Split-Vacancy Defect Complexes of Oxygen and Vacancies in hcp and fcc Cobalt
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One of the most ubiquitous and important defects in solids is oxygen. Knowledge about the solubility and
diffusivity of oxygen in materials is crucial to understand a number of important technological processes such as
oxidation, corrosion, and heterogeneous catalysis. Density-functional theory calculations of the thermodynam-
ics and kinetics of oxygen in cobalt show that oxygen diffusing into the two close-packed phases, a (hcp) and
B (fce), strongly interacts with vacancies. We observe the formation of oxygen split-vacancy centers (V-0O;-V)
in both phases and show that this defect complex exhibits a similar migration energy barrier as the vacancy and
oxygen interstitials. In contrast to the vacancy and oxygen interstitials, the oxygen split-vacancy centers exhibit
an anisotropic strain field that couples to applied stress, making it possible to observe them through an internal

friction experiment on quenched Co.

I. INTRODUCTION

Point defects in solids influence the mechanical, electronic,
and optical properties of these materials. Often, small changes
in defect chemistry can have a large effect on the way a ma-
terial behaves. In transition metals oxides, for example, the
parent compounds of the high-temperature cuprate supercon-
ductors are insulators; but the introduction of atomic point de-
fects — either the removal of some oxygen ions or the substi-
tution of some metal cations by others of different valence —
is essential for the normal-state conductivity, from which su-
perconductivity emerges [1].

Furthermore, these defects can move around. This results
in atomic transport, which can play a significant role in the
synthesis and processing of materials. In iron-copper alloys,
vacancies are strongly bound to copper atoms, dragging them
along to facilitate the precipitation of copper around vacancy
sinks [2, 3]. Flux coupling can also result in the nucleation
of thermodynamically unstable phases like Ni3Si in undersat-
urated Ni(Si) alloys [4].

Some of the most interesting defect complexes involve the
formation of a split-vacancy center (V-X;-V), where two adja-
cent lattice sites are unoccupied, and a host or impurity atom
occupies the interstitial position midway between the two va-
cant sites. The “semi-vacancy pair” (V-Si;-V) [5] and “tin-
vacancy pair” (V-Sn;-V) [6] in silicon were the first experi-
mentally observed self and impurity split-vacancy centers, re-
spectively. Several self V-X;-V’s have been observed since in
pyrochlores and other complex oxides [7, 8]. The known im-
purity V-X;-V’s however, are limited to metal impurity atoms
in open diamond structures [9]. The formation of such im-
purity defect complexes has been attributed to the argument
of strain relaxation of oversized impurities upon movement to
the more spacious interstitial sites [9].

One of the most ubiquitous and important defects in solids
is oxygen (O), which strongly reacts with most metals to form
oxides. Many recent studies have shown that metal-oxygen
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FIG. 1. (color online) Defects in @-Co (hcp) and 8-Co (fcc) shown
with the help of blue (cobalt), red (oxygen), and hollow (vacancy)
circles. Depth fading is used to make atoms that lie further back to
appear lighter.

systems exhibit a rich and complex surface phase space deter-
mined by pressure, temperature, and stoichiometry [10, 11].
Clearly, a precise knowledge of the detailed atomic structure
of these systems is desired to improve our control of important
technological processes like oxidation, corrosion, and hetero-
geneous catalysis, which involve interaction between metals
and oxygen [12].

Cobalt (Co) and its oxides have recently received consider-
able attention for their applications in gas sensing, heteroge-
neous catalysis, intercalation compounds for energy storage,
electrochromic devices, and as thermoelectric materials [13—
17]. Co has a rich phase diagram with three nearly degener-
ate crystal structures: @-Co (hcp), B-Co (fcc) and e-Co (cu-
bic) [18]. Under ambient conditions, cobalt crystallizes into
a-Co [19]. On heating, the hcp phase transforms to the fcc
B-Co structure at ~700 K, which is then stable all the way
up to the melting temperature of ~1770 K [19]. The e-Co
phase possesses a more complex structure and its synthesis
has only been possible through solution-phase chemistry pro-
cesses [20, 21]. All three phases are ferromagnetic; however,
a Curie temperature (7. = 1388 K) has been defined only for
the fcc 5-Co phase [19] since both a-Co and e-Co transform
to the fcc phase before achieving a paramagnetic structure.

