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Abstract— This article presents a new method for accurately
enclosing the reachable sets of nonlinear discrete-time systems
with unknown but bounded disturbances. This method is
motivated by the discrete-time differential inequalities method
(DTDI) proposed by Yang and Scott, which exhibits state-of-
the-art accuracy at low cost for many problems, but suffers
from theoretical limitations that significantly restrict its appli-
cability. The proposed method uses an efficient one-dimensional
partitioning scheme to approximate DTDI while avoiding the
key technical assumptions that limit it. Numerical result shows
that this approach matches the accuracy of DTDI when DTDI
is applicable, but, unlike DTDI, is valid for arbitrary systems.

I. INTRODUCTION

This article introduces a new method for efficiently com-
puting tight enclosures of the reachable sets of nonlinear
discrete-time systems with bounded disturbances. Such en-
closures are useful for robust control [1], [2] and fault
detection [3], [4], and have applications in chemical systems
[5], power systems [6], and autonomous vehicles [7], [8].

A variety of methods have been developed for bounding
the reachable sets of nonlinear discrete-time systems (meth-
ods for continuous-time systems are reviewed elsewhere
[9], [10]). Some methods compute reachable set enclosures
over the entire horizon simultaneously by solving a large
optimization problem [11], [12]. Although accurate bounds
can be achieved in this way, they come at a relatively high
computational cost. Alternatively, many methods compute
enclosures recursively by repeatedly bounding the image of
the current enclosure under the dynamics. The simplest of
these propagates interval enclosures, which is very inexpen-
sive [13], [14]. However, this typically produces conservative
enclosures without partitioning and becomes inefficient with
partitioning. More sophisticated methods use polytopes [15],
[16], zonotopes [17], [18], [19], and constrained zonotopes
[20], which can approximate the true reachable set much
more accurately than intervals. However, propagating poly-
topic enclosures requires solving either many linear programs
[15] or one larger nonlinear program [16] in each time step,
which is inefficient. In contrast, zonotopes and constrained
zonotopes can be propagated efficiently using conservative
linearization techniques, but the results can be conservative
when the linearization error is large [21]. The method in
[22] avoids linearization, but only applies to polynomial
systems. Moreover, it propagates parallelotope bundles using
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a procedure that requires solving multiple linear programs in
each time step.

To address these challenges, Yang and Scott [23] devel-
oped a fast interval method that improves the accuracy of
the standard interval method (without partitioning) using the
theory of differential inequalities. We refer to this as the
discrete-time differential inequalities (DTDI) method. The
key feature of DTDI is that, when propagating the current
interval to the next time, the dynamics are only bounded over
the boundary of this interval (i.e., its 2n faces) rather than
the entire interval. This idea originates from the continuous-
time setting, where a trajectory cannot leave an enclosure
without touching its boundary at some time. Consequently,
when propagating enclosures forward in time, it suffices to
consider only the values of the vector field on the enclosure
boundary. This insight is central to the theory of differential
inequalities and is used in many continuous-time reachability
methods. Although this reasoning does not hold in discrete-
time, Yang and Scott showed that a discrete-time analog
of this approach is valid for systems satisfying a certain
monotonicity property. In particular, it is valid for systems
obtained by forward Euler discretization with a step size less
than one over a Lipschitz constant for the system. The basic
DTDI method in [23] produces much tighter bounds than
the standard interval method without partitioning, but is still
very conservative for many examples.

To further improve accuracy, some researchers have re-
cently suggested using redundant model equations to refine
the computed enclosures [23], [20]. Redundant equations
refer to any explicit relationships involving the system states
and uncertain parameters that are known to be satisfied by
all solutions. Many systems naturally satisfy such relations,
which may include conservation laws, forward invariant sets,
or physical bounds on certain states. The use of redundant
equations is well established in continuous-time reachability
and results in very sharp bounds for many problems [24].
Moreover, systems that do not satisfy any known redundant
relationships can also benefit from this approach using the
concept of manufactured redundancy described in [9]. Yang
and Scott first applied this approach in discrete-time in
[23]. They incorporated redundancy into the standard interval
method by using the redundant equations to refine the current
interval at each step before propagating it forward. Unfortu-
nately, this did not improve the accuracy much. Two similar
methods for incorporating redundancy into constrained zono-
tope methods were later proposed in [20]. This resulted in
much more accurate enclosures for one example, but it is
not yet clear how these methods perform more generally.



