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Abstract Consider the distances R̃o and Ro from the nucleus to a uni-
formly random point in the 0-cell and the typical cell, respectively, of the
d-dimensional Poisson-Voronoi (PV) tessellation. The main objective of this
paper is to characterize the exact distributions of R̃o and Ro. First, using the
well-known relationship between the 0-cell and the typical cell, we show that
the random variable R̃o is equivalent in distribution to the contact distance
of the Poisson point process. Next, we derive a multi-integral expression for
the exact distribution of Ro. Further, we derive a closed-form approximate
expression for the distribution of Ro, which is the contact distribution with a
mean corrected by a factor equal to the ratio of the mean volumes of the 0-cell
and the typical cell. An additional outcome of our analysis is a direct proof of
the well-known spherical property of the PV cells having a large inball.

Keywords Poisson point process · Poisson-Voronoi tessellation · Typical
cell · 0-cell · Distance distribution.

P. D. Mankar, P. Parida and H. S. Dhillon
Wireless@VT, Bradley Department of Electrical and Computer Engineering,
Virginia Tech,
Blacksburg, VA, USA.
E-mail: {prafuldm, pparida, hdhillon}@vt.edu

M. Haenggi
Department of Electrical Engineering,
Department of Applied and Computational Mathematics and Statistics,
University of Notre Dame,
Notre Dame, IN, USA.
E-mail: mhaenggi@nd.edu

Corresponding author: H. S. Dhillon
Email: hdhillon@vt.edu. Phone: +1 (540) 231-2129. Fax: +1 (540) 231-2968.



2 Praful D. Mankar et al.

1 Introduction

Due to its useful mathematical properties, the Poisson point process (PPP)
has found many applications in several fields of science and engineering, such
as statistical physics, telecommunications, astronomy, biology, metallurgy, and
geography, to name a few. Several of these applications specifically focus on
the Poisson-Voronoi (PV) tessellation [1], which partitions space into disjoint
cells whose nuclei are the points of the PPP. There is a rich literature focused
on characterizing the statistical properties of the PV tessellation (PVT), such
as the distributions of the contact and chord lengths [2], the distributions of
the radii of the circumcircle and the incircle of the 0-cell and the typical cell
[3], the distribution of the number of edges of the typical cell [4], the limiting
shape of the 0-cell and the typical cell [5], the properties of the 3-dimensional
PV tessellation [6], and the relationship between the 0-cell and the typical cell
[7]. Two very recent examples from statistical physics include the derivation
of the first and second moments of the area of the edge-cells of a bounded PV
tessellation in [8] and the proof of existence of all the exponential moments
for the total edge length of different planar tessellations including PV and
Johnson-Mehl tessellations in [9]. Despite this rich history, it is quite surprising
to note that the distributions of the distances from the nucleus to uniformly
random points in both the 0-cell and the typical cell of the d-dimensional
PV tessellation have not yet been investigated, which is the main goal of
this paper. Our main result builds on the calculation methods developed in
statistical physics to study the temporal evolution of the domain structure of
a 2-dimensional PV tessellation in [10].

The motivation behind our investigation comes from wireless networks,
where the PPP has been extensively used to model the locations of cell towers
(also called base stations) in cellular networks such that the service region
of each cell tower is simply the PV cell with the corresponding cell tower at
its nucleus [11, 12, 13, 14, 15]. If one assumes mobile users to be distributed
uniformly at random in the service region of each cell tower (a popular model
used by the wireless networks community), one of the crucial steps towards the
performance characterization of this network is to understand the distribution
of the distance between a mobile user and its associated cell tower. In the PV
tessellation, this corresponds to the distribution of the distance of the nucleus
of a PV cell to a point chosen uniformly at random from that cell [16, 17].
Note that while it is sufficient to focus on the 2-dimensional case from the
wireless networks perspective, all the mathematical results presented in this
paper are for the general d-dimensional case. With this brief introduction, we
now formally define the problem of interest for this paper.

Let Φ , {x1,x2, . . . } be a homogeneous PPP with intensity λ on R
d. The

PV cell with the nucleus at x ∈ Φ is defined as

Vx = {y ∈ R
d | ‖y − x‖ ≤ ‖x′ − y‖, ∀x′ ∈ Φ}, x ∈ Φ. (1)

The set {Vx}x∈Φ is known as the PVT. For any (deterministic) y ∈ R
d, almost

surely there exists a unique nucleus x ∈ Φ such that y ∈ Vx [18]. The PV cell
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containing the origin o is called the 0-cell and is denoted by Ṽo. The statistical
properties of the typical cell can be characterized using Palm theory, which
formalizes the notion of conditioning on the presence of a point of a point
process at a specific location. Since by Slivnyak’s theorem, conditioning on a
point is the same as adding a point to a PPP, we consider that the nucleus of
the typical cell of the point process Φ ∪ {o} is o, which is given by

Vo = {y ∈ R
d | ‖y‖ ≤ ‖x− y‖, ∀x ∈ Φ}. (2)

Now, we define the main random variables of interest for this paper.

Definition 1 Let R̃o denote the distance from the nucleus to a uniformly
random point in the 0-cell Ṽo.

Definition 2 Let Ro denote the distance from the nucleus to a uniformly
random point in the typical cell Vo.

We derive the cumulative distribution function (CDF) of R̃o and Ro in
Sections 2 and 3, respectively. In Section 2, a closed-form expression for the
exact CDF of R̃o is derived based on the formula on the relationship between
the 0-cell and the typical cell given in [7, 11]. It is well-known that the statis-
tical properties of Ro are hard to characterize for d > 1. Before going into the
d > 1 case, we discuss the case of d = 1 in Section 3.1 for which the distribu-
tion of Ro is far easier to characterize. In Section 3.2, we present an analytical
approach to derive a multi-integral expression for the exact distribution of Ro
for d > 1 based on the analysis of the temporal evolution of the PV struc-
ture presented in [10]. Since this multi-integral expression may be unwieldy
for some applications, we also derive a simple closed-form approximation for
the CDF of Ro in Section 4. Finally, based on the formulation developed in
Section 3, we provide a simpler proof for the well-known spherical nature of
the large PV cells in Section 5.

