical analysis,
but with a somewhat different slope for Flip and for ReCom samples. There are many questions
to be explored in that direction.

Computation.
• Propose other balanced bipartitioning methods to replace spanning trees, supported by fast

algorithms. Subject these methods to similar tests of quality, like adaptability to districting
principles and heuristic convergence in projection to summary statistics.
• Find effective parallelizations to multiple CPUs while retaining control of the sampling distribu-

tion.
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Applied Modeling.
• Study the stability of ReCom summary statistics to perturbations of the underlying graph. This

ensures that ensemble analysis is robust to some of the implementation decisions made when
converting geographical data to a dual graph.
• Stationarity can be reached more quickly for certain summary statistics than for others. Find

conditions on summary statistics that suffice for faster convergence in projection. For the sum-
mary statistics most relevant to redistricting, compare the outputs across ensemble generation
techniques.
• Identify sources of voting pattern data (e.g., recent past elections) and summary statistics (e.g.,

metrics in the political science literature) that best capture the signatures of racial and partisan
gerrymandering.
• Consider whether these analyses can be gamed: Could an adversary with knowledge of a Markov

proposal create plans that are extreme in a way that is hidden, avoiding an outlier finding?
ReCom is available for use as an open-source software package, accompanied by a suite of tools

to process maps and facilitate MCMC-based analysis of plans (Voting Rights Data Institute, 2018,
2020). Beyond promoting adoption of this methodology for ensemble generation, we aim to use
this release as a model for open and reproducible development of tools for redistricting. By making
code and data public—and making a sustained effort to thoughtfully engage with the problem in
its full political and legal complexity—we can promote public trust in expert analysis and facilitate
broader engagement among the many interested parties in the redistricting process.
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Appendix A. Algorithmic Variants

A.1. Uniformizing the Flip Walk. Although Algorithm 2 on its own does not have a uniform
steady-state distribution, it is possible to adjust the transition probabilities to target a uniform
distribution, as in the work of Chikina–Frieze–Pegden (Chikina et al., 2017). This can be done by
adding self-loops to each plan in the state space to equalize the degree; the resulting technique is
given in Algorithm 4. To see that this has a uniform steady-state distribution over the permissible
partitions of Pk(G), we note that with M set to the maximum degree in the state space and

p =
|{(u, P (v)) : (u, v) ∈ ∂P}|

M · |V |
,

we have

XP (Q) =


1− p Q = P

p |{P (u) 6= Q(u) : u ∈ V }| = 1

0 otherwise.
Continuing to follow Chikina et al., we can accelerate the Uniform Flip algorithm without changing
its proposal distribution by employing a function that returns an appropriate number of steps to
wait at the current state before transitioning, so as to simulate the expected self-loops traversed
before a non-loop edge is chosen. This variant is in Algorithm 5. Since the geometric variable
computes the expected waiting time before selecting a node from ∂V P , this recovers the same walk
and distribution with many fewer calls to the proposal function.

Algorithm 4: Uniform Flip
Input: Dual graph G = (V,E) and
current partition P

Output: New partition Q

Initialize:
p =
|{(u, P (v)) : (u, v) ∈ ∂P}|

M · |V |

if Bernoulli(1-p) = 1 then
Return: P

else
Allowed = False
while Allowed = False do

Q = Node Choice(G, p)

Allowed = C(Q)

end
Return: Q

end

Algorithm 5: Uniform (Fast)
Input: Dual graph G = (V,E) and
current partition P

Output: Number of steps to wait in
the current state (σ) and next
partition (Q)

Initialize:
p =
|{(u, P (v)) : (u, v) ∈ ∂P}|

M · |V |
σ ∼ Geometric(1− p)

Q = Node Choice(G, p)

if C(Q) = False then
Return: (σ, P )

else
Return: (σ,Q)

end
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A.2. The General Framework for Recombination. Algorithm 6 offers an extremely general
family of related Markov chains.

Algorithm 6: Recombination (General)
Input: Dual graph G = (V,E), the current partition P , the number of districts to merge `

Output: The next partition Q

Select ` ≥ 2 districts W1,W2, . . . ,W` from P .
Form the induced subgraph H of G on the nodes of W =

⋃`
i=1 Wi.

Create a partition R = {U1, U2, . . . , U`} of H

Define Q(v) =

{
R(v) if v ∈ H

P (v) otherwise
Return: Q

There are two algorithmic design decisions that are required to specify the details of a ReCom
chain:
• The first parameter in the ReCom method is how to choose which districts are merged at

each step. By fixing the partitioning method, we can create entirely new plans as in Section 3.1
by merging all of the districts at each step (` = k). For most of our use cases, we work at the other
extreme, taking two districts at a time (` = 2), and we select our pair of adjacent districts to be
merged proportionally to the length of the boundary between them, which improves compactness
quickly. Bipartitioning is usually easier to study than `-partitioning for ` > 2. More importantly
for this work, the slow step in a recombination chain is the selection of a spanning tree. Drawing
spanning trees for the ` = k case (the full graph) is many times slower than for ` = 2 when k is
large, making bipartitioning a better choice for chain efficiency. This approach also generalizes in
a second way: We can take a (maximal) matching on the dual graph of districts and bipartition
each merged pair independently, taking advantage of the well-developed and effective theory of
matchings.
• The choice of (re)partitioning method offers more freedom. Desirable features include full

support over contiguous partitions, ergodicity of the underlying chain, ability to control the distri-
bution with respect to legal features (particularly population balance), computational efficiency,
and ease of explanation in non-academic contexts like court cases and reform efforts. Potential
examples include standard graph algorithms, like the spanning tree partitioning method we will
introduce in Section 4.3, as well as methods based on minimum cuts, spectral clustering, or
shortest paths between boundary points.
Setting these two choices gives a well-defined Markov chain.
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Appendix B. Plots for Virginia Case Study

