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Abstract Consider the distances Ro and R, from the nucleus to a uni-
formly random point in the O-cell and the typical cell, respectively, of the
d-dimensional Poisson-Voronoi (PV) tessellation. The main objective of this
paper is to characterize the exact distributions of R, and R,. First, using the
well-known relationship between the 0-cell and the typical cell, we show that
the random variable R, is equivalent in distribution to the contact distance
of the Poisson point process. Next, we derive a multi-integral expression for
the exact distribution of R,. Further, we derive a closed-form approximate
expression for the distribution of R,, which is the contact distribution with a
mean corrected by a factor equal to the ratio of the mean volumes of the 0-cell
and the typical cell. An additional outcome of our analysis is a direct proof of
the well-known spherical property of the PV cells having a large inball.
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1 Introduction

Due to its useful mathematical properties, the Poisson point process (PPP)
has found many applications in several fields of science and engineering, such
as statistical physics, telecommunications, astronomy, biology, metallurgy, and
geography, to name a few. Several of these applications specifically focus on
the Poisson-Voronoi (PV) tessellation [1], which partitions space into disjoint
cells whose nuclei are the points of the PPP. There is a rich literature focused
on characterizing the statistical properties of the PV tessellation (PVT), such
as the distributions of the contact and chord lengths [2], the distributions of
the radii of the circumcircle and the incircle of the 0-cell and the typical cell
[3], the distribution of the number of edges of the typical cell [4], the limiting
shape of the 0-cell and the typical cell [5], the properties of the 3-dimensional
PV tessellation [6], and the relationship between the 0-cell and the typical cell
[7]. Two very recent examples from statistical physics include the derivation
of the first and second moments of the area of the edge-cells of a bounded PV
tessellation in [8] and the proof of existence of all the exponential moments
for the total edge length of different planar tessellations including PV and
Johnson-Mehl tessellations in [9]. Despite this rich history, it is quite surprising
to note that the distributions of the distances from the nucleus to uniformly
random points in both the 0-cell and the typical cell of the d-dimensional
PV tessellation have not yet been investigated, which is the main goal of
this paper. Our main result builds on the calculation methods developed in
statistical physics to study the temporal evolution of the domain structure of
a 2-dimensional PV tessellation in [10].

The motivation behind our investigation comes from wireless networks,
where the PPP has been extensively used to model the locations of cell towers
(also called base stations) in cellular networks such that the service region
of each cell tower is simply the PV cell with the corresponding cell tower at
its nucleus [11, 12, 13, 14, 15]. If one assumes mobile users to be distributed
uniformly at random in the service region of each cell tower (a popular model
used by the wireless networks community), one of the crucial steps towards the
performance characterization of this network is to understand the distribution
of the distance between a mobile user and its associated cell tower. In the PV
tessellation, this corresponds to the distribution of the distance of the nucleus
of a PV cell to a point chosen uniformly at random from that cell [16, 17].
Note that while it is sufficient to focus on the 2-dimensional case from the
wireless networks perspective, all the mathematical results presented in this
paper are for the general d-dimensional case. With this brief introduction, we
now formally define the problem of interest for this paper.

Let ® £ {x;,X2,...} be a homogeneous PPP with intensity A on R?. The
PV cell with the nucleus at x € ® is defined as

Vi={yeR!| |y —x|| < |x —y|, ¥x' € ®}, x€. (1)

The set {Vx }xce is known as the PVT. For any (deterministic) y € R, almost
surely there exists a unique nucleus x € ® such that y € Vi [18]. The PV cell
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containing the origin o is called the 0-cell and is denoted by V,. The statistical
properties of the typical cell can be characterized using Palm theory, which
formalizes the notion of conditioning on the presence of a point of a point
process at a specific location. Since by Slivnyak’s theorem, conditioning on a
point is the same as adding a point to a PPP, we consider that the nucleus of
the typical cell of the point process ® U {o} is o, which is given by

Vo={y eR?[|lyll < [x -yl ¥x € ®}. (2)

Now, we define the main random variables of interest for this paper.

Definition 1 Let R, denote the distance from the nucleus to a uniformly
random point in the 0-cell V.

Definition 2 Let R, denote the distance from the nucleus to a uniformly
random point in the typical cell V.

We derive the cumulative distribution function (CDF) of R, and R, in
Sections 2 and 3, respectively. In Section 2, a closed-form expression for the
exact CDF of R, is derived based on the formula on the relationship between
the 0-cell and the typical cell given in [7, 11]. It is well-known that the statis-
tical properties of R, are hard to characterize for d > 1. Before going into the
d > 1 case, we discuss the case of d =1 in Section 3.1 for which the distribu-
tion of R, is far easier to characterize. In Section 3.2, we present an analytical
approach to derive a multi-integral expression for the exact distribution of R,
for d > 1 based on the analysis of the temporal evolution of the PV struc-
ture presented in [10]. Since this multi-integral expression may be unwieldy
for some applications, we also derive a simple closed-form approximation for
the CDF of R, in Section 4. Finally, based on the formulation developed in
Section 3, we provide a simpler proof for the well-known spherical nature of
the large PV cells in Section 5.

