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Abstract

This paper presents new methods for set-valued state estimation of discrete-time nonlinear systems whose trajectories are known
to satisfy nonlinear equality constraints, called invariants (e.g., conservation laws). Set-valued estimation aims to compute tight
enclosures of the possible system states in each time step subject to unknown-but-bounded uncertainties. Most existing methods
employ a standard prediction-update framework with set-based prediction and update steps based on various set representations
and techniques. However, achieving accurate enclosures for nonlinear systems remains a significant challenge. This paper presents
new methods based on constrained zonotopes that improve the standard prediction-update framework for systems with invariants
by adding a consistency step. This new step uses invariants to reduce conservatism and is enabled by new algorithms for refining
constrained zonotopes based on nonlinear constraints. This paper also presents significant improvements to existing prediction
and update steps for constrained zonotopes. Specifically, new update algorithms are developed that allow nonlinear measurement
equations for the first time, and existing prediction methods based on conservative approximation techniques are modified to allow
a more flexible choice of the approximation point, which can lead to tighter enclosures. Numerical results demonstrate that the
resulting methods can provide significantly tighter enclosures than existing zonotope-based methods while maintaining comparable

efficiency.

Keywords: Nonlinear state estimation, Nonlinear state constraints, Set-based computing, Constrained zonotopes

1. Introduction

In recent decades, the importance of state estimation has
gained attention in many fields of research (Simon, 2006). This
includes a wide range of applications such as state-feedback con-
trol (Jaulin, 2009; Goodarzi & Lee, 2017; Rego & Raffo, 2019),
fault detection and isolation (Zhang & Jiang, 2008; Combastel,
2015; Raimondo et al., 2016), and robot localization (Saeedi
et al., 2016). In contrast to Bayesian strategies such as Kalman
filtering (Teixeira et al., 2009; Simon, 2010), set-valued state
estimation methods aim to provide guaranteed enclosures of
the system trajectories in applications affected by unknown-but-
bounded uncertainties, without assuming knowledge of their
stochastic properties (Schweppe, 1968; Chisci et al., 1996). To
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date, most studies on set-valued state estimation have addressed
linear systems (Girard & Guernic, 2008; Le et al., 2013; Cha-
bane et al., 2014; Scott et al., 2016), and accurate set-valued
estimation of nonlinear systems remains a significant challenge
(Alamo et al., 2005; Jaulin, 2016; Rego et al., 2020).

Even for linear discrete-time systems, the exact set of states
consistent with the system model and measurements up to a
given time k can become arbitrarily complex as k increases.
Therefore, to avoid a dramatic increase in computational time
(Shamma & Tu, 1997), set-based estimation methods must en-
close these sets with simpler set representations of limited com-
plexity, such as intervals (Jaulin, 2009, 2016; Rego et al., 2018b;
Yang & Scott, 2020), ellipsoids (Durieu et al., 2001; Polyak
et al., 2004), parallelotopes (Chisci et al., 1996), or zonotopes
(Alamo et al., 2005; Combastel, 2005; Alamo et al., 2008). Un-
fortunately, for nonlinear systems of practical complexity, such
enclosures often become very conservative. There are multiple
reasons for this, including the inability of the set representation
to capture key features of the sets of interest (e.g., nonconvexity
and asymmetry), challenges associated with propagating sets
through nonlinear dynamics (e.g., the dependency problem, the
wrapping effect, conservative linearization errors, etc.), and chal-
lenges associated with refining sets based on new measurements
(e.g., the fact that intersections cannot be enclosed both accu-
rately and efficiently for any of the sets mentioned above save
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intervals). As a consequence, existing set-based state estimation
algorithms have only been applied to relatively simple nonlinear
models, and most methods assume linear measurement equations
(Combastel, 2005; Rego et al., 2018b, 2020) although the mea-
surements available in many practical examples are nonlinear
(Teixeira et al., 2009; Rego et al., 2018a).

In this paper, we present new set-based state estimation algo-
rithms with improved accuracy for the specific case of nonlinear
systems whose solutions satisfy a set of potentially nonlinear
equality constraints, referred to as invariants. The trajectories of
such systems evolve on a lower-dimensional manifold embedded
in the state space. This is true for many systems of practical
interest, including models of (bio)chemical reaction networks
(Shen & Scott, 2017), attitude estimation in aircraft systems
(Goodarzi & Lee, 2017), and the pose of the body frame in hu-
manoids (Rotella et al., 2014). In the stochastic state estimation
framework, invariants have previously been used to force the es-
timated states to lie on the embedded manifold (Julier & LaViola,
2010; Yang & Blash, 2009; Teixeira et al., 2009; Simon, 2010;
Eras-Herrera et al., 2019). In the set-based estimation frame-
work considered here, the aim is to use invariants to reduce the
conservatism of the enclosure computed in each time step by
eliminating enclosed regions that can be proven to violate the
invariants, and hence cannot contain real trajectories. Such re-
finement is known to be very effective at reducing conservatism
in interval-based nonlinear reachability calculations (Scott et al.,
2013; Shen & Scott, 2017; Yang & Scott, 2020). To the best of
the authors’ knowledge, the only prior studies that have used
invariants in set-based state estimation are Yang & Li (2009)
and Yang & Scott (2018a). In Yang & Li (2009), the authors
propose a set-valued state estimator using ellipsoids. A linear
matrix inequality approach is used to design the estimator taking
into account the nonlinear state equality constraints. However,
the method only applies to linear dynamics, and the nonlinear
state constraints must be conservatively linearized. Moreover,
an effective procedure for computing rigorous and accurate lin-
earization error bounds is not provided. In Yang & Scott (2018a),
the authors propose an effective method for using invariants to
reduce the conservatism of a set-based state estimation method
based on differential inequalities and interval analysis. However,
the method is limited to systems that have been discretized by
Euler approximation with a sufficiently small step size, which
can be restrictive in some cases. Moreover, although the the-
ory is general, the provided algorithm only applies to linear
invariants and linear measurement equations.

This paper proposes two new methods for set-valued state
estimation of discrete-time nonlinear systems with nonlinear
measurements and invariants. These algorithms represent enclo-
sures using constrained zonotopes (Scott et al., 2016) and are
based on two different methods for propagating these enclosures
through nonlinear mappings called the mean value extension and
first-order Taylor extension, respectively. Both algorithms are
based on the standard prediction-update framework used in most
existing approaches in which an enclosure of the system states
at time k is first propagated through the dynamics to obtain an
enclosure of the possible states at time k + 1 (prediction), and
this enclosure is subsequently refined based on the new measure-

ment at k + 1 (update). We generalize both the mean value and
first-order Taylor-based prediction-update algorithms recently
proposed in Rego et al. (2020), which are based on conservative
approximation techniques. These generalizations allow for a
more flexible choice of the approximation point used in the pre-
diction step and also enable new update algorithms applicable to
nonlinear measurement equations, which were not considered in
Rego et al. (2020). Furthermore, we add a new step to this frame-
work, referred to as the consistency step, which further refines
the enclosure at k + 1 using the nonlinear invariants, leading to
improved accuracy. The new nonlinear update and consistency
steps are specifically enabled by new mean value and first-order
Taylor-based algorithms for effectively refining a constrained
zonotope based on nonlinear constraints. Finally, we provide
numerical results demonstrating that the proposed methods can
provide significantly tighter enclosures than existing zonotope-
based methods for systems with invariants while maintaining
comparable efficiency.

The remainder of the manuscript is organized as follows. The
set-based state estimation problem and the class of nonlinear
systems considered are described in Section 2. Section 3 presents
mathematical background on constrained zonotopes and other
topics. The main results are given in Section 4, including the
new consistency and update algorithms and the improvements
of the prediction algorithms from Rego et al. (2020). Numerical
examples are presented in Section 5, and Section 6 concludes
the manuscript.

