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ABSTRACT

We investigate three-dimensional natural convection flow in an air-filled, differentially heated cubical
cavity. The vertical wall on the left is heated and the vertical wall on the right is cooled, with the re-
maining four walls being adiabatic. We performed direct numerical simulations of the natural convection
flow using discrete unified gas-kinetic scheme (DUGKS), with an improved implementation of boundary
conditions. Thin boundary layers are developed along the two isothermal walls. The laminar to turbulent
flow transition inside the boundary layers is studied in this paper. The simulations are conducted at three
Rayleigh numbers of 1.5 x 10%, 1.0 x 10'%, 1.0 x 10" using nonuniform grids with resolution up to 3203.
The Prandt]l number is fixed at 0.71. We provide a detailed analysis of the transition from laminar to tur-
bulent flow inside the vertical boundary layers and its influence on the rate of heat transfer. Time traces
of temperature and velocity, time-averaged flow field, statistics of fluctuation fields are presented to il-
lustrate distinct behaviors in the laminar and turbulent thermal boundary layer, as well as to determine
the transition location at different Ra numbers. The average Nusselt numbers for different Ra numbers
are compiled and compared to previous results. A guideline of the resolution requirement is suggested
based on the Ra scaling of laminar thermal boundary layer.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

and these differentially heated from the sides. The Rayleigh-Bénard
convection has been widely studied [2,3], while the latter case is

Natural convection in an enclosure is a classical configuration
in heat transfer research due to many applications such as such as
cooling of the electronic device, energy storage system and climate
conditioning of rooms [1]. Using convection to enhance heat trans-
fer in a compact space is a highly effective approach. Based on the
direction of the applied temperature gradient, it can be classified
into two categories: cavity heated from below (Rayleigh-Bénard)
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relatively less studied and is considered in this paper. Namely, here
the left vertical wall of the cavity is heated and the right vertical
wall is cooled, with the remaining four walls being kept adiabatic.

Researchers have studied this latter configuration for several
decades, focusing on different aspects such as the instability mech-
anism of the convection and the Nusselt - Rayleigh number cor-
relation, where the Rayleigh number is the key input parameter
and the Nusselt number measures the dimensionless heat trans-
fer rate, both will be defined in Section 2. Despite its simple con-
figuration, this problem is extremely complex due to the strong
coupling between velocity field and temperature field and a large
range of system parameters such as the cavity aspect ratio, Prandtl
number, temperature difference, etc. When the temperature differ-
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ence is small, the density change is negligible except in the buoy-
ancy term. And under the Boussinesq assumption the fluid prop-
erties such as viscosity v, heat conductivity k, are treated as con-
stants. The viscous dissipation in the energy equation is typically
neglected. Led by the pioneering work of de Vahl Davis and co-
workers [4,5], researchers used different methods to study this
problem numerically and provided benchmark solutions for both
two- and three-dimensional cavities; and the simulation results
were compared to earlier experimental results [6-8]. A summary
of previous direct numerical simulations of natural convection in a
differentially heated cavity related to our study is presented below.

Due to the restriction of the computational resource, the early
numerical studies focused on steady laminar convection flow. For
flow in a two-dimensional square cavity, de Vahl Davis and Jones
[5] provided a set of benchmark solutions for the laminar regime
(103 < Ra < 10%) using the finite-difference method. Later, Quéré
[9] used the pseudo-spectral method to solve the problem with
finer meshes up to 128 x 128. He provided solutions for the full
range of two-dimensional steady-state flow (Ra < 108). Beyond a
critical Ra, the two-dimensional natural convection flow becomes
time-dependent, the onset of the unsteadiness is affected by sev-
eral controlling parameters. Using the finite-difference method,
Paolucci and Chenoweth [10] studied two-dimensional natural con-
vection with Rayleigh number up to 1010 in cavities of aspect
ratio near unity. They claimed that for cavity with aspect ratio
(A=height/length) less than % or larger than 3, the primary in-
stability takes place insides the boundary layer along the isother-
mal wall. However, for % < A < 3 the instability first happens near
the departing corners. Janssen and Henkes [11] performed two-
dimensional simulations in a differentially heated square cavity
with Prandtl number between 0.25 and 7.0. They found that for
Prandtl number between 0.25 and 2.0, the flow exhibits peri-
odic, quasi-periodic behaviors before becoming turbulent eventu-
ally. While for larger Prandtl number, flow goes from steady to tur-
bulent without intermediate transition.

