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Abstract— This article presents a new method for accurately
enclosing the reachable sets of nonlinear discrete-time systems
with unknown but bounded disturbances. This method is
motivated by the discrete-time differential inequalities method
(DTDI) proposed by Yang and Scott, which exhibits state-of-
the-art accuracy at low cost for many problems, but suffers
from theoretical limitations that significantly restrict its appli-
cability. The proposed method uses an efficient one-dimensional
partitioning scheme to approximate DTDI while avoiding the
key technical assumptions that limit it. Numerical result shows
that this approach matches the accuracy of DTDI when DTDI
is applicable, but, unlike DTDI, is valid for arbitrary systems.

I. INTRODUCTION

This article introduces a new method for efficiently com-

puting tight enclosures of the reachable sets of nonlinear

discrete-time systems with bounded disturbances. Such en-

closures are useful for robust control [1], [2] and fault

detection [3], [4], and have applications in chemical systems

[5], power systems [6], and autonomous vehicles [7], [8].

A variety of methods have been developed for bounding

the reachable sets of nonlinear discrete-time systems (meth-

ods for continuous-time systems are reviewed elsewhere

[9], [10]). Some methods compute reachable set enclosures

over the entire horizon simultaneously by solving a large

optimization problem [11], [12]. Although accurate bounds

can be achieved in this way, they come at a relatively high

computational cost. Alternatively, many methods compute

enclosures recursively by repeatedly bounding the image of

the current enclosure under the dynamics. The simplest of

these propagates interval enclosures, which is very inexpen-

sive [13], [14]. However, this typically produces conservative

enclosures without partitioning and becomes inefficient with

partitioning. More sophisticated methods use polytopes [15],

[16], zonotopes [17], [18], [19], and constrained zonotopes

[20], which can approximate the true reachable set much

more accurately than intervals. However, propagating poly-

topic enclosures requires solving either many linear programs

[15] or one larger nonlinear program [16] in each time step,

which is inefficient. In contrast, zonotopes and constrained

zonotopes can be propagated efficiently using conservative

linearization techniques, but the results can be conservative

when the linearization error is large [21]. The method in

[22] avoids linearization, but only applies to polynomial

systems. Moreover, it propagates parallelotope bundles using
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a procedure that requires solving multiple linear programs in

each time step.

To address these challenges, Yang and Scott [23] devel-

oped a fast interval method that improves the accuracy of

the standard interval method (without partitioning) using the

theory of differential inequalities. We refer to this as the

discrete-time differential inequalities (DTDI) method. The

key feature of DTDI is that, when propagating the current

interval to the next time, the dynamics are only bounded over

the boundary of this interval (i.e., its 2n faces) rather than

the entire interval. This idea originates from the continuous-

time setting, where a trajectory cannot leave an enclosure

without touching its boundary at some time. Consequently,

when propagating enclosures forward in time, it suffices to

consider only the values of the vector field on the enclosure

boundary. This insight is central to the theory of differential

inequalities and is used in many continuous-time reachability

methods. Although this reasoning does not hold in discrete-

time, Yang and Scott showed that a discrete-time analog

of this approach is valid for systems satisfying a certain

monotonicity property. In particular, it is valid for systems

obtained by forward Euler discretization with a step size less

than one over a Lipschitz constant for the system. The basic

DTDI method in [23] produces much tighter bounds than

the standard interval method without partitioning, but is still

very conservative for many examples.

To further improve accuracy, some researchers have re-

cently suggested using redundant model equations to refine

the computed enclosures [23], [20]. Redundant equations

refer to any explicit relationships involving the system states

and uncertain parameters that are known to be satisfied by

all solutions. Many systems naturally satisfy such relations,

which may include conservation laws, forward invariant sets,

or physical bounds on certain states. The use of redundant

equations is well established in continuous-time reachability

and results in very sharp bounds for many problems [24].