Here, we present supporting evidence for the Virginia House of Delegates ensemble analysis de-
scribed in Section 7, focusing on the portion of the state covered by the invalidated districts and
their neighbors. Figure 12 shows two possible attempts to assess whether the Black voting age popu-
lation (BVAP) is excessively elevated in the top 12 districts without the benefit of ensemble analysis.
One approach is to use other human-made plans for comparison. Besides the original enacted plan,
Figure 12 features some replacement proposals introduced in the legislature—a Democratic caucus
plan (Dem) and a sequence of Republican counterproposals (GOP1, GOP2, GOP3), organizing the
33 districts from lowest BVAP to highest for each plan. The figure also shows statistics for reform
plans proposed by the civil rights group NAACP and by the Princeton Gerrymandering Project,
and finally the plan drawn by a court-appointed expert (or ‘special master’). Interpreting these
comparisons is difficult because the alternative plans are sharply limited in number, and their de-
signers may have had their own agendas. A second approach is to forego the comparison with other
plans and simply make the observation that the enacted plan’s BVAP values conspicuously jump
the 37-55% BVAP range, the same range that expert reports indicate might be plausibly necessary
for Black residents to elect candidates of choice. But neither of these adequately controls for the
effects of the actual clustering of Black population across the state geography—maybe the enacted
plan just shows how the population would fall across districts formed without undue attention to
race. To address that, the ensemble method generates a large, diverse collection of alternative plans
made without consideration of racial statistics, holding the state’s human and physical geography
constant.

Figures 13–15 demonstrate nonconvergence for Flip chains and are suggestive of convergence for
ReCom, though it is always difficult to rule out pseudo-convergence. In particular, Figure 15 makes
use of a metric called the mean-median score; it is a signed measure of party advantage that is one
of the leading partisan metrics in the political science literature. In Figure 16, we apply the ReCom
outputs, studying the full ensemble (top plot) and the winnowed subset of the ensemble containing
only plans in which no district exceeds 60% BVAP (bottom). This finally allows us to answer
questions about whether structural constraints explain the BVAP pattern in the enacted plan. The
full ensemble suggests that the pattern is not explained by the human geography of Virginia or by
the districting rules of compactness, contiguity, and population balance. The winnowed ensemble
helps us determine whether disqualifying plans with extremely elevated Black population will change
the overall properties of the sample, mitigating the indicators of packing and cracking. (It does
not.)
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(a) Enacted (b) Dem (c) GOP1 (d) GOP2

(e) GOP3 (f) NAACP (g) Princeton (h) Remedial

12 Districts4 Districts9 Districts4 Districts4 Districts

Figure 12. Eight proposed House of Delegates plans as described in the
text. The boxplot shows the Black voting age population (BVAP) in the 33
districts affected by the court ruling, ordered from lowest to highest BVAP
in each plan. The 2011 enacted plan jumps the key 37-55% BVAP range
entirely, but the collection of other plans makes it difficult to tell how many
more 37-55% BVAP plans might be expected or possible.
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Figure 13. Convergence heuristics. Black voting age population (BVAP)
levels in the enacted plan are compared to two synthetically generated seed
plans. Ten million steps is not enough to mitigate the dependence on the
starting point in a Flip run. By contrast, 20,000 steps overcomes the depen-
dence on starting point for a recombination run, with most of the progress
in the first 10,000 steps. Top row: levels at starting points. Middle row:
Flip (left) and ReCom (right) ensembles from three starting points. Bottom
row: runs of varying lengths starting from enacted plan.
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(a) Flip (b) ReCom

(c) Flip (d) ReCom

Figure 14. Compactness comparison. Histograms (a,b) and traces (c,d)
of the boundary length. Flip ensembles saturate the worst allowable com-
pactness score (here, set to twice the value of the enacted plan).
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(a) Seed 31 (b) Seed 99 (c) Enacted

(d) Seed 31 (e) Seed 99 (f) Enacted

Figure 15. Projection to partisan statistics. Mean-median (partisan sym-
metry) scores, illustrating dependence of Flip ensembles on starting point
after one million steps.
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12 Districts4 Districts9 Districts4 Districts4 Districts

12 Districts4 Districts9 Districts4 Districts4 Districts

Figure 16. Ensemble analysis. Black voting age population (BVAP) levels
in the Enacted plan can now be compared to an ensemble of population-
balanced, compact plans that hold the state’s demographics and geography
constant. Top: full ReCom ensemble, repeated from Section 7 for compari-
son. Bottom: same ensemble, winnowed to ≤60% BVAP.
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