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Abstract

This paper presents new methods for set-valued state estimation of discrete-time nonlinear systems whose trajectories are known

to satisfy nonlinear equality constraints, called invariants (e.g., conservation laws). Set-valued estimation aims to compute tight

enclosures of the possible system states in each time step subject to unknown-but-bounded uncertainties. Most existing methods

employ a standard prediction-update framework with set-based prediction and update steps based on various set representations

and techniques. However, achieving accurate enclosures for nonlinear systems remains a significant challenge. This paper presents

new methods based on constrained zonotopes that improve the standard prediction-update framework for systems with invariants

by adding a consistency step. This new step uses invariants to reduce conservatism and is enabled by new algorithms for refining

constrained zonotopes based on nonlinear constraints. This paper also presents significant improvements to existing prediction

and update steps for constrained zonotopes. Specifically, new update algorithms are developed that allow nonlinear measurement

equations for the first time, and existing prediction methods based on conservative approximation techniques are modified to allow

a more flexible choice of the approximation point, which can lead to tighter enclosures. Numerical results demonstrate that the

resulting methods can provide significantly tighter enclosures than existing zonotope-based methods while maintaining comparable

efficiency.
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1. Introduction

In recent decades, the importance of state estimation has

gained attention in many fields of research (Simon, 2006). This

includes a wide range of applications such as state-feedback con-

trol (Jaulin, 2009; Goodarzi & Lee, 2017; Rego & Raffo, 2019),

fault detection and isolation (Zhang & Jiang, 2008; Combastel,

2015; Raimondo et al., 2016), and robot localization (Saeedi

et al., 2016). In contrast to Bayesian strategies such as Kalman

filtering (Teixeira et al., 2009; Simon, 2010), set-valued state

estimation methods aim to provide guaranteed enclosures of

the system trajectories in applications affected by unknown-but-

bounded uncertainties, without assuming knowledge of their

stochastic properties (Schweppe, 1968; Chisci et al., 1996). To
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date, most studies on set-valued state estimation have addressed

linear systems (Girard & Guernic, 2008; Le et al., 2013; Cha-

bane et al., 2014; Scott et al., 2016), and accurate set-valued

estimation of nonlinear systems remains a significant challenge

(Alamo et al., 2005; Jaulin, 2016; Rego et al., 2020).

Even for linear discrete-time systems, the exact set of states

consistent with the system model and measurements up to a

given time k can become arbitrarily complex as k increases.

Therefore, to avoid a dramatic increase in computational time

(Shamma & Tu, 1997), set-based estimation methods must en-

close these sets with simpler set representations of limited com-

plexity, such as intervals (Jaulin, 2009, 2016; Rego et al., 2018b;

Yang & Scott, 2020), ellipsoids (Durieu et al., 2001; Polyak

et al., 2004), parallelotopes (Chisci et al., 1996), or zonotopes

(Alamo et al., 2005; Combastel, 2005; Alamo et al., 2008). Un-

fortunately, for nonlinear systems of practical complexity, such

enclosures often become very conservative. There are multiple

reasons for this, including the inability of the set representation

to capture key features of the sets of interest (e.g., nonconvexity

and asymmetry), challenges associated with propagating sets

through nonlinear dynamics (e.g., the dependency problem, the

wrapping effect, conservative linearization errors, etc.), and chal-

lenges associated with refining sets based on new measurements

(e.g., the fact that intersections cannot be enclosed both accu-

rately and efficiently for any of the sets mentioned above save

Preprint submitted to Automatica January 10, 2022



intervals). As a consequence, existing set-based state estimation

algorithms have only been applied to relatively simple nonlinear

models, and most methods assume linear measurement equations

(Combastel, 2005; Rego et al., 2018b, 2020) although the mea-

surements available in many practical examples are nonlinear

(Teixeira et al., 2009; Rego et al., 2018a).

In this paper, we present new set-based state estimation algo-

rithms with improved accuracy for the specific case of nonlinear

systems whose solutions satisfy a set of potentially nonlinear

equality constraints, referred to as invariants. The trajectories of

such systems evolve on a lower-dimensional manifold embedded

in the state space. This is true for many systems of practical

interest, including models of (bio)chemical reaction networks

(Shen & Scott, 2017), attitude estimation in aircraft systems

(Goodarzi & Lee, 2017), and the pose of the body frame in hu-

manoids (Rotella et al., 2014). In the stochastic state estimation

framework, invariants have previously been used to force the es-

timated states to lie on the embedded manifold (Julier & LaViola,

2010; Yang & Blash, 2009; Teixeira et al., 2009; Simon, 2010;

Eras-Herrera et al., 2019). In the set-based estimation frame-

work considered here, the aim is to use invariants to reduce the

conservatism of the enclosure computed in each time step by

eliminating enclosed regions that can be proven to violate the

invariants, and hence cannot contain real trajectories. Such re-

finement is known to be very effective at reducing conservatism

in interval-based nonlinear reachability calculations (Scott et al.,

2013; Shen & Scott, 2017; Yang & Scott, 2020). To the best of

the authors’ knowledge, the only prior studies that have used

invariants in set-based state estimation are Yang & Li (2009)

and Yang & Scott (2018a). In Yang & Li (2009), the authors

propose a set-valued state estimator using ellipsoids. A linear

matrix inequality approach is used to design the estimator taking

into account the nonlinear state equality constraints. However,

the method only applies to linear dynamics, and the nonlinear

state constraints must be conservatively linearized. Moreover,

an effective procedure for computing rigorous and accurate lin-

earization error bounds is not provided. In Yang & Scott (2018a),

the authors propose an effective method for using invariants to

reduce the conservatism of a set-based state estimation method

based on differential inequalities and interval analysis. However,

the method is limited to systems that have been discretized by

Euler approximation with a sufficiently small step size, which

can be restrictive in some cases. Moreover, although the the-

ory is general, the provided algorithm only applies to linear

invariants and linear measurement equations.

This paper proposes two new methods for set-valued state

estimation of discrete-time nonlinear systems with nonlinear

measurements and invariants. These algorithms represent enclo-

sures using constrained zonotopes (Scott et al., 2016) and are

based on two different methods for propagating these enclosures

through nonlinear mappings called the mean value extension and

first-order Taylor extension, respectively. Both algorithms are

based on the standard prediction-update framework used in most

existing approaches in which an enclosure of the system states

at time k is first propagated through the dynamics to obtain an

enclosure of the possible states at time k + 1 (prediction), and

this enclosure is subsequently refined based on the new measure-

ment at k + 1 (update). We generalize both the mean value and

first-order Taylor-based prediction-update algorithms recently

proposed in Rego et al. (2020), which are based on conservative

approximation techniques. These generalizations allow for a

more flexible choice of the approximation point used in the pre-

diction step and also enable new update algorithms applicable to

nonlinear measurement equations, which were not considered in

Rego et al. (2020). Furthermore, we add a new step to this frame-

work, referred to as the consistency step, which further refines

the enclosure at k + 1 using the nonlinear invariants, leading to

improved accuracy. The new nonlinear update and consistency

steps are specifically enabled by new mean value and first-order

Taylor-based algorithms for effectively refining a constrained

zonotope based on nonlinear constraints. Finally, we provide

numerical results demonstrating that the proposed methods can

provide significantly tighter enclosures than existing zonotope-

based methods for systems with invariants while maintaining

comparable efficiency.

The remainder of the manuscript is organized as follows. The

set-based state estimation problem and the class of nonlinear

systems considered are described in Section 2. Section 3 presents

mathematical background on constrained zonotopes and other

topics. The main results are given in Section 4, including the

new consistency and update algorithms and the improvements

of the prediction algorithms from Rego et al. (2020). Numerical

examples are presented in Section 5, and Section 6 concludes

the manuscript.

2. Problem formulation

Let f : Rn × Rnu × Rnw → R
n and g : Rn × Rnu × Rnv → R

ny

be of class C2 and consider the nonlinear discrete-time system

xk = f(xk−1,uk−1,wk−1), k ≥ 1,

yk = g(xk,uk, vk), k ≥ 0,
(1)

where xk ∈ R
n denotes the system state, uk ∈ R

nu is the known

input, wk ∈ R
nw is the process uncertainty, yk ∈ R

ny is the mea-

sured output, and vk ∈ R
nv is the measurement uncertainty. The

initial condition and uncertainties are assumed to be unknown-

but-bounded, i.e., x0 ∈ X̄0, wk ∈ W, and vk ∈ V , where X̄0, W,

and V are known polytopic sets.

This paper presents an improved set-valued state estimation

method for systems satisfying known invariants, as defined in

the following assumption.

Assumption 1. There exists a C2 function h : Rn → R
nh such

that, for every solution of (1) with x0 ∈ X̄0, wk ∈ W, and vk ∈ V ,

h(x0) = 0 =⇒ h(xk) = 0, ∀k ≥ 0. (2)

We refer to the elements of h as invariants.