Even though we have detailed knowledge about the struc-
ture, properties, and processing of different Co phases, very
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FIG. 2. (color online) Finite-size effects on the defect formation en-
ergies (E! ) in cobalt. We find that E' | is accurate to within 0.03 eV
for larger supercells.

little is known about the thermodynamics and kinetics of O in
Co. In this work, we use density-functional theory (DFT) to
show that both close-packed phases of Co display complex de-
fect structures in the presence of O, affecting the transport of
O as well as of vacancies (V) in Co. We first predict the equi-
librium point defect structures for O, V, and their complexes
in @-Co and B-Co and then determine how these defects mi-
grate through the crystal structures. We show that O has a high
solubility and diffusivity as an interstitial (O;). Surprisingly,
however, O; strongly reacts with V to form split-vacancy cen-
ters (V-0;-V), which provide an alternate pathway for O and
V diffusion in Co. We show that these V-O;-Vs exhibit an
anisotropic strain field that couples to applied stress, in con-
trast to the isotropic strain fields of the V and O; defects. This
leads to a behavior similar to the observed Snoek effect for
carbon and nitrogen in bee Fe [22] and allows for the experi-
mental detection of these complexes by internal friction mea-
surements.

II. METHODS

We perform the DFT calculations with the projector aug-
mented wave method [23, 24] as implemented in the VASP
code [25-28] using the gradient-corrected PBE exchange-
correlation functional [29]. Calculations are carried out with
periodic boundary conditions, with wave functions expanded
on a plane-wave basis set. The energy cutoff and the cor-
responding cutoff for the augmentation functions are set to
400 eV and 650 eV respectively to ensure convergence of
the total energy to within 1 meV/atom. The k-point integra-
tion of the Brillouin zone is performed using Monkhorst and
Pack meshes [30] with a density of 30 k-points per inverse
Angstrom. We use spin-polarization to account for the mag-
netism in these materials. We also constrain the cell shape and
volume to be constant for all our calculations.

TABLE 1. Finite-size effects on the defect formation energies (ES of)
in cobalt. We find that Egef is accurate to within 0.03 eV for larger
supercells.

Defect Structure Supercell size Natoms Egef [eV]
Veo a (hep) 2XxX2x%x2 16 1.87
3x3x2 36 1.94
4x4x3 96 1.92
V-O;-V B (fce) 3x3x3 27 2.58
4x4x4 64 2.52
5x5x%x5 125 2.49

TABLE II. Defect formation energies (Efief) in cobalt. Interstitial
atoms in hep and fcc can occupy either the octahedral or tetrahedral
sites. Both energies (Eo, E) are reported.

Defect a-Co (hep) B-Co (fce)
Veo 1.92 1.79
Oco 1.84 1.92
Oco+Veo 2.51 2.49
O; 0.52,1.28 0.49, 1.25
Co; 5.19,4.49 448, —

For a defect-mediated diffusion mechanism, the activation
energy of diffusion, Ej, is given by the sum of the defect
formation energy, Egef, and the defect migration energy bar-
rier, Eg. . We calculate the migration barriers with the climb-
ing image nudged elastic band (NEB) method [31, 32] using
1-3 intermediate images to describe the transition pathways
between neighboring lattice and interstitial defect sites. We
look at simple paths as well as more complex ones involv-
ing a concerted movement of multiple species. Comparing
the total activation energies for competing mechanisms helps
us determine the dominant diffusion processes controlling the
kinetics in these systems.

III. FINITE SIZE ERROR OF DEFECT ENERGIES

The formation energies of defects in DFT calculations that
employ periodic boundary conditions are affected by the size
of the unit cell. Table I and Fig. 2 compare the effects of vary-
ing cell size on defect formation energies. To reduce finite-
size effects, we choose our unit cells to be as large as possible
while being computationally feasible. We use a 4x4x3 super-
cell (96 atoms) of @-Co and a 5x5x5 supercell (125 atoms) of
B-Co for all our calculations, which provide defect formation
energies accurate to within 0.03 eV.

IV. DEFECT STABILITY

To determine the stability of point defects in Co, we cal-
culate formation energies for: (i) vacancy on a cobalt site
(Vo). (ii) substitutional oxygen atom on a cobalt site (Ocy),



TABLE III. Binding energies (in eV) of the oxygen-vacancy complex
in @-Co and B-Co for first (INN), second (2NN) and third nearest
neighbor (3NN) sites relative to the isolated defects. The symmetric
V-O;-V configuration is observed to be the most stable one for INN
and 2NN sites in both @-Co and g-Co.