2 Distribution of R̃o

In this section, we derive a closed-form expression for the CDF of the distance
from the nucleus to uniformly random point in the 0-cell Ṽo. It is well-known
that the expected volume of the 0-cell is greater than the expected volume of
the typical cell. In fact, all the moments of the volume of the 0-cell are known
to be greater than the moments of the volume of the typical cell [7]. This is
quite intuitive as the origin (or, for that matter, any fixed point) is more likely
to lie in a bigger cell. The relationship of the distributions of the 0-cell and
the typical cell is given by [11, Corollary 4.2.4]

E[f(Ṽo)] = λE[υd(Vo)f(Vo)], (3)
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where υd is the Lebesgue measure in d-dimensions, and f is a translation-
invariant non-negative measurable function on compact sets.1 We will use this
expression along with an appropriately chosen function f to derive the CDF
of R̃o in Theorem 1. Let Br(x) represent the d-dimensional ball of radius r
centered at x. Next, we restate a useful result from [19, Lemma 4.2] on the
mean volume of Br(o) ∩ Vo, which directly follows from [20].

Lemma 1 For the homogeneous PPP with intensity λ on R
d, the mean vol-

ume of the intersection of the ball Br(o) with the typical cell Vo is given by

E[υd(Br(o) ∩ Vo)] =
1

λ

(

1− exp(−λκdrd)
)

, (4)

where κd =
π

d

2

Γ( d

2+1)
is the volume of the unit-radius ball in R

d.

Now, we present the CDF of R̃o using the result given in Lemma 1.

Theorem 1 For the homogeneous PPP with intensity λ on R
d, the CDF of

the distance R̃o from the nucleus to a uniformly random point in the 0-cell Ṽo
is

FR̃o
(r) = 1− exp

(

−λκdrd
)

, r ≥ 0. (5)

Proof Let xo represent the nucleus of Ṽo and let y represent the uniformly
distributed point in Ṽo. We note that the distance R̃o = ‖xo−y‖ is less than r
when y lies in the intersection of the ball Br(xo) and Ṽo. Therefore, the CDF
of R̃o can be written as

FR̃o
(r) = P(R̃o ≤ r) = E

[

υd(Br(xo) ∩ Ṽo)
υd(Ṽo)

]

.

Now, we define the function f of the PV cell Vx as the ratio of the volumes of
Br(x) ∩ Vx and Vx. Thus, we get

f(Ṽo) =
υd(Br(xo) ∩ Ṽo)

υd(Ṽo)
and f(Vo) =

υd(Br(o) ∩ Vo)
υd(Vo)

.

Inserting this in (3), we obtain the result from Lemma 1. �

Remark 1 Using the void probability, the distribution of the distance between
the origin and the nucleus of Ṽo, say xo, can be simply determined as P(‖xo‖ ≤
r) = 1 − exp(−λκdrd). However, it does not reveal any information about
how the origin is distributed in the 0-cell. While one can intuitively expect
the origin to be uniformly distributed in Ṽo, there does not appear to be
a straightforward way to prove this. Using (3), we have presented a simple
construction to establish that the distribution of the origin in Ṽo is in fact
that of a uniformly random point in Ṽo.

1 Alternatively, RHS of (3) may be written using the Palm measure [11]. However, since
we have already defined Vo in (2) by placing the typical point of Φ at o, the Palm notation
is not necessary here.
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3 Distribution of Ro

We first characterize the CDF of Ro for d = 1 where the typical cell is com-
pletely characterized by the locations of the nearest points on either side of its
nucleus. This allows us to explicitly describe the uniformly distributed point
in the typical cell Vo and, in turn, determine the CDF of Ro.

3.1 Distribution of Ro for d = 1

Let Φl , {x1, x2, . . . } be a homogeneous PPP with intensity λ on R. Let
x ∈ Φl ∩ R

− and y ∈ Φl ∩ R
+ be the left and right neighboring points of

the origin (i.e., nucleus of Vo), respectively. Since Φl is a PPP, |x| and |y|
are i.i.d. random variables that follow an exponential distribution with mean
λ−1. Denote by R1 = 1

2 |x| and R2 = 1
2 |y| the distances to the boundary

points of Vo. R1 and R2 are also i.i.d. and follow exponential distribution
with parameter 2λ. Let R̃1 = min(R1, R2) and R̃2 = max(R1, R2). The joint
probability density function (pdf) of R̃1 and R̃2 is

fR̃1,R̃2
(r1, r2) = 8λ2 exp (−2λ (r1 + r2)) , 0 ≤ r1 ≤ r2. (6)

The distribution of the distance Ro from the nucleus to a uniformly random
point in the typical cell Vo conditioned on R̃1 and R̃2 is

P(Ro ≤ r | R̃1 = r1, R̃2 = r2) =











2r
r1+r2

, 0 ≤ r ≤ r1
r+r1
r1+r2

, r1 < r ≤ r2

1, r2 < r.

(7)

By deconditioning the above expression with respect to the joint distribution
of R̃1 and R̃2, the CDF of Ro is presented in the following theorem.

Theorem 2 For the homogeneous PPP with intensity λ on R, the CDF of

the distance Ro from the nucleus to a uniformly random point in the typical

cell Vo is

FRo
(r) = 1− exp(−2λr) + 2λr exp(−2λr)− 4λ2r2E1(2λr), r > 0, (8)

where E1(z) =
∫∞

z
1
t
exp(−t)dt is the exponential integral function.

Proof Using the expression for the conditional CDF of Ro given in (7) and the
joint pdf of R̃1 and R̃2 given in (6), the CDF of Ro can be written as

FRo
(r) =

∫ r

0

∫ r2

0

8λ2 exp(−2λ(r1 + r2))dr1dr2

+

∫ ∞

r

∫ r

0

r + r1
r1 + r2

8λ2 exp(−2λ(r1 + r2))dr1dr2

+

∫ ∞

r

∫ r2

r

2r

r1 + r2
8λ2 exp(−2λ(r1 + r2))dr1dr2. (9)
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Fig. 1 CDF of Ro and R̃o for a unit-intensity Poisson point process for d = 1.

Next, the substitution of r1+r2 = y and the application of exponential integral
function yields the result. The calculations are tedious but straightforward. �

In Fig. 1, we provide the plots for the CDFs of Ro and R̃o. From the figure, it
can be seen that the distance R̃o stochastically dominates the distance Ro. In
Section 4, we will demonstrate that this difference between the distributions
of R̃o and Ro diminishes with increasing d.