Remark 1. A sufficient condition for (2) is that

h(f(xk,uk,wk)) = 0 for all xk such that h(xk) = 0, for all

wk ∈ W, and uk with k ≥ 0.
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Many systems of practical interest obey invariants describing,

e.g., material conservation laws in chemical systems, conserva-

tion of energy or momentum in mechanical systems, or the isom-

etry inherent to orientation dynamics in aerospace and robotic

systems (Shen & Scott, 2017; Goodarzi & Lee, 2017; Rotella

et al., 2014). Prior work on nonlinear reachability analysis has

shown that, if used properly, even simple physical information

in the form of invariants can dramatically improve the accuracy

of reachability bounds computed by interval methods (Scott

et al., 2013; Shen & Scott, 2017; Yang & Scott, 2020). Similarly,

our aim here is to develop new algorithms for effectively using

invariants to improve the accuracy of the state-of-the-art state es-

timation algorithms based on constrained zonotopes from Rego

et al. (2020).

For any k ≥ 0, let Xk denote the set of all states xk that are

consistent with (i) the nonlinear model (1), (ii) the measured

output sequence up to time k, (y0, . . . , yk), and (iii) the unknown-

but-bounded uncertainties x0 ∈ {x ∈ X̄0 : h(x) = 0}, wk ∈ W,

and vk ∈ W, ∀k ≥ 0. Since exact characterization of Xk is

generally intractable (Kühn, 1998; Platzer & Clarke, 2007), the

objective of set-valued state estimation is to approximate Xk

as accurately as possible by a guaranteed enclosure X̃k ⊇ Xk.

We accomplish this here by extending the standard prediction-

update estimation framework with a new consistency step for

tightening the enclosures using invariants. The general scheme

is given by the following recursion:

X̄k ⊇ {f(xk−1,uk−1,wk−1) : xk−1 ∈ X̃k−1, wk−1 ∈ W}, (3)

X̂k ⊇ {xk ∈ X̄k : g(xk,uk, vk) = yk, vk ∈ V}, (4)

X̃k ⊇ {xk ∈ X̂k : h(xk) = 0}, (5)

where (3) is the prediction step, (4) is the update step, (5) is

the consistency step, and the scheme is initialized with X̄0 in

the update step. According to the definition of Xk, we have that

X0 = {x0 ∈ X̄0 : h(x0) = 0, g(x0,u0, v0) = y0, v0 ∈ V}. This

immediately implies that X̃0 ⊇ X0. If X̃k−1 is a valid enclosure

of Xk−1 for some k ≥ 1, then standard results in set-valued state

estimation show that X̂k ⊇ Xk (Chisci et al., 1996; Le et al.,

2013). Since any xk−1 ∈ Xk−1 emanates from some x0 ∈ X̄0

satisfying h(x0) = 0 by definition, Assumption 1 implies that

h(xk) = 0, and it follows that X̃k ⊇ Xk as well. By induction, we

conclude that X̃k ⊇ Xk for all k ≥ 0 as desired.

In the remainder of the paper, our goal is to develop methods

for computing accurate enclosures for each of the three steps

(3)–(5). Building on prior results in Rego et al. (2020), the main

results include generalizations of the prediction methods in Rego

et al. (2020) with improved accuracy, new update methods that

are applicable to nonlinear measurement equations, and methods

for the new consistency step to make effective use of invariants.

3. Preliminaries

The methods in this article use constrained zonotopes, which

are an extension of zonotopes proposed in Scott et al. (2016)

capable of describing asymmetric convex polytopes, while main-

taining many of the well-known computational benefits of zono-

topes.

Definition 1. A set Z ⊂ R
n is a constrained zonotope if there

exists (Gz, cz,Az,bz) ∈ R
n×ng × Rn × Rnc×ng × Rnc such that

Z = {cz +Gzξ : ‖ξ‖∞ ≤ 1,Azξ = bz} . (6)

We refer to (6) as the constrained generator representation

(CG-rep). Each column of Gz is a generator, cz is the center,

and Azξ = bz are the constraints. We use the shorthand notation

Z = {Gz, cz,Az,bz}. Similarly, we denote standard zonotopes by

Z = {Gz, cz} , {cz +Gzξ : ‖ξ‖∞ ≤ 1}. In addition, we denote by

B∞(Az,bz) , {ξ ∈ R
ng : ‖ξ‖∞ ≤ 1, Azξ = bz} and B

ng

∞ , {ξ ∈

R
ng : ‖ξ‖∞ ≤ 1}, respectively, the ng-dimensional constrained

and unconstrained unitary hypercubes1.

Let Z,W ⊂ R
n, R ∈ R

m×n, and Y ⊂ R
m. Define the linear

mapping, Minkowski sum, and generalized intersection as

RZ , {Rz : z ∈ Z}, (7)

Z ⊕W , {z + w : z ∈ Z, w ∈ W}, (8)

Z ∩R Y , {z ∈ Z : Rz ∈ Y}. (9)

With these definitions, Z = {Gz, cz,Az,bz} can be viewed as

an affine transformation of B∞(Az,bz), Z = cz ⊕ GzB∞(Az,bz).

Given W and Y also in CG-rep, the results of the operations

(7)–(9) are given in CG-rep as

RZ = {RGz,Rcz,Az,bz} , (10)

Z ⊕W =

{
[

Gz Gw

]

, cz + cw,

[

Az 0

0 Aw

]

,

[

bz

bw

]}

, (11)

Z ∩R Y =






[

Gz 0
]

, cz,





Az 0

0 Ay

RGz −Gy




,





bz

by

cy − Rcz










. (12)

Unlike ellipsoids, parallelotopes, convex polytopes, and zono-

topes, the operations (10)–(12) can be computed trivially and

exactly with constrained zonotopes and result in only a mild

increase in the complexity of the CG-rep (6). In addition, effi-

cient complexity reduction methods are available in Scott et al.

(2016) that enclose a constrained zonotope within another one

with fewer generators and constraints, allowing one to balance

accuracy and computational efficiency.

The methods developed in this paper also require some con-

cepts from interval arithmetic, which are briefly recalled next.

Let the set of compact intervals in R be denoted by IR. An inter-

val X = [xL, xU] ∈ IR is defined by X , {a ∈ R : xL ≤ a ≤ xU}.

The midpoint and radius are defined by mid(X) , 1
2
(xU+xL) and

rad(X) , 1
2
(xU − xL). Interval vectors and matrices are defined

by {a ∈ Rn : aL
i
≤ ai ≤ aU

i
} and {A ∈ Rn×m : AL

i j
≤ Ai j ≤ AU

i j
}, re-

spectively, with the midpoint and radius defined component-wise.

An interval vector X ∈ IR
n can be written in generator repre-

sentation as mid(X)⊕ diag(rad(X))Bn
∞ = {diag(rad(X)),mid(X)}.

For any bounded X ⊂ R
n, let �X refer to the interval hull of X.

See Moore et al. (2009) for a review on basic operations and

classic methods using interval analysis. In this work, the interval

1We drop the use of the superscript ng for B∞(Az,bz) since this dimension

can be inferred from the number of columns of Az.
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hull �Z of a constrained zonotope Z is computed using linear

programming (Scott et al., 2016; Rego et al., 2020).

Finally, the following theorem defines a useful operation

⊳(J, X) for computing a constrained zonotopic enclosure of the

product of an interval matrix J with a constrained zonotope X.

Theorem 1. (Rego et al., 2020) Let X = {G, c,A,b} ⊂ R
m be a

constrained zonotope with ng generators and nc constraints, let

J ∈ IRn×m be an interval matrix, and consider the set S = JX ,

{Ĵx : Ĵ ∈ J, x ∈ X} ⊂ R
n. Let Ḡ ∈ R

n×n̄g and c̄ ∈ R
n satisfy

X ⊆ {Ḡ, c̄}, and let m be an interval vector such that m ⊇ (J −

mid(J))c̄ and mid(m) = 0. Finally, let P ∈ Rn×n be a diagonal

matrix defined by Pii = rad(mi) +
∑n̄g

j=1

∑m
k=1 rad(Jik)|Ḡk j| for all

i = 1, 2, . . . , n. Then, S is contained in the CZ-inclusion

S ⊆ ⊳(J, X) , mid(J)X ⊕ PBn
∞.

Remark 2. In the implementation of ⊳(J, X) used in this paper,

{Ḡ, c̄} ⊇ X is obtained by eliminating all constraints from X

using the constraint elimination algorithm in Scott et al. (2016),

and m is obtained by evaluating (J −mid(J))c̄ in interval arith-

metic.

4. Nonlinear state estimation

This section presents new methods for computing enclosures

for each step in the extended prediction-update-consistency al-

gorithm (3)–(5) using constrained zonotopes. The proposed

recursive scheme is summarized in Algorithm 1. In this algo-

rithm, complexity reduction methods can be used after each step

to limit the set complexity increase. We begin with two core

lemmas required for all three steps.

Algorithm 1 Proposed recursive algorithm

1: (Prediction step) Given the constrained zonotopes X̃k−1 ×

W ⊂ R
n ×Rnw , and input uk−1 ∈ R

nu , compute the predicted

constrained zonotope X̄k satisfying (3).

2: (Update step) Given the constrained zonotopes X̄k × V ⊂

R
n × Rnv , input uk ∈ R

nu , and measurement yk ∈ R
ny , com-

pute a refined constrained zonotope X̂k satisfying (4).

3: (Consistency step) Given the constrained zonotope X̂k ⊂ R
n,

compute a refined constrained zonotope X̃k satisfying (5).

