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Abstract In this work, we present a variant of the multilayer random sequen-
tial adsorption (RSA) process that is inspired by orthogonal resource sharing
in wireless communication networks. In the one-dimensional (1D) version of
this variant, the deposition of overlapping rods is allowed only if they are as-
signed two different colors, where colors are symbolic of orthogonal resources,
such as frequency bands, in communication networks. Owing to a strong spa-
tial coupling among the deposited rods of different colors, finding an exact
solution for the density of deposited rods of a given color as a function of time
seems intractable. Hence, we propose two useful approximations to obtain the
time-varying density of rods of a given color. The first approximation is based
on the recursive use of the known monolayer RSA result for indirect estimation
of the density of rods for the multilayer version. The second approximation,
which is more accurate but computationally intensive, involves accurate char-
acterization of the time evolution of the gap density function. This gap density
function is subsequently used to estimate the density of rods of a given color.
We also consider the two-dimensional (2D) version of this problem, where we
estimate the time-varying density of deposited circles of a given color as a
function of time by extending the first approximation approach developed for
the 1D case. The accuracy of all the results is validated through extensive
Monte Carlo simulations.
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1 Introduction

Over the last few decades, random sequential adsorption (RSA) has been a
subject of much investigation owing to its importance in a wide range of scien-
tific disciplines such as surface chemistry, condensed matter physics, cellular
biology, and photonics. While the origins of this direction of research can be
traced back to 1939 when Flory studied random attachment of atomic groups
to a long polymer [17], it became popular after Rény’s “car parking prob-
lem” was published in 1958 [26]. Subsequently, different variants of the RSA
problem have been studied extensively (cf. [29] and the references therein).

In this article, we propose a variant of the RSA that is inspired by resource
sharing in wireless networks. The broadcast nature of wireless communications
is both a blessing and a curse in the design of wireless communications systems.
On one hand, it has allowed a large-scale adoption of wireless communications
through various radio and television broadcast technologies in which the same
wireless signals transmitted by various radio and television stations can be
efficiently received by thousands of wireless receivers. On the other hand, the
same broadcast nature results in interference when wireless terminals receive
signals that are not intended for them. In fact, radio frequency interference
is widely regarded as the single most important performance-limiting factor
in modern wireless systems. One potential approach to limiting the effect of
interference is to ensure a minimum distance among the nodes that are trans-
mitting on the same frequency bands. If the locations of the wireless nodes
are modeled as a Poisson point process (PPP), the subset of nodes transmit-
ting on any given frequency will form an RSA process. Furthermore, one can
draw parallels between the aforementioned wireless resource allocation and
the Rény’s car parking problem [9]. In the same way as a newly arrived car
cannot overlap with an already parked car, a newly arriving user in a wireless
network cannot be assigned a wireless resource (frequency band in the above
discussion) that is already being used in its vicinity.

1.1 Motivation

To establish a more accurate connection between the RSA process and the
above wireless setting, let us first define the canonical monolayer RSA process.

Definition 1 Consider a D-dimensional space, where hard spheres of diam-
eter σ appear following a homogeneous spatio-temporal PPP. The monolayer
RSA process is constructed by sequentially and irreversibly adding spheres from
this space-time PPP with the condition that an arriving sphere does not overlap
with already existing spheres in the system.

There are two important properties of the RSA process that have been
extensively studied in the literature: the time-varying density and the time-
varying pair correlation function. It is worth noting that due to the irreversible
nature of the process, the system eventually reaches a state where the addition
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of new spheres is not possible. This state is known as the jamming state. Many
interesting works, mostly for 1D and 2D versions of the monolayer RSA, are
available in the literature. These works highlight some interesting properties
of the RSA process related to the transient as well as jamming states. For a
pedagogical treatment of the monolayer RSA process, interested readers are
advised to refer to [29].

Given the above definition of the monolayer RSA process, let us now con-
sider a wireless network with K-orthogonal frequency bands and assume the
following: (1) the nodes appear in the network as per a spatio-temporal PPP,
(2) each node transmits on a certain frequency band, which is randomly se-
lected from the set of available bands, where a band is said to be available if it
is not being used by any other nodes within a certain minimum distance from
this node, (3) a node for which the set of available bands is empty because
of the minimum distance violation (i.e., all bands are already being used by
the other nodes in its vicinity) is not admitted into the system, and (4) once
a node is admitted into the system, it will not leave the system. A natural
question for this setting is: at any given time what is the density of nodes
transmitting on the same frequency band? If we consider a single frequency
band (K = 1) in the network, the setup reduces to the monolayer RSA set-
ting defined above. Hence, it is straightforward to answer this question by
leveraging the well-known monolayer RSA results (cf. [29] and the references
therein). However, if there are multiple frequency bands, one can envision the
resulting point process of nodes as a multilayer RSA. Owing to the strong
spatio-temporal coupling among the layers, the monolayer RSA result cannot
be directly applied to study the density of this multilayer RSA process. Fur-
ther, as will be discussed shortly, even though one can draw some similarities
between this multilayer RSA and some known variants of RSA studied in the
literature, the underlying physical phenomenon that generates this process has
not been discussed in this context yet. Given the novel setting, we naturally
need to derive new results to answer the above question, which is the main
contribution of our work.

Before we proceed further, it is important to note that wireless commu-
nications research has had many subtle connections with statistical physics
over the years. The most relevant to this paper are the ones that emerged
because of the use of point processes and stochastic geometry in both areas.
For instance, a popular approach to modeling the placement of mobile towers
in a wireless cellular network is to view them as a realization of the PPP [2,
12]. Therefore, the service regions of the mobile towers can be modeled as
Poisson Voronoi cells with the towers placed at their nuclei. If a user is placed
uniformly at random in the typical Poisson Voronoi cell, it is important to
know how far is it from the mobile tower (nucleus). The distribution of this
distance was derived very recently in [20] using ideas that were originally de-
veloped in statistical physics to study the temporal evolution of the domain
structure of the Poisson Voronoi tessellation in [25]. Along similar lines, the
moments of the area of the edge cells in a bounded Poisson Voronoi tessellation
were derived in [18]. Yet another recent example is the use of line processes
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for modeling road systems in vehicular communications [11]. Line processes
have been extensively studied in statistical physics (for instance, to model the
trajectories of sub-atomic particles). However, the application of line processes
to vehicular communications led to a new problem statement about the path
distances measured along the lines, which has also been tackled recently in the
statistical physics literature [7].

