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Abstract

We investigate the capacity control provided by

dropout in various machine learning problems.

First, we study dropout for matrix completion,

where it induces a distribution-dependent regular-

izer that equals the weighted trace-norm of the

product of the factors. In deep learning, we show

that the distribution-dependent regularizer due to

dropout directly controls the Rademacher com-

plexity of the underlying class of deep neural net-

works. These developments enable us to give con-

crete generalization error bounds for the dropout

algorithm in both matrix completion as well as

training deep neural networks.

1. Introduction

Dropout is a popular algorithmic regularization technique

for training deep neural networks that aims at “breaking

co-adaptation” among neurons by randomly dropping them

at training time (Hinton et al., 2012). Dropout has been

shown effective across a wide range of machine learning

tasks, from classification (Srivastava et al., 2014; Szegedy

et al., 2015) to regression (Toshev & Szegedy, 2014). No-

tably, dropout is considered an essential component in the

design of AlexNet (Krizhevsky et al., 2012), which won the

ImageNet challenge in 2012 with a significant margin.

Dropout regularizes the empirical risk by randomly perturb-

ing the model parameters during training. A natural first

step toward understanding generalization due to dropout,

therefore, is to instantiate the explicit form of the regularizer

due to dropout. In linear regression, with dropout applied

to the input layer (i.e., on the input features), the explicit

regularizer was shown to be akin to a data-dependent ridge

penalty (Srivastava et al., 2014; Wager et al., 2013; Baldi

& Sadowski, 2013; Wang & Manning, 2013). In factored

models, dropout yields more exotic forms of regulariza-

tion. For instance, dropout induces regularizer that behaves

similar to nuclear norm regularization in matrix factoriza-
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tion (Cavazza et al., 2018; Mianjy et al., 2018), in two layer

linear networks (Mianjy et al., 2018), and in deep linear

networks (Mianjy & Arora, 2019). However, none of the

works above discuss how the induced regularizer provides

capacity control, or help us establish generalization bounds

for dropout.

In this paper, we give explicit forms of the regularizers

induced by dropout for the matrix sensing problem and two-

layer neural networks with ReLU activations. Further, we

establish capacity control due to dropout and give precise

generalization bounds. Our key contributions are as follows.

1. Our generalization bounds are solely in terms of

the value of the explicit regularizer due to dropout.

This is a significant departure from most of the prior

work wherein dropout is analyzed in conjunction with

additional norm-based capacity control, e.g., max-

norm (Wan et al., 2013; Gao & Zhou, 2016), or `p norm

on the weights of the model (Zhai & Wang, 2018).

2. Our generalization bounds are data-dependent. We

identify a simple distributional property (a notion we

refer to as retentivity) that yields tight generalization

bounds as evidenced by matching lower and upper

bounds. We believe that this property may be useful

more generally; see Zhang et al. (2021) for another

application.

3. Our results emphasize the role of parametrization, i.e.,

the choice of model architecture. We find that dropout

does not yield useful capacity control when training a

two-layer linear networks (unless we further assume

that the covariance matrix of input features satisfies cer-

tain isotropic assumption). On the other hand, dropout

for training a network with convolutional topology or

a non-linearity imparts useful inductive bias (see Sec-

tion 4 for more details).

4. We provide extensive numerical evaluations for vali-

dating our theory including verifying that the proposed

theoretical bound on the Rademacher complexity is

predictive of the observed generalization gap as well as

highlighting how dropout breaks “co-adaptation”, a no-

tion that was the main motivation behind the invention

of dropout (Hinton et al., 2012).
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The rest of the paper is organized as follows.

1. In Section 2, we study dropout for matrix completion,

wherein, the matrix factors are dropped randomly during

training. We show that this algorithmic procedure induces

a data-dependent regularizer that in expectation behaves

similar to the weighted trace-norm which has been shown

to yield strong generalization guarantees for matrix comple-

tion (Foygel et al., 2011).