Moreover, systems that do not satisfy any known redundant

relationships can also benefit from this approach using the

concept of manufactured redundancy described in [9]. Yang

and Scott first applied this approach in discrete-time in

[23]. They incorporated redundancy into the standard interval

method by using the redundant equations to refine the current

interval at each step before propagating it forward. Unfortu-

nately, this did not improve the accuracy much. Two similar

methods for incorporating redundancy into constrained zono-

tope methods were later proposed in [20]. This resulted in

much more accurate enclosures for one example, but it is

not yet clear how these methods perform more generally.



Moreover, these methods are significantly more complex

than the interval method and the current implementations

involve the costly solution of linear programs in every time

step. In [23], Yang and Scott also incorporated the use of

redundant equations into their new DTDI method. Critically,

the refinement step was applied to each face of the current

bounding interval independently, rather than to the entire

interval as in the standard interval method. This distinction

proved to be decisive. Unlike the standard interval method,

the use of redundancy within DTDI resulted in dramatic

improvements in accuracy at moderate cost, leading to much

tighter bounds than all other methods for several test cases.

However, the monotonicity condition required by DTDI is

more stringent when using redundancy. For Euler discretized

systems, the step size must be lower than the product of two

Lipschitz constants, one for the dynamics and one associated

with the refinement algorithm. In the authors’ experience,

this has proven to be restrictive. In the best case, it requires

the inconvenient calculation of Lipschitz constants. In more

challenging cases, the Lipschitz constants must be reduced

by scaling the dynamics or using less effective refinement

algorithms (see [23]). In the worst case, the method is not

applicable at all.

This paper presents a new interval bounding method that

uses one-dimensional partitions to mimic DTDI without

using differential inequalities theory. Specifically, the cur-

rent state enclosure is partitioned along dimension i when

bounding the range of the ith state variable at the next time.

This partitioning scheme is devised specifically so that any

calculation in DTDI that would use the ith upper or lower

face of the current interval will be done in our method using

intervals that have been partitioned along the ith dimension,

and are therefore relatively narrow in that dimension. The

favorable performance of DTDI suggests that partitioning

in this way should lead to significantly more accurate en-

closures than the standard interval method, especially when

using redundancy. At the same time, the proposed method

is valid for any discrete-time system, does not require the

computation of any Lipschitz constants, and can be used

with any refinement algorithm. Although partitioning is a

well known approach for improving the accuracy of interval

methods, this typically requires partitioning simultaneously

in all dimensions, resulting in exponential complexity. In

contrast, the proposed method partitions along one dimension

at a time and hence scales only linearly. Numerical results

show that this method is nearly as accurate as DTDI with

redundancy and only slightly more costly.

II. PROBLEM STATEMENT

Consider the nonlinear discrete-time system

xk+1 = f(k,xk,wk) , (1)

where k ∈ K ≡ {0, . . . ,K}, xk ∈ R
nx is the state, wk ∈ R

nw

is a disturbance, and f : K×R
nx ×R

nw → R
nx . Assume the

initial conditions and disturbances satisfy

(x0,wk) ∈C0 ×W, ∀k ∈K, (2)

where C0 and W are known compact intervals. Define the

shorthands x0:K ≡ (x0, . . . ,xK), w0:K ≡ (w0, . . . ,wK), and

W0:K ≡W × . . .×W . When necessary for clarity, the solution

of (1) corresponding to a specific (x0,w0:K)∈C0×W0:K will

be denoted explicitly by xk(x0,w0:K).
Definition 1: The reachable set of (1) at time k ∈K is

Rk ≡ {xk (x0,w0:k) : (x0,w0:K) ∈C0 ×W0:K}.

Moreover, xL
0:K and xU

0:K are state bounds for (1) if

xL
k ≤ xk (x0,w0:K)≤ xU

k ,

for all (k,x0,w0:K) ∈K×C0 ×W0:K .

The objective of this paper is to present a new method

for efficiently computing tight state bounds for (1). As

mentioned in §I, some methods discussed herein make use of

redundant relations satisfied by all solutions of (1) to achieve

tighter bounds. We assume this information is available in

the form of a general a priori enclosure.