Lemma 1. Let α : R
n × R

nw → R
nα be of class C1 and let

∇xα denote the gradient of α with respect to its first argument.

Let X ⊂ R
n and W ⊂ R

nw be constrained zonotopes, and let

J ∈ IRn×n be an interval matrix satisfying

∇T
xα(�X,W) , {∇T

xα(x,w) : x ∈ �X, w ∈ W} ⊆ J. (13)

For every x ∈ X, w ∈ W, and γx ∈ �X, there exists Ĵ ∈ J such

that

α(x,w) = α(γx,w) + Ĵ(x − γx).

Proof. Choose any (x,w) ∈ X × W. Since x ∈ X ⊆ �X

and γx ∈ �X, the Mean Value Theorem ensures that, for any

i = 1, 2, . . . , n, ∃δ[i] ∈ �X such that αi(x,w) = αi(γx,w) +

∇T
xαi(δ

[i],w)(x − γx). But ∇T
xαi(δ

[i],w) is contained in the i-

th row of J by hypothesis, and since this is true for all i =

1, 2, . . . , n, ∃Ĵ ∈ J such that α(x,w) = α(γx,w)+ Ĵ(x− γx). �

Remark 3. As with ∇T
xα(�X,W) in (13), real-valued functions

written with set-valued arguments will henceforth always denote

the true image set, rather than, e.g. an interval extension or other

enclosure.

Lemma 1 provides an exact linear representation of the non-

linear function α between two points based on the Mean Value

Theorem, which is useful for computations with constrained

zonotopes. This lemma is very similar to Theorem 2 in Rego

et al. (2020). The only difference is that Theorem 2 in Rego

et al. (2020) requires the approximation point γx to lie in X,

while Lemma 1 allows γx to be chosen from the larger set �X.

This is important because obtaining a point in X (or testing a

given point for membership) requires solving a linear program,

whereas obtaining point in �X is trivial. The proof of Lemma

1 is given above for completeness, but it follows easily from

the proof of Theorem 2 in Rego et al. (2020) by replacing the

condition γx ∈ X with γx ∈ �X throughout.2

The next lemma provides an alternative method for obtaining

an exact linear representation of a nonlinear function between

two points based on Taylor’s Theorem. This lemma is similar to

Theorem 3 in Rego et al. (2020), with the difference again that

the approximation point is chosen from �Z rather than Z. The

following notation is required. For a function β : Rm → R
n of

class C2 with q-th component βq and argument z, let Hβq denote

the upper triangular matrix describing half of the Hessian of βq.

Specifically, Hiiβq = (1/2)∂2βq/∂z
2
i
, Hi jβq = ∂

2βq/∂zi∂z j for

i < j, and Hi jβq = 0 for i > j.

Lemma 2. Let β : R
m → R

n be of class C2 and let z ∈ R
m

denote its argument. Let Z = {G, c,A,b} ⊂ R
m be a con-

strained zonotope with mg generators and mc constraints. For

each q = 1, 2, . . . , n, let Q[q] ∈ IRm×m and Q̃[q] ∈ IRmg×mg be in-

terval matrices satisfying Q[q] ⊇ Hβq(�Z) and Q̃[q] ⊇ GT Q[q]G.

Moreover, define

c̃q = trace
{

mid(Q̃[q])
}

/2,

G̃q,: =
[

· · · mid(Q̃
[q]

ii
)/2

︸        ︷︷        ︸

∀i

· · ·
(

mid(Q̃
[q]

i j
) +mid(Q̃

[q]

ji
)
)

︸                        ︷︷                        ︸

∀i< j

· · ·
]

,

G̃d = diag(d), dq =
∑

i, j

∣
∣
∣
∣rad(Q̃

[q]

i j
)
∣
∣
∣
∣ , Ã =

[

Ãζ Ãξ 0 mc
2

(1+mc)×n

]

,

Ãζ =





...

· · · 1
2
AriAsi · · ·

...





−−−−−−−−−−−−−−−→
∀i

y

∀r≤s, b̃ =





...

brbs −
1
2

∑

i AriAsi

...





y

∀r≤s,

2In Rego et al. (2020) γx was denoted by h.
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Ãξ =





...

· · · AriAs j + Ar jAsi · · ·

...





−−−−−−−−−−−−−−−−−−−−−−→
∀i< j

y

∀r≤s,

with indices i, j = 1, 2, . . . ,mg and r, s = 1, 2, . . . ,mc. Finally,

choose any γz ∈ �Z and let L ∈ IR
n×m be an interval matrix

satisfying Lq,: ⊇ (c − γz)
T Q[q] for all q = 1, . . . , n. For every

z ∈ Z, there exist ξ ∈ B∞(A,b), ξ̃ ∈ B∞(Ã, b̃), and L̂ ∈ L such

that

β(z) = β(γz) + ∇
Tβ(γz)(z − γz)

+ c̃ + [G̃ G̃d]ξ̃ + L̂((c − γz) + 2Gξ).

Proof. This follows by replacing γz ∈ Z with γz ∈ �Z in the

proof of Theorem 3 in Rego et al. (2020). �

4.1. Prediction step

This section presents two different approaches for the pre-

diction step in Algorithm 1. The methods below are improved

versions of the mean value and first-order Taylor extensions

developed in Rego et al. (2020), respectively, which allow for

a more flexible choice of the approximation point enabled by

Lemmas 1 and 2 above. The proofs can be found in Appendix A.

Proposition 1. Let f : Rn×Rnu×Rnw → R
n be of classC1 and let

∇xf denote the gradient of f with respect to its first argument. Let

u ∈ Rnu , and let X ⊂ R
n and W ⊂ R

nw be constrained zonotopes.

Choose any γx ∈ �X. If Zw is a constrained zonotope such that

f(γx,u,W) ⊆ Zw and J ∈ IRn×n is an interval matrix satisfying

∇T
x f(�X,u,W) ⊆ J, then f(X,u,W) ⊆ Zw ⊕ ⊳ (J, X − γx).

Proposition 2. Let f : Rn × Rnu × Rnw → R
n be of class C2, let

u ∈ Rnu , and let X = {Gx, cx,Ax,bx} and W = {Gw, cw,Aw,bw}

be constrained zonotopes with (ng, ngw
) generators, and (nc, ncw

)

constraints, respectively. Denote z = (x,w) and Z = X ×W =

{G, c,A,b} ⊂ R
n+nw . For each q = 1, 2, . . . , n, let Q[q] ∈

IR
(n+nw)×(n+nw) and Q̃[q] ∈ IR

(ng+ngw )×(ng+ngw ) be interval matri-

ces satisfying Q[q] ⊇ Hz fq(�X,u,�W) and Q̃[q] ⊇ GT Q[q]G.

Moreover, define c̃, G̃, G̃d, Ã, and b̃, as in Lemma 2. Finally,

choose any γz = (γx,γw) ∈ �Z and let L ∈ IRn×m be an interval

matrix satisfying Lq,: ⊇ (c − γz)
T Q[q] for all q = 1, . . . , n. Then,

f(X,u,W) ⊆ f(γx,u,γw) ⊕ ∇T
z f(γx,u,γw)(Z − γz) ⊕ R, (14)

where R = c̃ ⊕
[

G̃ G̃d

]

B∞(Ã, b̃) ⊕ ⊳(L, (c − γz) ⊕ 2GB∞(A,b)).

Remark 4. The constrained zonotope Zw in Proposition 1 can

be obtained using the mean value extension f(γx,u,W) ⊆ Zw =

f(γx,u,γw) ⊕ ⊳ (Jw,W − γw) for a chosen point γw ∈ �W, with

Jw being an interval matrix satisfying Jw ⊇ ∇
T
wf(γx,u,�W). In

this paper, the interval matrices J, Jw (Proposition 1), Q[q], Q̃[q],

L (Proposition 2), and similar interval matrices in Propositions 3–

4 and Corollaries 1–2, are all computed using interval arithmetic.

Remark 5. The complexity of the enclosures obtained by

Propositions 1 and 2 are similar to the methods in Rego et al.

(2020). Specifically, if X and W have ng and ngw
generators,

x1

x 2

5 6 7 8 9 10 11 12

-0.5

0

0.5

1

Figure 1: The sets X (blue), �X (dashed lines), the center of X (×), the enclosures

obtained using Proposition 2 with γx as the center of X (green), and using

Theorem 3 in Rego et al. (2020) with γx as the closest point in X to its center

(red).

and nc and ncw
constraints, respectively, then Proposition 1 gives

ng + ngw
+ 2n generators and nc + ncw

constraints, and Proposi-

tion 2 gives 0.5(ng + ngw
)2 + 2.5(ng + ngw

) + 2n generators and

0.5(nc + ncw
)2 + 2.5(nc + ncw

) constraints.

Propositions 1 and 2 permit γx and γz to be chosen from �X

and �Z, respectively, whereas the corresponding results in Rego

et al. (2020) required these points to be chosen from the smaller

sets X and Z. The following example illustrates the potential

advantage of these extensions.

Consider the nonlinear mapping f : R2 → R
2 defined by

f1(x) = 3x1 −
x2

1

7
−

4x1x2

4 + x1

, f2(x) = −2x2 +
3x1x2

4 + x1

, (15)

and the constrained zonotope

X =

{[

0.5 1 −0.5

0.5 0.5 0

]

,

[

5

0.5

]

,
[

−1 1 −1
]

, 2

}

.