INN 2NN 3NN
a-Co 1.25 1.14 0.68
B-Co 1.22 1.32 0.68

(iii) substitutional oxygen atom and a neighboring vacancy
(Oco+Veo), (iv) oxygen atom on an interstitial site (O;), and
(v) cobalt atom on an interstitial site (Co;). We use the chemi-
cal potential of oxygen in rocksalt CoO as reference. Table 11
compares the formation energies for the various defects in a-
Co and B-Co. We don’t report an energy for the tetrahedral
Co; defect in 5-Co as it always relaxes into an octahedral po-
sition.

We make an interesting observation for the case of a sub-
stitutional O atom sitting next to a vacancy in S-Co: the
Oco+Vo defect complex relaxes to form a highly stable V-O;-
V split-vacancy center with the O atom occupying the inter-
stitial space between two vacancies. This is similar to the tin
split-vacancy center (V-Sn;-V) in silicon studied by Watkins
et al. [6]. We also see the same defect occur in @-Co; how-
ever, the formation of V-O;-V in the hcp phase is limited to
the case where the two neighboring vacancies lie in separate
basal planes. If the neighboring vacancies occupy positions
in the same basal plane, the O atom no longer relaxes to a
symmetric center position.

To search for other split-vacancy centers, we extend our cal-
culations to include the O¢c,+V ¢, defect with V and O as 2nd
and 3rd nearest neighbors to each other (2NN and 3NN). We
observe the formation of V-O;-V in the 2NN case but not 3NN,
for both @-Co and 3-Co.

Table III shows the strong binding energies for the split-
vacancy O defect in the 1NN and 2NN configurations in -Co
and $-Co. Even in the 3NN case, where a split-vacancy cen-
ter does not form, we still see significant binding between the
O and V. We define the binding energy as the difference in
energies between a system with interacting defects and a sys-
tem with isolated defects far away from each other. A large
positive binding energy implies there is a strong attraction
between the individual defects. We find that the binding is
equally strong in the 1NN and 2NN configurations but gets
weaker as the individual defects move further apart from each
other (3NN).

As stated earlier, previous research showed the occurence
of impurity split-vacancy centers being limited to open dia-
mond structures thus far, where a large metal impurity atom
(M) relaxed to occupy the more spacious position between
two neighboring vacancies (V-M;-V). The reason for the for-
mation of such complexes was not completely understood.
The argument of strain relaxation of oversized impurities that
was proposed to explain the formation of the Sn-V complex in
Si [9] does not fit our description of a smaller O atom forming

a similar complex in close-packed Co. While strain probably
play a role, we believe there might also be other factors at
play. On closer examination we see that O sits on a distorted
octahedral site in the V-O;-V configuration, albeit with two
missing Co neighbors. This resembles the geometry and coor-
dination it has in the rocksalt CoO phase that would form with
sufficient O present. The Co-O distance in the V-O;-V config-
uration is found to be 2.0 A, which is intermediate between the
Co-0O distances in the interstitial and substitutional configura-
tion of 1.9 and 2.5 A, and closer to the value for CoO of 2.1 A.
This suggests that strain coupled with the natural tendency of
the impurity O atoms to stabilize into a CoO-like local config-
uration might explain the formation of these O split-vacancy
centers in Co.

V. DEFECT REACTIONS AND MIGRATION

Next, we calculate migration barriers for Co and O atoms
diffusing from one defect site to another, to infer the most
likely mechanism for diffusion in @-Co and 8-Co. We identify
mechanisms of diffusion for Co through vacancies, and for
O through vacancies and interstitial sites. Table IV lists the
formation energies, migration barriers and total activation en-
ergies for the various defects in Co. We find that the migration
barriers for diffusion through the two close-packed phases are
surprisingly similar for V¢,, O;, and V-O;-V. For the oxygen
interstitial, we find that the octahedral—tetrahedral-octahedral
interstitial path exhibits the lowest migration energy barrier.
Figures 3 and 4 illustrate the diffusion pathways of the INN
V-0;-V defect through other INN V-O;-V and 2NN V-0;-V
sites.