With this general background, we are now ready to present our new vari-
ant of the RSA process in the canonical one-dimensional (1D) setting below.
After deriving results for the 1D case, we will also tackle the two-dimensional
(2D) case later in the paper. Note that we will consider impenetrable hard
rods/circles (centered at the arriving points) for the construction of the mul-
tilayer RSA process. From the wireless network perspective, the centers repre-
sent communicating nodes and the inhibition distances represent their commu-
nication range within which they will interfere with other nodes transmitting
on the same frequency band. Our problem setup implicitly assumes that the
interference is modeled using a generic distance-dependent path-loss. However,
if one also considers random fluctuations in the interference power due to other
wireless channel impairments, such as shadowing and small-scale fading, it will
result in other interesting variants of the RSA process. We will present a brief
discussion on this topic in Sec. 5.

1.2 Problem statement

Consider a 1D line that is empty at t = 0. Hard rods of length σ are arriving
uniformly at random at rate ra per unit length. A rod is placed on the line ir-
reversibly after being assigned a color from a set of colors K = {c1, c2, . . . , cK}.
From a communication network perspective, rod centers represent communi-
cating node locations, their lengths represent the communication range, and
the set colors represent the orthogonal frequencies. A color is selected ran-
domly from the set of available colors, where a color is available if it is not
assigned to already existing rods that overlap with the arriving rod. If no colors
are available for assignment, the arriving rod is not admitted into the system.
An illustrative diagram is presented in Fig. 1. The special case of K = 1 gives
us the celebrated Rény’s car parking problem. Our goal is to characterize the
density of rods of a given color as a function of time, denoted by ρk(t) for
ck ∈ K.

1.3 Related literature and contributions

The problem described above has similarity to some known multilayer variants
of the RSA problem [3,4,19,31,32]. While we briefly describe these variants
next for completeness, the differences in the geometric constraints and dynam-
ics between these and the setup studied in this paper forbid a direct application
of these prior analyses to the current setup. In [3,4], authors have considered a
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Fig. 1: An illustrative figure for the deposition of rods that are assigned either red or green
color. (Top) Arriving rod overlaps with a deposited rod of green color. Hence, it is assigned
red color. (Middle) Arriving rod overlaps with rods of both the colors. Hence, it is discarded.
(Bottom) Arriving rods lies in an empty interval. Hence, it can be assigned either of the two
colors with equal probability.

sequential multilayer deposition of dimers on a lattice. Using mean-field theory,
approximate density results are presented by not considering the screening1

effect from higher layers. Additional approximate results for the entire time
range based on empty interval probability2 rate equations were also presented.
However, the results are limited to the first two layers as the solution rapidly
becomes cumbersome for higher layers. Further, in [4] authors provide the
large time asymptotic behavior of the densities for different layers for the con-
tinuum case. In [19], the authors present asymptotic results for a variant of the
multilayer RSA with sequential deposition of objects without screening effect.
In addition, the authors consider the length of the objects to be random with
a certain distribution. The asymptotic results are presented for 1D and 2D
continuum cases that suggest each layer approaches the jamming limit as a
power law. In [31], the authors study a variant of the continuum multilayer
RSA where variable-length screening due to overhangs from higher layers is
considered. For this model, exact results are presented only for the first layer.
A generalized version of the multilayer RSA model of [31] is considered in [32]
where the three possible events of the particle deposition are taken into ac-
count namely adsorption, desorption, and rolling of an object on the surface.
Similar to the previous case, the exact results are presented only for the first
layer.

Another interesting line of works that are inspired by the process of fre-
quency assignment in wireless networks can be found in [13–16]. In this variant,
the sequential assignment of frequencies gives rise to a space-time process that
is similar to the multilayer RSA process without the screening effect. In [13],

1 Blocking of arriving objects by higher layers to the lower layers due to overhangs. This
phenomenon is not a characteristic of our model due to orthogonal frequency bands.

2 The probability of finding an interval of n or more consecutive sites empty.
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through numerical simulations, authors propose several conjectures related to
the long term asymptotic behavior such as the number of frequency bands
necessary to accommodate n users, i.e., the average number of layers formed
by deposition of the first n rods. Additional simulation-based results related
to packing density are also presented. Inspired by the same model, in [14] a se-
quential two-layer RSA process is considered on a discrete finite lattice where
the arriving objects are dimers. The model also takes into account both “no
screening” and screening of dimers from the second layer to the first layer.
The density results are presented for local patterns, i.e. occupancy in both the
layers over three consecutive sites. In [16], authors extend the previous results
from two layers to higher layers for a finite lattice size of five sites where arrival
is allowed on consecutive three sites. The analysis is focused on obtaining the
occupancy probability of the center site for a given layer at the large time
limit. Further, a few simulation-based results for systems with larger lattice
sizes are also discussed.

From this discussion, two key characteristics of the prior works are note-
worthy. First, each variant of the multilayer RSA has unique geometrical and
dynamical features that are not universal and are strongly driven by the un-
derlying rules of deposition of the objects. Because of this, a unified analysis of
all these variants, although desirable, is not possible. As a result, understand-
ing the characteristics of each process requires a unique analytical treatment
governed by its underlying physical model. Second, the exact characterization
of these features is extremely difficult due to the non-markovian nature of the
process as well as strong spatio-temporal interaction among different layers.
Hence, accurate approximate results are mostly our best hope unless one con-
siders very specific limiting scenarios, such as finite lattice size or large time
system behavior. With this understanding, the contributions of our work are
summarized below:

1. as described in Sec. 1.2, we propose a new variant of the multilayer RSA
that is inspired from random orthogonal resource sharing in wireless com-
munications networks.

2. Although each step in this variant is random, owing to the infinite mem-
ory of the deposition process, it is non-markovian. Hence, obtaining exact
results for the kinetics is difficult. Therefore, to tackle this problem, we
develop approximations that are reasonably accurate for the entire time
range. For the 1D case, we provide two useful approximation methods to
obtain the density of rods of a given color. The first method recursively
uses the monolayer RSA result with modified arrival rates to obtain the
density of rods of a given color. On the other hand, in the second method,
we approximately characterize the gap density function, which is later used
to obtain the density of rods. While the first approach is more amenable
to numerical evaluation, the second method is more accurate along with
providing useful intermediate results.

3. We also accommodate the 2D version of the problem, which is solved using
a method that is similar to the first approximation method for the 1D case.
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From an application point of view, we present a case study of orthogonal
frequency band allocation in Wi-Fi networks where the results derived for
the 2D RSA are directly applicable for the system analysis.