As shown in Figure 1, the center c in this CG-rep of X does not

actually lie in X, but does lie in �X. Therefore, it is a valid

choice of γx in Proposition 2 here, but not in Theorem 3 in Rego

et al. (2020). Figure 1 shows the enclosures of f(X) obtained

using Proposition 2 with this choice of γx and using Theorem 3

in Rego et al. (2020) with γx chosen as the closest point in X to

c, which is the best heuristic proposed in Rego et al. (2020). The

enclosure obtained using Proposition 2 is tighter. Thus, allowing

γx to lie in �X can lead to less conservative results.

4.2. Update step

This section presents both mean-value and first-order Taylor

methods for the update step in Algorithm 1, considering nonlin-

ear measurement equations in contrast to the linear update step

used in Rego et al. (2020). Specifically, Lemmas 1 and 2 are

used, respectively, to formulate the required enclosure in (4) as

the generalized intersection of two constrained zonotopes.

Proposition 3. Let g : Rn × R
nu × R

nv → R
ny be of class C1,

let u ∈ Rnu , let X ⊂ R
n and V ⊂ R

nv be constrained zonotopes,

and choose any y ∈ Rny such that y = g(x,u, v) for some (x, v) ∈

X × V . Choose any γx ∈ �X and any J̃ ∈ R
ny×n. If Zv is
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a constrained zonotope such that −g(γx,u,V) ⊆ Zv, and J ∈

IR
ny×n is an interval matrix satisfying ∇T

x g(�X,u,V) ⊆ J, then

{x ∈ X : g(x,u, v) = y, v ∈ V} ⊆ X ∩C Y,

where C = J̃, and Y = (y + J̃γx) ⊕ Zv ⊕ ⊳(J̃ − J, X − γx).

Proof. Choose any (x, v) ∈ X × V satisfying g(x,u, v) = y.

Lemma 1 ensures that there exists a real matrix Ĵ ∈ J such

that g(x,u, v) = g(γx,u, v) + Ĵ(x − γx). Since Ĵ = J̃ + (Ĵ − J̃)

holds, then g(x,u, v) = g(γx,u, v) + J̃(x − γx) + (Ĵ − J̃)(x − γx).

Consequently,

J̃x = g(x,u, v) + J̃γx − g(γx,u, v) + (J̃ − Ĵ)(x − γx)

= y + J̃γx − g(γx,u, v) + (J̃ − Ĵ)(x − γx)

∈ (y + J̃γx) ⊕ Zv ⊕ ⊳(J̃ − J, X − γx) = Y.

Then, we conclude that {x ∈ X : g(x,u, v) = y, v ∈ V} ⊆ {x ∈ X :

J̃x ∈ Y} = X ∩C Y . �

Remark 6. The constrained zonotope Zv in Proposition 3 can be

obtained as Zv = −g(γx,u,γv) ⊕ ⊳ (−Jv,V − γv) ⊇ −g(γx,u,V)

for some γv ∈ �V and interval matrix Jv ⊇ ∇
T
v g(γx,u,�V).

The matrix J̃ is a free parameter in Proposition 3. Choosing

J̃ = mid(J) gives mid(J̃ − J) = 0, and hence ⊳(J̃ − J, X − γx) =

mid(J̃ − J)(X−γx)⊕PB
ny

∞ = PB
ny

∞ , with P defined as in Theorem

1. This choice is adopted throughout this paper.

Proposition 4. Let g : Rn × R
nu × R

nv → R
ny be of class C2,

let u ∈ R
nu , let X = {Gx, cx,Ax,bx} and V = {Gv, cv,Av,bv}

be constrained zonotopes with (ng, ngv
) generators, and (nc, ncv

)

constraints, respectively, and choose any y ∈ R
ny such that

y = g(x,u, v) for some (x, v) ∈ X × V . Denote z = (x, v) and

Z = X × V = {G, c,A,b} ⊂ R
n+nv . For each q = 1, 2, . . . , ny, let

Q[q] ∈ IR(n+nv)×(n+nv) and Q̃[q] ∈ IR(ng+ngv )×(ng+ngv ) be interval ma-

trices satisfying Q[q] ⊇ Hzgq(�X,u,�V) and Q̃[q] ⊇ GT Q[q]G.

Moreover, define c̃, G̃, G̃d, Ã, and b̃, as in Lemma 2. Finally,

choose any γz = (γx,γv) ∈ �Z and let L ∈ IRny×(n+nv) be an in-

terval matrix satisfying Lq,: ⊇ (c − γz)
T Q[q] for all q = 1, . . . , ny.

Then,

{x ∈ X : g(x,u, v) = y, v ∈ V} ⊆ X ∩C Y,

where C = ∇T
x g(γx,u,γv), Y = (y − g(γx,u,γv) +

∇T
z g(γx,u,γv)γz) ⊕ (−∇T

v g(γx,u,γv)V) ⊕ (−R), and R = c̃ ⊕

[G̃ G̃v]B∞(Ã, b̃) ⊕ ⊳(L, (c − γz) ⊕ 2GB∞(A,b)).

Proof. Choose (x, v) = z ∈ Z such that g(x,u, v) = y. Lemma 2

ensures that there exist ξ ∈ B∞(A,b), ξ̃ ∈ B∞(Ã, b̃), and L̂ ∈ L,

such that

g(x,u, v) = g(γx,u,γv) + ∇T
x g(γx,u,γv)(x − γx)

+ ∇T
v g(γx,u,γv)(v − γv) + L̂(p + 2Gξ) + c̃ + [G̃ Ḡv]ξ̄.

where p = c − γz. Since g(x,u, v) = y,

∇T
x g(γx,u,γv)x = y − g(γx,u,γv) + ∇T

z g(γx,u,γv)γz

− ∇T
v g(γx,u,γv)v − L̂(p + 2Gξ) − c̃ − [G̃ Ḡv]ξ̄

∈ (y − g(γx,u,γv) + ∇T
z g(γx,u,γv)γz)

⊕ (−∇T
v g(γx,u,γv)V) ⊕ (−R) = Y

Then, we conclude that {x ∈ X : g(x,u, v) = y, v ∈ V} ⊆ {x ∈ X :

∇T
x g(γx,u,γv)x ∈ Y} = X ∩C Y . �

Remark 7. If X and V have ng and ngv
generators, and nc and ncv

constraints, respectively, then the enclosure obtained by Proposi-

tion 3 has 2ng+ngv
+2ny generators and 2nc+ncv

+ny constraints,

and the enclosure obtained by Proposition 4 has 0.5(ng + ngv
)2 +

2.5(ng+ngv
)+2ny generators and 0.5(nc+ncv

)2+2.5(nc+ncv
)+ny

constraints.

Remark 8. If f and g are affine in w and v (i.e., f(x,u,w) =

φ(x,u) +Φ(x,u)w and g(x,u, v) = ψ(x,u) +Ψ(x,u)v), then the

constrained zonotopes Zw ⊇ f(γx,u,W) and Zv ⊇ −g(γx,u,V) in

Propositions 1 and 3 can be computed exactly by Zw = φ(γx,u)⊕

Φ(γx,u)W and Zv = −ψ(γx,u) ⊕ (−Ψ(γx,u)V), respectively.

4.3. Consistency step

This section presents both mean value and first-order Taylor

methods for the consistency step in Algorithm 1. As in the

previous section, the obtained enclosure is formulated as the

generalized intersection of two constrained zonotopes. Since the

proposed methods are direct consequences of Propositions 3 and

4, they are presented as corollaries.

Corollary 1. Let h : Rn → R
nh be of class C1 and let X ⊂ R

n be

a constrained zonotope. Choose any γx ∈ �X and any J̃ ∈ Rnh×n.

If J ∈ IR
nh×n is an interval matrix satisfying ∇T

x h(�X) ⊆ J,

then {x ∈ X : h(x) = 0} ⊆ X ∩D H, where D = J̃, and H =

(J̃γx − h(γx)) ⊕ ⊳(J̃ − J, X − γx).

Proof. See Appendix A. �

Remark 9. As in the update step, the matrix J̃ is a free parameter

in Proposition 1. If J̃ = mid(J), then mid(J̃ − J) = 0, and

⊳(J̃−J, X−γx) = mid(J̃ − J)(X−γx)⊕PB
ny

∞ = PB
ny

∞ . Therefore,

this choice is adopted also for the consistency step.

Corollary 2. Let h : R
n → R

nh be of class C2 and let X =

{G, c,A,b} be a constrained zonotope with ng generators and

nc constraints. For each q = 1, 2, . . . , nh, let Q[q] ∈ IR
n×n and

Q̃[q] ∈ IRng×ng be interval matrices satisfying Q[q] ⊇ Hxhq(�X)

and Q̃[q] ⊇ GT Q[q]G. Moreover, define c̃, G̃, G̃d, Ã, and b̃, as

in Lemma 2. Finally, choose any γx ∈ �X and let L ∈ IRnh×n

be an interval matrix satisfying Lq,: ⊇ (c − γx)T Q[q] for all

q = 1, . . . , nh. Then,

{x ∈ X : h(x) = 0} ⊆ X ∩D H,

where D = ∇T
x h(γx), H = (−h(γx) + ∇T

x h(γx)γx) ⊕ (−R), and

R = c̃ ⊕ [G̃ G̃d]B∞(Ã, b̃) ⊕ ⊳(L, (c − γx) ⊕ 2GB∞(A,b)).