Finally, we combine the defect formation energies with
knowledge of the migration barriers to obtain a complete pic-
ture of the diffusion of O in Co (Table IV). The formation
energies indicate that O prefers to sit on the O; sites in Co.
Not only does O have the highest solubility on such sites, but
it also has a small migration barrier to move between them,
providing what appears to be the fastest mechanism for O dif-
fusion in Co. If such an O; were to encounter a V¢,, however,
they can exothermally combine to form Oc,

O; + Vo = Oco. @))]

The reaction energies are —0.60 and —0.36 eV in @-Co and
B-Co, respectively. This substitutional O¢, can only move
when it encounters another V¢,, at which point they combine
exothermally to form the V-O;-V split-vacancy center,

Oco + Veo = V-0;-V, 2)

with a reaction energy of —1.25 and —1.22 eV in @-Co and
B-Co, respectively. Table IV shows that the migration barriers
for V-O;-V are similar to the barriers for O; and V¢,, sug-
gesting that the formation of V-O;-V complexes does not trap
oxygen and vacancies, and that V-O;-V diffusion could pro-
vide an alternate mechanism for O and Co transport through
close-packed Co.

To experimentally detect the presence of V-O;-V complexes
requires that they form in sufficient concentrations, which will
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FIG. 3. (color online) Diffusion between two neighboring 1NN oxy-
gen split-vacancy centers (V-O;-V) is shown for 8-Co (fcc). This
mechanism involves a concerted motion of Co and O atoms.

TABLE IV. Diffusion activation energies for the various defects in
Co. The considered mechanisms include Co diffusing through vacan-
cies (Veo): Coco+Veo—Veo+Coco; O diffusing through interstitials
(0y): 09' = O — O'; INN V-0;-V defect diffusing to INN V-
0;-V sites (INN): V-0;-VINNV-0,-V'™ and INN V-0;-V defect
diffusing to 2NN V-O;-V sites (2NN): V-O;-VINNV._0;- V2NN,

a-Co (hep) B-Co (fce)
Diffuston £ ED, B £y ED B
Veo 1.92 0.86 2.78 1,79 1.00 2.79
o, 0.52 0.91 1.43 049 0.99 1.48
V-0,-V (INN) 2.51 0.90 3.41 2.49 0.91 3.40
V-0,-V (2NN) 2.51 131 3.82 249 138 3.87

depend on the processing of the material. To determine the
equilibrium concentration of the V-O;-V defects, we obtain
the equilibrium constant for the combined reaction of Eqs. (1)
and (2),

Oco +2Vo = V-0;-V 3)

AE [V-O;-V]
Ko = exp|-2 | = L2V 4
| eXp( kT) [OVeol? @

The concentration of V-O;-V is clearly limited by the total
number of V¢, in our system, since two vacancies are needed
to form every split-vacancy center. Using the vacancy for-
mation energy for 8-Co, we estimate the room temperature
equilibrium concentration of vacancies, [Vco] = 9 x 10731,
implying a negligibly small concentration of V-O;-V.

The vacancy concentration in a material can generally be
increased by quenching from high temperature or by irradia-
tion. A quench from 1700 K, just below the melting point of
1770 K, to 700 K increases [V¢o] in 8-Co to 5 X 107°. As-
suming the quenched vacancy concentration and the oxygen
concentration of 1 x 1073 are fixed in the bulk of the sample
away from any sources or sinks, we calculate the equilibrium
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FIG. 4. (color online) Diffusion between a INN and 2NN oxygen
split-vacancy center (V-O;-V) is shown for a-Co (hcp). This mecha-
nism involves a concerted motion of Co and O atoms.

concentration of V-O;-V at 700 K to be 2.45 x 107%. This
result, that at intermediate temperatures essentially all vacan-
cies are bound in the form of the V-O;-V complexes, is a direct
consequence of the significantly higher reaction energy of the
reaction in Eq. (2).

In order for V-O;-V to form, the O; and V¢, must also en-
counter each other fairly quickly. For [V¢,] = 5 X 107°, we
estimate the time scale for the encounters at 700 K to be of a
few ms according to

(R%) = nr* = T'r* = 6D, (5)

where (R2) is the mean square displacement after time ¢, n
is the number of jumps, r is the individual jump length, I is
the jump frequency and D is the diffusion coefficient. This
time scale is sufficiently short to convert all V¢, into V-O;-V
split-vacancy centers during the quench while avoiding ther-
mal equilibration of the vacancy concentration at grain bound-
aries and interfaces. We conclude that as long as there is a suf-
ficient number of quenched V¢,, and mobile O; encounter the
Vo, V-0i-V will form even against the observed formation
energy trend in Table II.