For an air-filled differentially heated square cavity with adia-
batic horizontal walls, Quéré and Behnia [12] concluded that the
critical Rayleigh number for transition from steady to unsteady
flow is Racr = 1.82 + 0.01 x 108, using a relatively coarse mesh res-
olution at 72 x 72. They studied time-dependent flow up to Ra =
1.0 x 10'° in 2D, based on the pseudo-spectral Chebyshev algo-
rithm. Two-dimensional natural convection flow in a square cav-
ity can be a good approximation of the flow at the mid-plane
of the three-dimensional cubical cavity. As stated by Janssen and
Henkes [11], the boundary layer along the heated wall of the cav-
ity resembles those along the isothermal vertical plate. However,
the introduction of the top wall of the cavity changes the flow
structure. The vertical boundary layer is turned horizontal and cre-
ates a jet-like fluid layer which induces the first instability. When
the Rayleigh number is further increased, the second instability
takes place insides the boundary layer. Although there are numer-
ous studies about the boundary layer adjacent to an isothermally
heated vertical surface [13,14], the introduction of the horizontal
walls restrains the free development of the vertical boundary layer.
As the heat transfer is highly affected by the flow regime of the
thermal boundary layer, in this study we will focus on absolute in-
stability of thermal boundary layer, specifically, the flow transition
insides the boundary layers and its influence on the heat trans-
fer. In passing we note that Janssen and Armfield [15] studied con-
vective instability due to externally imposed perturbations within
the thermal boundary layer. The convective instability occurs at a
much smaller Rayleigh number than those at which the absolute
instability happens.

As the turbulent convection flow must be essentially three-
dimensional in nature, researchers extended DNS to the three-
dimensional cavities based on previous two-dimensional studies.
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Mallinson and de Vahl Davis [4] performed an early simulation
of three-dimensional natural convection using the finite-difference
method with relatively coarse meshes for the Rayleigh number
range 10* < Ra < 10%, Fusegi et al. [16] reported a finite-difference
numerical study of three-dimensional natural convection in a cubi-
cal cavity for Rayleigh number range of 103 < Ra < 108. Tric et al.
[17] provided a set of benchmark solutions for 103 < Ra < 107 us-
ing pseudo-spectral Chebyshev algorithm based on the projection-
diffusion method. Fusegi et al. [18] reported benchmark results
for Ra = 1010 using 62 x 122 x 62 meshes. With the introduction
of the lateral walls in the third direction, we expect the critical
Rayleigh number for the onset of unsteady convection will be af-
fected by these lateral walls. Janssen and Henkes [19] studied the
transition to unsteady flow in the three-dimensional cavity with
adiabatic horizontal walls, and obtained the critical Ra between
2.5 x 108 and 3 x 108 by assuming symmetry so that they only
performed simulation on a quarter of the cavity. However, Labrosse
et al. [20] claimed that transition happens at Ra = 3.19 x 107 with-
out assuming symmetry.

In the current study, we perform three-dimensional simula-
tions in a cubical cavity with a Rayleigh number range far be-
yond the critical Rayleigh number. This allows us to investigate
the flow transition insides the boundary layer which is the sec-
ond type of instability for this specific configuration. Another im-
portant research goal for natural convection is to predict the Nus-
selt number of the heated wall which is desired for engineering
applications. Utilizing the numerical results for a large range of
Rayleigh number, researchers proposed Rayleigh - Nusselt corre-
lations for the three-dimensional cubical enclosure. Fusegi et al.
[18] proposed an empirical correlation for the overall Nusselt
number Nugyery; = 0.163Ra%282 for 103 < Ra < 10'° with relatively
coarse mesh. Wang [21], Wang et al. [22] reported the correlation
Nugyeran = 0.127Ra%3%952 for steady flow regime 103 < Ra < 107 and
Nugyeran = 0.3408Ra®24! for unsteady flow regime 107 < Ra < 1010,
While for the steady flow regime, the average Nusselt number re-
sults are in good agreement, the results have noticeable differences
in the unsteady flow regime. One reason for this disagreement is
that the high Rayleigh number convection requires fine mesh, and
Fusegi used a relatively coarse mesh. For unsteady flow regime, the
Nusselt - Rayleigh correlation still needs to be improved.