2. In Section 3, we study dropout in two-layer ReLU net-

works. We show that the regularizer induced by dropout

is a data-dependent measure that in expectation behaves

as `2-path norm (Neyshabur et al., 2015a), and establish

distribution-dependent generalization bounds.

3. In Section 5, we present empirical evaluations that con-

firm our theoretical findings for matrix completion and deep

regression on real world datasets including the MovieLens

data, as well as the MNIST and Fashion MNIST datasets.

1.1. Related Work

Dropout was first introduced by Hinton et al. (2012) as an

effective heuristic for algorithmic regularization, yielding

lower test errors on the MNIST and TIMIT datasets. In a

subsequent work, Srivastava et al. (2014) reported similar

improvements over several tasks in computer vision (on

CIFAR-10/100 and ImageNet datasets), speech recognition,

text classification and genetics.

Thenceforth, dropout has been widely used in training state-

of-the-art systems for several tasks including large-scale

visual recognition (Szegedy et al., 2015), large vocabulary

continuous speech recognition (Dahl et al., 2013), image

question answering (Yang et al., 2016), handwriting recog-

nition (Pham et al., 2014), sentiment prediction and ques-

tion classification (Kalchbrenner et al., 2014), dependency

parsing (Chen & Manning, 2014), and brain tumor segmen-

tation (Havaei et al., 2017).

Following the empirical success of dropout, there have been

several studies in recent years aimed at establishing theo-

retical underpinnings of why and how dropout helps with

generalization. Early work of Baldi & Sadowski (2013)

showed that for a single linear unit (and a single sigmoid

unit, approximately), dropout amounts to weight decay reg-

ularization on the weights. A similar result was shown by

McAllester (2013) in a PAC-Bayes setting. For generalized

linear models, Wager et al. (2013) established that dropout

performs an adaptive regularization which is equivalent to a

data-dependent scaling of the weight decay penalty. In their

follow-up work, Wager et al. (2014) show that for linear

classification, under a generative assumption on the data,

dropout improves the convergence rate of the generalization

error. Finally, Mianjy & Arora (2020) studied dropout in

over-parameterized two-layer networks with ReLU activa-

tion and gave precise generalization error rates under a data

separability assumption. In contrast, this paper focuses on

predictors represented in a factored form and give gener-

alization bounds for matrix learning and two layer ReLU

networks and does not require over-parameterization or data

separability.

In a related line of work, Helmbold & Long (2015) study the

structural properties of the dropout regularizer in the con-

text of linear classification. They characterize the landscape

of the dropout criterion in terms of unique minimizers and

establish non-monotonic and non-convex nature of the regu-

larizer. In follow up work, Helmbold & Long (2017) extend

their analysis to dropout in deep ReLU networks and sur-

prisingly find that the nature of regularizer is different from

that in linear classification. In particular, they show that

unlike weight decay, dropout regularizer in deep networks

can grow exponentially with depth and remains invariant

to rescaling of inputs, outputs, and network weights. We

confirm some of these findings in our theoretical analysis.

However, counter to the claims of Helmbold & Long (2017),

we argue that dropout does indeed prevent co-adaptation.

Using an approach closely related to ours, several works

bound the Rademacher complexity of deep neural networks

trained using dropout. In particular, Gao & Zhou (2016),

(Wan et al., 2013) and (Zhai & Wang, 2018), all show that

Rademacher complexity of the target class decreases, as-

suming additional norm bounds on the weight vectors. In a

recent work, Wei et al. (2020) disentangle the explicit and

implicit regularization effects of dropout; i.e. the regular-

ization due to the expected bias that is induced by dropout,

versus the regularization induced by the noise due to the

randomness in dropout. They propose an approximation of

the explicit regularizer for deep neural networks and show it

to be effective in practice. Their generalization bounds, how-

ever, are limited to linear models and similar to other works

we discuss above, require weights to be norm bounded. In

this paper, we argue, formally, that dropout training alone

does not directly control the norms of the weight vectors.

Therefore, we seek to understand if the expected explicit reg-

ularizer alone is sufficient for controlling the capacity of the

underlying model. We give generalization error bounds for

matrix completion and non-linear neural networks, based

solely on the expected explicit regularizer and without addi-

tional norm constraints on the predictors.