VI. INTERNAL FRICTION

The experimental assessment of damping mechanism in
metals has a long history [33], where cross-comparisons be-
tween different reported damping mechanisms is not always
easy since each particular measurement technique is limited
to a given frequency range. Consequently, most experiments
have been done in different frequency regimes and over a
range of temperatures that is either above or below room tem-
perature.

In the particular case of damping due to interstitials, consid-
erable efforts have been dedicated to studying hydrogen (H),
oxygen (O), or nitrogen (N) in bcc lattices [34, 35], whereas
hep lattices, and in particular Co, have been less commonly
investigated. However, a series of earlier studies using the



torsion pendulum method, often operated at frequencies at or
close to 1 Hz, were dedicated to interstitial sites relaxation
processes in hep crystals [36—40]. This body of experimental
work reports mechanical relaxation that occurs in the range of
700-750 K, depending on the metal (Ti, Hf, Zr). This temper-
ature range overlaps with the allotropic phase transition from
a-Co to $-Co and may be the main reason for the lack of ex-
perimental evidence of Snoek-type losses.

In the case of Ti, Pratt et al. reported that the purest poly-
crystalline grade only exhibits an internal friction signature
from grain-boundary processes [36], whereas the careful in-
troduction of 1.5-4.5 at% O revealed a relaxation peak at
~700 K, the magnitude of which was proportional to the O-
content. Qualitatively, the same was reported for reactor-
grade Hf (containing 6 wt% Zr) by Bisogni et al. [38], where
the loss process is seen at ~750 K and a frequency of 0.9 Hz.
These experimental observations were in contrast to the con-
clusion that losses of Snoek type ought not to be seen for in-
terstitials in fcc or hep due to the geometry of the octahedral
and tetrahedral site [38], where O is expected to occupy the
former because of its atomic size. Gupta and Weinig convinc-
ingly addressed this discrepancy experimentally by demon-
strating that substitutional impurities are the cause for the ob-
served damping. Due to the local lattice distortion caused by
the substitutional element, the relaxation of interstitial-solute
(i-s) pair was consequently shown to depend on the relative
atomic size mismatch between the base element and the so-
lute and scale with solute concentration at constant O-content
[37]. Interstitial-interstitial (i-i) pair relaxation had been the-
oretically predicted [41], and was subsequently shown for di-
lute Ti-, Hf-, and Zr-alloys [40] in the aforementioned tem-
perature range. These experimental efforts have in common
that they use low-frequency excitations and study a tempera-
ture regime from room temperature to ~875 K and are limited
to Ti, Hf, and Zr.

With a view to experimentally confirm the presence of V-
O;-V and study its diffusion, we determine how the defect
couples to applied stress in S-Co. The V-O;-V complexes in
B-Co are oriented along any of the (110) directions, produc-
ing six different orientations ([110] and [110] are identical).
The derivative of the defect energy with respect to strain is
the elastic dipole tensor, P. For the case of a V-O;-V defect
oriented along the [110] direction, we find

-270 0.13 0
P=|013 -270 0 |GPa 6)
0 0 -430

This dipole tensor indicates an anisotropic compression of the
structure. The compression is expected for a defect involv-
ing two vacancies. The anisotropy of the dipole tensor is a
necessary ingredient for internal friction loss due to an oscil-
lating applied stress. The largest coupling to applied stress
is due to the difference between the “in-plane” (—-2.70 GPa)
normal component and the “out-of-plane” (—4.30 GPa) nor-
mal component, which can couple to either uniaxial or shear
stresses differently for each of the twelve (110) V-O;-V com-
plexes. The in-plane shear component (0.13 GPa) is an order
of magnitude smaller and plays a negligible role in internal

Loss QO (unitless)

0 . . . . ;
240 260 280 300 320 340 360 380 400
Temperature 7 (K)