Moreover, these methods are significantly more complex
than the interval method and the current implementations
involve the costly solution of linear programs in every time
step. In [23], Yang and Scott also incorporated the use of
redundant equations into their new DTDI method. Critically,
the refinement step was applied to each face of the current
bounding interval independently, rather than to the entire
interval as in the standard interval method. This distinction
proved to be decisive. Unlike the standard interval method,
the use of redundancy within DTDI resulted in dramatic
improvements in accuracy at moderate cost, leading to much
tighter bounds than all other methods for several test cases.
However, the monotonicity condition required by DTDI is
more stringent when using redundancy. For Euler discretized
systems, the step size must be lower than the product of two
Lipschitz constants, one for the dynamics and one associated
with the refinement algorithm. In the authors’ experience,
this has proven to be restrictive. In the best case, it requires
the inconvenient calculation of Lipschitz constants. In more
challenging cases, the Lipschitz constants must be reduced
by scaling the dynamics or using less effective refinement
algorithms (see [23]). In the worst case, the method is not
applicable at all.

This paper presents a new interval bounding method that
uses one-dimensional partitions to mimic DTDI without
using differential inequalities theory. Specifically, the cur-
rent state enclosure is partitioned along dimension i when
bounding the range of the i state variable at the next time.
This partitioning scheme is devised specifically so that any
calculation in DTDI that would use the i upper or lower
face of the current interval will be done in our method using
intervals that have been partitioned along the i dimension,
and are therefore relatively narrow in that dimension. The
favorable performance of DTDI suggests that partitioning
in this way should lead to significantly more accurate en-
closures than the standard interval method, especially when
using redundancy. At the same time, the proposed method
is valid for any discrete-time system, does not require the
computation of any Lipschitz constants, and can be used
with any refinement algorithm. Although partitioning is a
well known approach for improving the accuracy of interval
methods, this typically requires partitioning simultaneously
in all dimensions, resulting in exponential complexity. In
contrast, the proposed method partitions along one dimension
at a time and hence scales only linearly. Numerical results
show that this method is nearly as accurate as DTDI with
redundancy and only slightly more costly.

II. PROBLEM STATEMENT
Consider the nonlinear discrete-time system
Xer1 = £ (k, Xe, Wi) , (1)

where k € K= {0,...,K}, x; € R™ is the state, w; € R"
is a disturbance, and f: K x R™ x R™ — R"™. Assume the
initial conditions and disturbances satisfy

(XU,Wk) eCyxW, Vkek, )

where Cy and W are known compact intervals. Define the
shorthands xg.x = (X()7 .. ,XK), Wo.xk = (W()7 ce. ,WK), and
Wo.xk =W x ... x W. When necessary for clarity, the solution
of (1) corresponding to a specific (xg, Wo.x) € Co X Wy.x will
be denoted explicitly by Xy (X0, Wo:x)-

Definition 1: The reachable set of (1) at time k € K is

Ri = {xx (X0, Wox) : (X0, Wo:x) € Co x Wok }-
Moreover, x](j: x and X(Ii x are state bounds for (1) if
L U
Xy < Xk (XOaWO:K) < Xk s

for all (k,X(),W();K) € KxCyx Wyk.

The objective of this paper is to present a new method
for efficiently computing tight state bounds for (1). As
mentioned in §I, some methods discussed herein make use of
redundant relations satisfied by all solutions of (1) to achieve
tighter bounds. We assume this information is available in
the form of a general a priori enclosure.

Assumption 1: A set G C R™ is known such that

x(co, Wox) € G, 3)

for all (k,co,wo.x) € K x Cy X Wk

This assumption is not restrictive because G = R™ is
always valid. However, nontrivial choices of G are often
available in the form of conservation laws, physical bounds,
etc., and can have a profound impact on the results of some
bounding methods. When no such constraints are known, a
useful set G can often be manufactured by lifting the system
into a higher-dimensional space as described in [23], [9].

III. BACKGROUND

To motivate the proposed one-dimensional partitioning
method, this section briefly reviews the standard interval and
DTDI methods for computing state bounds for (1).