Finally, we note that Mou et al. (2018) give Rademacher

complexity bounds that are independent of parameter norms,

but require boundedness of the network output. Further,

rather than bound generalization gap with a function that

vanishes asymptotically with sample size, Mou et al. (2018)

bound the one-sided gap between population risk and the

sum of empirical risk and expected explicit regularizer. We

show that for two-layer networks, the expected explicit reg-

ularizer is a positive term, implying that generalization error
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of Mou et al. (2018) does not go to zero, unless the dropout

rate goes to zero; see the remark following Corollary 1 for

a formal statement. We emphasize that this is not the case

in successful machine learning systems, as the inventors of

Dropout (Srivastava et al., 2014) pointed out “[dropout rate]

can be chosen using a validation set or can simply be set at

0.5, which seems to be close to optimal for a wide range of

networks and tasks.”

There are a bunch of other works that do not fall into any of

the categories above, and, in fact, are somewhat unrelated

to the focus in this paper. Nonetheless, we discuss them

here for completeness. For instance, Gal & Ghahramani

(2016) study dropout as Bayesian approximation. Bank &

Giryes (2018) draw insights from frame theory to connect

the notion of equiangular tight frames with dropout training

in auto-encoders. Li et al. (2016) study a variant based

on multinomial sampling (different nodes dropped with

different rates), and establish sub-optimality bounds for

learning linear models (for convex Lipschitz loss functions).

Matrix Factorization with Dropout. Our study of

dropout is motivated in part by recent works of Cavazza

et al. (2018), Mianjy et al. (2018), and Mianjy & Arora

(2019). This line of work was initiated by Cavazza et al.

(2018), who studied dropout for low-rank matrix factoriza-

tion without constraining the rank of the factors or adding an

explicit regularizer to the objective. They show that dropout

in the context of matrix factorization yields an explicit reg-

ularizer whose convex envelope is given by nuclear norm.

This result is further strengthened by Mianjy et al. (2018)

who show that induced regularizer is indeed nuclear norm.

While matrix factorization is not a learning problem per se

(for instance, what is training versus test data), in follow-up

works by Mianjy et al. (2018) and Mianjy & Arora (2019),

the authors show that training deep linear networks with

`2-loss using dropout reduces to the matrix factorization

problem if the marginal distribution of the input feature

vectors is assumed to be isotropic, i.e., E[xx>] = I. We

note that this is a strong assumption. If we do not assume

isotropy, we show that dropout induces a data-dependent

regularizer which amounts to a simple scaling of the pa-

rameters and, therefore, does not control capacity in any

meaningful way. We revisit this discussion in Section 4. To

summarize, while we are motivated by Cavazza et al. (2018),

the problem setup, the nature of statements in this paper,

and the tools we use are different from that in Cavazza et al.

(2018). Our proofs are simple and quickly verified. We do

build closely on the prior work of Mianjy et al. (2018).

However, different from Mianjy et al. (2018), we rigorously

argue for dropout in matrix completion by 1) showing that

the induced regularizer is equal to weighted trace-norm,

which as far as we know, is a novel result, 2) giving strong

generalization bounds, and 3) providing extensive experi-

mental evidence that dropout provides state of the art perfor-

mance on one of the largest datasets in recommendation sys-

tems research. Beyond that we rigorously extend our results

to two layer ReLU networks, describe the explicit regular-

izer, bound the Rademacher complexity of the hypothesis

class controlled by dropout, show precise generalization

bounds, and support them with empirical results.

1.2. Notation and Preliminaries

We denote matrices, vectors, scalar variables and sets by

Roman capital letters, Roman small letters, small letters,

and script letters, respectively (e.g. X, x, x, and X ).