Assumption 1: A set G ⊂ R
nx is known such that

xk(c0,w0:K) ∈ G, (3)

for all (k,c0,w0:K) ∈K×C0 ×W0:K .

This assumption is not restrictive because G = R
nx is

always valid. However, nontrivial choices of G are often

available in the form of conservation laws, physical bounds,

etc., and can have a profound impact on the results of some

bounding methods. When no such constraints are known, a

useful set G can often be manufactured by lifting the system

into a higher-dimensional space as described in [23], [9].

III. BACKGROUND

To motivate the proposed one-dimensional partitioning

method, this section briefly reviews the standard interval and

DTDI methods for computing state bounds for (1).

Let Z =
[

zL,zU
]

denote the n-dimensional compact inter-

val {z ∈R
n : zL ≤ z ≤ zU}. The space of all such intervals is

denoted by IR
n. For any h : Rn → R

m, an interval function

H : IRn → IR
m is called an inclusion function for h if

h(Z)≡ {h(z) : z ∈ Z} ⊂ H(Z), ∀Z ∈ IR
n.

Assumption 2:

1) A function F : K× IR
nx × IR

nw → IR
nx is available

such that F(k, ·, ·) is an inclusion function for f(k, ·, ·)
for all k ∈K.

2) An interval refinement operator I [G, ·] : IRnx → IR
nx

is available for the a priori enclosure G satisfying

(Z ∩G)⊂ I [G,Z] , ∀Z ∈ IR
nx . (4)

An inclusion function satisfying Assumption 2.1 can be

readily computed using interval arithmetic [25]. Moreover,

several existing refinement algorithms can be used to satisfy

Assumption 2.2 provided that G is defined by a system

of equality and inequality constraints [9], [23]. In brief,

these algorithms attempt to compute a subinterval of Z by

eliminating regions in Z that violate one or more of these

constraints using iterative methods similar to interval Newton

methods. In the trivial case where G = R
nx , the use of this



operator in the methods below should be interpreted with the

trivial definition I[G,Z] = Z.

Under these assumptions, the standard interval method

(with redundancy) computes state bounds for (1) as the

solutions of the following difference equations for all i ∈
{1, . . . ,nx}, where Xk ≡

[

xL
k ,x

U
k

]

, Fi =
[

f L
i , f U

i

]

is the ith

component of F , and C0,i is the ith component of C0:

xL
k+1,i = f L

i (k,I [G,Xk] ,W ) , (5)

xU
k+1,i = f U

i (k,I [G,Xk] ,W ) ,
[

xL
0,i,x

U
0,i

]

=C0,i.

Definition 2: For every i ∈ {1, . . . ,nx}, define the face

selection operators β L
i ,β

U
i : IRnx → IR

nx by

β L
i

([

zL,zU
])

≡
{

z ∈
[

zL,zU
]

: zi = zL
i

}

, (6)

βU
i

([

zL,zU
])

≡
{

z ∈
[

zL,zU
]

: zi = zU
i

}

.
The DTDI method from [21] (with redundancy) computes

state bounds for (1) as the solutions of the following differ-

ence equations for all i ∈ {1, . . . ,nx}:

xL
k+1,i = f L

i

(

k,I
[

G,β L
i (Xk)

]

,W
)

, (7)

xU
k+1,i = f U

i

(

k,I
[

G,βU
i (Xk)

]

,W
)

,
[

xL
0,i,x

U
0,i

]

=C0,i.