Let Z = [z*,2Y] denote the n-dimensional compact inter-
val {z € R": 2" <z <zV}. The space of all such intervals is
denoted by IR". For any h:R" — R™, an interval function
H :IR" — IR™ is called an inclusion function for h if

h(Z)={h(z):z€Z} CH(Z), VZecIR"

Assumption 2:

1) A function F : K x IR™ x IR™ — IR™ is available
such that F(k,-,-) is an inclusion function for f(k,-,-)
for all k € K.

2) An interval refinement operator |G, ] : IR™ — IR™
is available for the a priori enclosure G satisfying

(ZNG)CZ[G,Z], VZeIR™. (G))

An inclusion function satisfying Assumption 2.1 can be
readily computed using interval arithmetic [25]. Moreover,
several existing refinement algorithms can be used to satisfy
Assumption 2.2 provided that G is defined by a system
of equality and inequality constraints [9], [23]. In brief,
these algorithms attempt to compute a subinterval of Z by
eliminating regions in Z that violate one or more of these
constraints using iterative methods similar to interval Newton
methods. In the trivial case where G = R™, the use of this



operator in the methods below should be interpreted with the
trivial definition Z[G,Z] = Z.

Under these assumptions, the standard interval method
(with redundancy) computes state bounds for (1) as the
solutions of the following difference equations for all i €
{1,...,nc}, where X, = [xExV], F; = [fF, fV] is the i
component of F, and Cy; is the jth component of Co:

i = [ TGX], W), ©)
‘xll<]+1,i = fiU (ka[Gan] 7W) )
[xé,ivx([)],i] =y,

Definition 2: For every i € {1,...,n,}, define the face
selection operators BL,BY : IR™ — IR™ by
B[] = (e [al]ia=2) ©

BY ([",2]) = {z € [2",2"] :zi =2V }.
The DTDI method from [21] (with redundancy) computes
state bounds for (1) as the solutions of the following differ-

ence equations for all i € {1,...,n,}:
o= Ff (K Z[G,BE (X)) W), ™
‘xllchrl,i = ﬁU (kvl- [GaﬁiU(Xk)] aW) ;
[xG.1:%0] = Co,-

This differs from (5) in that the refinement operator Z[G, ]|
is applied to the faces ﬁiL/ U(Xk) rather than to X;, and f;
is only bounded over the refinements of these faces. Even
without refinement, this can lead to much tighter bounds than
(5) [21]. Moreover, it has been shown that using Z[G,] is
much more effective in DTDI than in the standard interval
method [21]. This is explained in Figure 1, where the blue
line shows a redundant linear relationship between x; and x,
assumed to hold for all solutions (such affine invariants are
common in chemical reaction network models; see Example
1 in §V). Consider the computation of xf_k 41 from a current
interval X; using both (5) and (7). The top left pane of Figure
1 shows how Xj (black lines) might be refined using the
invariant to yield Z[G,X;| (gray shaded region). Although
7|G,X;] is tighter than X;, the improvement is minor. Using
%), xf’k 41 1s computed as a lower bound on f; over this
entire fegion. In contrast, using (7), xﬁk 41 1s computed as
a lower bound on f; over Z[G,BE(X)]. This is illustrated
in the top right pane of Figure 1, where BE(X;) is the line
segment connecting the two blue circles and Z[G, Bf(X)]
is a singleton represented by the gray circle. Since this set
is much smaller than Z[G,X;], DTDI is likely to produce
a much tighter lower bound xf_k +1- Although refinement
is not always so effective for DTDI, especially in higher
dimensions, it is typically much more effective for DTDI
than for the standard interval method.

Unfortunately, DTDI is not valid for arbitrary systems and
arbitrary refinement operators, while the standard interval
method is. Specifically, DTDI requires that Z[G, -] is locally
Lipschitz continuous on IR™ (w.r.t. the Hausdorff metric)
and that f satisfies a certain monotonicity property. If (1) is
derived by forward Euler discretization of a continuous-time

Case 1

X3 L/
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X2

/x1 / % Q/X1

Fig. 1. Schematic of interval refinements of X done during the computation

of xfk 1 using the standard interval method (5) (left), DTDI (7) (right), and

the proposed one-dimensional partitioning method (9) with n, =4 (middle)
in two different cases (top and bottom rows). The blue line represents G,
the black box is X, and the gray regions are the results of refinement.

system, then this monotonicity requirement holds provided
that the step size h satisfies h < M%WI, where M7 is a Lips-
chitz constant for Z[G, -] and M is a Lipschitz constant for the
right-hand side function of the continuous-time dynamics.