For any integer d, we represent the set {1, . . . , d} by [d].
For any vector x 2 R

d, diag(x) 2 R
d⇥d represents the

diagonal matrix with the ith diagonal entry equal to xi,

and
p

x is the elementwise squared root of x. Let kxk
represent the `2-norm of vector x, and kXk, kXkF , and

kXk⇤ represent the spectral norm, the Frobenius norm,

and the nuclear norm of matrix X, respectively. Further-

more, kXkp,q :=
�P

j

�P
i |Xi,j |

p
�q/p�1/q

. Let X† de-

note the Moore-Penrose pseudo-inverse of X. Given a pos-

itive definite matrix C, we denote the Mahalonobis norm

as kxk2C = x>Cx. For a random variable x that takes val-

ues in X , given n i.i.d. samples {x1, · · · , xn}, the em-

pirical average of a function f : X ! R is denoted by
bEi[f(xi)] :=

1
n

P
i2[n] f(xi). Furthermore, we denote the

second moment of x as C := E[xx>]. The standard in-

ner product is represented by h·, ·i, for vectors or matrices,

where hX,X0i = Tr(X>X0).

We are primarily interested in understanding how dropout

controls the capacity of the hypothesis class when using

dropout for training. To that end, we consider Rademacher

complexity, a sample dependent measure of complexity

of a hypothesis class that can directly bound the general-

ization gap (Bartlett & Mendelson, 2002). Given a sam-

ple S = {(x1, y1), . . . , (xn, yn)} of size n, the empirical

Rademacher complexity of a function class F with respect

to S , and the expected Rademacher complexity are defined,

respectively, as RS(F) = E� supf2F
1
n

Pn
i=1 �if(xi) and

Rn(F) = Ex[RS(F)]. where �i are i.i.d. Rademacher

random variables.

2. Matrix Sensing

We begin with understanding dropout for matrix sensing, a

problem which arguably is an important instance of a matrix

learning problem with lots of applications, and is well un-

derstood from a theoretical perspective. The problem setup

is the following. Let M⇤ 2 R
d2⇥d0 be a matrix with rank

r⇤ := Rank(M⇤). Let A(1), . . . ,A(n) be a set of measure-

ment matrices of the same size as M⇤. The goal of matrix

sensing is to recover the matrix M⇤ from n observations of

the form yi = hM⇤,A(i)i such that n ⌧ d2d0. A natural
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approach is to represent the matrix in terms of factors and

solve the following empirical risk minimization problem:

min
U,V

bL(U,V) := bEi(yi � hUV>,A(i)i)2 (1)

where U = [u1, . . . , ud1
] 2 R

d2⇥d1 ,V = [v1, . . . , vd1
] 2

R
d0⇥d1 . When the number of factors is unconstrained,

i.e., when d1 � r⇤, there exist many “bad” empirical

minimizers, i.e., those with a large true risk L(U,V) :=
E(y � hUV>,Ai)2. Interestingly, Li et al. (2018) showed

recently that under a restricted isometry property (RIP), de-

spite the existence of such poor ERM solutions, gradient

descent with proper initialization is implicitly biased towards

finding solutions with minimum nuclear norm – this is an

important result which was first conjectured and empirically

verified by Gunasekar et al. (2017). We do not make an RIP

assumption here. Further, we argue that for the most part,

modern machine learning systems employ explicit regular-

ization techniques. In fact, as we show in the experimental

section, the implicit bias due to (stochastic) gradient descent

does not prevent it from blatant overfitting in the matrix

completion problem.

We propose solving the ERM problem (1) using dropout,

where at training time, corresponding columns of U and

V are dropped uniformly at random. As opposed to an

implicit effect of gradient descent, dropout explicitly reg-

ularizes the empirical objective. It is then natural to ask,

in the case of matrix sensing, if dropout also biases the

ERM towards certain low norm solutions. To answer this,

we begin with the observation that dropout can be viewed

as an instance of SGD on the following objective (Wang

& Manning, 2013; Srivastava et al., 2014) bLdrop(U,V) =
bEjEB(yj � hUBV>,A(j)i)2, where B 2 R

d1⇥d1 is a diag-

onal matrix whose diagonal elements are Bernoulli random

variables distributed as Bii ⇠ 1
1�pBer(1� p). It is easy to

show that for p 2 [0, 1):

bLdrop(U,V) = bL(U,V) +
p

1� p
bR(U,V), (2)

where bR(U,V) :=
Pd1

i=1
bEj(u

>
i A(j)vi)

2 is a data-

dependent term that captures the explicit regularizer due

to dropout. A similar result was shown by Mianjy et al.