2 Distribution of flo

In this section, we derive a closed-form expression for the CDF of the distance
from the nucleus to uniformly random point in the O-cell V,,. It is well-known
that the expected volume of the 0O-cell is greater than the expected volume of
the typical cell. In fact, all the moments of the volume of the 0-cell are known
to be greater than the moments of the volume of the typical cell [7]. This is
quite intuitive as the origin (or, for that matter, any fized point) is more likely
to lie in a bigger cell. The relationship of the distributions of the 0-cell and
the typical cell is given by [11, Corollary 4.2.4]

E[f(Vo)] = AE[va(Vo) f(Vo)), 3)



4 Praful D. Mankar et al.

where vy is the Lebesgue measure in d-dimensions, and f is a translation-

invariant non-negative measurable function on compact sets.! We will use this
expression along with an appropriately chosen function f to derive the CDF
of R, in Theorem 1. Let B,(x) represent the d-dimensional ball of radius r
centered at x. Next, we restate a useful result from [19, Lemma 4.2] on the
mean volume of B;(0) NV, which directly follows from [20].

Lemma 1 For the homogeneous PPP with intensity A on R%, the mean vol-
ume of the intersection of the ball B,.(0) with the typical cell V, is given by

Eluu(B,(0) N Vo)] = 5 (1~ exp(—war)) (4)

a
T2

s the vol th it-radius ball in R?,
r(ai1) 5 the volume of the unit-radius ball in

where kg =

Now, we present the CDF of R, using the result given in Lemma 1.

Theorem 1 For the homogeneous PPP with intensity A on R?, the CDF of
the distance R, from the nucleus to a uniformly random point in the 0-cell V,
18

Fg (r)=1—exp (=Akar®), 7>0. (5)

Proof Let x, represent the nucleus of V, and let y represent the uniformly
distributed point in V,. We note that the distance R, = ||x, —y]|| is less than r
when y lies in the intersection of the ball B,.(x,) and V.. Therefore, the CDF
of R, can be written as

va(Br(x,) N ‘70)

Ud(vo)

Now, we define the function f of the PV cell Vi as the ratio of the volumes of
B.(x) N Vi and Vi. Thus, we get

FRO(T) :P(Ro < T) =E

BT B0 0T
A R AR

Inserting this in (3), we obtain the result from Lemma 1. O

Remark 1 Using the void probability, the distribution of the distance between
the origin and the nucleus of V,,, say X,, can be simply determined as P(||x,]|| <
r) = 1 — exp(—Akgqr?). However, it does not reveal any information about
how the origin is distributed in the 0O-cell. While one can intuitively expect
the origin to be uniformly distributed in V,, there does not appear to be
a straightforward way to prove this. Using (3), we have presented a simple
construction to establish that the distribution of the origin in V, is in fact
that of a uniformly random point in V,,.

L Alternatively, RHS of (3) may be written using the Palm measure [11]. However, since
we have already defined V, in (2) by placing the typical point of ® at o, the Palm notation
is not necessary here.



Uniformly Random Points in the 0-cell and the Typical Cell of the PVT 5

3 Distribution of R,

We first characterize the CDF of R, for d = 1 where the typical cell is com-
pletely characterized by the locations of the nearest points on either side of its
nucleus. This allows us to explicitly describe the uniformly distributed point
in the typical cell V, and, in turn, determine the CDF of R,.

3.1 Distribution of R, for d =1

Let @ = {x1,22,...} be a homogeneous PPP with intensity A on R. Let
x € & NR™ and y € & NRT be the left and right neighboring points of
the origin (i.e., nucleus of V;), respectively. Since ®; is a PPP, |z| and |y|
are i.i.d. random variables that follow an exponential distribution with mean
A~1. Denote by Ry = i|z| and Ry = 1i|y| the distances to the boundary
points of V,. Ry and Rs are also i.i.d. and follow exponential distribution
with parameter 2\. Let Ry = min(Ry, R2) and Ry = max(R1, Ry). The joint
probability density function (pdf) of Ry and Ry is

fﬁ:l,éz(rl,rg) =8\ exp (=2X(r1+71r2)), 0<r <ro. (6)

The distribution of the distance R, from the nucleus to a uniformly random
point in the typical cell V, conditioned on R; and Rs is

2r 0<r<mnr

5 - ri+re’?
P(R, <r|Ry=mr,Ra=1r3) = :’11’;12, ry <1<y (7)
1, ro < T.

By deconditioning the above expression with respect to the joint distribution
of Ry and R, the CDF of R, is presented in the following theorem.

Theorem 2 For the homogeneous PPP with intensity A on R, the CDF of
the distance R, from the nucleus to a uniformly random point in the typical
cell V, is

Fr,(r) =1 —exp(=2Ar) + 2 rexp(—2X\r) — 4\*r?E; (2)r), 7 >0, (8)
where Ey(z) = [ L exp(—t)dt is the exponential integral function.

Proof Using the expression for the conditional CDF of R, given in (7) and the
joint pdf of R; and Ry given in (6), the CDF of R, can be written as

T T2
Fg, (1) :/ / 8AZ exp(—2A(ry + 72))dridry

/ / rtn A2 exp(—2A(ry + 72))dridry
0

71 +T2

/ / p——— 8AZ exp(—2A(r + ro))dridrs. (9)
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Fig. 1 CDF of R, and R, for a unit-intensity Poisson point process for d = 1.

Next, the substitution of r1+ry = y and the application of exponential integral
function yields the result. The calculations are tedious but straightforward. O

In Fig. 1, we provide the plots for the CDFs of R, and R,. From the figure, it
can be seen that the distance Ro stochastically dominates the distance R,. In
Section 4, we will demonstrate that this difference between the distributions
of RO and R, diminishes with increasing d.