For Euler systems, this step size limitation is minor when
redundancy is not used (i.e., Mz = 1). The constant M is
easily computed and the requirement h < ﬁ is no more
restrictive than well known step size limitations for main-
taining numerical stability and preserving physical properties
of the system [26]. However, when using redundancy, the
step size limitation can be problematic. The constant Mz
is difficult to compute and often large [21]. This forces
the use of unnecessarily small step sizes or less effective
refinements with lower Mz. For non-Euler systems, the
required monotonicity property is equally difficult to verify
and, without a controllable step size, there is no recourse if
it fails. Thus, although DTDI produces much tighter bounds
than the standard interval method when it applies, it is often
inconvenient and sometimes inapplicable.

IV. A ONE-DIMENSIONAL PARTITIONING METHOD

This section introduces a new reachable set bounding
algorithm designed to capture the key advantages of DTDI
while avoiding the limitations discussed in §III. A close
look at the theory in support of DTDI [21] shows that the
undesirable Lipschitz conditions, monotonicity requirements,
and step size limitations are all required to justify the use of
the face selection operators ﬁiL/ Yin (7). To approximate (and
hence eliminate) these operators, we define the following
one-dimensional partitioning operators.

Definition 3: Choose any partition size n,, € N, . For every
dimension i € {1,...,n,} and partition element index j €
{1,...,np}, define the partition element selection operator



¢i"luj S TR™ —s TR™ by (Pirlpvj (X) = [l‘L,l'U], where

oy oy
)= 0L =y y
e X (1) x| g =

In words, ¢;”’ (X) is the subinterval of X corresponding
to the jM element of a uniform partition of X along its i"

dimension. Evidently, for every i € {1,...,n,} we have
np ]
Uo" (x)=x. ®)
j=1

We propose to compute state bounds for (1) as the solutions
of the following difference equations for all i € {1,...,n,}:

do= in {7 (kZ[G.00 0] W)} ©
Xy = jofnax {f}’ (k,I [G, 9" (Xk)] ,W) } :
[xé,iaxou,i] = Co,i-

In words, this method computes the i component of
Xi+1 by partitioning X into n, pieces along its i dimen-
sion, refining each element of this partition independently,
bounding f; over each refined element, and finally selecting
the minimum and maximum bounds on f;. In what follows,
we first prove that this provides valid state bounds for (1).
Notably, this does not require (1) to satisfy any monotonicity
properties and does not require f or Z[G,-] to be Lipschitz.
Subsequently, we discuss the conceptual rationale for (9) and
its relation to DTDI and existing partitioning approaches.

Theorem 1: For any partition size n, € N, the solutions
of (9) are state bounds for (1).

Proof: Choose any n, and let x5, and x¥, be the
solutions of (9). Moreover, choose any xg € Cy and wo.x €
Wo.x and let xo.x¢ be the corresponding solution of (1). We
must prove that x; € X; = [xﬁ,xg] for Vk € K.

Since xq € Cp, we have x; € X for k =0. To set up a proof
by induction, assume that x; € X; for some arbitrary 0 <
k < K. Choose any i € {1,...,n:}. By (8), there must exist
Jj€{l,...,n,} such that x; € ¢["”’J (Xx). Moreover, x; € G
by Assumption 1. Thus, (4) in Assumption 2.2 ensures that
xx €L {G, ¢ (Xk)] . Since F (k,-,-) is an inclusion function
for f(k,-,-) by Assumption 2.1, this implies that

X1, = Ji(k, Xe, W), (10)
er (k]G x| W), ap
C Xt1,is (12)

where the last inclusion follows from (9). Since i is arbitrary,
Xj+1 € Xg. The result follows by induction over k. |

It is well known that partitioning can significantly improve
the accuracy of interval methods. However, this typically
requires partitioning all dimensions simultaneously, which
results in exponential complexity. In contrast, computing a
single time step of (9) only requires partitioning Xj in one
dimension at a time, and hence scales linearly. Specifically,
if complexity is expressed as the number of times a method

evaluates F(k,Z[G,],W) in a single time step, then the
complexity of (9) is npn, compared to 1 for the standard
interval method, 2n, for DTDI, and (n,)™ if X, were
partitioned along all dimensions simultaneously. Thus, (9)
is much more efficient than standard partitioning approaches
and only a factor of n,/2 more complex than DTDL