2. Problem formulation

Letf: R"xR™ xR™ — R"and g : R" Xx R™ X R" — R™
be of class C? and consider the nonlinear discrete-time system

X = F(Xpo1, W1, Wim1), k>1,

ey
Vi = 8(Xi, Wy, Vi), k>0,
where x; € R” denotes the system state, u; € R"™ is the known
input, w; € R™ is the process uncertainty, y; € R™ is the mea-
sured output, and v; € R™ is the measurement uncertainty. The
initial condition and uncertainties are assumed to be unknown-
but-bounded, i.e., xo € Xy, wx € W, and v, € V, where X,, W,
and V are known polytopic sets.
This paper presents an improved set-valued state estimation
method for systems satisfying known invariants, as defined in
the following assumption.

Assumption 1. There exists a C> function h : R" — R™ such
that, for every solution of (1) with Xy € Xy, wy € W, and v; € V,

h(x)=0 = h(x) =0, Yk>O0. 2)

We refer to the elements of h as invariants.

Remark 1. A sufficient condition for (2) is that
h(f(x;,u;, wr)) = 0 for all x; such that h(x;) = 0, for all
w; € W, and u; with k > 0.



Many systems of practical interest obey invariants describing,
e.g., material conservation laws in chemical systems, conserva-
tion of energy or momentum in mechanical systems, or the isom-
etry inherent to orientation dynamics in aerospace and robotic
systems (Shen & Scott, 2017; Goodarzi & Lee, 2017; Rotella
et al., 2014). Prior work on nonlinear reachability analysis has
shown that, if used properly, even simple physical information
in the form of invariants can dramatically improve the accuracy
of reachability bounds computed by interval methods (Scott
et al., 2013; Shen & Scott, 2017; Yang & Scott, 2020). Similarly,
our aim here is to develop new algorithms for effectively using
invariants to improve the accuracy of the state-of-the-art state es-
timation algorithms based on constrained zonotopes from Rego
et al. (2020).

For any k > 0, let X; denote the set of all states x; that are
consistent with (i) the nonlinear model (1), (ii) the measured
output sequence up to time k, (yo, - . ., yx), and (iii) the unknown-
but-bounded uncertainties Xy € {x € X; : h(x) = 0}, w, € W,
and v, € W, Yk > 0. Since exact characterization of X is
generally intractable (Kiihn, 1998; Platzer & Clarke, 2007), the
objective of set-valued state estimation is to approximate Xy
as accurately as possible by a guaranteed enclosure X; 2 X;.
We accomplish this here by extending the standard prediction-
update estimation framework with a new consistency step for
tightening the enclosures using invariants. The general scheme
is given by the following recursion:

X 2 (E (Xt e, Wit < Xpot € Kot Wi € W (3)

Xy 2 {xi € Xy g, Wy, Vi) = Yi, Vi € V), 4
Xy 2 {x¢ € Xi 1 h(xp) = 0}, (5)

where (3) is the prediction step, (4) is the update step, (5) is
the consistency step, and the scheme is initialized with X, in
the update step. According to the definition of Xj, we have that
Xo = {xo € X() s h(xg) = 0, g(X(),uO,V()) = Yo, Vo € V}. This
immediately implies that Xy 2 Xo. If X, is a valid enclosure
of X;_; for some k > 1, then standard results in set-valued state
estimation show that f(k 2 X; (Chisci et al., 1996; Le et al.,
2013). Since any X;_; € X;_; emanates from some Xy € Xg
satisfying h(xg) = 0 by definition, Assumption 1 implies that
h(x;) = 0, and it follows that X; 2 X; as well. By induction, we
conclude that X; 2 X for all k > 0 as desired.

In the remainder of the paper, our goal is to develop methods
for computing accurate enclosures for each of the three steps
(3)—(5). Building on prior results in Rego et al. (2020), the main
results include generalizations of the prediction methods in Rego
et al. (2020) with improved accuracy, new update methods that
are applicable to nonlinear measurement equations, and methods
for the new consistency step to make effective use of invariants.

3. Preliminaries

The methods in this article use constrained zonotopes, which
are an extension of zonotopes proposed in Scott et al. (2016)
capable of describing asymmetric convex polytopes, while main-
taining many of the well-known computational benefits of zono-
topes.

Definition 1. A set Z c R” is a constrained zonotope if there
exists (G, ¢;, A, b,) € R x R" x R"*": x R™ such that

Z={c;+G£ : ¢l <1,A {6 =Db_}. (6)

We refer to (6) as the constrained generator representation
(CG-rep). Each column of G, is a generator, ¢, is the center,
and A& = b, are the constraints. We use the shorthand notation
Z ={G,,c;, A, b,}. Similarly, we denote standard zonotopes by
Z ={G,,¢c;} e {c, + G;§ : ||€llo < 1}. In addition, we denote by
Bo(Anb,) 2 (£ € R : |€llw < 1, A = b} and B 2 (£
R" : ||€lle < 1}, respectively, the n,-dimensional constrained
and unconstrained unitary hypercubes'.

Let ZZW c R", R € R™" and Y c R™. Define the linear
mapping, Minkowski sum, and generalized intersection as

RZ2{Rz:z€Z), 7
ZoW2{z+w:zeZ we W), 8)
ZMrY2{zecZ:RzeY) )

With these definitions, Z = {G,,¢c;,A;,b.} can be viewed as
an affine transformation of B, (A,,b,), Z = ¢, ® G,;B.(A,,b,).
Given W and Y also in CG-rep, the results of the operations
(7)—(9) are given in CG-rep as

RZ = (RG.,Rc..A.,b.}, (10)
Z@W:{[Gz Gul.c. +cy. %‘”‘ AO],[EZ]}, (11
A, 0 b.
ZorY={[G.0],c..| 0 A, [,| b, . (12)
RG,; -G,| [¢,—Rc;

Unlike ellipsoids, parallelotopes, convex polytopes, and zono-
topes, the operations (10)—(12) can be computed trivially and
exactly with constrained zonotopes and result in only a mild
increase in the complexity of the CG-rep (6). In addition, effi-
cient complexity reduction methods are available in Scott et al.
(2016) that enclose a constrained zonotope within another one
with fewer generators and constraints, allowing one to balance
accuracy and computational efficiency.

The methods developed in this paper also require some con-
cepts from interval arithmetic, which are briefly recalled next.
Let the set of compact intervals in R be denoted by IR. An inter-
val X = [x", xV] € IR is defined by X £ {a e R : x" < a < xY}.
The midpoint and radius are defined by mid(X) £ 1(xY+x") and
rad(X) £ 1(xY — x). Interval vectors and matrices are defined
by {a€R":a <a; <a}and {A € R™" : AI.*J. <A; < Ag}, re-
spectively, with the midpoint and radius defined component-wise.
An interval vector X € TR" can be written in generator repre-
sentation as mid(X) @ diag(rad(X))B%, = {diag(rad(X)), mid(X)}.
For any bounded X c R”, let [JX refer to the interval hull of X.
See Moore et al. (2009) for a review on basic operations and
classic methods using interval analysis. In this work, the interval

I'We drop the use of the superscript ng for Beo(A;, b;) since this dimension
can be inferred from the number of columns of A_.



hull JZ of a constrained zonotope Z is computed using linear
programming (Scott et al., 2016; Rego et al., 2020).

Finally, the following theorem defines a useful operation
<(J, X) for computing a constrained zonotopic enclosure of the
product of an interval matrix J with a constrained zonotope X.

Theorem 1. (Rego et al., 2020) Let X = {G,¢,A,b} C R" be a
constrained zonotope with n, generators and n, constraints, let
J € TR™™ be an interval matrix, and consider the set S = JX £
(Jx:JelxeX)cR. Let G € R™%= and ¢ € R” satisfy
X C {G, ¢}, and let m be an interval vector such that m 2 (J —
mid(J))¢ and mid(m) = 0. Finally, let P € R™" be a diagonal
matrix defined by P; = rad(m;) + Z;i | p rad(J)|Gr ;| for all
i=1,2,...,n. Then, S is contained in the CZ-inclusion

S C <«(J,X) 2 mid(J)X @ PB"..