(2018), but we provide a proof for completeness (see Propo-

sition 2 in the Appendix).

Furthermore, given that we seek a minimum of bLdrop, it

suffices to consider the factors with the minimal value of

the regularizer among all that yield the same empirical

loss. This motivates studying the following distribution-

dependent induced regularizer:

Θ(M) := min
UV>=M

R(U,V), where R(U,V) :=EA[ bR(U,V)].

We instantiate induced regularizer for two instances of ran-

dom measurements (Prop. 3 in Appendix).

Gaussian Measurements. For all j 2 [n], let A(j) be

standard Gaussian matrices. In this case, it is easy to see

that L(U,V) = kM⇤ � UV>k2F and we recover the matrix

factorization problem. Furthermore, we know from Mianjy

& Arora (2019) that dropout regularizer acts as trace-norm

regularization, i.e., Θ(M) = 1
d1

kMk2⇤.

Matrix Completion. For all j 2 [n], let A(j) be an in-

dicator matrix drawn from a product distribution over the

rows and columns. That is, the probability of choosing

the indicator of the (i, k)-th element is p(i)q(k), where

p(i) and q(k) denote the probability of choosing the i-th
row and the k-th column, respectively. Then, Θ(M) =
1
d1

k diag(pp)UV> diag(
p
q)k2⇤ is the weighted trace-norm

studied by Srebro & Salakhutdinov (2010) and Foygel et al.

(2011).

These observations are specifically important because they

connect dropout, an algorithmic heuristic in deep learning,

to strong complexity measures that are empirically effective

as well as theoretically well understood. To illustrate, here

we give a generalization bound for matrix completion using

dropout in terms of the value of the explicit regularizer at

the minimizer.

Theorem 1. Assume that d2 � d0 and kM⇤k  1. Fur-

thermore, assume that mini,k p(i)q(k) � log(d2)

n
p
d2d0

. Let Let

(U,V) be the output of ERM with dropout with R(U,V) 
↵/d1. Then, for any � 2 (0, 1), the following generalization

bounds holds with probability at least 1� � over a sample

of size n:

L(g(UV>))  bL(U,V) + 8

s
2↵d2 log(d2) +

1
4 log(2/�)

n

where g(M) thresholds M at ±1, i.e. g(M)(i, j) =
max{�1,min{1,M(i, j)}}, and L(g(UV>)) := E(y �
hg(UV>),Ai)2 is the true risk of g(UV>).

The proof of Theorem 1 follows from standard generaliza-

tion bounds for `2 loss (Mohri et al., 2018) based on the

Rademacher complexity (Bartlett & Mendelson, 2002) of

the class of functions with weighted trace-norm bounded byp
↵, i.e. M↵ := {M : k diag(pp)M diag(

p
q)k2⇤  ↵}.

The non-degeneracy condition mini,j p(i)q(j) � log(d2)

n
p
d2d0

is required to obtain a bound on the Rademacher com-

plexity of M↵, as established by Foygel et al. (2011).

Furthermore, since the induced regularizer is scaled as

1/d1 compared to the squared weighted trace-norm, i.e.

Θ(UV>) = 1
d1

k diag(pp)UV> diag(
p

q)k2⇤, we scale ↵

accordingly by letting R(U,V)  ↵/d1.

In practice, for models that are trained with dropout, the

training error bL(U,V) is negligible (see Figure 1 for exper-

iments on the MovieLens dataset). Moreover, given that

the sample size is large enough, the third term can be made
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arbitrarily small. Having said that, the second term, which

is Õ(
p

↵d2/n), dominates the right hand side of generaliza-

tion error bound in Theorem 9. In Appendix, we also give

optimistic generalization bounds that decay as Õ(ad2/n).