3.2 Distribution of R, for d > 1

Similar to the distribution of R,, for d = 1 being derived by conditioning on the
nuclei of the neighboring PV cells in Section 3.1, here we derive the distribution
of R, for d > 1 by conditioning on the points in a ball centered at the origin
such that it includes the nuclei of all neighboring PV cells of V,. We refer to
the conditional positions of points in the ball as the domain configuration. The
domain configuration enables the characterization of the shape and size of the
PV cell V, which will be useful in the evaluation of the conditional distribution
of R,. A similar construction is presented in [10, 21] to study the temporal
evolution of the volume of the domain size and free boundary distributions
for a PV transformation! for d = {1,2,3}2. In the following subsection, we
define the domain configuration and discuss its use for the conditional PV cell
characterization.

2 The simultaneously growing sets of randomly distributed nuclei (realized through PPP)
at equal isotropic rate are referred to as the PV transformation. These sets eventually
transform into the PV cells.
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3.2.1 Domain Configuration

Definition 3 For ¢ > 0, we define the set Cf as the set of k points with polar
coordinates (l;, 8;) such that

ch = %{cp A Bou(0) | ®(Bag(0)) = k}. (10)

where /; is the radial coordinate and 8; = [01;,...,0(—1);] are the angular
coordinates.

The point %X; £ (I;,0;) € CF bisects the line segment joining o and x; €
®NBy(0). Thus, for a given x; = (21;,0;) € ®NBay(0), we have corresponding
x; € C} with polar coordinates (I;,8;). By construction, l; € [0,4], 64_1); €
[0,27) and 6y, ..., 0(q—2); € [0, 7]. Henceforth, the set C} is referred to as the
domain configuration. Since ® is a PPP, conditioned on ®(B2(0)) = k, the
points x; € ® N Byy(0), for ¢ € {1,...,k}, are distributed uniformly at random
independently of each other in Bag(o). Consequently, the k points {X;}F,
forming the domain configuration Cf are also distributed uniformly at random
independently of each other in By(0). Using this fact, we can express the pdf
of the domain configuration as done next.

The differential volume element in d dimensions in polar coordinates is

A =t sind*Q(al) ...sin(ag—s2)dvda; ... dag_1.

Thus, the probability that a point distributed uniformly at random in By (o)

lies in an infinitesimal region with volume A; such that v; < £ is equal to ﬁeid'

Now, we obtain the pdf of the configuration CJ as

k
P((h,01) € Ay, (1, B1) € Ak 0) @ T P( 04) € A)

i=1

(b

I{dgd ¢

—-

SindiQ(Oéli) .- .Sin(Oé(d,Q)i)d’Uiqui SN da(d,l)i, (11)
i=1

for 0 < v; < ¢, where (a) follows from the independence of the elements of C}
and (b) follows from the uniform distribution of elements of CJ in By(o).

3.2.2 Connections with the Typical Cell

For an empty domain configuration C?, By(o) is contained in the typical cell
V,. However, a non-empty domain configuration, i.e., Cf for £ > 0, contains
the mid-points of the chords of B,(0) formed by the intersection of the edges of
typical cell V,, with By (o). In addition, the line segments connecting these mid-
points to the origin are perpendicular to the corresponding edges. Therefore,
the domain configuration provides useful information about the structure of V.
We denote by V,(CF) the typical cell conditioned on the domain configuration
CF. As k — oo, it is easy to see that V,(CF) becomes deterministic. However,
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for any finite k, V,,(CF) is in general random because some of its edges may be
defined by points of ® lying outside Ba,(0). That said, conditioning on CJ is
sufficient to uniquely determine the intersection of V,(CF) and the ball By(o).
Fig. 2 illustrates the intersection of the By(0) with the cell V,(C?) for d = 2.

Fig. 2 Illustration of V,(C3) N B, (o) for d = 2.

Let us define Hy as the half-space formed by the points in R? that are
closer to the point x € ® than the origin, i.e.,

Hy 2 {y e R | |y — x|l < [ly[}- (12)

Now, we denote by L;(¢) the surface (in d — 1 dimensions) of the spherical
cap of By(o) such that
Li(¢) & Hy, N 0By (o), (13)

where 9B(0) is the boundary of By(o). An illustration of the formation of
the L;(¢) is presented in Fig. 2 for d = 2. Now, since {X;}¥_, are distributed
uniformly at random in By (o) independently of each other, the corresponding
surfaces of the spherical caps {L;(¢)}*_; have i.i.d. surface areas® and are
placed uniformly at random on 9B;(0). We will now use this construction to
derive the distribution of R,.

3.2.3 Distance Distribution
For a given domain configuration CJ, we define
9k (r;CF) = va(Vo(CF) N B, (0)), (14)

for 0 < r < ¢, as the volume of the intersection of B,.(0) and cell V,(CF). As
discussed before, V,(CF) is the typical cell conditioned on C}.

3 The surface area in this case is the Lebesgue measure in d — 1 dimensions.
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Definition 4 Let Ry denote the distance from the nucleus of V, (i.e., the
origin) to a uniformly random point in V, N By(0).