Proof. See Appendix A. �

Remark 10. If X has ng generators and nc constraints, then the

enclosure obtained from Corollary 1 has 2ng + ny generators and

2nc + ny constraints, and the enclosure obtained from Corollary

2 has 0.5n2
g + 2.5ng + 2ny generators and 0.5n2

c + 2.5nc + ny

constraints.
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Remark 11. The enclosures in Corollaries 1 and 2 can be tight-

ened if an enclosure XF in CG-rep of the feasible state set

{x ∈ R
n : h(x) = 0} is known a priori. Such an enclosure

can be obtained offline by using, for instance, the contractor

programming methods in Chabert & Jaulin (2009). In both

corollaries, h is conservatively approximated over X, and the

size of the resulting constrained zonotope Z is proportional to

the size of X. If X is large, significant improvement can result

from setting X ← X ∩ XF prior to applying the corollary. This

situation is likely in practice because, within the overall esti-

mation framework (3)–(5), the set X̂k will play the role of X

in Corollaries 1 and 2, and X̂k can be very conservative before

accounting for the invariant h(xk) = 0 (see Section 5.2).

Remark 12. Various alternative methods have previously been

proposed for intersecting a given set with the solution set of a

system of nonlinear equations; e.g., (Kochdumper & Althoff,

2020). However, none of these existing methods can be applied

to sets described by constrained zonotopes, and the computed

enclosures are generally nonconvex.

Remark 13. In practice, nonlinear invariants of the form

h(xk) = 0 may not hold exactly. However, inexact invari-

ants can still be used by introducing an additional uncertain

variable dk ∈ R
nd , bounded in a polytope D ⊂ R

nd , such that

h(xk,dk) = 0 holds. The resulting procedures are very similar to

Propositions 3 and 4 with yk , 0, vk , dk, and g , h.

4.4. Selection of γ

The methods proposed in this paper require heuristics to

choose a point (γx,γw,γv) ∈ �X ×�W ×�V , where X stands

for either X̃k−1, X̄k, or X̂k depending on the step in (3)–(5). As

discussed in Rego et al. (2020), the center of the CG-rep. of

X ×W × V cannot be chosen in general because it may not be-

long to either X×W×V or �X×�W×�V . However, in contrast

to Rego et al. (2020), the center of the interval �X×�W×�V is

a valid choice here. This first heuristic is summarized as follows:

C1) (γx,γw,γv) is given by the center of �X ×�W ×�V .

Despite its efficiency, C1 is not optimal in any sense and can

lead to conservative enclosures. Following Rego et al. (2020),

we next present an improved heuristic C2 specifically for use

with the methods based on mean value extensions in Propositions

1 and 3, and Corollary 1 (the exact heuristic in Rego et al. (2020)

is not optimal here because it restricts (γx,γw,γv) to X ×W × V

rather than �X×�W×�V). Propositions 1 and 3, and Corollary

1 all apply the CZ-inclusion defined in Theorem 1 with the

second argument taking the form X − γx. The idea behind C2

is therefore to choose γx so as to minimize the conservatism of

this CZ-inclusion.

In this sense, consider the CZ-inclusion ⊳(J,Z−γ) for arbitrary

Z = {G, c,A,b} ⊂ R
m and J ∈ IR

m×n. As per Theorem 1 and

Remark 2, computing ⊳(J,Z − γ) requires a zonotope {Ḡ, c̄} ⊇

(Z − γ) that is computed by eliminating all constraints from

(Z − γ) using the constraint elimination algorithm in Scott et al.

(2016). Based on that algorithm, Rego et al. (2020) derived a

closed form expression for the resulting center c̄ as a function of

(G, c,A,b) and γ, which takes the form

c̄ = c − γ + δ(G,A,b).

The definition of δ can be deduced from Lemma 1 in Rego

et al. (2020) and is omitted here for brevity. This c̄ is then

used to compute m ⊃ (J − mid(J))c̄ using interval arithmetic,

and the size of the final enclosure ⊳(J,Z − γ) is proportional to

rad(m) = (1/2)diam(m). Thus, the aim is to choose γ so as to

minimize diam(m).

Proposition 5. Let Z = {G, c,A,b} ⊂ R
m, J ∈ IR

m×n, and

[zL, zU] = �Z. For any choice of γ ∈ �Z, let mγ ⊇

(J − mid(J))c̄γ be an interval vector computed using interval

arithmetic, where c̄γ = c − γ + δ(G,A,b). Then γ∗ ∈ �Z min-

imizes ‖diam(mγ)‖1 iff it is the solution to the linear program

(LP)

min
γ
‖Θc̄γ‖1, s.t. zL ≤ γ ≤ zU, (16)

where Θ j j =
∑m

i=1 diam(Ji j) and Θi j = 0 for all i , j.

Proof. See Appendix A.

This heuristic is summarized as follows:

C2) γx, γw, and γv are given by the points obtained from Propo-

sition 5 for (J, X − γx) in Proposition 1, (J̃ − J, X − γx)

in Propositions 3 and 1, (Jw,W − γw), and (Jv,V − γv),

respectively.

Next, we present a heuristic specifically for the methods

based on first-order Taylor extensions in Propositions 2 and

4, and Corollary 2. The conservatism of these methods is di-

rectly related to the conservatism in the remainder R, which is

mostly affected by the size of the interval matrices Q[q], Q̃[q],

and L. The matrices Q[q] and Q̃[q] are unaffected by the choice

of (γx,γw,γv). However, the radius of L is proportional to the

differences cx − γx, cw − γw, and cv − γv. Therefore, we propose

the following heuristic:

C3) (γx,γw,γv) is the closest point to the center of X ×W × V

that belongs to �X ×�W ×�V , obtained by solving the

respective LPs min {‖γ − cx‖1 : γ ∈ �X}, min {‖γ − cw‖1 :

γ ∈ �W}, and min {‖γ − cv‖1 : γ ∈ �V}.

Remark 14. In this section, we propose different heuristics to

choose (γx,γw,γv) depending if the mean value extension or the

first-order Taylor extension are used (C2 and C3, respectively).

This is because this choice affects the computed enclosure in

different ways for the different extensions. See Rego et al. (2020)

for a detailed motivation.

4.5. Computational complexity

Table 1 shows the computational complexity of our meth-

ods for the prediction, update, and consistency steps, using

the mean value extension (Propositions 1 and 3, and Corol-

lary 1) and the first-order Taylor extension (Propositions 2 and

4, and Corollary 2). To derive these complexities, we con-

sider that the enclosures (X̃k−1, X̄k, X̂k) have (ñg, n̄g, n̂g) gen-

erators and (ñc, n̄c, n̂c) constraints, respectively. Moreover,
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(W,V) have (ngw
, ngv

) generators and (ncw
, ncv

) constraints, and

we define (mw,mgw
,mcw

) , (n + nw, ñg + ngw
, ñc + ncw

), and

(mv,mgv
,mcv

) , (n + nv, n̄g + ngv
, n̄c + ncv

). As in Rego et al.

(2020), we assume that evaluations of nonlinear real functions

and nonlinear inclusion functions have complexity O(1), and

that all LPs (including the ones necessary to compute the interval

hulls) are solved at least with the performance of the method

proposed in Kelner & Spielman (2006). This method has (sim-

plified) polynomial complexity O(NdN3
c ), with Nd and Nc the

number of decision variables and constraints, respectively.

The complexities of the prediction, update, and consistency

steps, using the mean value and first-order Taylor extensions,

are similar to the previous prediction methods proposed in Rego

et al. (2020). In all the complexities shown in Table 1, the higher

order terms such as (mwmgw
+mcw

)(mgw
+mcw

)3 come from both

the interval hull computations and the constraint elimination

procedure used to obtain the zonotope enclosure required by

Theorem 1. The other terms come from matrix products that

appear in the proposed expressions to compute the respective

CG-rep variables.

Table 1 also shows a simplified complexity analysis of the

proposed methods for each step. In this analysis, we consider

that every variable is proportional to the space dimension n,

and that (X̃k−1, X̄k, X̂k) have the same number of generators and

constraints (this can be achieved by using generator reduction

and constraint elimination methods after each step). Details

on the complexities of the basic operations with constrained

zonotopes are found in Rego et al. (2020).

Table 1: Computational complexity O(·) of the prediction, update, and consis-

tency steps using constrained zonotopes.