The rest of the article is organized as follows: in Sec. 2, we present the first
approximation that leverages the monolayer RSA result to solve the problem.
In Sec. 3, we present our second approach to solve the problem using gap den-
sity function. The density results for the 2D case using the first approximation
is presented in Sec. 4. We provide concluding remarks in Sec. 5.

2 Density Approximation of 1D Multilayer RSA: An Iterative

Approach

In this section, we present our first approach to approximate the density of rods
of a given color as a function of time. This approach is based on establishing an
equivalence between the proposed color assignment process and an alternate
sequential color assignment process that is described below. The equivalence
between these two assignment processes is in terms of total density of rods
admitted into the system.

The rules for the alternate sequential color assignment scheme are as fol-
lows:

1. Let there be K colors K = {c1, c2, . . . , cK} with a predefined ordering.
The coloring scheme is sequential, i.e. for an arriving rod at x, color c1 is
considered first. If a rod of color c1 overlaps with Bσ/2(x)

3, then color c2
is considered and so on.

2. If the arriving rod at x overlaps with rods of all the colors, i.e. centers of
rods of all colors are present in Bσ(x), then the rod is not admitted into
the system.

Let ρ̃i(t) be the density of rods of color ci at time t. Due to the sequential
nature of the assignment scheme, it is clear that ρ̃1(t) ≥ ρ̃2(t) ≥ . . . ≥ ρ̃K(t).
On the other hand, in case of the random assignment of colors as proposed
in the original problem (Sec 1.2), the densities of rods of different colors are
the same, i.e. ρ1(t) = ρ2(t) = . . . = ρK(t). Note that at time t, in both the
schemes, the total density of admitted rods of all colors is the same. Hence,
we write

K
∑

k=1

ρk(t) =

K
∑

k=1

ρ̃k(t)

⇒Kρi(t) =

K
∑

k=1

ρ̃k(t)

⇒ρi(t) =

∑K
k=1 ρ̃k(t)

K
, ∀i = 1, 2, . . . ,K. (1)

3 Throughout the manuscript, we denote a ball of radius σ/2 centered at x as Bσ/2(x).
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To use the above equation to characterize the density of rods of color ci
for the original assignment scheme, we need information regarding ρ̃i(t), ∀i.
Observe that the evolution of density of rods for color c1, denoted by ρ̃1(t), is
the same as the monolayer RSA. Hence, the density of rods of color c1 is given
as [29]

ρ̃1(t) =
1

σ

∫ raσt

0

exp

(

−2

∫ u

0

1− e−x

x
dx

)

du. (2)

However, characterizing the exact density of rods of color cn, for n ≥ 2, is non-
trivial. Hence, we approximate ρ̃n(t) for n ≥ 2. In the sequential assignment
scheme, at time t, ρ̃1(t) rods per unit length have been assigned color c1.
Hence, the number of arrivals per unit length that have been considered for
the allocation of color c2 is rat − ρ̃1(t). Similarly, the number of arrivals per
unit length considered for color c3 is rat − ρ̃1(t) − ρ̃2(t). To obtain ρ̃2(t), we

assume that the rods are arriving uniformly at random at a rate ra − ρ̃1(t)
t .

Note that although reasonable, this assumption is an approximation. Further,
assuming that the evolution of color c2 happens similar to monolayer RSA,
the density at time t is given as

ρ̃2(t) =
1

σ

∫ raσt−ρ̃1(t)σ

0

exp

(

−2

∫ u

0

1− e−x

x
dx

)

du. (3)

Proceeding on the similar lines, the density of rods of color cn for 2 ≤ n ≤ K
is given as

ρ̃n(t) =
1

σ

∫ raσt−σ
∑

n−1

i=1
ρ̃i(t)

0

exp

(

−2

∫ u

0

1− e−x

x
dx

)

du. (4)

In the following proposition, we summarize the density result presented in
this section:

Proposition 1 The density of rods of a given color for the original random
color assignment problem is given as

ρi(t) =

∑K
k=1 ρ̃k(t)

K
,

where

ρ̃k(t) =
1

σ

∫ raσt−σ
∑

k−1

i=1
ρ̃i(t)

0

exp

(

−2

∫ u

0

1− e−x

x
dx

)

du.

The validation of the accuracy of the above approximation is presented in
Fig. 2.

Interestingly, once the equivalence between the original and the alternate
sequential color assignment processes was established in (1), this approach
relied exclusively on the known monolayer result. As we will discuss in Section
4, its tractability also makes it an appealing choice for the RSA analysis in
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Fig. 2: The evolution of the density of rods of a particular color as a function of time t for
σ = 1. Markers and solid lines represent simulations and theoretical results, respectively.

higher dimensions. That said, this approach suffers from a gradual loss of
accuracy as the number of colors increases. This motivates us to present an
alternate result that is more accurate compared to this approximation and has
an added advantage of providing useful intermediate results that have more
information regarding the kinetics of the process (whereas the above approach
does not provide any other statistical information about the original random
color assignment process apart from the time-varying density of rods of a given
color).

3 Density Approximation for 1D Multilayer RSA: Gap Density

Function-based Approach

In this section, we present our second approximation approach to obtain the
density of rods of a given color. It is based on the characterization of the gap
density function, which is one of the canonical methods to understand the
kinetics of the RSA process as well as its different variants. In our case, at
time t, the gap density function Gi(l, t) is defined such that Gi(l, t)dl gives
the density of gaps of length between l and l+dl for rods that are colored ci.
Following properties of Gi(l, t) are useful in the derivation of density of rods
of a given color:

1. Since each gap corresponds to an admitted rod of color ci preceding it (or
succeeding it), the density of rods of color ci is given as

ρi(t) =

∫ ∞

0

Gi(l, t)dl. (5)

This direct relationship to the density makes gap density function more
attractive to work with compared to other intermediate quantities such as
empty interval probability [5].



10 Priyabrata Parida, Harpreet S. Dhillon

2. At time t, the fraction of the length (average length over a unit interval)
available for admitting a rod that can be assigned color ci is

Φi(t) =

∫ ∞

σ

(l − σ)Gi(l, t)dl. (6)

Above result can be interpreted as the probability of a rod arriving in a
gap of length l of color ci. This relationship is used later in the proposed
approximation.

Instead of directly solving the problem for K ≥ 2 colors, we begin with the
simpler case of K = 2. The objective is to expose the underlying structure of
the problem for the simpler setting of K = 2, which will help in identifying
key constructs that emerge from the inherent spatial coupling of the RSA and
will hence need careful approximations for a tractable analysis. This will then
inform our analysis of K ≥ 2.