3.2 Distribution of Ro for d > 1

Similar to the distribution of Ro for d = 1 being derived by conditioning on the
nuclei of the neighboring PV cells in Section 3.1, here we derive the distribution
of Ro for d > 1 by conditioning on the points in a ball centered at the origin
such that it includes the nuclei of all neighboring PV cells of Vo. We refer to
the conditional positions of points in the ball as the domain configuration. The
domain configuration enables the characterization of the shape and size of the
PV cell Vo which will be useful in the evaluation of the conditional distribution
of Ro. A similar construction is presented in [10, 21] to study the temporal
evolution of the volume of the domain size and free boundary distributions
for a PV transformation1 for d = {1, 2, 3}2. In the following subsection, we
define the domain configuration and discuss its use for the conditional PV cell
characterization.

2 The simultaneously growing sets of randomly distributed nuclei (realized through PPP)
at equal isotropic rate are referred to as the PV transformation. These sets eventually
transform into the PV cells.



Uniformly Random Points in the 0-cell and the Typical Cell of the PVT 7

3.2.1 Domain Configuration

Definition 3 For ℓ > 0, we define the set Ckℓ as the set of k points with polar
coordinates (li,θi) such that

Ckℓ ≡ 1

2
{Φ ∩ B2ℓ(o) | Φ(B2ℓ(o)) = k}. (10)

where li is the radial coordinate and θi = [θ1i, . . . , θ(d−1)i] are the angular
coordinates.

The point x̃i , (li,θi) ∈ Ckℓ bisects the line segment joining o and xi ∈
Φ∩B2ℓ(o). Thus, for a given xi , (2li,θi) ∈ Φ∩B2ℓ(o), we have corresponding
x̃i ∈ Ckℓ with polar coordinates (li,θi). By construction, li ∈ [0, ℓ], θ(d−1)i ∈
[0, 2π) and θ1i, . . . , θ(d−2)i ∈ [0, π]. Henceforth, the set Ckℓ is referred to as the
domain configuration. Since Φ is a PPP, conditioned on Φ(B2ℓ(o)) = k, the
points xi ∈ Φ∩B2ℓ(o), for i ∈ {1, . . . , k}, are distributed uniformly at random
independently of each other in B2ℓ(o). Consequently, the k points {x̃i}ki=1

forming the domain configuration Ckℓ are also distributed uniformly at random
independently of each other in Bℓ(o). Using this fact, we can express the pdf
of the domain configuration as done next.

The differential volume element in d dimensions in polar coordinates is

∆ = vd−1 sind−2(α1) . . . sin(αd−2)dvdα1 . . . dαd−1.

Thus, the probability that a point distributed uniformly at random in Bℓ(o)
lies in an infinitesimal region with volume ∆i such that vi ≤ ℓ is equal to ∆i

κdℓd
.

Now, we obtain the pdf of the configuration Ckℓ as

P((l1,θ1) ∈ ∆1, . . . , (lk,θk) ∈ ∆k; ℓ)
(a)
=

k
∏

i=1

P((li,θi) ∈ ∆i)

(b)
=

k
∏

i=1

1

κdℓd
vd−1
i sind−2(α1i) . . . sin(α(d−2)i)dvidα1i . . . dα(d−1)i, (11)

for 0 ≤ vi ≤ ℓ, where (a) follows from the independence of the elements of Ckℓ
and (b) follows from the uniform distribution of elements of Ckℓ in Bℓ(o).

3.2.2 Connections with the Typical Cell

For an empty domain configuration C0
ℓ , Bℓ(o) is contained in the typical cell

Vo. However, a non-empty domain configuration, i.e., Ckℓ for k > 0, contains
the mid-points of the chords of Bℓ(o) formed by the intersection of the edges of
typical cell Vo with Bℓ(o). In addition, the line segments connecting these mid-
points to the origin are perpendicular to the corresponding edges. Therefore,
the domain configuration provides useful information about the structure of Vo.
We denote by Vo(Ckℓ ) the typical cell conditioned on the domain configuration
Ckℓ . As k → ∞, it is easy to see that Vo(Ckℓ ) becomes deterministic. However,
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for any finite k, Vo(Ckℓ ) is in general random because some of its edges may be
defined by points of Φ lying outside B2ℓ(o). That said, conditioning on Ckℓ is
sufficient to uniquely determine the intersection of Vo(Ckℓ ) and the ball Bℓ(o).
Fig. 2 illustrates the intersection of the Bℓ(o) with the cell Vo(C3

ℓ ) for d = 2.

Fig. 2 Illustration of Vo(C3
ℓ
) ∩ Bℓ(o) for d = 2.

Let us define Hx as the half-space formed by the points in R
d that are

closer to the point x ∈ Φ than the origin, i.e.,

Hx , {y ∈ R
d | ‖y − x‖ < ‖y‖}. (12)

Now, we denote by Li(ℓ) the surface (in d − 1 dimensions) of the spherical
cap of Bℓ(o) such that

Li(ℓ) , Hxi
∩ ∂Bℓ(o), (13)

where ∂Bℓ(o) is the boundary of Bℓ(o). An illustration of the formation of
the Li(ℓ) is presented in Fig. 2 for d = 2. Now, since {x̃i}ki=1 are distributed
uniformly at random in Bℓ(o) independently of each other, the corresponding
surfaces of the spherical caps {Li(ℓ)}ki=1 have i.i.d. surface areas3 and are
placed uniformly at random on ∂Bℓ(o). We will now use this construction to
derive the distribution of Ro.

3.2.3 Distance Distribution

For a given domain configuration Ckℓ , we define

gk(r; Ckℓ ) = υd(Vo(Ckℓ ) ∩ Br(o)), (14)

for 0 ≤ r ≤ ℓ, as the volume of the intersection of Br(o) and cell Vo(Ckℓ ). As
discussed before, Vo(Ckℓ ) is the typical cell conditioned on Ckℓ .

3 The surface area in this case is the Lebesgue measure in d− 1 dimensions.
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Definition 4 Let Rℓ denote the distance from the nucleus of Vo (i.e., the
origin) to a uniformly random point in Vo ∩ Bℓ(o).

The first main goal is to characterize the CDF of Ro given by

FRo
(z) = lim

ℓ→∞
P(Rℓ ≤ z). (15)

This conditional CDF of Rℓ can be expressed as

FRℓ
(r; Ckℓ ) =

υd(Vo(Ckℓ ) ∩ Br(o))
υd(Vo(Ckℓ ) ∩ Bℓ(o))

=
gk(r; Ckℓ )
gk(ℓ; Ckℓ )

, 0 ≤ r ≤ ℓ. (16)

Fig. 3 provides the visual interpretation of gk(r, Ckℓ ) and gk(l, Ckℓ ) for the typical
cell for d = 2. The region gk(r; Ckℓ ) is shaded in green and the region gk(ℓ; Ckℓ ) is
shaded in brown for k = 5. Naturally, our next goal is to characterize gk(r; Ckℓ )
for a given r. For this we will use {Li(r)}ki=1 which is defined in (13).