This differs from (5) in that the refinement operator I[G, ·]

is applied to the faces β
L/U

i (Xk) rather than to Xk, and fi

is only bounded over the refinements of these faces. Even

without refinement, this can lead to much tighter bounds than

(5) [21]. Moreover, it has been shown that using I[G, ·] is

much more effective in DTDI than in the standard interval

method [21]. This is explained in Figure 1, where the blue

line shows a redundant linear relationship between x1 and x2

assumed to hold for all solutions (such affine invariants are

common in chemical reaction network models; see Example

1 in §V). Consider the computation of xL
1,k+1 from a current

interval Xk using both (5) and (7). The top left pane of Figure

1 shows how Xk (black lines) might be refined using the

invariant to yield I[G,Xk] (gray shaded region). Although

I[G,Xk] is tighter than Xk, the improvement is minor. Using

(5), xL
1,k+1 is computed as a lower bound on f1 over this

entire region. In contrast, using (7), xL
1,k+1 is computed as

a lower bound on f1 over I[G,β L
1 (Xk)]. This is illustrated

in the top right pane of Figure 1, where β L
1 (Xk) is the line

segment connecting the two blue circles and I[G,β L
1 (Xk)]

is a singleton represented by the gray circle. Since this set

is much smaller than I[G,Xk], DTDI is likely to produce

a much tighter lower bound xL
1,k+1. Although refinement

is not always so effective for DTDI, especially in higher

dimensions, it is typically much more effective for DTDI

than for the standard interval method.

Unfortunately, DTDI is not valid for arbitrary systems and

arbitrary refinement operators, while the standard interval

method is. Specifically, DTDI requires that I[G, ·] is locally

Lipschitz continuous on IR
nx (w.r.t. the Hausdorff metric)

and that f satisfies a certain monotonicity property. If (1) is

derived by forward Euler discretization of a continuous-time

Case 1

Case 2

Fig. 1. Schematic of interval refinements of Xk done during the computation
of xL

1,k+1 using the standard interval method (5) (left), DTDI (7) (right), and

the proposed one-dimensional partitioning method (9) with np = 4 (middle)
in two different cases (top and bottom rows). The blue line represents G,
the black box is Xk , and the gray regions are the results of refinement.

system, then this monotonicity requirement holds provided

that the step size h satisfies h ≤ 1
MMI

, where MI is a Lips-

chitz constant for I[G, ·] and M is a Lipschitz constant for the

right-hand side function of the continuous-time dynamics.

For Euler systems, this step size limitation is minor when

redundancy is not used (i.e., MI = 1). The constant M is

easily computed and the requirement h ≤ 1
M

is no more

restrictive than well known step size limitations for main-

taining numerical stability and preserving physical properties

of the system [26]. However, when using redundancy, the

step size limitation can be problematic. The constant MI

is difficult to compute and often large [21]. This forces

the use of unnecessarily small step sizes or less effective

refinements with lower MI . For non-Euler systems, the

required monotonicity property is equally difficult to verify

and, without a controllable step size, there is no recourse if

it fails. Thus, although DTDI produces much tighter bounds

than the standard interval method when it applies, it is often

inconvenient and sometimes inapplicable.

IV. A ONE-DIMENSIONAL PARTITIONING METHOD

This section introduces a new reachable set bounding

algorithm designed to capture the key advantages of DTDI

while avoiding the limitations discussed in §III. A close

look at the theory in support of DTDI [21] shows that the

undesirable Lipschitz conditions, monotonicity requirements,

and step size limitations are all required to justify the use of

the face selection operators β
L/U

i in (7). To approximate (and

hence eliminate) these operators, we define the following

one-dimensional partitioning operators.

Definition 3: Choose any partition size np ∈N+. For every

dimension i ∈ {1, . . . ,nx} and partition element index j ∈
{1, . . . ,np}, define the partition element selection operator



φ
np, j
i : IRnx → IR

nx by φ
np, j
i (X)≡

[

rL,rU
]

, where

[

rL
q ,r

U
q

]

≡







[

xL
q ,x

U
q

]

, q 6= i
[

xL
q +

xU
q −xL

q

np
( j−1) ,xL

q +
xU

q −xL
q

np
j

]

, q = i
.