In general, three-dimensional differentially-heated natural con-
vection flow in a cavity has a unique flow structure rather differ-
ent from the Rayleigh-Bénard problem. Driven by the buoyancy
force Bg(T —Ty) along the vertical direction, thin boundary lay-
ers develop along the isothermal walls, outside the boundary layer,
the core region is quiescent and there is a vertical temperature
stratification in the cavity center. In the previous studies, most re-
searchers focused on general flow feature of the natural convection
and provided a set of time-averaged statistics [6,17,18]. Only a few
of them paid attention to the transition from laminar to turbulent
flow insides the boundary layer. Trias et al. [23-25] performed di-
rect numerical simulations to a differentially heated cavity of as-
pect ratio 4 up to Ra = 10! and provided a comparison between
two- and three-dimensional results for this problem. They claimed
that the thermal boundary layers of the three-dimensional flow
remain laminar or quasi-laminar in the upstream parts, up to a
point where the eddies are ejected. This transition location moves
further upstream for 3D simulations, compared to 2D simulations.
However, for the cubical cavity, the influence of the top and bot-
tom wall is more significant. And based on the analysis of Paolucci
and Chenoweth [10], the aspect ratio plays an important role in
the development of flow instability, the instability mechanism of
the cubic cavity is different from the tall cavity.

The primary goal of the current work is to improve our un-
derstanding of the transition from laminar to turbulent flow in-
side the vertical boundary layer in a differentially heated cubi-
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cal cavity with adiabatic horizontal and lateral walls. In recent
years, the kinetic method (or mesoscopic CFD method based on the
model Boltzmann equation) has been developed and become a re-
liable tool for thermal flow simulations [26-28]. The discrete uni-
fied gas-kinetic scheme [29] is used for the current study. Compar-
isons of performance in terms of accuracy, stability, and efficiency
have been done previously in Wang et al. [30,31] and Bo et al.
[32]. Wang et al. [30] compared DUGKS and LBM in the simula-
tion of lid-driven cavity flow, laminar flow past a square cylinder.
Wang et al. [31] compared DUGKS, LBM, and spectral method in
the simulation of decaying turbulent flows, Bo et al. [32] compared
DUGKS, LBM, and spectral method in the simulation of 3D Taylor-
Green vortex flow and wall-bounded channel flows. In these stud-
ies, the second-order accuracy has been demonstrated. In terms of
efficiency, DUGKS is slower than LBE in terms of updating the dis-
tribution functions at the lattice nodes due to its additional evalua-
tion of interface fluxes. However, as a finite volume scheme DUGKS
can use a non-uniform mesh. As a result, if the non-uniform mesh
can be clustered in the region with a large flow gradient, the ef-
ficiency of DUGKS can be better than LBM. The relative efficiency
of DUGKS over LBM was discussed for the simulation of the flow
passing the square cylinder in Wang et al. [30] and for turbulent
channel flow in Bo et al. [32]. Non-uniform meshes can be easily
implemented in this scheme and the boundary condition can be
applied right at the cell interface on the wall. However, accurate
implementation of temperature and velocity boundary conditions
in the kinetic method remains a research topic, and here we will
propose an improved implementation that is consistent with the
Chapman-Enskog analysis. Different statistics will be used to spec-
ify the transition location, and study the influence of flow transi-
tion on the rate of heat transfer.

The present paper is organized as follows. The physical problem
description and numerical method (DUGKS) are first presented in
Section 2. Numerical results are presented to address several physi-
cal aspects. In Section 3.3 we discuss the time evolution of velocity
and temperature of a set of selected monitoring points and their
power spectra. Averaged flow fields are presented in Section 3.4,
followed by secondary statistics in Section 3.5. The effect of flow
transition on heat transfer is presented in Section 3.6. Finally, a
summary is given in Section 4.