Fig. 3 Illustration of g5(r; C5
ℓ
) and g5(ℓ; C5

ℓ
) for d = 2.

Define the index set I(r) as the collection of indices i for which li ≤ r. This
set points to the collection of the points x̃i of the domain configuration that
lie inside Br(o). The union ∪i∈I(r)Li(r) represents the portion of ∂Br(o) that
is outside the typical cell Vo(Ckℓ ). This can be seen easily from Fig. 3 for d = 2,
where the arcs on Br(o) corresponding to x̃1 ≡ (l1, θ1) and x̃2 ≡ (l2, θ2) do not
lie in the cell. Using this insight, we will explicitly characterize the portion of
∂Br(o) that lies in Vo(Ckℓ ), which will then be used to derive the CDF of Rℓ.
This evaluation requires a careful consideration of the overlaps between the
surfaces of the spherical caps {Li(r)}i∈I(r).
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Let y , (r,α) be the point on the ∂Br(o), where α = [α1, α2, . . . , αd−1].
The Euclidean distance between y ∈ ∂Br(o) and xi , (2li,θi) ∈ Φ is

d2(y,xi) =

√

√

√

√

d
∑

n=1

(yn − xni)
2
,

where xni =











2li cos(θ1i); n = d,

2li
∏n
j=1 sin(θji) cos(θni); 1 < n < d,

2li
∏n−1
j=1 sin(θji); n = d,

and yn =











r cos(α1); n = 1,

r
∏n
j=1 sin(αj) cos(αn); n < d,

r
∏n−1
j=1 sin(αj); n = d.

It is to be noted that points on ∂Br(o) that lie in the typical cell Vo(Ckℓ ) have
to be outside of {Li(r)}ki=1. Now, we define

Di (li,θi,y) ,

{

✶ (d2(y, (2li,θi)) > r) ; for i ∈ I(r)
1; for i /∈ I(r).

(17)

Let D = [0, 2π) × [0, π]d−2. Using (17), we can now express the portion of
∂Br(o) that belongs to the typical cell Vo(Ckℓ ) as

∫

D

k
∏

i=1

Di (li,θi,y)∆(α)dα =
1

rd−1
υd−1(∂Br(o) ∩ Vo(Ckℓ )),

where ∆(α) = sind−2(α1)×· · ·×sin(αd−2). Note that
∏k
i=1Di (li,θi,y) is 1 at

all points y, such that 0 ≤ r ≤ z, lying inside of Bz(o)∩Vo(Ckℓ ), and 0 elsewhere.

Thus, the integration of
∏k
i=1Di (li,θi,y) over all the points y ∈ Bz(o) gives

the value of gk(z; Ckℓ ) for the given domain configuration, i.e.,

gk(z; Ckℓ ) =
∫

D

∫ z

r=0

k
∏

i=1

Di (li,θi,y) r
d−1∆(α)drdα. (18)

Using the above results, we present the distance distribution of a uniformly
distributed point in Vo ∩ Bℓ(o) conditioned on Φ(B2ℓ(o)) = k in the following
lemma. In this lemma, we condition on the number of points that form the
domain configuration but not on their locations. Let yi = (ui,αi) and D̃

d =
[0, ℓ]× [0, 2π)× [0, π]d−2.
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Fig. 4 CDF of Ro and R̃o for unit-intensity PPP on R
2.

Lemma 2 For given ℓ, the CDF of Rℓ conditioned on Φ(B2ℓ(o)) = k is

FRℓ
(z; k) =

∫

(D̃d)
k

gk(z; (u1,α1), . . . , (uk,αk))

gk(ℓ; (u1,α1), . . . , (uk,αk))

k
∏

i=1

1

κdℓd
ud−1
i ∆(αi)dyi. (19)

where gk(z; (u1,α1), . . . , (uk,αk)) is given by (18).

Proof The CDF ofRℓ conditioned on Φ(B2ℓ(o)) = k is FRℓ
(z; k) = ECk

ℓ

[FRℓ
(z; Ckℓ )]

where FRℓ
(z; Ckℓ ) is given by (16), and the pdf of Ckℓ is given in (11). �

Using Lemma 2, we obtain the following theorem.

Theorem 3 For the homogeneous PPP with intensity λ on R
d, the CDF of

the distance Ro from the nucleus to a uniformly random point in the typical

cell Vo is

FRo
(z) = lim

l→∞

∞
∑

k=0

FRℓ
(z; k)P(Φ(B2ℓ(o)) = k), (20)

where FRℓ
(z; k) is given in Lemma 2.

Proof We first take the expectation of the conditional CDF of Rℓ, given in
Lemma 2, over k. We then take the limit ℓ → ∞ under which this distance
distribution of a uniformly distributed point in Vo ∩Bℓ(o) converges to that of
a uniformly distributed point in Vo per (15). �
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3.2.4 Numerical Results for d = 2

In Fig. 4, we plot the CDF of R̃o and the CDF of Ro with ℓ = 1.6 for d = 2.
This value for ℓ is selected because the probability that the distance of the
farthest point in the typical cell in R

2 is below 1.6 is 0.99 [3]. The integrals
in (19) are evaluated numerically using a Monte Carlo integration method.
The numerically evaluated mean values of R̃o and Ro are 0.500 and 0.445.
Given the complicated form of the exact CDF of Ro, it is desirable to con-
struct closed-form approximations that could be used in obtaining design in-
sights in application-oriented studies. On that note, it has been empirically
demonstrated in [16] and [22] for d = 2 that the CDF of Ro can be tightly
approximated by 1− exp(−πρλr2). It is obtained by introducing a correction
factor (c.f.) ρ in the CDF of R̃o given in (5), which reduces to 1− exp(−πλr2)
for d = 2. Furthermore, [16] and [22] empirically show that ρ = 13/10 and
5/4 provide a close match for the exact CDF of Ro. This is also illustrated in
Fig. 4. Building on these initial insights, we derive the aforementioned c.f. ρ
for the general case of d dimensions in the next section and provide a useful
physical interpretation of the resulting value.