Remark 2. In the implementation of «(J, X) used in this paper,
{G,¢} 2 X is obtained by eliminating all constraints from X
using the constraint elimination algorithm in Scott et al. (2016),
and m is obtained by evaluating (J — mid(J))c in interval arith-
metic.

4. Nonlinear state estimation

This section presents new methods for computing enclosures
for each step in the extended prediction-update-consistency al-
gorithm (3)—(5) using constrained zonotopes. The proposed
recursive scheme is summarized in Algorithm 1. In this algo-
rithm, complexity reduction methods can be used after each step
to limit the set complexity increase. We begin with two core
lemmas required for all three steps.

Algorithm 1 Proposed recursive algorithm

1: (Prediction step) Given the constrained zonotopes X;_; X
W c R"x R™, and input u;_; € R™, compute the predicted
constrained zonotope X; satisfying (3).

2: (Update step) Given the constrained zonotopes X; X V C
R"” x R™, input u; € R™, and measurement y; € R"™, com-
pute a refined constrained zonotope X, satisfying (4).

3. (Consistency step) Given the constrained zonotope X; c R”,
compute a refined constrained zonotope X; satisfying (5).

Lemma 1. Let @ : R” x R — R be of class C' and let
V.« denote the gradient of @ with respect to its first argument.
Let X ¢ R" and W c R™ be constrained zonotopes, and let
J € TR™" be an interval matrix satisfying

Vie@x,W) 2 (Viax,w) :xeOX, we W}CJ. (13)

Forevery x € X, w € W, and y, € [JX, there exists JeJsuch
that
ax,w) = a(y,,w) + J(x —y,).

Proof. Choose any (x,w) € X X W. Since x € X C X
and vy, € [JX, the Mean Value Theorem ensures that, for any
i =1,2,...,n, " € OX such that a;(x,w) = ai(y,, W) +

Va6, w)(x — y,). But V(6" w) is contained in the i-
th row of J by hypothesis, and since this is true for all i =
1,2,...,n,3) € J such that a(x, w) = a(y,, W)+ Jx—7y,). B

Remark 3. As with VI (X, W) in (13), real-valued functions
written with set-valued arguments will henceforth always denote
the true image set, rather than, e.g. an interval extension or other
enclosure.

Lemma 1 provides an exact linear representation of the non-
linear function @ between two points based on the Mean Value
Theorem, which is useful for computations with constrained
zonotopes. This lemma is very similar to Theorem 2 in Rego
et al. (2020). The only difference is that Theorem 2 in Rego
et al. (2020) requires the approximation point y, to lie in X,
while Lemma 1 allows y, to be chosen from the larger set [1X.
This is important because obtaining a point in X (or testing a
given point for membership) requires solving a linear program,
whereas obtaining point in [JX is trivial. The proof of Lemma
1 is given above for completeness, but it follows easily from
the proof of Theorem 2 in Rego et al. (2020) by replacing the
condition y, € X with y, € (JX throughout.”

The next lemma provides an alternative method for obtaining
an exact linear representation of a nonlinear function between
two points based on Taylor’s Theorem. This lemma is similar to
Theorem 3 in Rego et al. (2020), with the difference again that
the approximation point is chosen from [1Z rather than Z. The
following notation is required. For a function 8 : R" — R" of
class C? with g-th component B, and argument z, let HB, denote
the upper triangular matrix describing half of the Hessian of 3.
Specifically, H;8, = (1/2)62,Bq/(9zi2, H;iB, = 82,8,] /0z;0z; for
i< j,and H;;, = 0 fori> j.

Lemma 2. Let 8 : R" — R” be of class C? and let z € R”
denote its argument. Let Z = {G,c,A,b} Cc R” be a con-
strained zonotope with m, generators and m, constraints. For
eachq = 1,2,...,n, let Q¢ € IR™™ and Q4! e IR™*™ be in-
terval matrices satisfying Q' 2 HB,(0Z) and Q' 2 GTQ“'G.
Moreover, define

¢, = trace {mid(Q[q])} /2,
Gy =[ --- mid(Q/2 -+ (mid(Q}"") + mid(Q'")) --- ],
N—————
Vi Vi<j

Ga = diag(d), dy= )" [rad( @], A =[A; Ag O 1ompenl
ij

A{ = . %AriAsi e Vr<s, B = brbs - % Zi Ar,‘As,‘ Vr<s,

Vi

’In Rego et al. (2020) y, was denoted by h.



Ag =|--- AriAsj +ArjAsi' s | Yrss,

Vi<j

with indices i, j = 1,2,...,mgand r, s = 1,2,...,m.. Finally,
choose any y, € [1Z and let L € IR™" be an interval matrix
satisfying L,. 2 (¢ — 7,)" Q! for all ¢ = 1,...,n. For every
z € Z, there exist £ € B,(A,b), E € Bw(A, f)), and L. € L such
that

B@) =By) + V' Bly)z-7.)
+¢+[G Gal€ +L((c—y,) + 2Gé).

Proof. This follows by replacing y, € Z with y, € UZ in the
proof of Theorem 3 in Rego et al. (2020). ]

4.1. Prediction step

This section presents two different approaches for the pre-
diction step in Algorithm 1. The methods below are improved
versions of the mean value and first-order Taylor extensions
developed in Rego et al. (2020), respectively, which allow for
a more flexible choice of the approximation point enabled by
Lemmas 1 and 2 above. The proofs can be found in Appendix A.

Proposition 1. Letf : R"xR™xR"™ — R" be of class C' and let
V. f denote the gradient of f with respect to its first argument. Let
u e R™, and let X ¢ R" and W c R" be constrained zonotopes.
Choose any y, € UX. If Z, is a constrained zonotope such that
f(y.,u,W) C Z, and J € IR™" is an interval matrix satisfying
VIf(OX,u, W) C J, then f(X,u, W) C Z, ® <(J, X — 7.).

Proposition 2. Let f : R” x R™ x R™ — R" be of class C?, let
u € R™ andlet X = {G,,¢c,,A,,b,} and W = {G,,,¢c,,,A,,b,}
be constrained zonotopes with (ng, 1y, ) generators, and (n, n,,)
constraints, respectively. Denote z = (x,w) and Z = X X W =
{G,c,A,b} ¢ R™™  Foreachq = 1,2,...,n, let QU ¢
[RO#EmX0tm) ang Qlal e TR+ t10) pe interval matri-
ces satisfying Q) 2 H. £,(0X,u,0W) and Q' 2 GTQUYG.
Moreover, define ¢, G, Gd, A, and b, as in Lemma 2. Finally,
choose any ¥, = (¥x,¥y) € OZ and let L € IR™" be an interval
matrix satisfying L,. 2 (¢ — ¥,)7Q! forall ¢ = 1,...,n. Then,

fXu, W) Sty wy,) @V iy, u,7.,)Z - y)®R, (14)

where R = €® |G Ga| Bo(A, D) ® «(L, (¢ - 7.) ® 2GBw(A, b)).

Remark 4. The constrained zonotope Z,, in Proposition 1 can
be obtained using the mean value extension f(y,,u, W) C Z,, =
f(y,w,yy) ®<J,, W—1v,) for a chosen point y,, € JW, with
J,, being an interval matrix satisfying J,, 2 VLf(y,,u, 0W). In
this paper, the interval matrices J, J,, (Proposition 1), Q4!, Q41
L (Proposition 2), and similar interval matrices in Propositions 3—
4 and Corollaries 1-2, are all computed using interval arithmetic.