3.1 Results for two layers (K = 2)

Consider the scenario where rods can be assigned either of the two colors
K = {c1, c2}. As mentioned in Sec. 1.2, the assignment of a color is random
with equal probability unless the arriving rod overlaps with an admitted rod
of a given color. Owing to the random assignment, at a given time t, G1(l, t)
and G2(l, t) are identical. Hence, without loss of generality, we just focus on
deriving G1(l, t).

Our first step is to characterize the time evolution of G1(l, t). Consider
a gap of length l for rods of c1 (see Fig. 3). The allowable length on which
a rod can arrive with the possibility of getting the color c1 is the segment
[σ2 , l − σ

2 ]. Let us denote this line segment by Ll−σ. For a rod arriving at
location x ∈ Ll−σ, we define the following events:

1. Ii(x, t) := {A rod arriving at point x during the time window (t, t + dt]
will be assigned ci.}

2. Ci(x, t, l) := {The rod arrives in gap of length l corresponding to color ci
during time (t, t+ dt].}

3. En(x, t) := {At time t, the segment Bσ/2(x) :=
[

x− σ
2 , x+ σ

2

]

overlaps
with n deposited rods}
The evolution of G1(l, t) depends on the following configurations in the

vicinity of x:

1. the rod will be assigned color c1 (green in the illustrations) with probability
1/2 if Bσ/2(x) is not partially (or fully) covered by rods of color c2 (orange
in the illustrations), and

2. the rod will be assigned color c1 with probability 1 if Bσ/2(x) is partially
(or fully) covered by rods of color c2. In the illustrative example of Fig. 3,
the arriving rod will be assigned color c1 with probability 1 as it overlaps
with rod of color c2.



Multilayer Random Sequential Adsorption 11

�

2
0 � +

�

2

−�

2
� � −

�

2

3�

2
�

Fig. 3: A gap of length l for rods of color c1 (green for the illustration purpose). New
arrivals that can destroy this gap are possible only over the segment Ll−σ = [σ

2
, l − σ

2
].

We write the following set of differential equations to capture the evolution
of G1(l, t) due to an arrival in the gap of length l for rods of color c1 during
an infinitesimally small time window (t, t+ dt]:

∂G1(l, t)

∂t
=



































−ra

∫

x∈Ll−σ

G1(l, t)P[I1(x, t)|C1(x, t, l)]dx

+2ra

∫ ∞

y=l+σ

G1(y, t)P[I1(x, t)|C1(x, t, y)]dy l ≥ σ,

2ra

∫ ∞

y=l+σ

G1(y, t)P[I1(x, t)|C1(x, t, y)]dy l < σ.

(7)

To obtain (7), we first consider the case of l ≥ σ as it involves the rate
of change in the density of gaps between (l, l + dl] due to the destruction of
such gaps as well as creation of such gaps from gaps of larger length. The
second case of l < σ involves only the creation term that can be obtained
using a similar logic as we present for l ≥ σ. The first term on the right hand
side (destruction term) captures the rate of change in density G1(l, t) due to
the average number of arrivals over unit length in a gap of length l and is
straightforward to obtain. The second term (creation term) captures the rate
of change in G1(l, t) due to average number of arrivals per unit length that
can create a gap of length l from a gap of length y > l + σ. This expression
can be derived as follows: for all the gaps of length (y, y + dl], the fraction
of available length for arrival of a rod is (y − σ)G1(y, t)dl. In order to create
a gap of length l, the rod needs to arrive on a thin length dy at a distance
l + σ/2 from either end of the gap y. Due to the uniform arrival of rods,
the probability of this event is dy/(y − σ). Further, this arriving rod will be
assigned color c1 with certain probability depending on the configuration of
already deposited rods of color c2 in this gap. This probability is captured
by the term P[I1(x, t)|C1(x, t, y)]. Hence, the fraction of length that allows an
arriving rod to partition y into two smaller gaps of lengths l and y − l − σ is

2dy

(y − σ)
(y − σ)[G1(y, t)dl]P[I1(x, t)|C1(x, t, y)]

= 2[G1(y, t)dl]P[I1(x, t)|C1(x, t, y)]dy,
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which gives the desired integrand in (7) for the creation terms in both the
cases.

Our next step is to derive an expression for the probability term pre-
sented in (7). Using Bayes’ theorem and law of total probability, we write
P[I1(x, t)|C1(x, t, l)] =

P[I1(x, t), C1(x, t, l)]
P[C1(x, t, l)]

=

∑

n≥0 P[I1(x, t), C1(x, t, l)|En(x, t)]P[En(x, t)]
P[C1(x, t, l)]

=

∑

n≥0 P[I1(x, t)|C1(x, t, l), En(x, t)]P[C1(x, t, l)|En(x, t)]P[En(x, t)]
P[C1(x, t, l)]

. (8)

Note that the above conditional probability depends on the location of
x ∈ Ll−σ. Deriving an exact expression while considering this location depen-
dence is intractable. This is a manifestation of the spatial coupling because of
which exact analyses of multilayer RSA in most settings is intractable. Next
we present our approximation approach that is based on a few assumptions
including the location independence.
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Fig. 4: An illustrative gap of length l for color green (c1). The arrivals at x ∈

[

σ
2
, l − σ

2

]

are considered for assigning color green.

First, we get P[En(x, t)], i.e. the probability of the event that the interval
[x− σ

2 , x+
σ
2 ] overlaps with n deposited rods. Consider the following realizations

of this event:

1. For n = 0 (Fig. 4 top): if the arrival occurs at x ∈ [σ, l − σ], then it is
clear that there has been no prior arrivals in (x − σ, x + σ) until time t.
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Otherwise, it would have been assigned one of the colors. Hence, using
empty interval probability of 1D Poisson process, P[E0(x, t)] = e−ra2σt. On
the other hand, if the arrival occurs at x ∈ {[σ2 , σ) ∪ (l − σ, l − σ

2 ]}, then
there is a non-zero probability that there has been atleast one arrival in
(x−σ, x+σ) prior to time t. This arrival(s) has been discarded as there are
no colors left to assign. Exact evaluation of the probability of this event is
cumbersome. Hence, we approximate it as a Poisson arrival and write

P[E0(x, t)] = e−ra2σt, x ∈
[

σ

2
, l − σ

2

]

.