4 Approximation of the Distribution of Ro

In this section, we derive the approximate CDF of Ro based on the insight
obtained through the empirical results presented in [16] and [22] which are
discussed above. In particular, we approximate the CDF of Ro with 1 −
exp(−ρdλκdrd) (i.e., the contact distribution of PPP) where the c.f. ρd is
determined by matching the d-th derivative of the approximate function with
that of the second-order Taylor series expansion of the CDF of Ro at r = 0.
For this, the moments and covariance of the volume of the typical cell Vo
and the volume of the intersection of Br(o) with the typical cell Vo are re-
quired. Therefore, we now present these intermediate results in the following
subsection.

4.1 Some Useful Results

We first present the second moment of the volume of the typical cell Vo in the
following lemma.

Lemma 3 The second moment of the volume of the typical cell Vo is

E[υd(Vo)
2] = 4πCd,2

∫ π

0

∫ ∞

0

∫ ∞

0

exp(−λU(v1, v2, u))(v1v2)
d−1

(sinu)d−2dv2dv1du, (21)

where U(v1, v2, u) =

κdv
d
1 + κdv

d
2 − κdv

d
1

∫ ψ1

0

αd sin
d ψdψ − κdv

d
2

∫ ψ2

0

αd sin
d ψdψ, (22)
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Cd,2 = d!
2(d−2)!

κdκd−1

κ2κ1
, αd =

Γ( d

2+1)

Γ( 1
2 )Γ(

d+1
2 )

, ψ1 + ψ2 = π − u and vd1 sin
d ψ1 =

vd2 sin
d ψ2.

Proof Using [20, Eq. (21)], we obtain the second moment of υd(Vo) as

E[υd(Vo)
2] =

∫

Rd

∫

Rd

P(x1, x2 ∈ Vo)dx1dx2

=

∫

Rd

∫

Rd

exp(−λυd(B‖x1‖(x1) ∪ B‖x2‖(x2)))dx2dx1. (23)

Next, (21) is obtained using the steps from the proof of [19, Theorem 3.1]. �

The n-th moment of the volume of the intersection of a ball of arbitrary
radius with the typical cell is obtained in [19, Lemma 4.2]. Using this result,
we present the second moment of υd(Br(o) ∩ Vo) in the following lemma.

Lemma 4 The second moment of the volume of the intersection of the ball

Br(o) with the typical cell Vo is E[υd(Br(o) ∩ Vo)2] =

4πCd,2

∫ π

0

∫ r

0

∫ r

0

exp(−λU(v1, v2, u))(v1v2)
d−1(sinu)d−2dv2dv1du, (24)

where U(v1, v2, u) is given by (22).

In [23, Lemma 3.1], the correlation between the volume of the typical

Stienen ball and the volume of the typical cell is derived. Using the approach
of [23], we provide the covariance of the volumes of Br(o) ∩ Vo and Vo in the
following lemma.

Lemma 5 The covariance of the volume of the intersection of Br(o) with the

typical cell Vo and the volume of the typical cell Vo is

Cov[υd(Br(o) ∩ Vo), υd(Vo)] =
1

2
Var[υd(Vo)]−

1

2λ2
(

1− 2 exp(−λκdrd)
)

(25)

+ 2πCd,2

∫ π

0

∫ r

0

∫ r

0

exp(−λU(v1, v2, u))(v1v2)
d−1(sinu)d−2dv2dv1du

− 2πCd,2

∫ π

0

∫ ∞

r

∫ ∞

r

exp(−λU(v1, v2, u))(v1v2)
d−1(sinu)d−2dv2dv1du,

where U(v1, v2, u) is given by (22).

Proof Let V̂o(r) = Vo \ Vo ∩ Br(o). The variance of the volume of V̂o(r) is

Var[υd(V̂o(r))] = Var[υd(Vo)− υd(Br(o) ∩ Vo)]
= Var[υd(Vo)] + Var[υd(Br(o) ∩ Vo)]− 2Cov[υd(Br(o) ∩ Vo), υd(Vo)].

This implies Cov[υd(Br(o) ∩ Vo), υd(Vo)] =
1

2
Var[υd(Vo)] +

1

2
Var[υd(Br(o) ∩ Vo)]−

1

2
Var[υd(V̂o(r))]. (26)
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Using Lemmas 1 and 4, the variance of υd(Br(o) ∩ Vo) can be expressed as

Var[υd(Br(o) ∩ Vo)] = 4πCd,2

∫ π

0

∫ r

0

∫ r

0

exp(−λU(v1, v2, u))(v1v2)
d−1×

(sinu)d−2dv2dv1du− 1

λ2
(

1− exp(−λκdrd)
)2
. (27)

Now, we obtain the mean and variance of V̂o(r). Using Lemma 1, we get

E[υd(V̂o(r))] = E[υd(Vo)− υd(Br(o) ∩ Vo)] =
1

λ
exp(−λκdrd). (28)

Using [20, Eq. (21)], we can obtain the second moment as

E[υd(V̂o(r))
2] =

∫

Rd

∫

Rd

P(r < ‖x1‖, r < ‖x2‖, x1, x2 ∈ Vo(r))dx2dx1

=

∫

Rd\Br(o)

∫

Rd\Br(o)

P(x1, x2 ∈ Vo)dx2dx1

(a)
= 4πCd,2

π
∫

0

∞
∫

r

∞
∫

r

exp(−λU(v1, v2, u))(v1v2)
d−1(sinu)d−2dv2dv1du, (29)

where (a) follows from the similar steps given in the proof of Lemma 3. Lastly,
substituting (27), (28) and (29) in (26) completes the proof. �

Recall, the c.f. ρd is determined by matching the d-th derivative of the second-
order approximation of the CDF of Ro with that of the approximating function
1 − exp(−ρdλκdrd) at r = 0. As the second-order Taylor series expansion of
the CDF includes the covariance term given in Lemma 5, we first provide its
d-th derivative at r = 0 in the following lemma.

Lemma 6 The d-th derivative of the covariance of the volume of the inter-

section of Br(o) with the typical cell Vo and the volume of typical cell Vo w.r.t.

r is zero at r = 0.