Remark 5. The complexity of the enclosures obtained by
Propositions 1 and 2 are similar to the methods in Rego et al.
(2020). Specifically, if X and W have n, and n,, generators,
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Figure 1: The sets X (blue), [JX (dashed lines), the center of X (X), the enclosures
obtained using Proposition 2 with ¥, as the center of X (green), and using
Theorem 3 in Rego et al. (2020) with y, as the closest point in X to its center
(red).

and n. and n,, constraints, respectively, then Proposition 1 gives
ng +ng + 2n generators and n. + n., constraints, and Proposi-
tion 2 gives 0.5(ng + ng, )* + 2.5(ng + ng, ) + 2n generators and
0.5(n; + n,)* +2.5(n. + n.) constraints.

Propositions 1 and 2 permit y, and y, to be chosen from [JX
and [Z, respectively, whereas the corresponding results in Rego
et al. (2020) required these points to be chosen from the smaller
sets X and Z. The following example illustrates the potential
advantage of these extensions.

Consider the nonlinear mapping f : R? — R? defined by

4x1x 3x1x2

2
A =30 - oL - fi®) =25+ T2 (15)

7 4+)C1’

and the constrained zonotope

XZ{[%? 03 _8'5]’[55}’["1 : ‘1]’2}'

As shown in Figure 1, the center ¢ in this CG-rep of X does not
actually lie in X, but does lie in [JX. Therefore, it is a valid
choice of y, in Proposition 2 here, but not in Theorem 3 in Rego
et al. (2020). Figure 1 shows the enclosures of f(X) obtained
using Proposition 2 with this choice of y, and using Theorem 3
in Rego et al. (2020) with y, chosen as the closest point in X to
¢, which is the best heuristic proposed in Rego et al. (2020). The
enclosure obtained using Proposition 2 is tighter. Thus, allowing
v, to lie in [1X can lead to less conservative results.

4.2. Update step

This section presents both mean-value and first-order Taylor
methods for the update step in Algorithm 1, considering nonlin-
ear measurement equations in contrast to the linear update step
used in Rego et al. (2020). Specifically, Lemmas 1 and 2 are
used, respectively, to formulate the required enclosure in (4) as
the generalized intersection of two constrained zonotopes.

Proposition 3. Let g : R x R™ x R™ — R™ be of class C!,
letu € R™, let X ¢ R" and V ¢ R™ be constrained zonotopes,
and choose any y € R such thaty = g(x, u, v) for some (x, V) €
X x V. Choose any y, € X and any J € R . If Z, is



a constrained zonotope such that —g(y.,u,V) € Z,, and J €
IR™" is an interval matrix satisfying Vfg(DX, u, V) C J, then

(xeX:gx,u,v)=y,veV}CcXnNcY,

where C=J,and Y = (y+Jy) @ Z, ®<«J - J, X — y,).

Proof. Choose any (x,v) € X x V satisfying g(x,u,v) =
Lemma 1 ensures that there exists a real matrix J € J such
that g(x, u,v) = g(y,u,v) + J(x —7,). Since = J+J - J)
holds, then g(x, u,v) = gy, u, V) + Jx = 7.) + (J = DX = ).
Consequently,

Ix=gxuv)+Jy, - greuv+J-DHx -y
=y+Jy - gynu v+ T -Dx-7))
ey+JyoezZ,e<J-J.X-y,) =V

Then, we conclude that {x € X :
Jxev)=Xnc?Y.

gx,u,v)=y,veVjC{xeX:

Remark 6. The constrained zonotope Z, in Proposition 3 can be
obtained as Z, = —g(y, W, 7,) ® <(=J,, V —»y) 2 —g(y, 0, V)
for some y, € JV and interval matrix J, 2 Vfg('yx, u, V).
The matrix J is a free parameter in Proposition 3. Choosing
J = mid(J) gives mid(J — J) = 0, and hence «(J — J, X — ) =
mid(J — )(X-y,)@PB. = PB., with P defined as in Theorem
1. This choice is adopted throughout this paper.

Proposition 4. Let g : R” x R™ x R™ — R™ be of class C?,
letu € R™, let X = {Gy,¢,,A b} and V = {G,,¢,,A,,b,}
be constrained zonotopes with (ng, ng ) generators, and (7, 7, )
constraints, respectively, and choose any y € R™ such that
y = g(x,u,v) for some (x,v) € X X V. Denote z = (x,v) and
Z=XxV={G,c,A,b} c R"™" Foreachq=1,2,...,ny,let
Ql4l e IRUHmM*tm) ang Qla) € TR+ )*(e ) pe interval ma-
trices satisfying Q¢! > H, :8,(00X,u,0V) and Q' o> GTQG.
Moreover, define ¢, G, Gd, A, and b, as in Lemma 2. Finally,
choose any . = (¥,,¥») € OZ and let L € TR™*"*™) be an in-
terval matrix satisfying L. 2 (¢ —y,)" Q¥ forallg = 1,...,n,
Then,

(xeX:gx,u,v)=y,veV}CcXnNcY,

where C VTg(yx,u 7, Y ¥y - gywmu,y) +
VTg('}’x’u 7\))72) & (- VI g(')’x’ u,7,)V) ® (-R), and R =
[G Gy]B~(A,b) @ <(L, (C v.) ®2GB(A,b)).

Proof. Choose (x,v) =z € Z such that g(x,u, v) =y. Lemma 2
ensures that there exist € € Bo,(A,b), § € Bo,(A,b), and L € L,
such that

gX, W, V) = gy W) + Vigyn Wy )(X — ¥y)

+Viglynu,y,)(v—7,) + Lp + 2G¢) + & + [G GyIE.

where p = ¢ — y,. Since g(x,u,v) =y
Vigynwy)X =y - 80rm w,7) + Vi g wy)y:
- Vg uy)v-Lp+2G§) -¢-[G G

€y -gynuwy)+VigyLu,y)y)
®(-Vigynuy)V)®(-R) =

G¢

Then, we conclude that {x € X : g(x,u,V) =
Vigywwy)xe Y =XncY.

y,veV}ici{xeX:

Remark 7. If X and V have n, and n,, generators, and n, and ..,
constraints, respectively, then the enclosure obtained by Proposi-
tion 3 has 2n, +ng +2n, generators and 2n. +n,, +n, constraints,
and the enclosure obtained by Proposition 4 has 0.5(n, + ng,)* +
2.5(ng +ng )+2n, generators and 0.5(n. + nc‘,)2 +2.5(n.+n.,)+n,
constraints.

Remark 8. If f and g are affine in w and v (i.e., f(x,u,w) =
$(x,u) + O(x,u)w and g(x, u, v) = ¥(x,u) + ¥(x,u)v), then the
constrained zonotopes Z,, 2 f(y,,u, W)and Z, 2 —g(y,,u, V) in
Propositions 1 and 3 can be computed exactly by Z,, = ¢(y ., u)®
O(y,,m)Wand Z, = —y(y,,u) & (—F(y,, u)V), respectively.

4.3. Consistency step

This section presents both mean value and first-order Taylor
methods for the consistency step in Algorithm 1. As in the
previous section, the obtained enclosure is formulated as the
generalized intersection of two constrained zonotopes. Since the
proposed methods are direct consequences of Propositions 3 and
4, they are presented as corollaries.

Corollary 1. Leth : R” — R™ be of class C! and let X c R" be
a constrained zonotope. Choose any y, € (01X and any J € R™>",
If J € TR™" is an interval matrix satisfying VZh(OX) C J,
then {x € X : h(x) = 0} C X np H, where D = J, and H =
Jyx —h(y)) @ <«(J - J.X - y5).

Proof. See Appendix A. |

Remark 9. As in the update step, the matrix J is a free parameter
in Proposition 1. If J = mid(J), then mid(J - J) = 0, and
«J-J,X-y,) = midJ - J)(X —y,) ®PBY = PBY. Therefore,
this choice is adopted also for the consistency step.