2. For n = 1 (Fig. 4 bottom): similar to the previous case, if the arrival occurs
at x ∈ [σ, l−σ], then it is clear that there is one arrival in (x−σ, x+σ) until
time t. Hence, we write P[E1(x, t)] = ra2σte

−ra2σt. However, when arrival
occurs at x ∈ {[σ2 , σ) ∪ (l − σ, l − σ

2 ]}, it is difficult to derive P[E1(x, t)]
as it requires a cumbersome enumeration. To circumvent this, similar to
the previous case, we approximate the arrivals in (x− σ, x+ σ) to follow a
Poisson process and write

P[E1(x, t)] = ra2σte
−ra2σt.

3. For n = 2: Similar to the previous cases, we approximate that the process
is Poisson in (x− σ, x+ σ) for an arrival at x ∈ [σ2 , l − σ

2 ]. Hence,

P[E2(x, t)] =
(ra2σt)

2

2
e−ra2σt.

Note that P[En(x, t)] = 0 for n ≥ 3.

Next, we are interested in P[C1(x, t, l)|En(x, t)], ∀n. Let us define the event
C1(x, t) as the event that an arriving rod falls in a gap corresponding to color
c1. As presented earlier, the probability of this event is given as

P[C1(x, t)] = Φ1(t) =

∫ ∞

σ

(z − σ)G1(z, t)dz.

Above probability takes into account all the gaps of length greater than σ,
where the probability that the rod lies in a gap of length (l, l+dl] correspond-
ing to color c1 is (l − σ)G1(l, t)dl. Please note that P[C1(x, t, l)|En(x, t)] =
P[C1(x, t, l), C1(x, t)|En(x, t)] due to the fact that C1(x, t, l) ⊆ C1(x, t) condi-
tioned on En(x, t). Further, we assume that P[C1(x, t, l)|C1(x, t), En(x, t)] =
P[C1(x, t, l)|C1(x, t)] for all n. Using this relationship, for n = 0, this condi-
tional probability is simply the probability that Bσ/2(x) lies in a gap of length
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(l, l + dl] of all the gaps and is given as

P[C1(x, t, l)|E0(x, t)] = P[C1(x, t, l), C1(x, t)|E0(x, t)]
= P[C1(x, t, l)|C1(x, t), E0(x, t)]P[C1(x, t)|E0(x, t)]
(a)
= P[C1(x, t, l)|C1(x, t)]P[C1(x, t)|E0(x, t)]

=
P[C1(x, t, l)]
P[C1(x, t)]

P[C1(x, t)|E0(x, t)]

(b)
=

(l − σ)G1(l, t)dl

Φ1(t)

where (a) follows from the aforementioned assumption, and (b) using the fact
that P[C1(x, t)|E0(x, t)] = 1.

Now consider that the arriving rod Bσ/2(x) sees one deposited rod in the
neighborhood. Its arrival is in a gap of color c1 only if the deposited rod is
assigned color c2. The probability of this event is 1/2. Following the similar
principle as n = 0, we write

P[C1(x, t, l)|E1(x, t)] = P[C1(x, t, l), C1(x, t)|E1(x, t)]
= P[C1(x, t, l)|C1(x, t), E1(x, t)]P[C1(x, t)|E1(x, t)]

=
(l − σ)G1(l, t)dl

Φ1(t)

1

2
. (9)

The event E2(x, t) is more interesting compared to the previous cases. First, if
the centers of both the deposited rods are not separated by a distance σ, then
these two rods need to be assigned two different colors. Hence,

P[C1(x, t, l)]|E2(x, t), {Admitted rods are less than σ apart}] = 0

as the arrival is no longer in a gap of color c1. Hence, the event we are interested
in is that the centers of both the admitted rods are atleast σ distance apart and
both these rods are assigned color c2. The probability that the two arrivals are
at least σ distance apart can be evaluated using order statistics and it comes
out to be 5/18. Further, the probability that these two rods are assigned color
c2 is 1/4. Overall, we write

P[C1(x, t, l)|E2(x, t)] = P[C1(x, t, l), C1(x, t)|E2(x, t)]
= P[C1(x, t, l)|C1(x, t), E2(x, t)]P[C1(x, t)|E2(x, t)]

=
(l − σ)G1(l, t)dl

Φ1(t)

1

4

5

18
. (10)

Using the law of total probability

P[C1(x, t, l)] =
(l − σ)G1(l, t)dl

Φ1(t)

(

e−ra2σt +
1

2
(ra2σt)e

−ra2σt +
1

4

5

18
(ra2σt)

2 e
−ra2σt

2

)

.

(11)
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Above expression for P[C1(x, t, l)] is exact when

Φ1(t) = e−ra2σt +
1

2
ra2σte

−ra2σt +
1

4

5

18
(ra2σt)

2 e
−ra2σt

2
.

Since this is not the case, the result is an approximation whose accuracy is
validated at the end of this section.

To reach our final goal, we need to obtain P[I1(x, t)|C1(x, t, l), En(x, t)].
Owing to the equi-probable random assignment of colors

P[I1(x, t)|C1(x, t, l), En(x, t)] =
{

1/2 n = 0,

1 n = 1, 2,
(12)

where for n = 2, we have the condition that both the arrivals are at least σ
distance apart.

Substituting the conditional probability expressions in (8), we get

P[I1(x, t)|C1(x, t, l)] =
1
2e

−ra2σt + 1
2 (ra2σt)e

−ra2σt + 5/144(ra2σt)
2e−ra2σt

e−ra2σt + 1
2 (ra2σt)e

−ra2σt + 5/144(ra2σt)2e−ra2σt

=
1 + ra2σt+ 5/72(ra(2σ)t)

2

2 + ra2σt+ 5/72(ra(2σ)t)2
.

Using all the intermediate steps described so far, we arrive at the following
result to approximately characterizing the density of rods of a given color.

Proposition 2 For K = 2, the density of rods of a given color ci is given as

ρi(t) =

∫

l≥0

Gi(l, t)dl,

where the time evolution of Gi(l, t) is given as

∂Gi(l, t)

∂t
=



































[

−ra(l − σ)Gi(l, t) + 2ra

∫ ∞

y=l+σ

Gi(y, t)dy

]

1 + ra2σt+ 5/72(ra(2σ)t)
2

2 + ra2σt+ 5/72(ra(2σ)t)2
l ≥ σ,

2ra
1 + ra2σt+ 5/72(ra(2σ)t)

2

2 + ra2σt+ 5/72(ra(2σ)t)2

∫ ∞

y=l+σ

Gi(y, t)dy l < σ.