Proof Using Lemma 5, we can write

dd

drd
Cov[υd(Br(o) ∩ Vo), υd(Vo)]

∣

∣

∣

∣

r=0

=
dd

drd
1

λ2
exp(−λκdrd)

∣

∣

∣

∣

r=0

+
dd

drd
(f1(r)− f2(r))

∣

∣

∣

∣

r=0

, (30)

where

f1(r) =

∫ r

0

∫ r

0

g(v1, v2)dv2dv1, and f2(r) =

∫ ∞

r

∫ ∞

r

g(v1, v2)dv2dv1,

such that

g(v1, v2) = 2πCd,2

∫ π

0

exp(−λU(v1, v2, u))(v1v2)
d−1(sinu)d−2du.
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Further,

dd

drd
1

λ2
exp(−λκdrd)

∣

∣

∣

∣

r=0

= − 1

λ
d!κd = − 1

λ
2π

d

2
Γ(d)

Γ(d2 )
. (31)

A lengthy but straightforward calculation yields that

dd

drd
(f1(r)− f2(r))

∣

∣

∣

∣

r=0

=
1

λ
2π

d

2
Γ(d)

Γ(d2 )
. (32)

Finally, the substitution of (31) and (32) in (30) completes the proof. �

4.2 Approximate CDF of Ro

In the following theorem we determine the c.f. of the approximated CDF of
Ro, which is the main result of this section.

Theorem 4 For the homogeneous PPP with intensity λ on R
d, the approxi-

mate CDF of the distance Ro from the nucleus to a uniformly random point

in the typical cell Vo is

FRo
(r) ≈ 1− exp(−ρdλκdrd), (33)

where

ρd = 1 +
Var[υd(Vo)]

E[υd(Vo)]2
. (34)

Proof The second order Taylor series expansion of the bivariate function f(Z1, Z2) =
Z1

Z2
around the mean (z̄1, z̄2) can be written as

f(Z1, Z2) ≈
z̄1
z̄2

+
1

z̄2
(Z1 − z̄1)−

z̄1
z̄22

(Z2 − z̄2) +
1

z̄22
(Z1 − z̄1)(Z2 − z̄2) +

z̄1
z̄32

(Z2 − z̄2)
2.

Taking expectation of f(Z1, Z2) w.r.t. Z1 and Z2, we get

E[f(Z1, Z2)] ≈
z̄1
z̄2

− 1

z̄22
Cov[z1, z2] +

z̄1
z̄32

Var[z2]. (35)

The CDF of Ro is

FRo
(r) = E

[

υd(Br(o) ∩ Vo)
υd(Vo)

]

.

Therefore, using (35), the second-order Taylor series expansion of FRo
(r)

around the mean (E[υd(Br(o) ∩ Vo)],E[υd(Vo)]) can be written as FRo
(r) ≈

E[υd(Br(o) ∩ Vo)]
E[υd(Vo)]

[

1 +
Var[υd(Vo)]

E[υd(Vo)]2

]

− Cov[υd(Br(o) ∩ Vo), υd(Vo)]
E[υd(Vo)]2

.
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Using Lemma 3 and Lemma 4, we obtain FRo
(r) ≈

(

1− exp(−λκdrd)
)

[

1 +
Var[υd(Vo)]

E[υd(Vo)]2

]

− Cov[υd(Br(o) ∩ Vo), υd(Vo)]
E[υd(Vo)]2

. (36)

Now, as 1−exp(−ρdλκdrd) is considered for the approximation, we determine
the c.f. ρd by matching the d-th derivatives of 1− exp(−ρdλκdrd) and FRo

(r)
at r = 0 as

ρd =
1

d!λκd

dd

drd
FRo

(r)

∣

∣

∣

∣

r=0

.

Therefore, using (36) and Lemma 6 we have

ρd = 1 +
Var[υd(Vo)]

E[υd(Vo)]2
.

This completes the proof. �

Before giving the numerical validation of the approximated CDF of Ro, we
present the approximated n-th moment of the distance Ro and some useful
observations about the c.f. in the following corollaries.

Corollary 1 For the homogeneous PPP with intensity λ on R
d, the n-th mo-

ments of the distances R̃o and Ro from the nucleus to a uniformly random

point in the 0-cell and typical cell are, respectively, given by

E[R̃no ] =
Γ
(

1 + n
d

)

(λκd)
n

d

and E[Rno ] ≈
Γ
(

1 + n
d

)

(ρdλκd)
n

d

. (37)

Proof The expressions for E[R̃no ] and E[Rno ] directly follow from Theorems 1
and 4, respectively. �

Corollary 2 For the homogeneous PPP with intensity λ on R
d, the CDF of

the distance Ro from the nucleus to a uniformly random point in the typical

cell Vo can be approximated as 1− exp(−λκdρdrd) where

ρd =
E[υd(Ṽo)]

E[υd(Vo)]
. (38)

Proof From [7, Equation 2.5], we have

E[υd(Ṽo)] = E[υd(Vo)] +
Var[υd(Vo)]

E[υd(Vo)]
.

Substituting the above expression in (34) gives (38). �

Corollary 3 lim
d→∞

ρd = 1.
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Fig. 5 CDF of Ro and R̃o for unit-intensity PPP on R
d where d ∈ {1, . . . , 10}. The CDF

of R̃o and approximate CDF of Ro are given in Theorem 1 and Theorem 4, respectively.

Proof Using [19, Theorem 3.1], we can write

lim
d→∞

Var[υd(Vo)] = 0.

Since, the mean volume of the PV cell is λ−1 for any d, the proof directly
follows using (34) and above result. �

Remark 2 From (37), it is clear that the ratio of the means of R̃o and Ro is
approximately d

√
ρd. Therefore, using Corollary 2, we can infer that the ratio

of the means of R̃o and Ro is approximately equal to the d-th root of the ratio
of the mean volumes of the 0-cell Ṽo and the typical cell Vo. In other words,
the distance from the nucleus to a uniformly random point in the typical cell
scales with the distance from the nucleus to a uniformly random point in the
0-cell by a factor equal to the d-th root of the ratio of the mean volumes of
the 0-cell Ṽo and the typical cell Vo.