2. Governing equations and numerical methods
2.1. Problem description and governing equations

We consider an air-filled cubical cavity of height h, with an
isothermal vertical hot wall at temperature T, = T + 0.5AT on the
left, and a cold wall at temperature T = Ty — 0.5AT on the right;
where the temperature difference AT =T, — T, and the mean tem-
perature Tyo = (T, + Tc)/2. The other four walls (i.e., two other ver-
tical walls and two horizontal walls) are assumed to be adiabatic.
No-slip velocity boundary conditions are imposed on all walls. Un-
der the Boussinesq assumption, the fluid density is treated as a
constant except with two considerations: (1) the buoyancy force
is retained due to density variation caused by temperature change
and (2) the volume expansion work in the thermal energy equation
is retained under the ideal gas assumption Kundu et al. [33]. Fur-
thermore, the viscous dissipation in the thermal energy equation
is neglected as it is typically very small for the case of air under
natural convection. The governing equations can then be written
as

V.u=0, (1a)
ou 2
p§+p(u-V)u=—VP+va u—-pB(T-Tos. (1b)
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Fig. 1. The geometry under consideration.
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where u is the flow velocity, T is the temperature, p is the density
at the mean temperature Ty, g is the gravitational acceleration, p is
a modified pressure including the effect of mean body force pg, v
is the kinematic viscosity, B is the thermal expansion coefficient,
and « is the thermal diffusivity. Under the above Boussinesq as-
sumption, the temperature field is treated as a scalar field which
is advected by the macroscopic flow with a constant diffusion co-
efficient. Nevertheless, the velocity field and the temperature field
are closely coupled: the flow is driven by the temperature field
through the buoyancy force, and at the same time the temperature
field is advected by the flow velocity. This coupling introduces an-
other level of nonlinearity in addition to the inertial term in the
momentum equation. The coordinate system used is: x is the ver-
tical direction, y is the horizontal direction perpendicular to the
heated wall, and z is the spanwise direction.

With the above setup and the simplified governing equations,
the system is governed by the geometrical parameters (cavity
height h,cavity length [, cavity depth w, see Fig. 1), fluid properties
(v, (Bg), o), the reference temperature Ty, and driving temperature
difference AT. Note that the mean density can be absorbed into
the pressure term thus it is not listed. Also (8g) is viewed as a sin-
gle parameter as they appear together in the momentum equation.
By dimensional analysis, it follows that the system is governed by
the following five independent dimensional parameters
_ gBATH? v AT h h

e PEY T T w 2)

u- V)T =aV?T, (1c)

Ra

Furthermore, it is assumed that AT/Ty << 1. With the two aspect
ratios h/l and h/w fixed to one here and the Prandtl number for
air given as Pr = 0.71, the only governing parameter remaining is
the Rayleigh number Ra, which can be interpreted as Ra = RegffPr,
where the effective Reynolds number is defined as Reqg = ugh/v,
with the buoyancy velocity defined as ug = /8 ATgh.

We can now nondimensionalize all quantities in the governing
equations by the length scale h, velocity scale ug, time scale h/ug,
pressure scale pu% and temperature scale AT. Since the tempera-
ture equation is linear, a reference value can be subtracted, so we
define the normalized temperature as 0 = (T — Ty)/AT. The gov-
erning equations in the nondimensional form can then be written
as

V.i=0, (3a)
ofi .. R . Priz_.

E_F(u.V)u:—Vp—i— WV il + Oey, (3b)
0 . 1 2

¥+(u V)Q:WV 0, (3¢)
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where i, p and f denote the normalized velocity, pressure and
time, respectively, ey is the unit vector pointing vertically upward.

The initial state of the flow is set to be quiescent #t =0 and
isothermal 6 = 0. The velocity boundary condition is it = 0 on all
walls, the thermal boundary conditions are: 6(y =0) = 0.5, 8(y =
1) = —0.5, and zero normal temperature gradient on the other four
walls.