(13)

Following results verify the accuracy of the approximation. In Fig. 5, we
present Gi(l, t) as a function of l for different t. We have considered the length
of a rod as σ = 1. As evident from the figure, with increasing time, gaps of
length l < 1 become relatively dominant of all the gaps. This result is also
intuitive since only gaps of length l < 1 remain in the system as the system
reaches the jamming limit. In Fig. 6, we present the density ρi(t) of rods of
a given color. We also observe that the simulations and approximated theory
results are remarkably close.
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Fig. 5: The evolution of gap density function for rods of a particular color as a function of
gap length l for σ = 1. Solid lines and dotted markers represent theoretical approximation
and simulations result, respectively.
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Fig. 6: The evolution of density of rods of a particular color as a function of time t for
σ = 1.

3.2 Results for generic K

Our next goal is to extend the previous approximation to K ≥ 2 layers. How-
ever, capturing all the events mentioned in the previous subsection to char-
acterize the rate equation for the gap density function becomes increasingly
tedious as the number of layers increases. Therefore, to keep the numerical
evaluation tractable, we make the following assumptions. The first assump-
tion is the same as the approximation we have used for the previous approach
that ignores the spatial dependence among prior arrivals beyond a certain
range.

Assumption 1 The admitted rods in the neighborhood Bσ(x) of an arriving
rod at x are assumed to be deposited uniformly at random and independent
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of arrivals beyond Bσ(x). Hence, these prior arrivals are assumed to follow
Poisson process in Bσ(x).

Further, if two prior arrivals in Bσ(x) are separated by a distance σ, then
there is non-zero probability that these two arrivals can be assigned the same
color. However, considering this case exactly becomes cumbersome even for
K ≥ 3. Hence, we make the following assumption to make the rate equation
for the gap density function tractable.

Assumption 2 If there are m < K admitted rods in Bσ(x), then these are
assigned m different colors irrespective of their relative distances.

With these assumptions, we propose following approximation to character-
ize the evolution of density of the rods of color ci.

Proposition 3 For a multilayer RSA process with K colors, the density of
rods of a given color ci is given as

ρi(t) =

∫

l≥0

Gi(l, t)dl,

where the time evolution of Gi(l, t) is given as

∂Gi(l, t)

∂t
=




























































−ra(l − σ)Gi(l, t) + 2ra

∞
∫

y=l+σ

Gi(y, t)dy







K−1
∑

n=0

(ra2σt)
n

n!

K−1
∑

n=0
(K − n) (ra2σt)

n

n!

, l ≥ σ

2ra

K−1
∑

n=0

(ra2σt)
n

n!

K−1
∑

n=0
(K − n) (ra2σt)

n

n!

∫ ∞

y=l+σ

Gi(y, t)dy, l < σ.

(14)

Proof The above proposition can be derived on the similar lines as the expo-
sition of the K = 2 case in the previous subsection. First, the rate of change
equation for gap density function is the same as (7). Now the conditional
probability expression in (7) can be expanded as

P[Ii(x, t), Ci(x, t, l)]
P[Ci(x, t, l)]

=

∑

n≥0 P[Ii(x, t)|Ci(x, t, l), En(x, t)]P[Ci(x, t, l)|En(x, t)]P[En(x, t)]
P[Ci(x, t, l)]

. (15)

Using both the assumptions mentioned above, we write

P[En(x, t)] = e−ra2σt
K−1
∑

n=0

(ra2σt)
n

n!
, 0 ≤ n ≤ K − 1.
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Further, on the similar lines as discussed in the previous section

P[Ci(x, t, l)|En(x, t)] =
(l − σ)Gi(l, t)dl

Φi(t)

K − n

K
, 0 ≤ n ≤ K − 1.

Hence, using the law of total probability, we write

P[Ci(x, t, l)] =
K−1
∑

n=0

(l − σ)Gi(l, t)dl

Φi(t)

K − n

K

(ra2σt)
n

n!
e−ra2σt.

Moreover, due to equi-probable assignment of colors

P[Ii(x, t)|Ci(x, t, l), En(x, t)] =
1

K − n
, 0 ≤ n ≤ K − 1.

Using the above four equations in (15), we get

P[Ii(x, t)|Ci(x, t, l)] =

K−1
∑

n=0

(ra2σt)
n

n!

K−1
∑

n=0
(K − n) (ra2σt)

n

n!

.

The final result is obtained using the relationship between the gap density
function and the density of rods of a particular color. ⊓⊔

The density result using the above proposition is presented in Fig. 7. From
the figure we observe that the simulations and the approximate theoretical
results are remarkably close. Further, as expected the time required to reach
the jamming limit increases as the number of layers increases.
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Fig. 7: The evolution of density of rods of a particular color as a function of time t. The
length of rods is σ = 1. Markers and solid lines represent simulations and theoretical results,
respectively.
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4 Extension to 2D Multilayer RSA

In this section, we present the 2D version of the proposed multilayer RSA
problem. We consider that circles with diameter σ arrive uniformly at random
in R

2. Let there be K colors in the system K = {c1, c2, . . . , cK} that are
assigned to these circles based on the following rules:

1. An arriving circle that does not overlap with any of the admitted circles is
assigned a color uniformly at random from K.

2. If the circle overlaps with n < K colors, it is assigned a color uniformly at
random from the rest of the colors.

3. If the circle overlaps with all the colors, it is not admitted into the system.

Fig. 8: An illustration of the frequency band assignment process in a 2D wireless network.
(Left) All the nodes that appear for transmission before a given time t. (Right) Nodes with
the same color are assigned the same frequency band for transmission. Since there are two
orthogonal frequency bands, only two out of three nodes with overlapping communication
ranges are allowed to transmit. The node with a dotted circle remains silent.

Based on the above rules, an illustrative example is given in Fig. 8 where
we have considered K = 2. In the left figure, all the arrivals before a given
time t are presented. From a communications network perspective, the centers
represent communicating nodes, the range of each node is represented by a
circle centered at the node. These nodes transmit to their respective receivers
(not shown in the illustration) on an orthogonal frequency band out of the
two available bands. In the right figure, nodes with the same color transmit
on the same frequency band. Hence, interference is reduced among nodes that
are within the communication range of each other.