4.3 Numerical Comparisons

For the numerical evaluation of the approximated CDF of Ro, we obtain the
c.f. ρd using (34) for which the mean and variance of the volume of the typical
cell are evaluated using Lemma 3. Fig. 5 validates the accuracy of the approx-
imated CDF of Ro by comparing it with the Monte Carlo simulations for the
cases of d ∈ {1, . . . , 10}. Fig. 5 clearly indicates that the CDF of Ro gradually
approaches that of R̃o as d increases. Further, Table 1 verifies the accuracy of
the approximated mean and variance of Ro (obtained using Corollary 1) for
d ∈ {1, . . . , 10}. For d = 2, the obtained mean value of Ro is 0.442 which is
also close to the mean values 0.438 and 0.447 obtained using the curve-fitted
c.f.s 13/10 and 5/4 of [16] and [22], respectively.
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Table 1 Accuracy of Approximated Mean and Variance of Ro.

d 1 2 3 4 5 6 7 8 9 10
ρd 1.500 1.285 1.171 1.128 1.079 1.062 1.043 1.032 1.029 1.018

E[Ro]
Exact 0.305 0.445 0.529 0.595 0.651 0.701 0.749 0.798 0.831 0.873
Approx. 0.333 0.442 0.524 0.591 0.648 0.698 0.745 0.789 0.829 0.862

Var[Ro]
Exact 0.090 0.058 0.038 0.028 0.022 0.019 0.016 0.014 0.013 0.012
Approx. 0.111 0.053 0.036 0.028 0.022 0.018 0.015 0.013 0.012 0.011

5 Limiting Shape of Large PV Cells

Thus far, we have presented an exact characterization of the CDFs of R̃o and
Ro in Sections 2 and 3 and a closed-form approximation for the multi-integral
exact expression for the CDF of Ro in Section 4. It is worth noting that the
conditioning on the k points of Φ in the B2ℓ(o), defined as the domain configu-
ration Ckℓ (see (10)), allowed us to construct the set of surfaces of the spherical
caps {Li(ℓ)}ki=1 on the ball Bℓ(o) as in (13). This helps in determining the
conditional volume of the typical cell Vo and thus the conditional CDF of Ro.
It is easy to observe that some points of the domain configuration Ckℓ are the
closest points on some boundaries of the typical cell Vo and thus the lines join-
ing them to origin are perpendicular to the corresponding boundaries. Further,
these points are also the midpoints of the chords formed by the corresponding
spherical caps. This implies that these surfaces of spherical caps completely lie
outside the typical cell Vo (see Fig. 2 for d = 2). Therefore, it is quite straight-
forward to see that the typical cell is completely contained within Bℓ(o) only
if the set {Li(ℓ)}ki=1 completely covers the boundary of Bℓ(o). Using this
fact, in this section, we provide an alternate proof to the well-known spherical
property of d-dimensional PV cells containing a large inball.

Let the point x̃0 , (R,θ0) denote the nearest point on the boundary of
the typical cell Vo to its nucleus. Therefore, R is the radius of the largest ball
BR(o) contained within the typical cell Vo, henceforth called the inradius of
the cell. In this construction, it is evident that the nearest point x0 in Φ from
the nucleus of Vo (i.e., the origin) is at (2R,θ0) such that ‖x̃0‖ = 1

2‖x0‖ = R.
Note that the results presented in the following are conditioned on the inradius
R.

Let A(r, ǫ) denote the annulus formed by two balls of radii r and r+ ǫ co-
centered at the origin. Now, consider the domain configuration CkR = {x̃i}ki=1

as the set containing the mid-point of lines joining the nucleus of Vo and the
points in Φ ∩ A(2R, 2ǫ) given Φ(A(2R, 2ǫ)) = k. Fig. 6 illustrates a potential
configuration of C2

R for the case of d = 2. By the Poisson property, the k points
of CkR are distributed uniformly at random independently of each other in the
annulus A(R, ǫ) such that the CDF of ‖x̃i‖ = li, for ∀i, conditioned on R is

Fli(l) =
ld −Rd

(R+ ǫ)d −Rd
, R ≤ l ≤ R+ ǫ. (39)

We define the set of k + 1 spherical caps {Li(R + ǫ)}ki=0 corresponding to
points {x̃}ki=0 = {x̃0 ∪ CkR} on the BR+ǫ(o) with heights equal to ǫ for i = 0
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R + ǫ

Fig. 6 Typical cell with inradius R for the case of d = 2.

and R+ ǫ− li for i = 1, . . . , k. The surface area of the spherical cap Li(R+ ǫ)
is [24]

Si =







1
2χd(R+ ǫ)d−1I

1− R2

(R+ǫ)2

(

d−1
2 , 12

)

, for i = 0

1
2χd(R+ ǫ)d−1I

1−
l2
i

(R+ǫ)2

(

d−1
2 , 12

)

, for i = 1, . . . , k,
(40)

where χd =
2π

d

2

Γ( d

2 )
is the surface area of the unit radius ball in R

d and Iz(a, b) =

Bz(a,b)
B(a,b) such that B(a, b) and Bz(a, b) are the beta function and the incomplete

beta function, respectively. Note that 0 ≤ Si ≤ S0 ∀i. Since the points in CkR
are i.i.d. in A(R, ǫ), the spherical caps {Li(R + ǫ)}ki=1 of i.i.d. surface areas
are placed uniformly at random independently of each other on BR+ǫ(o).

Now, we evaluate the probability that the uniformly chosen point (R+ǫ,α)
on the surface of BR+ǫ(o) belongs to the spherical cap Li(R + ǫ), for i ∈
{1, . . . , k}, as
p = P((R+ ǫ,α) belongs to the cap Li(R+ ǫ) of area Si)

=
1

χd(R+ ǫ)d−1
E[Si]

(a)
= dν̃R

∫ R+ǫ

R

I
1− l2

(R+ǫ)2

(

d− 1

2
,
1

2

)

ld−1dl

(b)
=
ν̃R(R+ ǫ)d

B
(

d−1
2 , 12

)B
1− R2

(R+ǫ)2

(

d− 1

2
,
d+ 1

2

)

− ν̃RR
dI

1− R2

(R+ǫ)2

(

d− 1

2
,
1

2

)

,

(41)

where ν̃R = 1
2((R+ǫ)d−Rd)

. Step (a) follows using the pdf of li which is obtained

using (39) and (b) follows using the steps given in Appendix A. Also note that
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the probability that the uniformly chosen point (R + ǫ,α) on the surface of
BR+ǫ(o) belongs to the spherical cap L0(R+ ǫ) is

p0 =
1

2
I
1− R2

(R+ǫ)2

(

d− 1

2
,
1

2

)

. (42)

Let K = Φ(A(2R, 2ǫ)). By definition, K is Poisson with mean λκd((R +
ǫ)d − Rd). Now to complete our argument, we evaluate the probability that
the point on the boundary of BR+ǫ(o) does not belong to Vo as

Qd(R, ǫ) = P((R+ ǫ,α) belongs to at least one of the caps)

= 1− (1− p0)E
[

(1− p)K
]

(a)
= 1−

(

1− 1

2
I
1− R2

(R+ǫ)2

(

d− 1

2
,
1

2

))

exp

(

− 1

2
λκdh(R, ǫ)

)

, (43)

where h(R, ǫ) = (R+ǫ)d

B( d−1
2 , 12 )

B
1− R2

(R+ǫ)2

(

d−1
2 , d+1

2

)

− RdI
1− R2

(R+ǫ)2

(

d−1
2 , 12

)

, and

(a) directly follows using (41), (42) and the probability generating function of
the Poisson distribution with mean λκd((R+ ǫ)d−Rd). Now, in the following
theorem we state the limiting case of (43).