Step Mean value extension Simplified

Prediction nmwmgw + (mwmgw + mcw )(mgw + mcw )3 n5

Update ny(mvmgv + ny) + (mvmgv + mcv )(mgv + mcv )3 n5

Consistency nh(nn̂g + nh) + (nn̂g + n̂c)(n̂g + n̂c)3 n5

Step First order extension Simplified

Prediction n(m2
wmgw + mwm2

gw
) + (mwmgw + mcw )(mgw + mcw )3 n5

Update n2
y + ny(m2

v mgv + mvm2
gv

) + (mvmgv + mcv )(mgv + mcv )3 n5

Consistency n2
h
+ nh(n2n̂g + nn̂2

g) + (nn̂g + n̂c)(n̂g + n̂c)3 n5

5. Numerical examples

This section evaluates the accuracy of the set-valued state

estimation methods proposed in Section 4. Let CZMV denote

the method based entirely on the mean value extension, using

Proposition 1 for the prediction step and Proposition 3 for the up-

date step, but with no consistency step. Moreover, let CZMV+C

denote the method CZMV with the addition the consistency step

using Corollary 1, let CZMV+F denote CZMV with the addition

of an intersection with an enclosure of the feasible state set as

described in Remark 11, and let CZMV+FC denote CZMV with

the addition of both the intersection in Remark 11 and then the

consistency step using Corollary 1. These are referred to collec-

tively as CZMV-like methods. Analogously, let CZFO denote

the method based entirely on first-order Taylor extensions, using

Proposition 2 for the prediction step and Proposition 4 for the

update step, and let CZFO+C, CZFO+F, and CZFO+FC denote

CZFO with the addition of, respectively, the consistency step

using Corollary 2, the intersection described in Remark 11, and

both the intersection and the consistency step. In CZMV-like

methods, complexity reduction is applied after the consistency

step using the reduction methods in Scott et al. (2016), with

constraint elimination performed prior to generator reduction.

Due to the quadratic complexity increase of the enclosure in

each intermediate step of CZFO-like methods (see Remarks 5, 7

and 9), complexity reduction is applied after all three steps in

these methods. Heuristic C2 is used for choosing (γx,γw,γv) in

CZMV-like methods, and heuristic C3 in CZFO-like methods.

We also compare our results with two nonlinear zonotope

methods with prediction steps based on the Mean Value Theo-

rem in Alamo et al. (2005) and Taylor’s Theorem in Combastel

(2005). These are denoted by ZMV and ZFO3, respectively. In

both zonotope methods, the nonlinear update step is given by

the intersection method in Bravo et al. (2006), with strips com-

puted as in Alamo et al. (2005). Generator reduction is applied

after the update step using Method 4 in Yang & Scott (2018b).

In addition, we denote by ZMV+F and ZFO+F the methods

ZMV and ZFO with the addition of the intersection discussed in

Remark 11. Since zonotopes are not closed under intersection,

this intersection enclosed by converting the a priori enclosure

XF from CG-rep to half-space representation as described in

Scott et al. (2016), representing XF as an intersection of strips,

and then using the method for bounding the intersection of a

zonotope with a set of strips from Bravo et al. (2006). As with

constrained zonotopes, these are referred to as ZMV-like and

ZFO-like methods, respectively.

5.1. A system with nonlinear measurement equations

To demonstrate the effectiveness of our methods for set-valued

state estimation of systems with nonlinear outputs, we first con-

sider the nonlinear discrete-time system xk = f(xk−1) + wk−1,

where f is defined by (15) and wk ∈ R
2 denotes process uncer-

tainties with ‖wk‖∞ ≤ 0.4. The measurements are given by

y1,k = x1,k − sin

(
x2,k

2

)

+ v1,k,

y2,k = −x1,k x2,k + x2,k + v2,k,

(17)

with ‖vk‖∞ ≤ 0.4. Finally, let

X0 =

{[

0.5 1 −0.5

0.5 0.5 0

]

,

[

5

0.5

]}

. (18)

Figure 2 shows the estimated enclosures X̃k (since there are

no invariants, these are X̃k = X̂k) for k = 0, 1, 2, 3, obtained

using ZMV, ZFO, CZMV, and CZFO. In this case, Zw and Zv

are computed as in Remark 8. The number of generators and

constraints is limited to 8 and 3, respectively. The simulations

were run in MATLAB 9.1 with INTLAB 12 and CPLEX 12.8,

on a laptop with 32 GB RAM and an Intel Core i7-9750H pro-

cessor. The first set X̃0 coincides with X0 for both ZMV and

3In a simplified analysis, ZMV and ZFO have computational complexities

O(n4) and O(n5), respectively. See Rego et al. (2020) for a detailed discussion.
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Figure 2: The enclosures X̃k from the first four time steps of set-valued state estimation in the example in Section 5.1 using ZMV (yellow), ZFO (blue), CZMV

(green), and CZFO (orange).
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Figure 3: The radii of the estimated enclosures X̃k in the example in Section 5.1

obtained using ZMV, ZFO, CZMV, and CZFO.

ZFO, which demonstrates that the update step method using

zonotopes can be very conservative with nonlinear measure-

ments, making the first update ineffective in this example. On

the other hand, the sets X̃0 obtained by CZMV and CZFO have

reduced volume relative to X0, showing that X0 was effectively

tightened by the first measurement. In addition, in contrast to

CZMV and CZFO, the size of the enclosures X̃k for both ZMV

and ZFO increases substantially with time. This is corroborated

by Figure 3, which illustrates the radii of the sets X̃k (half the

length of the longest edge of the interval hull). Note that the

radii of the sets obtained by ZMV and ZFO increase to infinity,

while the radii of the sets obtained by CZMV and CZFO remain

finite. This result corroborates the improved accuracy achieved

by using constrained zonotopes for computing the update step

with nonlinear measurement equations. Lastly, Table 2 shows

the average computational times per time step of each method,

together with the computational times spent in complexity reduc-

tion of the enclosures. The latter is included to distinguish the

computational burden of the proposed methods from the com-

plexity reduction procedures, whose analysis is out of the scope

of this work. Note that CZMV and CZFO were able to provide

accurate enclosures with an increase of 114% and 52.3% of the

execution times with respect to ZMV and ZFO, respectively.

Nevertheless, as mentioned above, the sets obtained by ZMV

and ZFO increased to infinity in few steps, and therefore cannot

provide any information about the state trajectories.

5.2. A system with nonlinear measurements and invariants

The second example involves state estimation of the attitude

of a flying robot. The robot is driven by angular velocity ǔk ∈

R
3, with attitude expressed as a rotation quaternion xk ∈ R

4

Table 2: Total and complexity reduction average execution times per time step

of the state estimators for the first example.

ZMV CZMV ZFO CZFO

Total 30.5 ms 65.3 ms 47.4 ms 72.2 ms

Red. 4.4 ms 4.8 ms 6.6 ms 14.2 ms

satisfying ‖xk‖
2
2
= 1, which defines the invariant h(xk) = ‖xk‖

2
2
−

1 = 0 to be used in the consistency step (5). The invariant

h(xk) is a mathematical property of rotation quaternions, which

lie in a manifold denoted by Spin(3), where the unitary norm

||xk ||
2
2
= 1 is always satisfied (Selig, 2005). Therefore, even in

the presence of time-varying angular velocities, disturbances

and sensor noise, this invariant is satisfied by xk for all k ≥ 0.

The known value uk of the physical input ǔk is measured

by gyroscopes and therefore is considered to be corrupted by

additive noise wk ∈ R
3. Physically, the system is driven by the

uncorrupted signal ǔk = uk − wk. The attitude xk evolves in

discrete time according to (Teixeira et al., 2009; Lefferts et al.,

1982)

xk =

(

cos(p(uk,wk))I4 −
Ts

2

sin(p(uk,wk))

p(uk,wk)
Ω(uk,wk)

)

xk−1,

(19)

where Ts is the sampling time and

p(uk,wk) =
Ts

2
‖ǔk‖2, Ω(uk,wk) =





0 ǔ3,k −ǔ2,k ǔ1,k

−ǔ3,k 0 ǔ1,k ǔ2,k

ǔ2,k −ǔ1,k 0 ǔ3,k

−ǔ1,k −ǔ2,k −ǔ3,k 0





,

The known value uk is

uk = ǔk + wk =





0.3 sin((2π/12)kTs)

0.3 sin((2π/12)kTs − 6)

0.3 sin((2π/12)kTs − 12)




+ wk, (20)

with ‖wk‖∞ ≤ 3.0×10−3. The measurement is given by yk =

(C(xk)r[1],C(xk)r[2]) + vk, with r[1] = [1 0 0]T , r[2] = [0 1 0]T ,

‖vk‖∞ ≤ 0.15, and C(xk) is a rotation matrix defined by

C(xk) ,





x2
1,k
− x2

2,k
− x2

3,k
+ x2

4,k
2(x1,k x2,k + x3,k x4,k)

2(x1,k x2,k − x3,k x4,k) −x2
1,k
+ x2

2,k
− x2

3,k
+ x2

4,k

2(x1,k x3,k + x2,k x4,k) 2(−x1,k x4,k + x2,k x3,k)

2(x1,k x3,k − x2,k x4,k)

2(x1,k x4,k + x2,k x3,k)

−x2
1,k
− x2

2,k
+ x2

3,k
+ x2

4,k




.
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Figure 4: The zonotope X0 (yellow), the enclosure X̃0 obtained in the consistency

step (5) using Corollary 1 with X̂0 = X0 (red), the set X0 ∩ {I2, 0} (blue), and

the enclosure X̃0 obtained in the consistency step (5) using Corollary 1 with

X̂0 = X0 ∩ {I2, 0} (green). The resulting enclosures contain each other according

to the sequence above. The dashed line denotes the box {I2, 0}. The circle that

describes the feasible state set of ‖x0‖
2
2
= 1 is also depicted.