Finally, the required sample size depends on the value of the

explicit regularizer (i.e., ↵/d1), and hence, on the dropout

rate p. In particular, increasing the dropout rate increases

the regularization parameter � := p
1�p , thereby intensifying

the penalty due to the explicit regularizer. Intuitively, a

larger dropout rate p results in a smaller ↵, thereby a tighter

generalization gap can be guaranteed. We show through

experiments that that is indeed the case in practice.

3. Non-linear Networks

Next, we focus on neural networks with a single hidden layer.

Let X ✓ R
d0 and Y ✓ [�1, 1]d2 denote the input and output

spaces, respectively. Let D denote the joint probability dis-

tribution on X ⇥ Y . Given n examples {(xi, yi)}
n
i=1 ⇠ Dn

drawn i.i.d. from the joint distribution and a loss function

` : Y ⇥ Y ! R, the goal of learning is to find a hypoth-

esis fw : X ! Y , parameterized by w, that has a small

population risk L(fw) := ED[`(fw(x), y)].

We focus on the squared `2 loss, i.e., `(y, y0) =
ky � y0k2, and study the generalization properties of

the dropout algorithm for minimizing the empirical risk
bL(fw) := bEi[kyi � fw(xi)k2]. We consider the hypothesis

class associated with feed-forward neural networks with 2
layers, i.e., functions of the form fw(x) = U�(V>x), where

U = [u1, . . . , ud1
] 2 R

d2⇥d1 ,V = [v1, . . . , vd1
] 2 R

d0⇥d1

are the weight matrices. The parameter w is the collection

of weight matrices {U,V} and � : R ! R is the ReLU

activation function applied entrywise to an input vector. As

in Section 2, we view dropout as an instance of stochastic

gradient descent on the following dropout objective:

bLdrop(w) := bEiEBkyi�UB�(V>xi)k2, (3)

where B is a diagonal random matrix with diagonal elements

distributed i.i.d. as Bii ⇠ 1
1�pBern(1 � p), i 2 [d1], for

some dropout rate p. We seek to understand the explicit

regularizer due to dropout:

bR(w) := bLdrop(w)� bL(fw). (4)

We denote the output of the i-th hidden node on an input

vector x by ai(x) 2 R; for example, a2(x) = �(v>2 x).
Similarly, the vector a(x) 2 R

d1 denotes the activation

of the hidden layer on input x. Using this notation, we

can rewrite the objective in (3) as bLdrop(w) := EiEBkyi �
UBa(xi)k2. It is then easy to show that the regularizer due

to dropout in (4) is given as (Proposition 4 in Appendix):

bR(w) =
p

1� p

d1X

j=1

kujk2ba2j , where baj =
q

bEiaj(xi)2.

The explicit regularizer bR(w) is a summation over hidden

nodes, of the product of the squared norm of the outgoing

weights with the empirical second moment of the output

of the corresponding neuron. We should view it as a data-

dependent variant of the `2 path-norm of the network, stud-

ied recently by Neyshabur et al. (2015b) and shown to yield

capacity control in deep learning. Indeed, if we consider

ReLU activations and input distributions that are symmetric

and isotropic (Mianjy et al., 2018), the expected regularizer

is equal to the sum over all paths from input to output of

the product of the squares of weights along the paths, i.e.,

R(w) := E[ bR(w)] = 1
2

Pd0,d1,d2

i0,i1,i2=1 U(i2, i1)
2V(i0, i1)

2,

which is precisely the squared `2 path-norm of the network.

We refer the reader to Proposition 5 in the Appendix for a

formal statement and proof.

Generalization Bounds. To understand the generaliza-

tion properties of dropout, we focus on the following

distribution-dependent hypothesis class

F↵ := {fw : x 7! u>�(V>x),

d1X

i=1

|ui|ai  ↵}, (5)

where u 2 R
d1 is the top layer weight vector, ui denotes the

i-th entry of u, and a2i :=Ex[ba2i ]=Ex[ai(x)
2] is the expected

squared activation of the i-th hidden node. For simplicity,

we focus on networks with one output neuron (d2 = 1);

extension to multiple output neurons is straightforward.