The first main goal is to characterize the CDF of R, given by

Fg, (z) = lim P(R, < z). (15)

£— 00

This conditional CDF of Ry can be expressed as

va(Vo(CF) N Br(0)) _ gk(riCy)

Fg,(r;C) = va(Vo(CE)Y N Be(0)) — gi(6;CF)’

0<r<t (16)

Fig. 3 provides the visual interpretation of g (1, C¥) and g, (I,CJ) for the typical
cell for d = 2. The region gx(r;CF) is shaded in green and the region g (¢;CF) is
shaded in brown for k = 5. Naturally, our next goal is to characterize gy (r;CF)
for a given 7. For this we will use {L;(r)}*_, which is defined in (13).

Fig. 3 Illustration of g5(r;C7) and g5(¢;C}) for d = 2.

Define the index set Z(r) as the collection of indices 4 for which I; < r. This
set points to the collection of the points x; of the domain configuration that
lie inside B,.(0). The union U,cz(yL;(r) represents the portion of 9B, (o) that
is outside the typical cell V,(CF). This can be seen easily from Fig. 3 for d = 2,
where the arcs on B,.(0) corresponding to X1 = (I1,61) and X3 = (I3, 602) do not
lie in the cell. Using this insight, we will explicitly characterize the portion of
OB, (o) that lies in V,(CF), which will then be used to derive the CDF of R,.
This evaluation requires a careful consideration of the overlaps between the
surfaces of the spherical caps {L;(7)}iez(r)-
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Let y £ (r,@) be the point on the 9B,.(0), where a = [a1, g, ..., aq_1].
The Euclidean distance between y € 9B,.(0) and x; £ (21;,0;) € ® is

do(y,x;) =
21; cos(61;); n=d,
where z,;, = { 2I; H?Zl sin(6j;) cos(0ni); 1 <n<d,
2l; H;L;ll sin(Hji); n=d,
rcos(ar); n=1,
and  y, = { r[[j_; sin(a;) cos(aw,); n < d,
r H;L:_ll sin(a;); n=d.

It is to be noted that points on 95, (o) that lie in the typical cell V,(C}) have
to be outside of {L;(r)}r_,. Now, we define

D; (15, 0:,y) 2 4 (3, (21, 80)) > )5 fori €Z(r) -
L for i ¢ Z(r).
Let D = [0,27) x [O,W]d—Q, Using (17), we can now express the portion of

OB, (0) that belongs to the typical cell V,(CF) as
- 1
/ [T D: (1, 6:.%) Aledar = 104 -1(08,(0) N Vi(Ch)),
D=1

where A(a) = sin? () x - - - x sin(ag_s). Note that Hle D; (1;,0;,y) is 1 at
all points y, such that 0 < r < z, lying inside of B, (0)NV,(CF), and 0 elsewhere.
Thus, the integration of Hle D; (1;,0;,y) over all the points y € B, (o) gives
the value of g (z;Cf) for the given domain configuration, i.e.,

.k
gk(z;cg):// 1 D: (:,6:,y) 1 Ala)drda. (18)
DJr=0,_4

Using the above results, we present the distance distribution of a uniformly
distributed point in V, N By(0) conditioned on ®(Bzy(0)) = k in the following
lemma. In this lemma, we condition on the number of points that form the
domain configuration but not on their locations. Let y; = (u;, o;) and D? =
[0,4] x [0,27) x [0, 7]42.
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Fig. 4 CDF of R, and R, for unit-intensity PPP on R2.

Lemma 2 For given ¢, the CDF of Ry conditioned on ®(Bae(0)) =k is

Fr, (21 k) = /

o

k
; 1
gk(z7 (U’17 al), a(ukn ak)) H UdilA(ai)dyi-

gk (4 (ur,o1), - oy (ug, i) Kgld (19)

i=1

where gi(z; (u1,01), ..., (ug, o)) is given by (18).

Proof The CDF of R, conditioned on ®(B3¢(0)) = k is F, (2; k) = Ecr[Fr, (2; Ch]
where Fg,(z;CF) is given by (16), and the pdf of CJ is given in (11). O

Using Lemma 2, we obtain the following theorem.

Theorem 3 For the homogeneous PPP with intensity A on R%, the CDF of
the distance R, from the nucleus to a uniformly random point in the typical
cell V,, is

Fr,(2) = lim > Fg, (2 k)P(®(Ba(0)) = k), (20)
k=0

l—o0
where Fr,(z; k) is given in Lemma 2.

Proof We first take the expectation of the conditional CDF of Ry, given in
Lemma 2, over k. We then take the limit £ — oo under which this distance
distribution of a uniformly distributed point in V,, N By (0) converges to that of
a uniformly distributed point in V,, per (15). |
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3.2.4 Numerical Results for d = 2

In Fig. 4, we plot the CDF of R, and the CDF of R, with ¢ = 1.6 for d = 2.
This value for £ is selected because the probability that the distance of the
farthest point in the typical cell in R? is below 1.6 is 0.99 [3]. The integrals
n (19) are evaluated numerically using a Monte Carlo integration method.
The numerically evaluated mean values of Ro and R, are 0.500 and 0.445.
Given the complicated form of the exact CDF of R,, it is desirable to con-
struct closed-form approximations that could be used in obtaining design in-
sights in application-oriented studies. On that note, it has been empirically
demonstrated in [16] and [22] for d = 2 that the CDF of R, can be tightly
approximated by 1 — exp(—mpAr?). It is obtained by introducing a correction
factor (c.f.) p in the CDF of R, given in (5), which reduces to 1 — exp(—m\r2)
for d = 2. Furthermore, [16] and [22] empirically show that p = 13/10 and
5/4 provide a close match for the exact CDF of R,. This is also illustrated in
Fig. 4. Building on these initial insights, we derive the aforementioned c.f. p
for the general case of d dimensions in the next section and provide a useful
physical interpretation of the resulting value.