FIG. 5. Predicted internal friction loss per cycle at v = 1 Hz due to
V-O;-V complexes in $-Co. Under a cyclic non-hydrostatic load, the
lowered symmetry of the complexes produces different changes in
energy for different sites; this drives transitions from higher to lower
energy states, producing loss in energy, similar to the Snoek effect
from C in bce-Fe. The loss is proportional to the concentration of
V-O;-V, and reaches a peak near 330K.

friction. Appendix A provides a detailed derivation of the loss
due to internal friction. The loss Q~! depends on the jump
rate A = vo exp(—Eg;/kpT), where E.; = 0.91 eV (Table IV);
only one eigenvalue of the transition matrix couples strongly
to shear strains, so

[V-0;-V] 124y

-1
O T TR

)

which is plotted in Figure 5. The prediction for internal fric-
tion shows that for a torsional pendulum of a quenched Co
wire with v = 1 Hz, the peak loss Q! corresponding to max-
imum damping should occur near 330K.

Snoek-type relaxations in Co remain experimentally unex-
plored, but the consistently observed features for other hcp
metals suggest that similar i-s and i-i mechanisms could occur
in Co. It is worth noting that torsion pendulum data recorded
when studying the hcp-fee transition at 0.5 Hz in Co displays
at least one unexplored small peak at ~550 K both during
cooling and heating [42]. The here theoretically predicted
room-temperature loss mechanism was not identified in any of
the studied hcp metals, which may find its origin in the contin-
uously increasing damping with temperature that will drown
small amplitude peaks at the low temperature end. Additional
experimental efforts that carefully examine low-frequency ex-
citations at and around room temperature are thus critically
needed as to test our predictions and to potentially identify
a loss mechanism that is generic to hcp lattices that contain
solved O.

VII. CONCLUSION

To conclude, we performed DFT calculations to measure
the formation energies and migration barriers of O point de-
fects in @ (hcp) and B (fcc) cobalt. We predict that in both
phases O strongly interacts with vacancies to form oxygen
split-vacancy centers V-O;-V in the presence of sufficiently



high vacancy concentrations. We show that the oxygen split-
vacancy centers do not trap oyxgen and provide an alter-
nate mechanism for oxygen diffusion in close-packed cobalt.
We propose a way to observe and measure their diffusion
through an internal friction experiment. We show that the oxy-
gen split-vacancy centers exhibit an anisotropic strain field,
in contrast to the isolated vacancies and oxygen interstitials.
This strain field couples to applied stress and the diffusion of
V-0;-V leads to a maximum damping in internal friction at
experimentally accessible frequencies and temperatures. Sim-
ilar split-vacancy centers may also occur for oxygen and other
interstitial species in various close-packed materials.
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Appendix A: Loss under cyclic loading
1. Definitions

To consider the energy loss per cycle under mechanical load
due to transitions between defect sites, we use the nomencla-
ture introduced for the derivation of transport coefficients for
interstitial defects [43]. We have a set of N defects in our unit
cell that can be indexed using i = 1...N, and where a se-
ries of possible transitions between these defects are possible.
For a defect state i in the unit cell, it has an equilibrium site
probability p; that follows the Arrhenius relationship,

pi = cZ ' p? exp (-BE;) (AT)

for site energy E;, concentration per unit cell ¢, entropic
prefactor p? = exp(Si/ks), and partition function Z =
i p? exp (—BE;). The transition from site i to site j has a rate
/li—> J»
0
—_Y
/l,;,j = p_o exp (—ﬂ [Eltj — E,])
l

(A2)

for transition state energy Ef; and entropic prefactor /l?j =
exp(S S’/kB)’ following [44]. In this formulation, the transi-
tion state energy and entropic prefactors are equal for i — j
and for j — i, while it is not necessary that 4;_,; and 4;_,; are
equal. Finally, the probabilities obey detailed balance, where
Pi/li—>j = pj/lj—n‘ for all i, j

We will assume that the stress amplitude is sufficiently
small that we are in a linear elastic regime, there is a small

defect concentration, and that the energy loss is a small per-
turbation in the system energy. The dilute limit permits us
to ignore defect-defect interactions. The linear elastic limit
allows us to transform from a stress amplitude into a strain
amplitude, and to the write the changes to our site probabil-
ities and transition rates to first order in the strain using the
elastic dipole. The elastic dipole tensor P, for a site i is

_dE;