Similar to the 1D case, our goal is to obtain the density of circles of a given
color. Since the exact solution to the problem is extremely difficult to obtain
even in the monolayer case [28,27], we resort to an approximation. It is natural
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to consider an extension of either of the two approximation approaches devel-
oped for the 1D case. As mentioned in Section 2, the first approximation based
on the iterative application of the monolayer RSA result is highly tractable,
which makes it a promising candidate for extension to higher dimensions. Even
though the second approximation based on the gap density function is slightly
more accurate, its setup does not lend itself for a natural extension to higher
dimensions. Therefore, to obtain the density of circles of a given color, we rely
on extending the iterative approximation approach. In the sequel, we present
this result for the 2D multilayer RSA case.

4.1 Approximate density characterization

Since this approach requires the known density result for monolayer RSA to
be invoked repeatedly, for the sake of completeness, we first present this result
from the literature [28]. Consider a 2D monolayer RSA process that is obtained
from circles of diameter σ arriving uniformly at random at rate ra per unit
area per unit time. In the following lemma, we present ρ(t), the density of the
admitted circles at time t.

Lemma 1 The density ρ(t) is obtained by solving the following differential
equation with the initial condition ρ(0) = 0:

∫

dρ(t)

φ(κρ(t))
=

ra
κ
t+ C, (16)

where κ = πσ2

4 is the area covered by a circle, κρ(t) is the fraction of the area
that is covered by the retained circles at time t, φ(κρ(t)) is the probability that
a circle arriving at an arbitrary location in R

2 is retained at time t, and C is
the integration constant. The series expansion of the retention probability in
terms of density ρ(t) is given as [28, Eq. 30]

φ(κρ(t)) =1− 4πσ2ρ(t) +
ρ(t)2

2

∫ 2σ

σ

4πrA2(r)dr +
ρ(t)3

3

∫ 2σ

σ

2πrA2
2(r)dr

− Seq

3 +O(ρ(t)4), (17)

where S
eq

3 = ρ(t)3

8 π
(√

3π − 14
3

)

σ6+O(ρ(t)4), A2(r) is the area of intersection
of two circles of radius σ whose centers are separated by distance r.

Proof For the detailed proof of this lemma, please refer to [28]. We just present
the proof sketch here. Note that κρ(t) is the fraction of area covered by the
retained circles at time t. Now, the rate of change of the fraction of the covered
area depends on the number of arrivals radt per unit area and the probability
of an arrival being retained, which is given by φ (κρ(t)). Hence,

d(κρ(t))

dt
= raφ (κρ(t)) . (18)

The expression for φ (κρ(t)) is derived in [28] . ⊓⊔
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The result of the above lemma is accurate up to a coverage of about 35%
by all the admitted circles. Using the knowledge of the asymptotic coverage of
the 2D RSA process at the jamming limit, a unified equation for the retention
probability is presented in [28] that is accurate for the entire coverage range.
This equation is given as

φFIT(ρ(t)) = (1 + b1x(t) + b2x(t)
2 + b3x(t)

3)(1− x(t)3), (19)

where x(t) = ρ(t)/ρ(∞) and ρ(∞)κ = 0.5474 is the fraction of the area that
is covered at the jamming limit as t → ∞. The coefficients b1 = 0.8120, b2 =
0.4258 and b3 = 0.0716 are obtained by matching the order of ρ(t) in equa-
tions (17) and (19). Now the expression for ρ(t) can be obtained by numerically
solving the differential equation (16) using (19).

As mentioned earlier, we use the same approach as the 1D multilayer RSA
presented in Sec. 2 to approximate the density of circles of a given color. Let
us extend the sequential color assignment process presented in Sec. 2 for 2D
case, where an arriving circle is considered to be assigned c1 before c2 and
so on. Let ρ̃i(t) be the density of circles of i-th color under this sequential
assignment scheme. In the following proposition we present the approximate
result to estimate the density of circles of a given color for 2D multilayer RSA
with the original random color assignment scheme.

Proposition 4 The density of circles of a given color for 2D multilayer RSA
with random color assignment scheme is given as

ρi(t) =

∑K
k=1 ρ̃k(t)

K
,

where ρ̃k(t) is obtained by solving the monolayer RSA problem using Lemma 1

with adjusted rate of arrival per unit area for the k-th layer as ra−
∑k−1

i=1
ρ̃i(t)
t .

In Fig. 9, we present the fraction of the total area covered by circles of a
given color as a function of time. From the figure, we see the approximated
theoretical result are in close agreement with the Monte Carlo simulations
result for different number of colors.

4.2 Application to wireless communication networks

In order to make a concrete connection of this work with wireless networks, we
now present an application of the results derived in this section to a wireless
local area network/Wi-Fi network. In these networks, the available orthogonal
frequency bands or channels are limited, e.g., the Wi-Fi systems operating
at 2.4 GHz have 11 channels. Hence, for data transmission, these channels
are spatially reused by the access points (APs) throughout the network. The
APs transmitting on the same channels are termed as co-channel APs. If two
co-channel APs are in close proximity of each other, a significant amount of
interference will degrade the performance of the users served by both the APs.



22 Priyabrata Parida, Harpreet S. Dhillon

Time (t)
0 1 2 3 4

F
ra
ct
io
n
o
f
a
re
a
co
ve
re
d
(κ
ρ
i(
t)
)

0

0.1

0.2

0.3

0.4

0.5

K = 10, 7, 4, 1

Fig. 9: The fraction of the area covered by a circle of a particular color for a 2D multilayer
RSA as a function of time t. Markers and solid lines represent simulations and theoretical
results, respectively.

To mitigate the effect of this co-channel interference, different dynamic channel
assignment schemes have been investigated [8]. For this specific example, we
consider a distributed channel assignment scheme where an AP senses trans-
mission on each channel and randomly selects one of the channels where the in-
terfering signal strength from the closest AP on that channel is below a certain
sensing threshold. As a consequence of this dynamic channel selection scheme,
the co-channel APs ensure a minimum distance among themselves, which is
termed as inhibition distance and is denoted by dinh. This distance depends on
the transmit power of the APs, the propagation characteristics of the environ-
ment, and the sensing threshold. As an example, consider the popular single-
slope path-loss model, l(r) = r−α, where α is the path-loss exponent. Further,
assume that the transmit power of each node to be Pt and the sensing thresh-

old to be Ith. In this case, we can express dinh = l−1 (Ith/Pt) = (Ith/Pt)
−1/α

.
In the wireless communication literature, the performance of this type of sys-
tem has been studied for the case when there is a single frequency band in the
network. In such a scenario, one popular spatial model that has been exten-
sively used to model the locations of co-channel APs is the Matérn hard-core
point process of type - II (MHPP-II) [22,1,21]4. The multilayer extension of
the MHPP-II process is trivial, where the results for a given layer can be ob-
tained using the single layer result with a scaled arrival rate, where the scale
factor is 1