4 Approximation of the Distribution of R,

In this section, we derive the approximate CDF of R, based on the insight
obtained through the empirical results presented in [16] and [22] which are
discussed above. In particular, we approximate the CDF of R, with 1 —
exp(—paAkgr?) (i.e., the contact distribution of PPP) where the c.f. pg is
determined by matching the d-th derivative of the approximate function with
that of the second-order Taylor series expansion of the CDF of R, at r = 0.
For this, the moments and covariance of the volume of the typical cell V,
and the volume of the intersection of B, (o) with the typical cell V, are re-
quired. Therefore, we now present these intermediate results in the following
subsection.

4.1 Some Useful Results

We first present the second moment of the volume of the typical cell V, in the
following lemma.

Lemma 3 The second moment of the volume of the typical cell V, is

E[vg(V, —47er2// / exp(—AU (v, v2, u)) (v1v2)4 1
(sinu)?~2dvydw; du, (21)

where U(vy,ve,u) =

1 P2
Kqv{ + Kqv§ — lid’Uil/ agsin? ¢pdep — Hdvéi/ aqsin? Pdy, (22)
0 0
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r(g+1 . d
Ciz = 53 E)u%jif: Qadq = 7“%();(%)7 Y1+ = m —u and visin® Y, =
vd sin? 1hy.
Proof Using [20, Eq. (21)], we obtain the second moment of vg(V;) as

/ / $1,$2 eV, )dxldxg
R4 JR4

- / / exp(—A0a(Ba, | (21) U Bjoy (22)))deadar.  (23)

Next, (21) is obtained using the steps from the proof of [19, Theorem 3.1]. O

The n-th moment of the volume of the intersection of a ball of arbitrary
radius with the typical cell is obtained in [19, Lemma 4.2]. Using this result,
we present the second moment of vg(B,(0) NV,) in the following lemma.

Lemma 4 The second moment of the volume of the intersection of the ball
B,.(0) with the typical cell V, is E[va(B(0) N V,)?] =

™ T T
47TCd’2/ / / exp(—AU (v, v2, 1)) (v102)4 (sinw) ¥ 2dvpdvrdu, — (24)
o Jo Jo

where U(vy,va,u) is given by (22).

In [23, Lemma 3.1], the correlation between the volume of the typical
Stienen ball and the volume of the typical cell is derived. Using the approach
of [23], we provide the covariance of the volumes of B,(0) NV, and V, in the
following lemma.

Lemma 5 The covariance of the volume of the intersection of B, (o) with the
typical cell V, and the volume of the typical cell V, is

1
e

+27TCd,2/ / / exp(—)\U(vl,vg,u))(vlvg)d_l(sinu)d_degdvldu
o Jo Jo

Covlva(Br(0) N V,),va(V,)] = %Var[vd(Vo)] - 1— 2eXp(—)\I€d7“d)) (25)

T o oo
- 27TCd,2/ / / exp(—AU (v, v2, 1)) (v102) 4~ (sin u) 4~ 2dvydv du,
0 T T

where U(vy,va,u) is given by (22).
Proof Let V,(r) = V, \ V, N B,(0). The variance of the volume of V,(r) is

Var[vg(V,(r))] = Var[vg(V,) — va(B,(0) N V,)]
= Var[vg(V,)] + Var[va(B.(0) N V,)] — 2Cov]va(B,(0) N V), va(V,)].

This implies Cov[vg(B,(0) N V,),v4(V,)] =

%Var[vd(Vo)] + %Var[vd(Br(o) nv,)| — ;Var[vd(v (r)]. (26)
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Using Lemmas 1 and 4, the variance of vq(B,.(0) N V,) can be expressed as
Var[vg(B,r(0) NV,)] = 47Cq 2 / / / exp(—AU (v1, va, 1)) (v1v2) %71 x
(sinu) 4~ 2dvydvy du — 2 (1 — exp(—Akqr ))2 . (27

Now, we obtain the mean and variance of V,(r). Using Lemma 1, we get

E[vg(Vo(r))] = E[va(V,) — va(Br-(0) N V,)] = %exp(—)\,‘idrd). (28)

Using [20, Eq. (21)], we can obtain the second moment as

Elva(V,(r) / / (r < |z, 7 < @], 21, T2 € Vo(r))dzeda
= / / P(z1, 29 € V,)daoda,
R4\ B, (0) JRI\B,.(0)
@ 471'C’d72///exp(—/\U(vl,vg,u))(vlvg)dfl(sinu)d72dv2dv1du, (29)
0O r r

where (a) follows from the similar steps given in the proof of Lemma 3. Lastly,
substituting (27), (28) and (29) in (26) completes the proof. O

Recall, the c.f. pg is determined by matching the d-th derivative of the second-
order approximation of the CDF of R, with that of the approximating function
1-— exp(—pd)\/@drd) at 7 = 0. As the second-order Taylor series expansion of
the CDF includes the covariance term given in Lemma 5, we first provide its
d-th derivative at r = 0 in the following lemma.