In words, φ
np, j
i (X) is the subinterval of X corresponding

to the jth element of a uniform partition of X along its ith

dimension. Evidently, for every i ∈ {1, . . . ,nx} we have

np
⋃

j=1

φ
np, j
i (X) = X . (8)

We propose to compute state bounds for (1) as the solutions

of the following difference equations for all i ∈ {1, . . . ,nx}:

xL
k+1,i = min

j∈{1,...,np}

{

f L
i

(

k,I
[

G,φ
np, j
i (Xk)

]

,W
)}

, (9)

xU
k+1,i = max

j∈{1,...,np}

{

f U
i

(

k,I
[

G,φ
np, j
i (Xk)

]

,W
)}

,

[

xL
0,i,x

U
0,i

]

=C0,i.

In words, this method computes the ith component of

Xk+1 by partitioning Xk into np pieces along its ith dimen-

sion, refining each element of this partition independently,

bounding fi over each refined element, and finally selecting

the minimum and maximum bounds on fi. In what follows,

we first prove that this provides valid state bounds for (1).

Notably, this does not require (1) to satisfy any monotonicity

properties and does not require f or I[G, ·] to be Lipschitz.

Subsequently, we discuss the conceptual rationale for (9) and

its relation to DTDI and existing partitioning approaches.

Theorem 1: For any partition size np ∈ N+, the solutions

of (9) are state bounds for (1).

Proof: Choose any np and let xL
0:K and xU

0:K be the

solutions of (9). Moreover, choose any x0 ∈ C0 and w0:K ∈
W0:K and let x0:K be the corresponding solution of (1). We

must prove that xk ∈ Xk ≡
[

xL
k ,x

U
k

]

for ∀k ∈K.

Since x0 ∈C0, we have xk ∈ Xk for k = 0. To set up a proof

by induction, assume that xk ∈ Xk for some arbitrary 0 ≤
k < K. Choose any i ∈ {1, . . . ,nx}. By (8), there must exist

j ∈ {1, . . . ,np} such that xk ∈ φ
np, j
i (Xk). Moreover, xk ∈ G

by Assumption 1. Thus, (4) in Assumption 2.2 ensures that

xk ∈ I
[

G,φ
np, j
i (Xk)

]

. Since F(k, ·, ·) is an inclusion function

for f(k, ·, ·) by Assumption 2.1, this implies that

xk+1,i = fi(k,xk,wk), (10)

∈ Fi

(

k,I
[

G,φ
np, j
i (Xk)

]

,W
)

, (11)

⊂ Xk+1,i, (12)

where the last inclusion follows from (9). Since i is arbitrary,

xk+1 ∈ Xk. The result follows by induction over k.

It is well known that partitioning can significantly improve

the accuracy of interval methods. However, this typically

requires partitioning all dimensions simultaneously, which

results in exponential complexity. In contrast, computing a

single time step of (9) only requires partitioning Xk in one

dimension at a time, and hence scales linearly. Specifically,

if complexity is expressed as the number of times a method

evaluates F(k,I[G, ·],W ) in a single time step, then the

complexity of (9) is npnx compared to 1 for the standard

interval method, 2nx for DTDI, and (np)
nx if Xk were

partitioned along all dimensions simultaneously. Thus, (9)

is much more efficient than standard partitioning approaches

and only a factor of np/2 more complex than DTDI.

The expectation that accurate results will be obtained

by this partitioning scheme is justified by comparison to

DTDI. Consider again the computation of xL
1,k+1 from Xk.

In this case, Xk is partitioned only along the x1 dimension

as illustrated in top middle pane of Figure 1. Notably, the

partition element φ
np, j
1 (Xk) with j = 1 approximates the set

β L
1 (Xk) used in (7). Moreover, if the system satisfies the

monotonicity condition required by DTDI, then the minimum

over j in (9) will be attained with j = 1. Therefore, (9)

closely approximates DTDI when DTDI applies. Thus, even

in the absence of refinement, this partitioning scheme should

lead to significant improvements over the standard interval

method. However, like DTDI, the impact of one-dimensional

partitioning is expected to be even more pronounced when

combined with refinement. In Figure 1, refining each parti-

tion element results in the four gray intervals, and xL
1,k+1 is

computed as a lower bound on f1 over these regions. Clearly,

this is likely to lead to a tighter bound than that computed

by the standard interval method using the larger gray region

illustrated in the top left pane. While the geometry of G may

not always be so favorable, especially in higher dimensions,

experience with DTDI suggests that partitioning even in just

one dimension will lead to much better utilization of G.