Corollary 2. Leth : R" — R™ be of class C? and let X =
{G, ¢, A, b} be a constrained zonotope with n, generators and
n. constraints. For each g = 1,2,...,ny, let Q¥ € IR™ and
Q'Y € IR™*" be interval matrices satlsfymg Q! 2 H.hy(OX)
and Q' > GTQG. Moreover, define €, G, Gq, A and b, as
in Lemma 2. Finally, choose any y, € [JX and let L € TR™"

be an interval matrix satisfying L,. 2 (¢ — 7,)7 Q! for all
qg=1,...,n, Then,
(xeX:hx)=0}CXnpH,

where D = VIh(y,), H = (-h(y,) + VIh(y,)y.) ® (-R), and
R=¢®[G GqlB(A,b)® <(L, (c —y,) ® 2GB.(A,b)).

Proof. See Appendix A. |

Remark 10. If X has n, generators and 7, constraints, then the
enclosure obtained from Corollary 1 has 2n, + n, generators and
2n. + ny constraints, and the enclosure obtained from Corollary
2 has 0.5n§ + 2.5n, + 2n, generators and 0.51% + 2.5n. + n,
constraints.



Remark 11. The enclosures in Corollaries 1 and 2 can be tight-
ened if an enclosure Xg in CG-rep of the feasible state set
{x € R" : h(x) = 0} is known a priori. Such an enclosure
can be obtained offline by using, for instance, the contractor
programming methods in Chabert & Jaulin (2009). In both
corollaries, h is conservatively approximated over X, and the
size of the resulting constrained zonotope Z is proportional to
the size of X. If X is large, significant improvement can result
from setting X « X N Xg prior to applying the corollary. This
situation is likely in practice because, within the overall esti-
mation framework (3)—(5), the set X; will play the role of X
in Corollaries 1 and 2, and Xk can be very conservative before
accounting for the invariant h(x;) = 0 (see Section 5.2).

Remark 12. Various alternative methods have previously been
proposed for intersecting a given set with the solution set of a
system of nonlinear equations; e.g., (Kochdumper & Althoff,
2020). However, none of these existing methods can be applied
to sets described by constrained zonotopes, and the computed
enclosures are generally nonconvex.

Remark 13. In practice, nonlinear invariants of the form
h(x;) = 0 may not hold exactly. However, inexact invari-
ants can still be used by introducing an additional uncertain
variable d; € R, bounded in a polytope D c R", such that
h(x;, d;) = 0 holds. The resulting procedures are very similar to
Propositions 3 and 4 with y; £ 0, v, = d;, and g £ h.

4.4. Selection of y

The methods proposed in this paper require heuristics to
choose a point (¥, ¥y, ¥y) € X x W x 1V, where X stands
for either X;_1, X, or Xi depending on the step in (3)—(5). As
discussed in Rego et al. (2020), the center of the CG-rep. of
X x W x V cannot be chosen in general because it may not be-
long to either X X Wx V or X x[JW x[JV. However, in contrast
to Rego et al. (2020), the center of the interval 1X x (JW x [V is
a valid choice here. This first heuristic is summarized as follows:

C1) (¥ ¥w,¥v) is given by the center of X x W x V.

Despite its efficiency, C1 is not optimal in any sense and can
lead to conservative enclosures. Following Rego et al. (2020),
we next present an improved heuristic C2 specifically for use
with the methods based on mean value extensions in Propositions
1 and 3, and Corollary 1 (the exact heuristic in Rego et al. (2020)
is not optimal here because it restricts (¥, ¥y, ¥y) 0 X X WX V
rather than OIX x W x[JV). Propositions 1 and 3, and Corollary
1 all apply the CZ-inclusion defined in Theorem 1 with the
second argument taking the form X — y,. The idea behind C2
is therefore to choose y, so as to minimize the conservatism of
this CZ-inclusion.

In this sense, consider the CZ-inclusion <«(J, Z—7) for arbitrary
Z = {G,c,A,b} Cc R"™ and J € IR™". As per Theorem 1 and
Remark 2, computing <(J, Z — ¥) requires a zonotope {G, ¢} 2
(Z — ) that is computed by eliminating all constraints from
(Z — ) using the constraint elimination algorithm in Scott et al.
(2016). Based on that algorithm, Rego et al. (2020) derived a

closed form expression for the resulting center € as a function of
(G, ¢, A, b) and y, which takes the form

t=c—y+6(G,A,b).

The definition of § can be deduced from Lemma 1 in Rego
et al. (2020) and is omitted here for brevity. This € is then
used to compute m D (J — mid(J))C using interval arithmetic,
and the size of the final enclosure <«(J, Z — ) is proportional to
rad(m) = (1/2)diam(m). Thus, the aim is to choose ¥ so as to
minimize diam(m).

Proposition 5. Let Z = {G,c,A,b} c R", J € IR™", and
[z5,zY] = OZ. For any choice of y € 0Z, let m, 2
(J — mid(J))¢, be an interval vector computed using interval
arithmetic, where €, = ¢ — ¥ + 6(G, A, b). Then y* € [0Z min-
imizes ||diam(m,,)||; iff it is the solution to the linear program
(LP)

min [O8,[l;, st - <y<z’, (16)

where ©;; = ", diam(J;;) and ®;; = O for all i # ;.

Proof. See Appendix A.
This heuristic is summarized as follows:

C2) v, vw, and y, are given by the points obtained from Propo-
sition 5 for (J, X — y,) in Proposition 1, J-J1x- V)
in Propositions 3 and 1, (J,,, W — ¥,,), and (J,, V — ¥,),
respectively.

Next, we present a heuristic specifically for the methods
based on first-order Taylor extensions in Propositions 2 and
4, and Corollary 2. The conservatism of these methods is di-
rectly related to the conservatism in the remainder R, which is
mostly affected by the size of the interval matrices Q4!, Q4]
and L. The matrices Q!9 and Q¢! are unaffected by the choice
of (¥x, ¥w,¥v). However, the radius of L is proportional to the
differences ¢, — ¥, ¢,, — ¥, and ¢, — ,. Therefore, we propose
the following heuristic:

C3) (¥, ¥w,Y¥y) is the closest point to the center of X X W X V
that belongs to X x OW x [JV, obtained by solving the
respective LPs min {|[y — ¢||; : ¥ € OX}, min {|ly —¢,l; :
vy € OW}, and min {|ly — ¢,||; : ¥ € OV}

Remark 14. In this section, we propose different heuristics to
choose (¥, ¥y, ¥y) depending if the mean value extension or the
first-order Taylor extension are used (C2 and C3, respectively).
This is because this choice affects the computed enclosure in
different ways for the different extensions. See Rego et al. (2020)
for a detailed motivation.

4.5. Computational complexity

Table 1 shows the computational complexity of our meth-
ods for the prediction, update, and consistency steps, using
the mean value extension (Propositions 1 and 3, and Corol-
lary 1) and the first-order Taylor extension (Propositions 2 and
4, and Corollary 2). To derive these complexities, we con-
sider that the enclosures (Xk,l,)_(k,)?k) have (i, 7i,, 71,) gen-
erators and (7., 7., ;) constraints, respectively. Moreover,



(W, V) have (ng, ,n, ) generators and (n,, , n.,) constraints, and
we define (m,,mg,,me,) = (n + n,,fig + ng,, i, + n,), and
(my,,mgy, ,me,) £ (n + ny,fig + ng , i + ne ). As in Rego et al.
(2020), we assume that evaluations of nonlinear real functions
and nonlinear inclusion functions have complexity O(1), and
that all LPs (including the ones necessary to compute the interval
hulls) are solved at least with the performance of the method
proposed in Kelner & Spielman (2006). This method has (sim-
plified) polynomial complexity O(N;N?), with N, and N, the
number of decision variables and constraints, respectively.

The complexities of the prediction, update, and consistency
steps, using the mean value and first-order Taylor extensions,
are similar to the previous prediction methods proposed in Rego
et al. (2020). In all the complexities shown in Table 1, the higher
order terms such as (m,,mg, +me, )(mg, + m(,w)3 come from both
the interval hull computations and the constraint elimination
procedure used to obtain the zonotope enclosure required by
Theorem 1. The other terms come from matrix products that
appear in the proposed expressions to compute the respective
CG-rep variables.