The expectation that accurate results will be obtained
by this partitioning scheme is justified by comparison to
DTDI. Consider again the computation of le_’k 41 from Xj.
In this case, X} is partitioned only along the x; dimension
as illustrated in top middle pane of Figure 1. Notably, the
partition element (])1" 7 (X;) with j =1 approximates the set
BE(Xy) used in (7). Moreover, if the system satisfies the
monotonicity condition required by DTDI, then the minimum
over j in (9) will be attained with j = 1. Therefore, (9)
closely approximates DTDI when DTDI applies. Thus, even
in the absence of refinement, this partitioning scheme should
lead to significant improvements over the standard interval
method. However, like DTDI, the impact of one-dimensional
partitioning is expected to be even more pronounced when
combined with refinement. In Figure 1, refining each parti-
tion element results in the four gray intervals, and xf_’k 41 18
computed as a lower bound on f] over these regions. Clearly,
this is likely to lead to a tighter bound than that computed
by the standard interval method using the larger gray region
illustrated in the top left pane. While the geometry of G may
not always be so favorable, especially in higher dimensions,
experience with DTDI suggests that partitioning even in just
one dimension will lead to much better utilization of G.

The preceding discussion suggests that the one-
dimensional partitioning method should approach the
accuracy of DTDI as n, increases, but can never be more
accurate. However, this is not precisely true, as can be seen
in the results in §V. To explain, consider the computation of
xik 41 from X; in the case illustrated in the bottom row of
Figure 1. The right-most pane shows that G N B (X;) = 0.
Since DTDI requires Z[G,-] to be Lipschitz continuous on
all of TR™, it cannot return the empty set even though that
would satisfy (4). The algorithm for Z[G,-] in [23] returns
the singleton containing the gray circle in Figure 1. In
contrast, for the partitioning method in the middle pane,
the intersection between G and the first partition element
from the left is non-empty and is refined to the indicated
gray region. Notably, this region does not contain the
gray circle in DTDI schematic, nor do the refined regions
corresponding to any other partition element. Due to this
technicality, it is possible that the lower bound computed by
DTDI may be worse than that from the partitioning method.
However, this is expected to happen rarely.

Finally, note that the partitioning method does not require
Z[G,] to be Lipschitz continuous, and therefore it could
use a refinement algorithm that returns the empty set when
permitted by (4). For example, the empty set could be
returned for the fourth partition element in Figure 1.



V. NUMERICAL RESULTS

This section compares the one-dimensional partitioning
method (9) with the standard interval method (5) and the
DTDI method (7), with and without the use of an a priori
enclosure G. For the methods without G, the refinement
operator in (5), (7), and (9) is the trivial refinement Z[G,Z] =
Z. For the methods with G, Z[G,Z] is defined by Algorithm
1 in [23]. Unless stated otherwise, n, = 10 is used for
partitioning. DTDI has been compared with other state-of-
the-art methods in [23] using the same case study. Therefore,
we do not reproduce these additional comparisons here. We
report CPU times from MATLAB R2019a on a ThinkPad
X390 with an 17-8565U CPU @1.80GHz and 16.0GB RAM.

Example 1: Consider the enzymatic reaction network
from [27], where the concentrations of six species x1—xg (M)
evolve according to the following difference equations:

X1t = X1k 1 (—ki gy oo, + ko gz g+ kepxox)  (13)

X2 jeat = Xo g+ h (—ky kXy kX + ko s + k3 X3 1)

(

(
X341 = X34+ (ks o, — ko ks g — k3 kxa )
Xa gt = Xa g+ h (ks s g — ka gXa xs g+ ks gxe 1)
X5 i1 = Xs o+ 1 (—ka gxa 55 g + ks kxe x + ko kX6 k)
Xe,1 = Xo k -+ (ka xxXa x5 g — ks kX6 — ko kX6 1)

The initial concentrations are ¢o = (34,20,0,0,16,0) and
the parameters k = (ki,...,kq) are disturbances bounded in
[k, 10k], where k = (0.1,0.033,16,5,0.5,0.3).