K for K number of layers (frequency bands). Hence, in the wireless
literature multilayer MHPP-II has not generated much interest. For modeling
the Wi-Fi network with a single frequency band, although the MHPP-II is
slightly more tractable than the RSA process, it underestimates the density
of the co-channel APs that is accurately modeled by the RSA process. One

4 In the statistical physics literature this process is better known as the ghost RSA pro-
cess [30,33].
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consequence of the lower density of APs is an underestimation of total interfer-
ence in the network that may lead to overly optimistic performance evaluation.
Therefore, for the accurate performance analysis of the single frequency band
case, the RSA process has also been considered in the wireless communications
literature (cf. [6,23]), e.g., in [6] the density result is derived through numer-
ical simulations and in [23] useful upper and lower bounds are presented for
the generating functional of the RSA process. However, to the best of our
knowledge, more practically relevant problem of multiple frequency bands has
not yet been tackled from this perspective. Hence, the results derived in this
section can be applied to evaluate the performance of such a system. With
this background, next, we present an application of the 2D multilayer RSA
result that provides useful network design guidelines for the aforementioned
multiple frequency band Wi-Fi network.

Consider, a Wi-Fi network where the AP locations are modeled as a ho-
mogeneous PPP Ψt of density λt per unit area. Let there be K orthogonal
channels in the system that are reused by the APs. Whenever an AP has data
to transmit/receive with its associated user(s), it selects a suitable channel on
which the data transmission will occur. As discussed above, to avoid severe
interference, the AP should select a channel such that the nearest co-channel
AP will be at least dinh distance apart. It can be easily argued that during
a finite observation time window, the set of active APs follow the multilayer
RSA process studied in this work. Note that in case of the event that there
is no available channel that satisfies the minimum distance criteria, the AP
does not get to transmit/receive data with its associated users. From an op-
erational point of view, this scenario is highly undesirable as users associated
with this AP will get no service until it gets access to a channel. Further, the
probability of occurrence of this event becomes 1 as the system approaches the
jamming limit. Therefore, it is necessary that the system operates well below
the jamming limit such that a certain probabilistic guarantee can be made
for a new AP to access a channel. This can be ensured by suitable selection
of the system parameters such that the fraction of area covered by a set of
co-channel APs is sufficiently below the jamming coverage of 0.5474. The pa-
rameters that can be tuned to achieve this objective are the transmit power of
the APs and the sensing threshold. As mentioned earlier, the combined effect
of changes to these parameters is directly captured by the inhibition distance
dinh. Now, using Proposition 4 along with the information on the number of
channels K, inhibition distance dinh, and λt, we can determine the fraction
of the total area that is covered by a set of co-channel APs. In Fig. 10, we
present the desired dinh as a function of λt to ensure that the fraction of area
covered by a set of co-channel APs is 70% of the jamming limit value. The
plot is presented for systems operating at 2.4 GHz and 5 GHz that have 11
and 23 orthogonal channels, respectively. As observed from the figure, with
increasing λt, dinh should be reduced so that the target fraction of the area
covered by a set of co-channel APs remains the same. Further, as expected,
having a higher number of channels allows a larger dinh for the same λt. From
a deployment perspective, this result can be useful in adaptively selecting dinh
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based on λt that can vary based on the activity of the users, e.g. university
campuses remain busy during the day time, but in the night time, the user
activity drastically reduces, thereby providing the scope for the dynamic se-
lection of dinh.
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Fig. 10: Inhibition distance dinh as a function of AP density λt to ensure that the fraction
of covered area by a set of co-channel APs is 70% of the jamming limit value. The plots
correspond to the numbers of available orthogonal channels for Wi-Fi systems operating at
2.4 GHz and 5 GHz.

5 Conclusion

In this article, we introduced a new variant of the multilayer RSA process that
is inspired by the orthogonal resource sharing in wireless networks. For the 1D
version of this process, we presented two useful approximations to obtain the
density of deposited rods for a given layer. While our first approach is more
amenable to numerical evaluation, the second approach is more accurate and
provides useful information regarding the gap density function, which is an
important statistical quantity to understand the kinetics of the RSA process.
We have also extended the first approximation to obtain the density of a
given layer for the 2D version of this multilayer RSA process. Further, we
have demonstrated the usefulness of the 2D result through one of its potential
applications to model and analyze Wi-Fi networks.

There are many potential extensions of this work from the perspectives
of both statistical physics and wireless communications. While the fraction
of the space covered at the jamming limit is well-known for the monolayer
RSA, the same is not true for this variant of the multilayer RSA, which is
a promising direction for future work. For instance, it will be interesting to
understand the fraction of space (i.e., length or area) that will be covered
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by the admitted particles (i.e., rods or circles) of all colors at the jamming
limit. A similar question can be asked to characterize the fraction of space
that is jointly covered by particles of more than one color that also has key
applications to wireless networks, such as in cloud radio access networks and
cell-free networks. Another possible future direction is to further extend this
variant of the multilayer RSA to higher dimensions. While in this work we
have focused on the first-order statistics, namely the density of the process,
derivations of higher-order statistics, such as the pair correlation function,
third-moment density, are natural next steps in further investigation of this
process.

Another interesting extension of this work is the consideration of non-
isotropic inhibition regions that is inspired by the notion of soft-connectivity
in the network percolation theory [10]. In this work, we have considered im-
penetrable hard rods/circles. This accurately captures inhibition regions in the
scenario where the interference is modeled using a generic path-loss function.
However, since wireless signals additionally suffer from random fluctuations
due to shadowing and fading, it is natural to consider soft non-isotropic in-
hibition regions as an extension to this work. In this case, an arriving node
is admitted into the system with a certain probability based on its relative
distance from the already admitted nodes. Depending on this probabilistic in-
hibition function, the evolution of the density and the jamming properties of
this soft RSA process are going to be different from the multilayer RSA pro-
cess considered in this work. Hence, it is worthwhile to study the properties
of this soft multilayer RSA process.

From the communications network perspective, the 2D results of this work
can be extended to study frequency reuse in cellular networks or the reuse
of pilot sequences in cell-free communications networks [24]. Further, the 1D
results can be extended to analyze multimedia resource reservation systems
with multiple orthogonal channels [9].
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