The preceding discussion suggests that the one-

dimensional partitioning method should approach the

accuracy of DTDI as np increases, but can never be more

accurate. However, this is not precisely true, as can be seen

in the results in §V. To explain, consider the computation of

xL
1,k+1 from Xk in the case illustrated in the bottom row of

Figure 1. The right-most pane shows that G∩ β L
1 (Xk) = /0.

Since DTDI requires I[G, ·] to be Lipschitz continuous on

all of IR
nx , it cannot return the empty set even though that

would satisfy (4). The algorithm for I[G, ·] in [23] returns

the singleton containing the gray circle in Figure 1. In

contrast, for the partitioning method in the middle pane,

the intersection between G and the first partition element

from the left is non-empty and is refined to the indicated

gray region. Notably, this region does not contain the

gray circle in DTDI schematic, nor do the refined regions

corresponding to any other partition element. Due to this

technicality, it is possible that the lower bound computed by

DTDI may be worse than that from the partitioning method.

However, this is expected to happen rarely.

Finally, note that the partitioning method does not require

I[G, ·] to be Lipschitz continuous, and therefore it could

use a refinement algorithm that returns the empty set when

permitted by (4). For example, the empty set could be

returned for the fourth partition element in Figure 1.



V. NUMERICAL RESULTS

This section compares the one-dimensional partitioning

method (9) with the standard interval method (5) and the

DTDI method (7), with and without the use of an a priori

enclosure G. For the methods without G, the refinement

operator in (5), (7), and (9) is the trivial refinement I[G,Z] =
Z. For the methods with G, I[G,Z] is defined by Algorithm

1 in [23]. Unless stated otherwise, np = 10 is used for

partitioning. DTDI has been compared with other state-of-

the-art methods in [23] using the same case study. Therefore,

we do not reproduce these additional comparisons here. We

report CPU times from MATLAB R2019a on a ThinkPad

X390 with an i7-8565U CPU @1.80GHz and 16.0GB RAM.

Example 1: Consider the enzymatic reaction network

from [27], where the concentrations of six species x1–x6 (M)

evolve according to the following difference equations:

x1,k+1 = x1,k +h
(

−k1,kx1,kx2,k + k2,kx3,k + k6,kx6,k

)

(13)

x2,k+1 = x2,k +h
(

−k1,kx1,kx2,k + k2,kx3,k + k3,kx3,k

)

x3,k+1 = x3,k +h
(

k1,kx1,kx2,k − k2,kx3,k − k3,kx3,k

)

x4,k+1 = x4,k +h
(

k3,kx3,k − k4,kx4,kx5,k + k5,kx6,k

)

x5,k+1 = x5,k +h
(

−k4,kx4,kx5,k + k5,kx6,k + k6,kx6,k

)

x6,k+1 = x6,k +h
(

k4,kx4,kx5,k − k5,kx6,k − k6,kx6,k

)

The initial concentrations are c0 = (34,20,0,0,16,0) and

the parameters k = (k1, . . . ,k6) are disturbances bounded in

[k̂,10k̂], where k̂ = (0.1,0.033,16,5,0.5,0.3).
All solutions of this system are known to be nonnegative

and satisfy three affine reaction invariants [23]. Based on

these observations, a valid a priori enclosure can be derived

as G ≡ {z ∈ Xnat : Mz = b}, where

M =
[

0 −1 −1 0 0 0
0 0 0 0 −1 −1
1 −1 0 1 −1 0

]

, b =
[−20
−16
−2

]

, (14)

and Xnat = [0,34]× [0,20]× [0,20]× [0,34]× [0,16]× [0,16].
Using this G, it was shown in [23] that DTDI is valid with

h = 9×10−5, which we also use here for comparison.