Lemma 6 The d-th derivative of the covariance of the volume of the inter-
section of B,.(0) with the typical cell V,, and the volume of typical cell V, w.r.t.
r 15 zero at r = 0.

Proof Using Lemma 5, we can write

dd
WCOV[ a(Br(0) NV,),va(V,)]
r=0
4l 1 d?
= Tine exp(—Mrgr?) » + ard (f1(r) = f2(r)) . (30)
where
/ / (v1,v2)dvedvy, and fao(r / / g(v1, va)dvaduy,
such that

g(v1,v2) = 2770d72/ exp(—AU (v1, v2, u)) (v1v2) " (sinw) ™~ ?du.
0
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Further,
d? 1 1 1. «T(d)
- —Agr? = ——dlkg=—~2m2 . 31
drd \2 exp(—Akar®) . Y h\ 2 F(%) (31)
A lengthy but straightforward calculation yields that
d? 1. aT(d)
- — = 272 . 32
drd (f1(r) = f2(r)) —o A T F(%) ( )
Finally, the substitution of (31) and (32) in (30) completes the proof. O

4.2 Approximate CDF of R,

In the following theorem we determine the c.f. of the approximated CDF of
R,, which is the main result of this section.

Theorem 4 For the homogeneous PPP with intensity A on R%, the approxi-
mate CDF of the distance R, from the nucleus to a uniformly random point
in the typical cell V,, is

Fr,(r) & 1 — exp(—parrar?), (33)
where
B Var[vq(V,)]
P B (V)P 3

Proof The second order Taylor series expansion of the bivariate function f(Z;, Z2) =

% around the mean (1, Z2) can be written as

zZ 1 zZ 1 zZ
F(Z0,Z2) = 22 4 2 (21— 21) — B (Zs — 22) + (21 — 21)(Za — 22) + = (Z2 — 22)*.
29 Z9 25 zZ5 23
Taking expectation of f(Z1, Zs) w.r.t. Z; and Zy, we get
z 1 z
E[f(Z1, Z5)] = 2L — —Cov[zy, 22] + _%Var[zg]. (35)
Zo  Z5 z
The CDF of R, is
va(Br(0) N Vo)]
Fr (r)=E| ———
n () =5 [HEE L

Therefore, using (35), the second-order Taylor series expansion of Fg,(r)
around the mean (E[vg(B,(0) N V,)], E[vqa(V,)]) can be written as Fg, (1) =

E[va(B-(0) N V,)] [1 Var[vd(VO)]} _ Cov[va(Br(0) N V,), va(Vo)]
Elva(Vo)] E[va(Vo)]? Elva(Vo)]?
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Using Lemma 3 and Lemma 4, we obtain Fg, (r) ~

(36)

(1 — exp(—Akar?)) [1 + Var[vd(Vo)]} _ Covlua(B,(0) N Vo), va(Vo)]

E[va(V,)]? E[va(V,)]?

Now, as 1 —exp(—pgArgr?) is considered for the approximation, we determine
the c.f. pg by matching the d-th derivatives of 1 — exp(—pgAkqr?) and Fr, (r)
at r =0 as

1 44
Pd = M@FRO(T)

r=0

Therefore, using (36) and Lemma 6 we have

Var[vg(Vs)]

P BV

This completes the proof. (Il

Before giving the numerical validation of the approximated CDF of R,, we
present the approximated n-th moment of the distance R, and some useful
observations about the c.f. in the following corollaries.

Corollary 1 For the homogeneous PPP with intensity A on R?, the n-th mo-
ments of the distances R, and R, from the nucleus to a uniformly random
point in the 0-cell and typical cell are, respectively, given by

E[RQ]:L@ and E[R?]%M. (37)
(Akg)? (PaAkd) @

Proof The expressions for E[R?] and E[R?] directly follow from Theorems 1
and 4, respectively. O

Corollary 2 For the homogeneous PPP with intensity A on R%, the CDF of
the distance R, from the nucleus to a uniformly random point in the typical
cell V,, can be approzimated as 1 — exp(—Akgpar®) where

E[Ud(VO)]
= . 38
#” Bloa(V,) o
Proof From [7, Equation 2.5], we have
- Var|vg (V)]
Eloa(V,)] = Elug(V,)] + —xlPdi Vo)l
valV)] = Bloa(Vo)] + a7

Substituting the above expression in (34) gives (38). O

Corollary 3 lim pg = 1.
d—o0
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Fig. 5 CDF of R, and R, for unit-intensity PPP on R¢ where d € {1,...,10}. The CDF
of R, and approximate CDF of R, are given in Theorem 1 and Theorem 4, respectively.

Proof Using [19, Theorem 3.1], we can write

lim Var[vs(V,)] = 0.
d—ro0

Since, the mean volume of the PV cell is A=! for any d, the proof directly
follows using (34) and above result. O

Remark 2 From (37), it is clear that the ratio of the means of R, and R, is
approximately pq. Therefore, using Corollary 2, we can infer that the ratio
of the means of R, and R, is approximately equal to the d-th root of the ratio
of the mean volumes of the 0-cell V, and the typical cell V,. In other words,
the distance from the nucleus to a uniformly random point in the typical cell
scales with the distance from the nucleus to a uniformly random point in the
0-cell by a factor equal to the d-th root of the ratio of the mean volumes of
the O-cell V, and the typical cell V.