Theorem 5

lim
R→∞

Qd(R, ǫ) = 1, ∀ǫ > 0. (44)

Proof We note that, for ǫ > 0, I
1− R2

(R+ǫ)2

(

d−1
2 , 12

)

→ 0 as R → ∞. Therefore,

in order to prove (44), it is sufficient to show that the exponential term in (43)
tends to 0 as R→ ∞ for ǫ > 0, i.e.,

lim
R→∞

h(R, ǫ) = ∞.

To this end, we multiply h(R, ǫ) with B
(

d−1
2 , 12

)

to obtain h̃(R, ǫ) =

(R+ ǫ)dB
1− R2

(R+ǫ)2

(

d− 1

2
,
d+ 1

2

)

−RdB
1− R2

(R+ǫ)2

(

d− 1

2
,
1

2

)

. (45)

We have

B
1− R2

(R+ǫ)2

(

d− 1

2
, a

)

=

∫ 1− R
2

(R+ǫ)2

0

t
d−1
2 −1(1− t)a−1dt.

Thus, using the binomial expansion of the term (1− t)a−1, we get

B
1− R2

(R+ǫ)2

(

d− 1

2
, a

)

=

∫ 1− R
2

(R+ǫ)2

0

t
d−1
2 −1

∞
∑

k=0

(−1)k
1

k!

k−1
∏

l=0

(a− 1− l)tkdt

=
∞
∑

k=0

(−1)k
1

k!

k−1
∏

l=0

(a− 1− l)

∫ 1− R
2

(R+ǫ)2

0

tk+
d−1
2 −1dt
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=

∞
∑

k=0

(−1)k
∏k−1
l=0 (a− 1− l)

k!
(

k + d−1
2

)

(

1− R2

(R+ ǫ)2

)k+ d−1
2

.

Let Ak = 1
k!(k+ d−1

2 )

∏k−1
l=0

(

d+1
2 − 1− l

)

and Bk = 1
k!(k+ d−1

2 )

∏k−1
l=0

(

1
2 − 1− l

)

.

Using the above expansion, we can rewrite (45) as

h̃(R, ǫ) =

∞
∑

k=0

(−1)k
[

Ak(R+ ǫ)d −BkR
d
]

(

1− R2

(R+ ǫ)2

)k+ d−1
2

=

∞
∑

k=0

(−1)k

[

(Ak −Bk)R
d +Ak

d−1
∑

n=0

(

d

n

)

Rnǫd−n

]

(2Rǫ+ ǫ2)k+
d−1
2

(R+ ǫ)2k+d−1

=

∞
∑

k=0

(−1)k

[

(Ak −Bk)R
d+1
2 −k +Ak

d−1
∑

n=0

(

d

n

)

Rn+
1−d

2 −kǫd−n

]

× (2ǫ+R−1ǫ2)k+
d−1
2

(1 +R−1ǫ)2k+d−1
.

Now note that Ak − Bk ≥ 0 for k ≤ d−1
2 . Therefore, the terms in the above

summation tend to infinity as R tends to infinity for k < d+1
2 . In addition,

the terms converge to a constant for k = d+1
2 (if d is odd) and to zero for

k > d+1
2 . From this, it is clear that h̃(R, ǫ) → ∞ as R → ∞. Therefore, we

have h(R, ǫ) → ∞ as R→ ∞. �

From Theorem 5, it is easy to see that the boundary of a PV cell Vo must be
contained within the annulus A(R, ǫ) as its inradius R→ ∞ for an arbitrarily
small ǫ. Hence PV cells with large inradii tend to be spherical. Therefore, the
approach presented in this section provides an alternate proof for the well-
known spherical nature of the PV cells having a large inball [3, 25, 26]. A
realization of a PV cell Vo with large inradius is shown in Fig. 7 for d = 2.

A Solution of Integral in (41)

Let a = d−1
2

and b = 1
2
. From step (a) of (41) and using Ix(a, b) =

Bx(a,b)
B(a,b)

, we have

p = νR

∫ R+ǫ

R

B
1− l2

(R+ǫ)2

(a, b) ld−1dl,

where νR =
d((R+ǫ)d−Rd)−1

2B(a,b)
. We solve the above integral using integration by parts as

follows. Let v = ld−1 and u = B
1− l2

(R+ǫ)2

(

d−1
2

, 1
2

)

. We have

d

dl
u = −

2l

(R+ ǫ)2

(

l2

(R+ ǫ)2)

)b−1 (

1−
l2

(R+ ǫ)2

)a−1

,

and thus

p = −νR
Rd

d
B

1− R2

(R+ǫ)2

(a, b) + νR

∫ R+ǫ

R

ld

d

2l

(R+ ǫ)2
l2(b−1)

(R+ ǫ)2(b−1)

(

1−
l2

(R+ ǫ)2

)a−1

dl.
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Fig. 7 Illustration of a cell in R
2 with large inradius.

Now, substituting l2

(R+ǫ)2
= z, we get

p = −νR
Rd

d
B

1− R2

(R+ǫ)2

(a, b) + νR
(R+ ǫ)d

d

∫ 1

R2

(R+ǫ)2

zb+
d

2
−1(1− z)a−1dz

= −νR
Rd

d
B

1− R2

(R+ǫ)2

(a, b) + νR
(R+ ǫ)d

d

[

B

(

b+
d

2
− 1, a

)

−B
R2

(R+ǫ)2

(

b+
d

2
− 1, a

)

]

= −ν̃RRdI
1− R2

(R+ǫ)2

(a, b) + ν̃R(R+ ǫ)d
B

(

b+ d
2
, a

)

B(a, b)

[

1− I
1− R2

(R+ǫ)2

(

b+
d

2
, a

)

]

(a)
= ν̃R(R+ ǫ)dB

1− R2

(R+ǫ)2

(

a, b+
d

2

)

− ν̃RRdI
1− R2

(R+ǫ)2

(a, b)

where ν̃R = 1
2((R+ǫ)d−Rd)

. Step (a) follows using Ix(a, b) = 1 − I1−x(b, a) and B(a, b) =

B(b, a).
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