Table 1 also shows a simplified complexity analysis of the
proposed methods for each step. In this analysis, we consider
that every variable is proportional to the space dimension n,
and that (X;_;, X¢, X;) have the same number of generators and
constraints (this can be achieved by using generator reduction
and constraint elimination methods after each step). Details
on the complexities of the basic operations with constrained
zonotopes are found in Rego et al. (2020).

Table 1: Computational complexity O(:) of the prediction, update, and consis-
tency steps using constrained zonotopes.

Step Mean value extension Simplified
0 3 3
Prediction nmy,mg,, + (Mymg,, + me,, )(mg,, +me,,) \ n5
Update ny(mymg, +ny) + (mymyg, + me, )(mg, +me,) n
Consistency np(nitg + ny) + (nitg + i) (g + i) n
Step First order extension Simplified
e y) ) 3 3
Prediction ;l(mwmg“é + mwmgw) 2+ (mymyg,, +me, )mg,, +me, ) \ n5
Update ny + ny(mymg, + m‘,mgv) + (mymg, +me,)(mg, +me,) n
Consistency n2 + ny(n*hg + nil) + (g + i) (A + ) n®

5. Numerical examples

This section evaluates the accuracy of the set-valued state
estimation methods proposed in Section 4. Let CZMV denote
the method based entirely on the mean value extension, using
Proposition 1 for the prediction step and Proposition 3 for the up-
date step, but with no consistency step. Moreover, let CZMV+C
denote the method CZMV with the addition the consistency step
using Corollary 1, let CZMV+F denote CZMV with the addition
of an intersection with an enclosure of the feasible state set as
described in Remark 11, and let CZMV+FC denote CZMV with
the addition of both the intersection in Remark 11 and then the
consistency step using Corollary 1. These are referred to collec-
tively as CZMV-like methods. Analogously, let CZFO denote
the method based entirely on first-order Taylor extensions, using
Proposition 2 for the prediction step and Proposition 4 for the
update step, and let CZFO+C, CZFO+F, and CZFO+FC denote

CZFO with the addition of, respectively, the consistency step
using Corollary 2, the intersection described in Remark 11, and
both the intersection and the consistency step. In CZMV-like
methods, complexity reduction is applied after the consistency
step using the reduction methods in Scott et al. (2016), with
constraint elimination performed prior to generator reduction.
Due to the quadratic complexity increase of the enclosure in
each intermediate step of CZFO-like methods (see Remarks 5, 7
and 9), complexity reduction is applied after all three steps in
these methods. Heuristic C2 is used for choosing (¥, ¥y, ¥y) in
CZMV-like methods, and heuristic C3 in CZFO-like methods.

We also compare our results with two nonlinear zonotope
methods with prediction steps based on the Mean Value Theo-
rem in Alamo et al. (2005) and Taylor’s Theorem in Combastel
(2005). These are denoted by ZMV and ZFO?, respectively. In
both zonotope methods, the nonlinear update step is given by
the intersection method in Bravo et al. (2006), with strips com-
puted as in Alamo et al. (2005). Generator reduction is applied
after the update step using Method 4 in Yang & Scott (2018b).
In addition, we denote by ZMV+F and ZFO+F the methods
ZMV and ZFO with the addition of the intersection discussed in
Remark 11. Since zonotopes are not closed under intersection,
this intersection enclosed by converting the a priori enclosure
Xr from CG-rep to half-space representation as described in
Scott et al. (2016), representing X as an intersection of strips,
and then using the method for bounding the intersection of a
zonotope with a set of strips from Bravo et al. (2006). As with
constrained zonotopes, these are referred to as ZMV-like and
ZFO-like methods, respectively.

5.1. A system with nonlinear measurement equations

To demonstrate the effectiveness of our methods for set-valued
state estimation of systems with nonlinear outputs, we first con-
sider the nonlinear discrete-time system x; = f(xz_;) + Wi_1,
where f is defined by (15) and w; € R? denotes process uncer-
tainties with ||wy||. < 0.4. The measurements are given by

. X2k
Y1k = X1, — SIN > + Vik

(7
Yok = —X1kX2k + X2k + Vi,

with ||vz]le < 0.4. Finally, let

05 1 -05][5
XO:{[O.S 05 0 ]’[0.5]}' (18)

Figure 2 shows the estimated enclosures X;, (since there are
no invariants, these are X; = )?k) for k = 0,1,2,3, obtained
using ZMV, ZFO, CZMYV, and CZFO. In this case, Z, and Z,
are computed as in Remark 8. The number of generators and
constraints is limited to 8 and 3, respectively. The simulations
were run in MATLAB 9.1 with INTLAB 12 and CPLEX 12.8,
on a laptop with 32 GB RAM and an Intel Core i7-9750H pro-
cessor. The first set X, coincides with X, for both ZMV and

3In a simplified analysis, ZMV and ZFO have computational complexities
O(n*) and O(n°), respectively. See Rego et al. (2020) for a detailed discussion.
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Figure 2: The enclosures X; from the first four time steps of set-valued state estimation in the example in Section 5.1 using ZMV (yellow), ZFO (blue), CZMV

(green), and CZFO (orange).
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Figure 3: The radii of the estimated enclosures X in the example in Section 5.1
obtained using ZMV, ZFO, CZMYV, and CZFO.

ZFO, which demonstrates that the update step method using
zonotopes can be very conservative with nonlinear measure-
ments, making the first update ineffective in this example. On
the other hand, the sets X, obtained by CZMV and CZFO have
reduced volume relative to Xj, showing that X, was effectively
tightened by the first measurement. In addition, in contrast to
CZMYV and CZFO, the size of the enclosures f(k for both ZMV
and ZFO increases substantially with time. This is corroborated
by Figure 3, which illustrates the radii of the sets X; (half the
length of the longest edge of the interval hull). Note that the
radii of the sets obtained by ZMV and ZFO increase to infinity,
while the radii of the sets obtained by CZMV and CZFO remain
finite. This result corroborates the improved accuracy achieved
by using constrained zonotopes for computing the update step
with nonlinear measurement equations. Lastly, Table 2 shows
the average computational times per time step of each method,
together with the computational times spent in complexity reduc-
tion of the enclosures. The latter is included to distinguish the
computational burden of the proposed methods from the com-
plexity reduction procedures, whose analysis is out of the scope
of this work. Note that CZMV and CZFO were able to provide
accurate enclosures with an increase of 114% and 52.3% of the
execution times with respect to ZMV and ZFO, respectively.
Nevertheless, as mentioned above, the sets obtained by ZMV
and ZFO increased to infinity in few steps, and therefore cannot
provide any information about the state trajectories.

5.2. A system with nonlinear measurements and invariants

The second example involves state estimation of the attitude
of a flying robot. The robot is driven by angular velocity i €
R3, with attitude expressed as a rotation quaternion x; € R*

Table 2: Total and complexity reduction average execution times per time step
of the state estimators for the first example.

ZMV CZMV ZFO CZFO
Total 30.5 ms 65.3 ms 47.4 ms 72.2 ms
Red. 4.4 ms 4.8 ms 6.6 ms 14.2 ms

satisfying ||xk||§ = 1, which defines the invariant A(x;) = ||xk||§ -
1 = 0 to be used in the consistency step (5). The invariant
h(xy) is a mathematical property of rotation quaternions, which
lie in a manifold denoted by Spin(3), where the unitary norm
||xk||§ = 1 is always satisfied (Selig, 2005). Therefore, even in
the presence of time-varying angular velocities, disturbances
and sensor noise, this invariant is satisfied by x; for all £ > 0.