4.3 Numerical Comparisons

For the numerical evaluation of the approximated CDF of R,, we obtain the
c.f. pq using (34) for which the mean and variance of the volume of the typical
cell are evaluated using Lemma 3. Fig. 5 validates the accuracy of the approx-
imated CDF of R, by comparing it with the Monte Carlo simulations for the
cases of d € {1,...,10}. Fig. 5 clearly indicates that the CDF of R, gradually
approaches that of R, as d increases. Further, Table 1 verifies the accuracy of
the approximated mean and variance of R, (obtained using Corollary 1) for
d € {1,...,10}. For d = 2, the obtained mean value of R, is 0.442 which is
also close to the mean values 0.438 and 0.447 obtained using the curve-fitted
c.f.s 13/10 and 5/4 of [16] and [22], respectively.
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Table 1 Accuracy of Approximated Mean and Variance of R,.

d 1 2 3 4 5 6 7 8 9 10
Pd 1.500 1.285 1.171 1.128 1.079 | 1.062 | 1.043 1.032 1.029 1.018
E[R.] Exact 0.305 | 0.445 | 0.529 | 0.595 | 0.651 | 0.701 | 0.749 | 0.798 | 0.831 | 0.873
i Approx. | 0.333 | 0.442 | 0.524 | 0.591 | 0.648 | 0.698 | 0.745 | 0.789 | 0.829 | 0.862
Var[Ro] Exact 0.090 | 0.058 | 0.038 | 0.028 | 0.022 | 0.019 | 0.016 | 0.014 | 0.013 | 0.012
i Approx. | 0.111 | 0.053 | 0.036 | 0.028 | 0.022 | 0.018 | 0.015 | 0.013 | 0.012 | 0.011

5 Limiting Shape of Large PV Cells

Thus far, we have presented an exact characterization of the CDFs of R, and
R, in Sections 2 and 3 and a closed-form approximation for the multi-integral
exact expression for the CDF of R, in Section 4. It is worth noting that the
conditioning on the k points of ® in the Byy(0), defined as the domain configu-
ration CJ (see (10)), allowed us to construct the set of surfaces of the spherical
caps {L;(¢)}*_, on the ball By(0) as in (13). This helps in determining the
conditional volume of the typical cell V, and thus the conditional CDF of R,.
It is easy to observe that some points of the domain configuration Cf are the
closest points on some boundaries of the typical cell V, and thus the lines join-
ing them to origin are perpendicular to the corresponding boundaries. Further,
these points are also the midpoints of the chords formed by the corresponding
spherical caps. This implies that these surfaces of spherical caps completely lie
outside the typical cell V,, (see Fig. 2 for d = 2). Therefore, it is quite straight-
forward to see that the typical cell is completely contained within B,(0) only
if the set {L;(¢)}¥_, completely covers the boundary of By(o). Using this
fact, in this section, we provide an alternate proof to the well-known spherical
property of d-dimensional PV cells containing a large inball.

Let the point %o £ (R, 0,) denote the nearest point on the boundary of
the typical cell V,, to its nucleus. Therefore, R is the radius of the largest ball
Br(o) contained within the typical cell V,, henceforth called the inradius of
the cell. In this construction, it is evident that the nearest point x¢ in ® from
the nucleus of V, (i.e., the origin) is at (2R, 6y) such that ||Xo|| = 3ol = R.
Note that the results presented in the following are conditioned on the inradius
R.

Let A(r, €) denote the annulus formed by two balls of radii r and r + € co-
centered at the origin. Now, consider the domain configuration Clk% = {ii}le
as the set containing the mid-point of lines joining the nucleus of V,, and the
points in ® N A(2R, 2¢) given ®(A(2R,2¢)) = k. Fig. 6 illustrates a potential
configuration of C% for the case of d = 2. By the Poisson property, the k points
of Clkz are distributed uniformly at random independently of each other in the
annulus A(R, €) such that the CDF of ||x;|| = l;, for Vi, conditioned on R is

ld—Rd

F (1) = R+ —Re

R<I<R+e (39)

We define the set of k + 1 spherical caps {L;(R + €)}¥_, corresponding to
points {x}%_ = {%Xo UCK} on the Br,.(o) with heights equal to € for i = 0
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Fig. 6 Typical cell with inradius R for the case of d = 2.

and R+e¢—1; fori =1,..., k. The surface area of the spherical cap L;(R+¢€)
is [24]

%Xd(R + G)d_1[17 R2 (%, %) , fori=0
S. = (R+e)2 (40)
! xa(R+e) o (42, 5), fori=1,... .k,
e
d
where x4 = 1%?5 ) is the surface area of the unit radius ball in R? and I (a, b) =
%((;Zb)) such that B(a,b) and B,(a,b) are the beta function and the incomplete

beta function, respectively. Note that 0 < .5; < Sy Vi. Since the points in Cg
are i.i.d. in A(R,¢€), the spherical caps {L;(R + ¢)}¥_, of i.i.d. surface areas
are placed uniformly at random independently of each other on Bgry.(0).
Now, we evaluate the probability that the uniformly chosen point (R+e€, cx)
on the surface of Brie(o) belongs to the spherical cap L;(R + ¢), for i €
{1,...,k}, as
p =P((R+ ¢, a) belongs to the cap L;(R + €) of area S;)
1

ETCED I

a Re d—1 1
@ dﬂR/ I () 19141
R 1= reo? 2 2

) Vr(R+ €)? d—1 d+1 - d—1 1
D IRTC B S 20 SRR -
a1 —2s T2 2 R AU T A

(41)