The sampling time is Ts = 0.2s, and the initial state belongs

to the zonotope X0 = {0.18I4, [0 1 0 0]T }. For the purpose of

generating trajectories of (19), the initial state is x0 = [0 1 0 0]T .

In the following, for the sake of clarity we first illustrate the

observation described in Remark 11 for the consistency step in

a sub-example with xk ∈ R
2, ‖xk‖

2
2
= 1, and

X0 =

{[

0.2 0.2

0 0.2

]

,

[

1.3

0

]}

.

Note that in this case the set {I2, 0} is a valid enclosure for the

feasible state set of the invariant ‖xk‖
2
2
= 1. Figure 4 shows

the initial set X0 and the enclosure X̃0 obtained using Corollary

1 for the consistency step with X̂0 = X0. Note that, although

tightened, the resulting set is still very conservative. Figure 4

also shows the intersection X0 ∩ {I2, 0}, which is tighter than the

previous result. Finally, we illustrate the enclosure X̃0 obtained

using Corollary 1 with X̂0 = X0 ∩ {I2, 0}, which is the least

conservative result. This demonstrates the improved accuracy

that can be achieved if an enclosure of the feasible state set is

known a priori.

Figure 5 illustrates the radii of the enclosures X̃k obtained for

the trajectories of the system (19) using ZMV-like and CZMV-

like methods. We consider the enclosure {I4, 0} of the feasible

state set of the invariant ‖xk‖
2
2
= 1. In this case, Zw and Zv are

computed as in Remarks 4 and 8, respectively. The number of

generators and constraints is limited to 12 and 5, respectively.

Note that the zonotope methods were not able to provide useful

enclosures for (19), i.e., the sizes of the enclosures increase with

time and do not provide useful information, even when con-

sidering the intersection with {I4, 0}. Note that the enclosures

provided by CZMV and CZMV+F also are not useful in this

case, even though CZMV+F is much tighter than the others. On

the other hand, CZMV+C and CZMV+FC both provided good

enclosures with stable size, with the latter providing more accu-

rate sets in the initial time steps, as expected. This demonstrates

the advantage of including the consistency step (5) in state esti-

mation using the mean value extension to take into account the

invariant ‖xk‖
2
2
= 1. In addition, note that the radii of the enclo-

sures provided by CZMV+C and CZMV+FC are much smaller

than the radius of {I4, 0}, showing that significant accuracy can

be obtained by combining the state estimation procedure with

the invariant, in comparison with using only the information

available about the feasible state set.

Figure 6 shows the radii of the enclosures X̃k obtained for

the trajectories of (19) using ZFO-like and CZFO-like meth-

ods. Once again, the enclosures computed by zonotopes do not

provide useful information since these increase with time, even

when considering the intersection with {I4, 0}. On the other hand,

even CZFO provides tight enclosures for this example. This

demonstrates that the first-order Taylor extension is able to pro-

vide significantly less conservative bounds than the mean value

extension in this case, since the nonlinear measurements are

polynomials of second order, and therefore the interval matrices

Q[q] in Proposition 4 are singletons. Nevertheless, CZFO+C and

CZFO+FC both provide still sharper enclosures, with compara-

ble sizes due to the limited complexity of the sets. To provide a

comprehensive comparison between all of the methods, Table 3

shows the average radius ratio for this example (ARR, i.e., the

ratio of the radius of the set provided by one method over the

radius of the set provided by another method at k, averaged over

all time steps), and Table 4 shows the average computational

times per time step of each method. Note that, in contrast to the

analogous state estimation algorithms for linear measurements in

Rego et al. (2020), the computational times of CZMV-like meth-

ods were competitive with ZMV-like methods, and CZFO-like

methods with ZFO-like methods as well. The increased times

of the zonotope methods arise from the iterative computation of

strips based on interval analysis in Alamo et al. (2005) and the

intersection with strips given in Bravo et al. (2006) to perform

the update step. In this sense, using the mean value extension

with constrained zonotopes, one can achieve about 93% less con-

servative bounds (CZMV+C–to–ZMV+F ARR of only 6.7%) in

comparison to zonotopes, with a mild increase of 22.2% in the

average execution time. On the other hand, using the first-order

Taylor extension, one can achieve about 95% less conservative

bounds (CZFO+C–to–ZFO+F ARR of 5.1%), with an increase

of 10.5% in the average execution time. This demonstrates the

joint accuracy and efficiency provided by the proposed methods

based on constrained zonotopes. These ARR are highlighted

in Table 3, and correspond to a comparison between the most

accurate results obtained by ZMV-like and CZMV-like methods,

and between ZFO-like and CZFO-like methods.

Lastly, note that the CZFO+C–to–CZFO ARR was of 69.64%,

showing again the improved accuracy obtained by taking into

account the invariant through the consistency step. In addition,

CZFO-like methods provided better enclosures than CZMV-like

methods in this example. Nevertheless, this comes with an

important increase in computational time as shown in Table 4.

This demonstrates that the choice between CZMV-like methods

and CZFO-like methods for state estimation can provide a trade-

off between accuracy and efficiency, and therefore will depend

on the current application.
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Table 3: Average radius ratio of the enclosures obtained by the state estimators (column per row) for the system (19).

\ ZMV ZMV+F CZMV CZMV+C CZMV+F CZMV+FC ZFO ZFO+F CZFO CZFO+C CZFO+F CZFO+FC

ZMV 1 0.9187 0.7193 0.0636 0.1491 0.0669 0.6447 0.6057 0.0489 0.0358 0.0436 0.0385

ZMV+F 1.0891 1 0.7834 0.0671 0.1606 0.0707 0.6988 0.6562 0.0521 0.0379 0.0465 0.0408

CZMV 1.4091 1.2946 1 0.0857 0.2024 0.0901 0.9272 0.8701 0.0680 0.0484 0.0593 0.0523

CZMV+C 29.2088 26.5557 21.4655 1 3.8897 1.0665 16.3264 15.2013 0.8974 0.6056 0.8472 0.6363

CZMV+F 8.0755 7.4009 5.6895 0.3745 1 0.4023 5.2585 4.9195 0.3382 0.2289 0.2919 0.2460

CZMV+FC 28.7622 26.1185 21.1725 0.9697 3.8402 1 15.8969 14.7785 0.8571 0.5744 0.8144 0.6018

ZFO 1.6829 1.5384 1.2325 0.0849 0.2420 0.0898 1 0.9367 0.0671 0.0487 0.0621 0.0519

ZFO+F 1.8040 1.6484 1.3211 0.0891 0.2581 0.0942 1.0683 1 0.0709 0.0512 0.0656 0.0546

CZFO 34.1796 31.0484 25.3451 1.1983 4.6785 1.2562 18.5748 17.2934 1 0.6964 0.9717 0.7290

CZFO+C 50.4008 45.7732 37.1612 1.7337 6.8068 1.8039 27.7376 25.7968 1.4945 1 1.4372 1.0499

CZFO+F 33.4713 30.4709 24.4434 1.2814 4.5068 1.3433 19.2573 17.9445 1.1000 0.7504 1 0.7929

CZFO+FC 50.2958 45.6286 37.2526 1.6647 6.8396 1.7317 27.1388 25.2164 1.4323 0.9617 1.3947 1
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Figure 5: The radii of the estimated enclosures X̃k for (19) obtained using

ZMV-like and CZMV-like methods.
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Figure 6: The radii of the estimated enclosures X̃k for (19) obtained using

ZFO-like and CZFO-like methods.

Remark 15. Although the examples in this section are low-

dimensional, the proposed methods can be applied straightfor-

wardly to higher dimensional systems, such as the quaternion-

based quadrotor model in Kang et al. (2020). The computational

complexity will follow the expressions shown in Table 1.

Table 4: Total and complexity reduction average execution times per time step

of the state estimators for the system (19).

ZMV ZMV+F CZMV CZMV+C CZMV+F CZMV+FC

Total 0.4552 s 0.4610 s 0.4478 s 0.5635 s 0.4519 s 0.5942 s

Red. 0.37 ms 0.31 ms 10.6 ms 71.8 ms 19.8 ms 96.5 ms

ZFO ZFO+F CZFO CZFO+C CZFO+F CZFO+FC

Total 1.0403 s 1.0563 s 1.0907 s 1.1671 s 1.1009 s 1.3750 s

Red. 2.3 ms 2.2 ms 90.3 ms 0.1266 s 98.7 ms 0.3306 s

6. Conclusions

This paper developed new approaches for set-valued state

estimation of nonlinear discrete-time systems with nonlinear

measurements and nonlinear invariants. The state trajectories

were enclosed using the standard prediction-update algorithm

with the addition of a new consistency step accounting for the

nonlinear invariants. New methods were proposed for the up-

date and consistency steps using generalized intersections of

constrained zonotopes. In addition, our previous methods for

the prediction step were generalized to allow the approximation

points for the mean value and first-order Taylor extensions to lie

in a larger region. Numerical results demonstrate that our meth-

ods can provide significantly tighter enclosures compared to

existing zonotope methods. The improved accuracy is achieved

with a mild increase in computational cost. Nevertheless, future

work will seek to reduce the execution times, since these can be

a major issue in many practical applications, and to reduce the

conservativeness introduced by the mean value and first-order

Taylor approximations.