The known value u; of the physical input U is measured
by gyroscopes and therefore is considered to be corrupted by
additive noise w; € R, Physically, the system is driven by the
uncorrupted signal G, = u; — w;. The attitude x; evolves in
discrete time according to (Teixeira et al., 2009; Lefferts et al.,
1982)

T sin(p(ug, wi))

X; = (cos(p(uk, w)ly — — Q(uy, Wk)) X1,

2 p(ug, wy)
(19)
where T'; is the sampling time and
0 lag  —lpp g
Ty . iz 0 lyg g
U, W) = —|[Ugllr, Qug,wi)=1| . N ’ N
pag, W) > [ell2, Cug, wi) loy —li 0 it
=iy x  —lipx —lzx O
The known value uy, is
0.3 sin((27/12)kT )
w, =+ w = | 0.3sin(2a/12)kT; — 6) | + wy, (20)

0.3sin((2n/12)kT; — 12)

with |[Wille < 3.0x1073. The measurement is given by y; =
(Cxpr!, Cxr? + v, with rl'' = [1 0 0]7, ' = [0 1 0]7,
[[Vkllo < 0.15, and C(x;) is a rotation matrix defined by

> 2
Xk~ Xk
2(x1 5 X0k — X3 X4 %)

2(x1, X35 + X2 5 X4 k)

2 2
X3+ X 200X + X3 kX4 k)
2 2 2 2

X Xy T X X,
2(=X1 X4k + X2k X3k)

221 X3,k — X2k X4k)
2(X1 kX4 g + X2 kX3 )

2 2 > 2
T T X T Xy T Xy

Cxp) =
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Figure 4: The zonotope Xy (yellow), the enclosure X obtained in the consistency
step (5) using Corollary 1 with Xo = X (red), the set Xy N {Ip, 0} (blue), and
the enclosure X, obtained in the consistency step (5) using Corollary 1 with
Xo = Xo N {L, 0} (green). The resulting enclosures contain each other according
to the sequence above. The dashed line denotes the box {I,, 0}. The circle that
describes the feasible state set of ||X()||% = 1 is also depicted.

The sampling time is 7 = 0.2s, and the initial state belongs
to the zonotope X, = {0.181I4,[0 1 0 0]”}. For the purpose of
generating trajectories of (19), the initial state is xo = [0 1 0 0]7.

In the following, for the sake of clarity we first illustrate the
observation described in Remark 11 for the consistency step in
a sub-example with x; € R2, ||Xk||% =1, and

o= {5 o [0

Note that in this case the set {I,, 0} is a valid enclosure for the
feasible state set of the invariant ||xk||§ 1. Figure 4 shows
the initial set X; and the enclosure X, obtained using Corollary
1 for the consistency step with Xy = X,. Note that, although
tightened, the resulting set is still very conservative. Figure 4
also shows the intersection Xy N {I,, 0}, which is tighter than the
previous result. Finally, we illustrate the enclosure X, obtained
using Corollary 1 with Xo = Xy N {Ib, 0}, which is the least
conservative result. This demonstrates the improved accuracy
that can be achieved if an enclosure of the feasible state set is
known a priori.

Figure 5 illustrates the radii of the enclosures X; obtained for
the trajectories of the system (19) using ZMV-like and CZM V-
like methods. We consider the enclosure {14, 0} of the feasible
state set of the invariant ||xk||§ = 1. In this case, Z,, and Z, are
computed as in Remarks 4 and 8, respectively. The number of
generators and constraints is limited to 12 and 5, respectively.
Note that the zonotope methods were not able to provide useful
enclosures for (19), i.e., the sizes of the enclosures increase with
time and do not provide useful information, even when con-
sidering the intersection with {I4, 0}. Note that the enclosures
provided by CZMV and CZMV+F also are not useful in this
case, even though CZMV+F is much tighter than the others. On
the other hand, CZMV+C and CZMV+FC both provided good
enclosures with stable size, with the latter providing more accu-
rate sets in the initial time steps, as expected. This demonstrates
the advantage of including the consistency step (5) in state esti-
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mation using the mean value extension to take into account the
invariant ||xk||§ = 1. In addition, note that the radii of the enclo-
sures provided by CZMV+C and CZMV+FC are much smaller
than the radius of {14, 0}, showing that significant accuracy can
be obtained by combining the state estimation procedure with
the invariant, in comparison with using only the information
available about the feasible state set.

Figure 6 shows the radii of the enclosures X; obtained for
the trajectories of (19) using ZFO-like and CZFO-like meth-
ods. Once again, the enclosures computed by zonotopes do not
provide useful information since these increase with time, even
when considering the intersection with {I4, 0}. On the other hand,
even CZFO provides tight enclosures for this example. This
demonstrates that the first-order Taylor extension is able to pro-
vide significantly less conservative bounds than the mean value
extension in this case, since the nonlinear measurements are
polynomials of second order, and therefore the interval matrices
Q'“! in Proposition 4 are singletons. Nevertheless, CZFO+C and
CZFO+FC both provide still sharper enclosures, with compara-
ble sizes due to the limited complexity of the sets. To provide a
comprehensive comparison between all of the methods, Table 3
shows the average radius ratio for this example (ARR, i.e., the
ratio of the radius of the set provided by one method over the
radius of the set provided by another method at k, averaged over
all time steps), and Table 4 shows the average computational
times per time step of each method. Note that, in contrast to the
analogous state estimation algorithms for linear measurements in
Rego et al. (2020), the computational times of CZMV-like meth-
ods were competitive with ZMV-like methods, and CZFO-like
methods with ZFO-like methods as well. The increased times
of the zonotope methods arise from the iterative computation of
strips based on interval analysis in Alamo et al. (2005) and the
intersection with strips given in Bravo et al. (20006) to perform
the update step. In this sense, using the mean value extension
with constrained zonotopes, one can achieve about 93% less con-
servative bounds (CZMV+C—to-ZMV+F ARR of only 6.7%) in
comparison to zonotopes, with a mild increase of 22.2% in the
average execution time. On the other hand, using the first-order
Taylor extension, one can achieve about 95% less conservative
bounds (CZFO+C-to—-ZFO+F ARR of 5.1%), with an increase
of 10.5% in the average execution time. This demonstrates the
joint accuracy and efficiency provided by the proposed methods
based on constrained zonotopes. These ARR are highlighted
in Table 3, and correspond to a comparison between the most
accurate results obtained by ZMV-like and CZM V-like methods,
and between ZFO-like and CZFO-like methods.

Lastly, note that the CZFO+C-to—CZFO ARR was of 69.64%,
showing again the improved accuracy obtained by taking into
account the invariant through the consistency step. In addition,
CZFO-like methods provided better enclosures than CZM V-like
methods in this example. Nevertheless, this comes with an
important increase in computational time as shown in Table 4.
This demonstrates that the choice between CZMV-like methods
and CZFO-like methods for state estimation can provide a trade-
off between accuracy and efficiency, and therefore will depend
on the current application.



Table 3: Average radius ratio of the enclosures obtained by the state estimators (column per row) for the system (19).