We argue that networks trained with dropout belong to

the class F↵, for a small value of ↵. In particular,

by Cauchy-Schwartz inequality, it is easy to to see thatPd1

i=1 |ui|ai 
p
d1R(w). Thus, for a fixed width, dropout

implicitly controls the function class F↵. More importantly,

this inequality is loose if a small subset of hidden nodes

J ⇢ [d1] “co-adapt” in a way that for all j 2 [d1] \ J ,

the other hidden nodes are almost inactive, i.e. ujaj ⇡ 0.

In other words, by minimizing the expected regularizer,

dropout is biased towards networks where gap between

R(w) and (
Pd1

i=1|ui|ai)
2/d1 is small, which in turn hap-

pens if |ui|ai ⇡ |uj |aj , 8i, j 2 [d1]. In this sense, dropout

breaks “co-adaptation” between neurons by promoting so-

lutions with nearly equal contribution from hidden neurons.

As we mentioned in the introduction, a bound on the dropout

regularizer is not sufficient to guarantee a bound on a norm-

based complexity measures that are common in the deep

learning literature (see, e.g., Golowich et al. (2018) and the

references therein), whereas a norm bound on the weight

vector would imply a bound on the explicit regularizer due

to dropout. Formally, we show the following.

Proposition 1. For any C > 0, there exists a distribution on

the unit Euclidean sphere, and a network fw : x 7! �(w>x),
such that R(w) =

p
E�(w>x)2  1, while kwk > C.

In other words, even though we connect the dropout regu-
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larizer to path-norm, the data-dependent nature of the regu-

larizer prevents us from leveraging that connection in data-

independent manner (i.e., for all distributions). At the same

time, making strong distributional assumptions (as in Propo-

sition 5) would be impractical. Instead, we argue for the

following milder condition on the input distribution which

we show as sufficient to ensure generalization.

Assumption 1 (�-retentive). The marginal input distribu-

tion is �-retentive for some � 2 (0, 1/2], if for any non-zero

vector v 2 R
d, it holds that E�(v>x)2 � �E(v>x)2.

Intuitively, what the assumption implies is that the vari-

ance (aka, the information or signal in the data) in the

pre-activation at any node in the network is not quashed

considerably due to the non-linearity. In fact, no reason-

able training algorithm should learn weights where � is

small. However, we steer clear from algorithmic aspects of

dropout training, and make the assumption above for every

weight vector as we need to take a union bound. We now

present the first main result of this section, which bounds

the Rademacher complexity of F↵ in terms of ↵, the re-

tentiveness coefficient �, and Mahalanobis norm of data

w.r.t. the pseudo-inverse of the second moment matrix, i.e.

kXk2
C† =

Pn
i=1 x>i C†xi.

Theorem 2. For any sample S = {(xi, yi)}
n
i=1 of size n,

RS(F↵)  2↵kXk
C†

n
p
�

. Furthermore, it holds for the expected

Rademacher complexity that Rn(F↵)  2↵
q

Rank(C)
�n .

First, note that the bound depends on the quantity kXkC†

which can be in the same order as kXkF with both scal-

ing as ⇣
p
nd0; the latter is more common in the litera-

ture (Neyshabur et al., 2018; Bartlett et al., 2017; Neyshabur

et al., 2017; Golowich et al., 2018; Neyshabur et al.,

2015b). This is unfortunately unavoidable, unless one

makes stronger distributional assumptions.

Second, as we discussed earlier, the dropout regularizer

directly controls the value of ↵, thereby controlling the

Rademacher complexity in Theorem 2. This bound also

gives us a bound on the Rademacher complexity of the

networks trained using dropout. To see that, consider the

following class of networks with bounded explicit regu-

larizer, i.e., Hr := {hw : x 7! u>�(V>x), R(u,V)  r}.