Figure 2 shows the state bounds for x3 and x5 computed

by all methods, as well as the total enclosure volume metric

(vol(Xk))
1/nx . When the a priori enclosure G is not used,

the standard interval method rapidly diverges. DTDI gives

significantly better results, but the bounds are still too weak

to be useful. Nonetheless, the results show that the parti-

tioning method is able to closely match the improvements

made by DTDI. When G is used, all methods improve

significantly. However, whereas the standard interval method

still provides weak bounds, both DTDI and the partitioning

method become fairly accurate. Notably, the partitioning

method achieves nearly the same accuracy as DTDI, which

has previously been shown to be significantly more accurate

than other state-of-the-art methods for this example [23].

Although we expect partitioning to be less accurate than

DTDI in general, it is more accurate for x3 in Figure 2 for

the reason explained at the end of §IV.

A key conclusion from [21] is that combining DTDI with

redundancy leads to improvements far beyond those achieved
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Fig. 2. Enclosure volume and selected state bounds for Example 1
computed using the standard interval method (�), DTDI (▽), and the one-
dimensional partitioning method (⋆), both with (solid lines, �, ▽, ⋆) and
without (dashed lines, �, ▽, ⋆) using G. The gray shaded regions show the
true volume and reachable sets estimated by sampling.

by applying DTDI or redundancy independently. Our results

show that the one-dimensional partitioning method shares

this behavior. Specifically, the partitioning method enables

redundancy to be used much more effectively than in the

standard interval method. In fact, the improvements caused

by using G in the standard interval method arise entirely

from intersection with Xnat, while refinements based on the

affine invariants Mz = b are wholly ineffective. In contrast,

these invariants are highly effective when combined with

one-dimensional partitioning, as illustrated in Figure 1.

Compared to DTDI, one-dimensional partitioning has sev-

eral advantages. First, it does not require the system to satisfy

any monotonicity properties. Consequently, it is valid for any

step size, whereas DTDI is not known to be valid for this

example with h greater than 9×10−5. Thus, one-dimensional

partitioning may be implementable with fewer time steps,

leading to higher efficiency despite having a higher per step

complexity. Second, there is no need to compute Lipschitz

constants for the dynamics or the refinement operator, and

in fact no requirement that they are Lipschitz at all. This is

more convenient, but also enables the use of more effective

refinement operators. Since large Lipschitz constants were a

significant limiting factor for several refinement methods in

[21], this is expected to enable more accurate bounds than

DTDI in many cases. However, for this example, equipping

the one-dimensional partitioning method with the more ac-

curate refinement method in Algorithm 1 of [9] did not lead

to a significant improvement. Third, it is possible to achieve
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Fig. 3. Enclosure volume for Example 1 computed using the standard in-
terval method (�), the DI method (▽), and the one-dimensional partitioning
method with np equal to 2, 5, 10 and 15 (⋆, ⋆, ⋆, ⋆). All methods use G.
The gray shaded region show the true volume estimated by sampling.

tighter bounds than DTDI even when the same refinement

operator is used, as can be seen in Figure 2. However, this is

due to technical details of how DTDI handles the case where

G∩β
L/U

i (Z) = /0 and is not expected to happen often.

Figure 3 shows how the number of partition elements np

influences the volume of the resulting bounds. The volumes

obtained by the standard interval and DTDI methods are also

plotted for reference. The a priori enclosure G was used for

all methods. The standard interval method is equivalent to the

partitioning method with np = 1. By increasing np to 2, the

bounds are already tightened significantly. With np = 10, the

bounds are nearly the same as those from DTDI. Increasing

np further does not result in significant improvements.

For the methods without G, the standard interval method

has the lowest cost, requiring roughly 1.5×10−4 s per step.

The partitioning method with np = 10 has the highest cost,

requiring 3 × 10−3 s per step. This is roughly 6 (≈
np

2
)

times higher than the cost of DTDI. When using G, the

computational burden of all three methods doubles, but their

relative costs remain the same.
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