= —— A3
b= (A3)
The elastic dipole can be conveniently evaluated in a supercell
calculation from the stress in the cell: an interstitial is added
to an initially undefected, unstressed supercell containing N
atoms (with equilibrium volume Vj per atom), resulting in a
stress ¢, then to first order in N -1

P~ NV,o, (Ad)
which is straightforward to evaluate with density-functional
theory methods; e.g., see [45-48]. Similarly, the energy of a
transition state can also change with strain, as dictated by the
elastic dipole tensor for the transition state Ej for the transi-
tion state between i and j,

S tj
_S = (AS)
This, too, can be approximated by the stress at the transition
state in a supercell calculation as in Eqn. A4; e.g., see [47, 49].
The definitions of elastic dipoles allow the introduction of a
small strain perturbation de to produce site energies changes
OE; and transition energies 6Efj as

SE; = —P,: &

(A6)
ts _ s .
OES = P : o

which is correct to first order in strain.

2. Master equation

The evolution of the defects is defined by the Master equa-
tion, and we can include the effect of a (perturbative) time-
dependent strain. The time-dependent occupancy c;(¢) of site
i is given by

dCi
=== D At (0) = i), (A7)
J
We introduce the rate matrix A;j,
/ll'—» i 1 j
Ay = {0 ' (A8)
—2jding ti=]

and so Eqn. A7 is simply ¢ = cA. By detailed balance, the
equilibrium site probability p satisfies pA = 0. Similar to our



expressions for changes in site and transition energies, a small
strain introduces a change in the rate matrix 6A;; : g

R i S
_Zj/liaj(kBT) (B,; _Ei) toe ti=j
(A9)
based on Eqn. A2. If we consider that our system is close to
equilibrium, so that

ci(t) = pi + F; = 6&(0), (A10)

then the (time-dependent) Master equation in the perturbative
limit is

F;:08(0) = ) (pj+ F; : Se)(Aji + 6A; : 68(1)
J

= D (FA) 1 08() + ) oA : &) + O(E”)
J J
(A11)

This can be solved for a cyclic strain 6&(r) = dg,e”" with fre-
quency v, so that 5§(t) = iv 6&(t), and we have

ZEj(iV5ji -Aj) = ZPj5Aji
j J

F, = Z p6A (vl = A)y}
ik

(A12)

The first term in the sum, 3’ ; 0j0A j, simplifies as
Z PN = Z pidjk(ksT)™ (P = P))
J J
= > i (ks T) ™ (P = P)
J
=(keT)™' )" pjdjor [P~ P, = P + P,
J

== (ksD)™" > piP A
J
(A13)

so that Eqn. A12 becomes
F, = —(kgT)™" Z PP A (vl = A)! (Al4)
ik

To compute the loss per cycle, we integrate the time deriva-
tive of the energy multiplied by the instantaneous occupancy
of each site over one cycle. The time derivative of energy
is the work done on each defect, which is at the expense
of the elastic energy in the system. The instantaneous en-
ergy of each site is Ei(f) = R(E; — P, : 6gye™), while
ci(t) = R(p; + F, : 6g,e™), and so

1

- Z ci(DE(n) = - Z (p,- + RF, : 6g,cos(vr)

—JF, : 68, sin(ve)) (vP, : 85, sin(v))  (A15)

We integrate the change in energy over one cycle to find

1

2nv”
AEyee = — f dt Y c;(OEi(D)
cycle 0 Z

= jo‘zlrv_ dtZ [(El : 6§0) (SEI : 6§0)V8i1’12(v[)]
= ﬂz (6§0 :Bi) (S‘Ei : 5§0)

(A16)

To convert this to a fractional loss per cycle, we need to divide
by the elastic energy per cycle, which is 1Qgdg, : C : dg,), for
the elastic constant tensor C and volume per unit cell €.