Appendix A. Proofs

Proof of Proposition 1. Choose any (x,w) ∈ X ×W. Lemma 1

ensures that there exists a real matrix Ĵ ∈ J such that f(x,u,w) =

f(γx,u,w) + Ĵ(x − γx). By Theorem 1 and the choice of Zw, it

follows that f(x,u,w) ∈ Zw ⊕ ⊳ (J, X − γx), as desired. �

Proof of Proposition 2. Choose any (x,w) = z ∈ Z. Lemma 2

ensures that there exist ξ ∈ B∞(A,b), ξ̃ ∈ B∞(Ã, b̃), and L̂ ∈ L,

such that

f(x,u,w) = f(γx,u,γw) + ∇T f(γx,u,γw)(z − γz)

+ c̃ + [G̃ G̃d]ξ̃ + L̂((c − γz) + 2Gξ).
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Therefore, f(x,u,w) ∈ f(γx,u,γw) ⊕ ∇T f(γx,u,γw)(Z − γz) ⊕

⊳(L, (c − γz) ⊕ 2GB∞(A,b)) ⊕ c̃ ⊕ [G̃ Ḡd]B∞(Ā, b̃). Thus, (14)

follows immediately from the definition of R. �

Proof of Proposition 5. Each component of (J − mid(J)) ∈

IR
m×n is an interval satisfying (Ji j − mid(Ji j)) =

(1/2)diam(Ji j)[−1, 1]. Moreover, a[−1, 1] = |a|[−1, 1] holds for

every a ∈ R. Therefore mγ,i =
∑n

j=1(1/2)diam(Ji j)|c̄γ, j|[−1, 1].

Consequently, diam(mγ,i)
∑n

j=1 diam(Ji j)|c̄γ, j|, and

‖diam(mγ)‖1 =

m∑

i=1

n∑

j=1

diam(Ji j)|c̄γ, j| =

n∑

j=1





m∑

i=1

diam(Ji j)



 |c̄γ, j|

=

n∑

j=1

Θ j j|c̄γ, j| = ‖Θc̄γ‖1.

The constraints in (16) follow directly from the requirement that

γ ∈ �Z. �

Proof of Corollary 1. Choose any x ∈ X satisfying h(x) = 0.

Lemma 1 ensures that there exists a real matrix Ĵ ∈ J such that

h(x) = h(γx) + Ĵ(x − γx). Since Ĵ = J̃ + (Ĵ − J̃) holds, then

h(x) = h(γx) + J̃(x − γx) + (Ĵ − J̃)(x − γx). Consequently,

J̃x = h(x) + J̃γx − h(γx) + (J̃ − Ĵ)(x − γx)

= 0 + J̃γx − h(γx) + (J̃ − Ĵ)(x − γx)

∈ (J̃γx − h(γx)) ⊕ ⊳(J̃ − J, X − γx) = H.

Therefore, {x ∈ X : h(x) = 0} ⊆ {x ∈ X : J̃x ∈ H} = X∩DH. �

Proof of Corollary 2. Choose x ∈ X such that h(x) = 0. Lemma

2 ensures that there exist ξ ∈ B∞(A,b), ξ̃ ∈ B∞(Ã, b̃), and

L̂ ∈ L, such that

h(x) = h(γx) + ∇T
x h(γx)(x − γx)

+ L̂(p + 2Gξ) + c̃ + [G̃ Ḡv]ξ̄.

with p = c − γx. Since h(x) = 0, we have ∇T
x h(γ)x = −h(γx) +

∇T
x h(γx)γx − L̂(p + 2Gξ) − c̃ − [G̃ Ḡv]ξ̄, and therefore

∇T
x h(γx)x ∈ (−h(γx) + ∇T

x h(γx)γx) ⊕ (−R) = H.

We conclude that {x ∈ X : h(x) = 0} ⊆ {x ∈ X : ∇T
x h(γx)x ∈

H} = X ∩D H. �

Appendix B. Linear systems

When the prediction, update, and consistency steps for non-

linear systems developed in the previous subsections are applied

directly to linear systems, the resulting enclosures are straight-

forward. Consider the linear discrete-time system

xk = Axk−1 + Buuk−1 + Bwwk−1, (B.1a)

yk = Cxk + Duuk + Dvvk, (B.1b)

where A ∈ R
n×n, Bu ∈ R

n×nu , Bw ∈ R
n×nw , C ∈ R

ny×n, Du ∈

R
ny×nu , Dv ∈ R

ny×nv , with known polytopic bounds (x0,wk, vk) ∈

X0 × W × V . Moreover, assume that the trajectories of (B.1)

satisfy the linear invariants Exk = d, with E ∈ R
nd×n, and

d ∈ Rnd . Given the previous set X̃k−1, the prediction step (3) and

the update step (4) are computed exactly for (B.1a)–(B.1b) as in

Scott et al. (2016):

X̄k = AX̃k−1 ⊕ Buuk−1 ⊕ BwW, (B.2)

X̂k = X̄k ∩C ((yk − Duuk) ⊕ (−DvV)). (B.3)

All the set operations in (B.2)–(B.3) can be computed straight-

forwardly using (10)–(12). To compute the consistency step (5),

note that in this case this can be written as X̃k ⊇ {x ∈ X̂k : Exk ∈

{d}}, where {d} denotes a singleton that contains only the point

d. Therefore, if X̂k = {Ĝk, ĉk, Âk, b̂k}, then X̃k is given by

X̃k = X̂k ∩E {d} =

{

Ĝk, ĉk,

[

Âk

EĜk

]

,

[

b̂k

d − Eĉk

]}

. (B.4)

Hence, the consistency step can be computed exactly as well.

Therefore, the only source of conservatism in the set-valued

state estimation of (B.1) using constrained zonotopes through

the steps (B.2)–(B.4) arises if the complexity of the sets are

limited, which is often necessary in practice and requires the use

of complexity reduction methods (Scott et al., 2016).

References

Alamo, T., Bravo, J., & Camacho, E. (2005). Guaranteed state estimation by

zonotopes. Automatica, 41, 1035–1043.

Alamo, T., Bravo, J. M., Redondo, M. J., & Camacho, E. F. (2008). A set-

membership state estimation algorithm based on DC programming. Automat-

ica, 44, 216–224.

Bravo, J. M., Alamo, T., & Camacho, E. F. (2006). Bounded error identification

of systems with time-varying parameters. IEEE Transactions on Automatic

Control, 51, 1144–1150.

Chabane, S. B., Maniu, C. S., Alamo, T., Camacho, E., & Dumur, D. (2014).

Improved set-membership estimation approach based on zonotopes and ellip-

soids. In Proc. of the 2014 European Control Conference (pp. 993–998).

Chabert, G., & Jaulin, L. (2009). Contractor programming. Artificial Intelligence,

173, 1079–1100.

Chisci, L., Garulli, A., & Zappa, G. (1996). Recursive state bounding by

parallelotopes. Automatica, 32, 1049–1055.

Combastel, C. (2005). A state bounding observer for uncertain non-linear

continuous-time systems based on zonotopes. In Proc. of the 44th IEEE

Conference on Decision and Control, and 2005 European Control Conference

(pp. 7228–7234).

Combastel, C. (2015). Merging Kalman filtering and zonotopic state bounding

for robust fault detection under noisy environment. In Proc. of the 9th

IFAC Symposium on Fault Detection, Supervision and Safety for Technical

Processes (pp. 289–295).

Durieu, C., Walter, E., & Polyak, B. (2001). Multi-input multi-output ellipsoidal

state bounding. Journal of Optimization Theory and Applications, 111,

273–303.

Eras-Herrera, W. Y., Mesquita, A. R., & Teixeira, B. O. S. (2019). Equality-

constrained state estimation for hybrid systems. IET Control Theory and

Applications, 13, 2018–2028.

Girard, A., & Guernic, C. L. (2008). Efficient reachability analysis for linear

systems using support functions. In Proc. of the 17th IFAC World Congress

(pp. 8966–8971).

Goodarzi, F. A., & Lee, T. (2017). Global formulation of an extended Kalman fil-

ter on SE(3) for geometric control of a quadrotor UAV. Journal of Intelligent

and Robotic Systems, 88, 395–413.

Jaulin, L. (2009). Robust set-membership state estimation; application to under-

water robotics. Automatica, 45, 202–206.

Jaulin, L. (2016). Inner and outer set-membership state estimation. Reliable

Computing, 22, 47–55.

12



Julier, S. J., & LaViola, J. J. (2010). On kalman filtering with nonlinear equality

constraints. IEEE Transactions on Signal Processing, 55, 2774–2784.

Kang, J.-W., Sadegh, N., & Urschel, C. (2020). Quaternion based nonlinear

trajectory control of quadrotors with guaranteed stability. In Proc. of the

2020 IEEE American Control Conference (pp. 3834–3839).

Kelner, J. A., & Spielman, D. A. (2006). A randomized polynomial-time

simplex algorithm for linear programming. In Proc. of the 38th Annual ACM

Symposium on Theory of Computing (pp. 51–60).

Kochdumper, N., & Althoff, M. (2020). Reachability analysis for hybrid systems

with nonlinear guard sets. In Proc. of the 23rd International Conference on

Hybrid Systems: Computation and Control (pp. 1–10).
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