\ ZMV ZMV+F CZMV CZMV+C  CZMV+F  CZMV+FC ZFO ZFO+F CZFO CZFO+C  CZFO+F  CZFO+FC
ZMV 1 0.9187 0.7193 0.0636 0.1491 0.0669 0.6447 0.6057 0.0489 0.0358 0.0436 0.0385
ZMV+F 1.0891 1 0.7834 0.0671 0.1606 0.0707 0.6988 0.6562 0.0521 0.0379 0.0465 0.0408
CZMV 1.4091 1.2946 1 0.0857 0.2024 0.0901 0.9272 0.8701 0.0680 0.0484 0.0593 0.0523
CZMV+C 29.2088  26.5557  21.4655 1 3.8897 1.0665 163264 152013  0.8974 0.6056 0.8472 0.6363
CZMV+F 8.0755 7.4009 5.6895 0.3745 1 0.4023 5.2585 4.9195 0.3382 0.2289 0.2919 0.2460
CZMV+FC  28.7622  26.1185 21.1725 0.9697 3.8402 15.8969 147785  0.8571 0.5744 0.8144 0.6018
ZFO 1.6829 1.5384 1.2325 0.0849 0.2420 0.0898 1 0.9367 0.0671 0.0487 0.0621 0.0519
ZFO+F 1.8040 1.6484 1.3211 0.0891 0.2581 0.0942 1.0683 1 0.0709 0.0512 0.0656 0.0546
CZFO 34.1796  31.0484  25.3451 1.1983 4.6785 1.2562 18.5748  17.2934 1 0.6964 0.9717 0.7290
CZFO+C 50.4008 457732  37.1612 1.7337 6.8068 1.8039 27.7376 257968  1.4945 1 1.4372 1.0499
CZFO+F 334713 304709  24.4434 1.2814 4.5068 1.3433 19.2573 17.9445 1.1000 0.7504 1 0.7929
CZFO+FC 50.2958  45.6286  37.2526 1.6647 6.8396 1.7317 27.1388  25.2164  1.4323 0.9617 1.3947 1
2 o ZMV 0 ZMV+F Table 4: Total and complexity reduction average execution times per time step
s A CZMV v CZMV4+C of the state estimators for the system (19).
- CZMV+E CZMVHEC ZMV ZMV+F CZMV CZMV+C  CZMV+F  CZMV+FC
»_5 Total ~ 0.4552s  0.4610s  0.4478s 0.5635 s 0.4519 s 0.5942 s
& Red. 0.37 ms 0.31 ms 10.6 ms 71.8 ms 19.8 ms 96.5 ms
ZFO ZFO+F CZFO CZFO+C CZFO+F CZFO+FC
05 Total 1.0403 s 1.0563 s 1.0907 s 1.1671 s 1.1009 s 1.3750 s
Red. 2.3 ms 2.2 ms 90.3 ms 0.1266 s 98.7 ms 0.3306 s
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Figure 5: The radii of the estimated enclosures X; for (19) obtained using
ZMV-like and CZM V-like methods.

0.8
o ZFO 0 ZFO+F
A CZFO v CZFO+C
CZFO+F CZFO+FC
4
2
<
&~
0.1 &
g &
5 0.05 ¥
2 \
<2 4

0020 a0 60 30

100 120 140 160 180

k

200

Figure 6: The radii of the estimated enclosures X; for (19) obtained using
ZFO-like and CZFO-like methods.

Remark 15. Although the examples in this section are low-
dimensional, the proposed methods can be applied straightfor-
wardly to higher dimensional systems, such as the quaternion-
based quadrotor model in Kang et al. (2020). The computational
complexity will follow the expressions shown in Table 1.
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6. Conclusions

This paper developed new approaches for set-valued state
estimation of nonlinear discrete-time systems with nonlinear
measurements and nonlinear invariants. The state trajectories
were enclosed using the standard prediction-update algorithm
with the addition of a new consistency step accounting for the
nonlinear invariants. New methods were proposed for the up-
date and consistency steps using generalized intersections of
constrained zonotopes. In addition, our previous methods for
the prediction step were generalized to allow the approximation
points for the mean value and first-order Taylor extensions to lie
in a larger region. Numerical results demonstrate that our meth-
ods can provide significantly tighter enclosures compared to
existing zonotope methods. The improved accuracy is achieved
with a mild increase in computational cost. Nevertheless, future
work will seek to reduce the execution times, since these can be
a major issue in many practical applications, and to reduce the
conservativeness introduced by the mean value and first-order
Taylor approximations.

Appendix A. Proofs

Proof of Proposition 1. Choose any (x,w) € X X W. Lemma 1
ensures that there exists a real matrix J € J such that £ x,u,w) =
f(y.,u,w)+ J (x —¥x). By Theorem 1 and the choice of Z,,, it
follows that f(x,u,w) € Z,, ® <(J, X — v,), as desired. |

Proof of Proposition 2. Choose any (x,w) =z € Z. Lemma 2
ensures that there exist £ € Bo,(A,b), 5 € BW(A, B), and L € L,
such that

fx,u,w) = f(y, w,7,) + VEyLw )z -7,
+¢+[G Gal€ +L((c—7y,) +2Gé).



Therefore, f(x,u, W) € f(yx, 0, 7,) ® V(. u,y.)(Z - y.) ©
<«(L, (¢ — 7;) ®2GB«(A, b)) @€ @ [G Ga]B~(A,b). Thus, (14)
follows immediately from the definition of R. |

Proof of Proposition 5. Each component of (J — mid(J)) €
IR™" is an interval satisfying (J;; mid(J;;))
(1/2)diam(J;;)[-1, 1]. Moreover, a[-1, 1] = |al[-1, 1] holds for
every a € R. Therefore m,; = Z;le(1/2)diam(J,‘j)|Eysj|[—1, 1].
Consequently, diam(m,, ;) Z’}Zl diam(J;;)|c, |, and

diam(m, )l = > " diam(Ji)ey | = > (Z diam(J,»,-)) €41

i=1 j=1 j=1 \i=1

n
= 0yl = 108,11

=1
The constraints in (16) follow directly from the requirement that
vy elZ. |

Proof of Corollary 1. Choose any x € X satisfying h(x) = 0.
Lemma 1 ensures that there exists a real matrix J € J such that
h(x) = h(y,) + J(x — y,). Since J = J + (J — J) holds, then
h(x) = h(y,) + J(x = 7.) + (J = ))(x - 7,). Consequently,

Jx=hx) +Jy,—h(y)+ T -Hx -7

=0+Jy,—h(y)+ T -Dx -7
eJy,—hy))®<J-J.X-y,)=H.

Therefore, {x e X :h(x) =0} C{xe X : Jxe H}=XnpH. N

Proof of Corollary 2. Choose x € X such that h(x) = 0. Lemma
2 ensures that there exist § € Bo(A,b), € € B(A,b), and
Ie L, such that

h(X) = h(7x) + V){h(‘}/x)(x - 7x)
+L(p+2Gé) + ¢+ [G GyE.

with p = ¢ — y,. Since h(x) = 0, we have V;h()/)x = -h(y,) +
Vih(y. )y, — L(p +2G¢) - ¢ — [G G,J&, and therefore

VIh(y)x € (-h(y,) + Vih(y)y,) © (-R) = H.

We conclude that {x € X : h(x) = 0} C {x € X : VIh(y,)x €
H) =X Np H. m

Appendix B. Linear systems

When the prediction, update, and consistency steps for non-
linear systems developed in the previous subsections are applied
directly to linear systems, the resulting enclosures are straight-
forward. Consider the linear discrete-time system

X, = Ax;_1 + Byui + B,wi_q, (B.1a)

Yi = CXk + Dullk + DVVk, (Blb)

where A € R™ B, € R™ B, € R* C e R»", D, €
R»*% D, € R with known polytopic bounds (xg, Wy, V) €
Xo X W x V. Moreover, assume that the trajectories of (B.1)

12

satisfy the linear invariants Ex; = d, with E € R"" and
d € R". Given the previous set X;_;, the prediction step (3) and
the update step (4) are computed exactly for (B.1a)—(B.1b) as in
Scott et al. (2016):

Xk = AXk_l ®B,u,_1 B, W, (B.2)
X = X Ne (v — Do) @ (=D, V)). (B.3)

All the set operations in (B.2)—(B.3) can be computed straight-
forwardly using (10)—(12). To compute the consistency step (5),
note that in this case this can be written as X; 2 {x € X; : Ex; €
{d}}, where {d} denotes a singleton that contains only the point
d. Therefore, if X, = {Gk, ¢, Ak, f)k}, then X; is given by

o o [Ac][ B
X=X np {d) = {Gk,ck, [Eék} , [d - ’;%J}. (B.4)

Hence, the consistency step can be computed exactly as well.
Therefore, the only source of conservatism in the set-valued
state estimation of (B.1) using constrained zonotopes through
the steps (B.2)—(B.4) arises if the complexity of the sets are
limited, which is often necessary in practice and requires the use
of complexity reduction methods (Scott et al., 2016).
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