We can find the solution for the loss by eigendecomposing
the matrix A, and rewriting Eqn. A14 and Eqn. A16 in terms
of its eigenvectors and values. While the matrix A is generally
not symmetric, the matrix

wij = p; Ao (A17)
is. Moreover, it is a negative semidefinite matrix, with exactly
one zero eigenvalue; let " be the real, negative eigenvalues
where r* = 0, and s” the corresponding eigenvectors, where

$0=p!% As Ay = pi‘l/zwijp;/z, it follows that

. -1 _ r -1/2 n.n 1)2
Zk}Ajk(wl A = Z 0, Psisip% (AL8)
‘We note that
" vr't
5 - Al9
A V2 + (r)? ( )

and so the fourth-rank tensor in Eqn. A16 is

L, T):= Y P& 3JF,

_ -1 vr" 1/2 n 1/2 n
= (ksT) Z e [Zpi si£i) ® [Zpi Si E[},
n>0 i i
(A20)

which is symmetric and negative definite, as * < 0 for all
n > 0, and hence the loss-per-cycle Q! is

_6§0 : L0, T) : 6¢g,
Qobe, : C: 6g,

_1:

(A21)

Note that the temperature dependence appears explicitly in
Eqgn. A20 and in the temperature dependence of the rates in
A, and hence " and s". There is a linear dependence in con-
centration ¢ from the linear dependence of p; in Eqn. A20.

3. Isotropic representation

The fourth-rank loss tensor £ can be simplified by convert-
ing to rotationally averaged scalar quantities: bulk £, shear



L', and uniaxial £" corresponding to bulk, shear, or uniaxial
strains in a random polycrystal,

1
i :§{L““ + Looos + L3333+ 2L + 2 L1133 + 2£2233}

11
r :§{§(L1“1 + Lo + L3333 — Lz — Lz — 1:2233)"‘

+ Lizin+ Liziz + £2323}

L£=r"+ gzz'
(A22)

For the case of loss per cycle in a torsion pendulum, £’ is the
quantity of interest.

4. Loss for oxygen-vacancy complexes in FCC cobalt

For the case of the FCC Co oxygen-vacancy complex, the
loss calculation simplifies to two eigenmodes. We can iden-
tify an oxygen-vacancy complex in an FCC material based on
the positions of the oxygen atom alone, as the two neighbor-
ing vacancy positions are unique. Crystallographically, this is
similar to the “crowdion” interstitial defect. In the space group
of FCC (Fm3m), these are the d sites, of which there are six as
many compared with the a sites for the solvent atoms. These
sites, in Cartesian coordinates, are:

(A23)

Blokl—Rl—k— O O
N%Imgl»—hjl»—hl%lw
B b [ [ [ Lo [ L
N N N NSRS SIESTE
IS :c; :C>4>|wJ>|~
[N (R Gy SN [V N [UST N TSR T9V)

FNIEN TR N[N IV ST
ENINTNIV 1L ST Bt [V
[ I EN[NTNEVNIEVN

NN NN NN
ENIS PN VN e i )
Blmh— O O BlwkI—
O O BIR—i =i —
N’ N’ N’ N N N
NN AN N NN
NN AN SN N TN
N N N N N N
NN N AN AN AN

In the primitive unit cell, we only need one entry from each
row, as eac_h row represent Ehe same orientation: [011], [011],
[101], [101], [110], and [110]. As all of the sites have the

same energy, and hence p = c¢. From any site, there are eight
jumps that all have the same rate, A; the transitions involve
moving one of the two vacancies to a neighboring site that is
also a neighbor of the other vacancy while it remains in place.
This is equivalent to the oxygen atom displacing by (5 30);
however, only eight jumps are possible for each orientation.
The transition rate matrix is

-8 0 2 2 2 2
0o -8 2 2 2 2
2 2 -8 0 2 2
A=w=21 2 2 0 -8 2 2 (A24)
2 2 2 2 -8 0
2 2 2 2 0 -8
The elastic dipole for a site with orientation [110] is
Pl ps0
Py =P PO (A25)
0

0 P+

where Pl = —-270GPa, Pt = —-430GPa, and P* =
0.13 GPa. The six eigenvalues of w are the trivial 0, the
doubly-degenerate —124, and the triply-degenerate —84. The
contributions from the —121 eigenmodes couple to P! — P+
while the —84 eigenmodes couple to P*. Because the second
dipole contribution is more than order of magnitude smaller, it
does not significantly change the peak loss temperature. Both
terms contribute to £/, while £° = 0. In order to identify
the peak loss temperature for a single dominant eigenmode,
we note that the maximum in Eqn. A20 occurs when v = —r.
Writing A = vg exp(—E® /kgT), we find that the peak loss tem-
perature at

Ets

kg In(12vo/v) (426)

Tnax loss =

For systems where P* was significant compared with Pl — P+,
the peak loss temperature equation would change. The com-
putational results for the damping are available at Ref. [50].
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