Then, Theorem 2 yields RS(Hr)  2
p
d1rkXk

C†

n
p
�

. In fact, we

can show that this bound is tight up to 1/
p
� by a reduction

to the linear case. Formally, we show the following.

Theorem 3 (Lowerbound). There is a constant c such that

for any r>0, RS(Hr)� c
p
d1rkXk

C†

n .

Moreover, it is easy to give a generalization bound based on

Theorem 2 that depends only on the distribution dependent

quantities ↵ and �. Let gw(·) := max{�1,min{1, fw(·)}}
project the network output fw onto the range [�1, 1]. We

have the following generalization gurantees for gw.

Corollary 1. For any w 2 F↵, for any � 2 (0, 1), with

probability at least 1� � over a sample S of size n, we have

L(gw)  bL(gw) +
16↵kXk

C†p
�n

+ 12
q

log(2/�)
2n .

Comparison with Mou et al. (2018) We note that the

Corollary above bounds the generalization gap, i.e., L(·)�
bL(·). In contrast, Mou et al. (2018) bound L(·)� bLdrop(·),

where bLdrop(w) = bL(fw) + bR(w), as in Equation (4). The

explicit regularizer bR(·) is a positive quantity that does

not vanish with the sample size. Therefore, the bound of

Mou et al. (2018) can guarantee that the generalization gap

decays as 1/
p
n only if the dropout rate decreases as 1/

p
n

(to ensure that bR(·) = O(1/
p
n)). In sharp contrast, our

analysis is valid for any dropout rate.

�-independent Bounds. Geometrically, �-retentiveness

requires that for any hyperplane passing through the ori-

gin, both halfspaces contribute significantly to the sec-

ond moment of the data in the direction of the normal

vector. It is not clear, however, if � can be estimated

efficiently on a dataset. Nonetheless, when X ✓ R
d0

+ ,

which is the case for image datasets, a simple symmetriza-

tion technique, described below, allows us to give bounds

that are �-independent. We propose the following ran-

domized symmetrization. Given a training sample S =
{(xi, yi), i 2 [n]}, consider the randomly perturbed dataset,

S 0 = {(⇣ixi, yi), i 2 [n]}, where ⇣i’s are i.i.d. Rademacher

random variables. We give a generalization bound (w.r.t.

the original data distribution) for the hypothesis class with

bounded regularizer w.r.t. perturbed data distribution.

Corollary 2. Given an i.i.d. sample S = {(xi, yi)}
n
i=1,

let F 0
↵ := {fw : x 7! u>�(V>x),

Pd1

i=1 |ui|a
0
i  ↵},

where a0i
2
:= Ex,⇣ [ai(⇣x)2]. For any w 2 F 0

↵, for any

� 2 (0, 1), with probability at least 1� � over a sample of

size n and the randomization in symmetrization, we have

that L(gw)  2bL(gw) +
46↵kXk

C†

n + 24
q

log(2/�)
2n , where bL

is evaluated on the symmetrized sample S 0.

Note that the population risk of the clipped predictor

gw(·) := max{�1,min{1,fw(·)}} is bounded in terms of

empirical risk on S 0. Finally, we verify in Section 5 that

symmetrization of the training set, on MNIST and Fashion-

MNIST datasets, does not have an effect on performance of

the trained models.

4. Role of Parametrization

In this section, we argue that parametrization plays an

important role in determining the nature of the inductive

bias. We begin by considering matrix sensing in non-

factorized form, which entails minimizing bL(M) := bEi(yi�
hvec (M) , vec

�
A(i)

�
i)2, where vec (M) denotes the column

vectorization of M. Then, the expected explicit regular-

izer due to dropout equals R(M) = p
1�pk vec (M) k2diag(C),
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networks. The focus here has been on understanding how

the expected explicit regularizer alone – withought any addi-

tional norm-bounds on the weights – can provide generaliza-

tion. If one is interested in predicting the generalization gap,

then one can estimate the (empirical) explicit regularizer

on a held-out dataset, and appeal to simple concentration

arguments, just as we do in our experiments.
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