1
2((R+e)7—R%)"
using (39) and (b) follows using the steps given in Appendix A. Also note that

where U = Step (a) follows using the pdf of I; which is obtained
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the probability that the uniformly chosen point (R + €, ) on the surface of
Br+e(0) belongs to the spherical cap Lo(R + ¢€) is

1 d—11
— oI 0. 42
Po=3 1—<Rii)z< 2 ’2) (42)

Let K = ® (A(2R,2¢)). By definition, K is Poisson with mean Akq((R +
€) — R%). Now to complete our argument, we evaluate the probability that
the point on the boundary of Br.(0) does not belong to V, as

Qui(R,€) = P((R + ¢, ) belongs to at least one of the caps)
=1—(1—-po)E[(1-p)¥]

(a) 1 d—1 1 1
- (1- 30 e (5 ’2>>exp< 2Mdh(R’6)>’ w

where h(R,e) = _(B19° _p e (SR - RdI _ (%1, 3), and

B(“H3) 1" mia (R+e)2
(a) directly follows using (41), (42) and the robablhty generating function of
the Poisson distribution with mean Axg((R + €)¢ — R?). Now, in the following

theorem we state the limiting case of (43).

Theorem 5
Rlim Qa(R,¢e) =1, Ve > 0. (44)
—00

Proof We note that, for e >0, I,z (51, 1) — 0 as R — oco. Therefore,
(R+¢)2
in order to prove (44), it is sufficient to show that the exponential term in (43)

tends to 0 as R — oo for € > 0, i.e.,

lim h(R,€) = oo
R—o0
To this end, we multiply h(R, ) with B (%52, %) to obtain h(R,€) =

d—1 d+1 d—11
(R+¢)'B,__g (2,2)—Rd31 2 (2,2>. (45)

(R+e)2 (R+¢)2

2
d—1 -T2 4
B, <a>/ TR L e gy,
T m+a? 2 0

Thus, using the binomial expansion of the term (1 —¢)¢~!, we get

2
d—1 1= Eta? a1, > 1 i
B (Fhe) = [T S g T 1o

k=0
R2

0o - 1——RZ
> o-n [T e
k=0 = 0

We have



Uniformly Random Points in the 0-cell and the Typical Cell of the PVT 21

i k fol(aflfl) 1 R? 5
+d 1) (R+¢€)?

k 1 d k 1
Using the above expansion, we can rewrite (45)
R? k+
= AR ~BRY (1 ——
HE+ O = B ( (R+e)2)
(2Re + 2)k+5

d—1
d n _d—n
Ak—Bk)R +Ak2(n>R € (R+€)2k+d71
n=0
d—

1
d
Ak—Bk)R +Ak < >Rn+ 7k d n]
0

n=

%9 =3
i
-3

k=0
(2¢ + R-12)k+557
1 +R*16)2’”d*1 :

Now note that Ay — By > 0 for k < ¢5=. Therefore, the terms in the above
summation tend to infinity as R tends to infinity for k < d'gl. In addition,
the terms converge to a constant for k = % (if d is odd) and to zero for
k > %. From this, it is clear that i~L(R7 €) = oo as R — oo. Therefore, we
have h(R,€) — oo as R — oo. O

From Theorem 5, it is easy to see that the boundary of a PV cell V,, must be
contained within the annulus A(R, €) as its inradius R — oo for an arbitrarily
small €. Hence PV cells with large inradii tend to be spherical. Therefore, the
approach presented in this section provides an alternate proof for the well-
known spherical nature of the PV cells having a large inball [3, 25, 26]. A
realization of a PV cell V, with large inradius is shown in Fig. 7 for d = 2.

A Solution of Integral in (41)

By (a,b)

Let a = % and b= % From step (a) of (41) and using I;(a,b) = Bab)

we have

R+e
p= VR/ B, (ab) 14=1qi,
R T (Rte)2

d((R+e)?—Rr%H~!

where vp = . We solve the above integral using integration by parts as

2B(a,b)

follows. Let v = 1971 and u = B1 12 (d% 7> We have
~ (Rte)?

d 21 ( 12 )”‘1 (1 12 )"‘1

= — - ,

dl (R+¢€)2 \(R+¢)? (R + ¢)?
and thus

RA R+te jd 2l 12(b—1) 12 a—1
=—-vr—B a,b) +v / — (17 ) dl.

8 d - @htvn [ (R+ )2 (R+e)2b-1) (R+e)?
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Fig. 7 Illustration of a cell in R? with large inradius.

2
Now, substituting (Ri—ie)z =z, we get

Rd R+e d 1 a_
p=-vp—2B R2 (a,b)—i—uRu/ 2 22711 - 2)% 1dz

¢ e ¢ e
R4 R+ ) d d
=—vp—B (a,b)—f—l/Ru B(b—l—f—l,a)—B 2 (b—l—f—l,a)
d 1" G2 d 2 Rto? 2
B (b + 4, a) J
= DrRU. g (ab)+ip(R+et— 2 L1 1, <b+ ¢ a)
' ma? B(a,b) eEnE 2

a d
@ or(R+ OB, e (a, b+ 7) ~7rR 2 (a,b)
T (R+e)2 2 T (R+eo)2

where U = m. Step (a) follows using I;(a,b) =1 — I1_4(b,a) and B(a,b) =
B(b,a).
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