All solutions of this system are known to be nonnegative
and satisfy three affine reaction invariants [23]. Based on
these observations, a valid a priori enclosure can be derived
as G = {z € Xpat : Mz = b}, where

0-1-100 0 20
M=1|00 00-I 71}, b= [—126},

14
1-101-10 (14)

and Xpae = [0,34] x [0,20] x [0,20] x [0,34] x [0, 16] x [0,16].
Using this G, it was shown in [23] that DTDI is valid with
h=9x 1075, which we also use here for comparison.

Figure 2 shows the state bounds for x3 and x5 computed
by all methods, as well as the total enclosure volume metric
(VOI(Xk))l/ ™. When the a priori enclosure G is not used,
the standard interval method rapidly diverges. DTDI gives
significantly better results, but the bounds are still too weak
to be useful. Nonetheless, the results show that the parti-
tioning method is able to closely match the improvements
made by DTDI. When G is used, all methods improve
significantly. However, whereas the standard interval method
still provides weak bounds, both DTDI and the partitioning
method become fairly accurate. Notably, the partitioning
method achieves nearly the same accuracy as DTDI, which
has previously been shown to be significantly more accurate
than other state-of-the-art methods for this example [23].
Although we expect partitioning to be less accurate than
DTDI in general, it is more accurate for x3 in Figure 2 for
the reason explained at the end of §IV.

A key conclusion from [21] is that combining DTDI with
redundancy leads to improvements far beyond those achieved
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Fig. 2. Enclosure volume and selected state bounds for Example 1
computed using the standard interval method (), DTDI (V), and the one-
dimensional partitioning method (x), both with (solid lines, 0, V, %) and
without (dashed lines, (], V, ») using G. The gray shaded regions show the
true volume and reachable sets estimated by sampling.

by applying DTDI or redundancy independently. Our results
show that the one-dimensional partitioning method shares
this behavior. Specifically, the partitioning method enables
redundancy to be used much more effectively than in the
standard interval method. In fact, the improvements caused
by using G in the standard interval method arise entirely
from intersection with X, while refinements based on the
affine invariants Mz = b are wholly ineffective. In contrast,
these invariants are highly effective when combined with
one-dimensional partitioning, as illustrated in Figure 1.
Compared to DTDI, one-dimensional partitioning has sev-
eral advantages. First, it does not require the system to satisfy
any monotonicity properties. Consequently, it is valid for any
step size, whereas DTDI is not known to be valid for this
example with & greater than 9 x 10~>. Thus, one-dimensional
partitioning may be implementable with fewer time steps,
leading to higher efficiency despite having a higher per step
complexity. Second, there is no need to compute Lipschitz
constants for the dynamics or the refinement operator, and
in fact no requirement that they are Lipschitz at all. This is
more convenient, but also enables the use of more effective
refinement operators. Since large Lipschitz constants were a
significant limiting factor for several refinement methods in
[21], this is expected to enable more accurate bounds than
DTDI in many cases. However, for this example, equipping
the one-dimensional partitioning method with the more ac-
curate refinement method in Algorithm 1 of [9] did not lead
to a significant improvement. Third, it is possible to achieve
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Fig. 3. Enclosure volume for Example 1 computed using the standard in-
terval method (), the DI method (V), and the one-dimensional partitioning
method with n;, equal to 2, 5, 10 and 15 (x, , x, *). All methods use G.
The gray shaded region show the true volume estimated by sampling.

tighter bounds than DTDI even when the same refinement
operator is used, as can be seen in Figure 2. However, this is
due to technical details of how DTDI handles the case where
GnN ﬁl-L/ v (Z) =0 and is not expected to happen often.

Figure 3 shows how the number of partition elements n,
influences the volume of the resulting bounds. The volumes
obtained by the standard interval and DTDI methods are also
plotted for reference. The a priori enclosure G was used for
all methods. The standard interval method is equivalent to the
partitioning method with n, = 1. By increasing n, to 2, the
bounds are already tightened significantly. With n, = 10, the
bounds are nearly the same as those from DTDI. Increasing
np further does not result in significant improvements.

For the methods without G, the standard interval method
has the lowest cost, requiring roughly 1.5 x 10~* s per step.
The partitioning method with n, = 10 has the highest cost,
requiring 3 x 1073 s per step. This is roughly 6 (~ °2)
times higher than the cost of DTDI. When using G, the
computational burden of all three methods doubles, but their
relative costs remain the same.
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