2.2. Numerical method

In the present work, we perform numerical simulations us-
ing discrete unified gas-kinetic scheme (DUGKS), which is a re-
cently developed finite-volume formulation of the model Boltz-
mann equation by Guo et al. [29], Wang et al. [34]. In this section,
we introduce the gas-kinetic model based on the Bhatnagar-Gross-
Krook (BGK) collision model in the incompressible limit and pro-
vide a brief description of DUGKS algorithm. Corresponding to the
governing equations, the gas-kinetic equations can be constructed
as [35]:

af o _f-f
%-I-E-fo—i-a-ng—Qf: o (4a)
g o _&l-g

§+g‘vxg_9g: N (4b)

where f = f(x, & t) and g = g(x, &, t) are the distribution functions
for velocity and temperature, respectively. Both functions are for
particles moving with velocity & at position ¥ and time t. The
two equilibrium distributions f¢ and g take the form of the
Maxwellian equilibrium:
2
(§—u) ) (5a)

o
= exp| —
(27 RT;)P/? P ( 2RTy

B (E-uw)?
B (2nRT2)D/ZexP ( 2RT, ) (5b)

where R is gas constant, D is the spatial dimension, T; and T, are
constants determining the effective speed of the sound. The two
relaxation times 7, and 7. are related to the viscosity v = 7,RTy
and thermal conductivity x = t.RT,. By modifying these two re-
laxation times, the Prandtl number Pr = v/k can be adjusted. Un-
der the Boussinesq approximation, the external force is given as
a = gB[T — Tolex.

In our simulation, in lattice units we set RT; = RT, = 10 and
ug = +/BgATh = /0.1 so that the Mach number Ma = ugy/+/RT is
small enough to satisfy the incompressible limit. The maximum lo-
cal Mach number in the simulation is around Mamax = Umax/~RT ~
0.25 for the high Rayleigh number cases. The time step in DUGKS
is determined by the Courant-Friedrichs-Lewy (CFL) condition:

q

AXmin
‘(;:max
where CFL number is set to be 0.5 for all simulations, AXp;, is

the minimal grid spacing and &max is the maximal discrete particle
velocity. The hydrodynamic variables are computed by:

p=[fa&  pu=[&rag 7= [gas (7)

One way to include the external force term is to merge the
force term into the collision term. The DUGKS can be constructed
based on two kinetic equations, we rewrite Eq. (4) as:

99
at

At =CFL

(6)

+§'Vx¢=QmEQ¢ + Fext, (8)
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where ¢ = g or h, Fxx =0 for h distribution function. For the con-
tinuum flow regime, the Chapman-Enskog analysis implies that the
external body force term Fy: for f can be approximated as [26]:

a-(§-u)
— (9)

As the DUGKS is a finite-volume scheme, the computational
domain is divided into a set of control volumes. Integrating
Eq. (8) over a control volume V; centered at x; from time ¢, to
tq..1- The divergence theorem is applied to the convection term to
convert the cell-volume integral to the cell-surface integral, then
the midpoint rule is used to integrate the surface flux.

[n+]
1 / £ Ve (x;. £ ty)dedV
Vj t"

Fo = ~a-Vef ~ ~a- Ve =

] tnﬂ
= V;[tn /avj(&n)(zﬁ(xj,&, tn)dsdt

At
=7 Avj(é )P (X;. &, ty12)ds (10)

The collision term is treated by the trapezoidal rule. The evolution
equation for the velocity distribution can be written as:

- - At
O (x;, §.t1) = " (x;, &.ty) — mﬁp(xbv & thia2). (11)

j
where @(x;, & tyy1) and ¢+ (x;,&.ty) are auxiliary distribution
functions introduced to remove implicity:

. At o At
¢:¢_79m, ¢ =¢+79m. (]2)

The microscopic flux Fy (xy, & tni1,2) across the cell interface x),
at the half time step t;,1,, is defined as:

Fy Ry, & tap12) = > (E- )Ry, & tr11/2)dS, (13)

where ¢ (x,, &, tp 1,2) is distribution function at cell interface x,
and half time step t,;q/,. Since the auxiliary distributions are re-
lated to the original distribution function ¢ and equilibrium ¢4,
the conservative flow variables can be computed from ¢ directly.
Thus we can track the evolution of the distribution function ¢ in-
stead of original distribution function ¢.

The key point of updating evolution equation Eq. (11) is to eval-
uate the net flux Fy(xy, &.tyy1,2) properly, which requires the re-
construction of the original distribution function ¢ (%, &, th1,2).
Eq. (8) is integrated along characteristic line with the end point
(xp) from t, to tp +h (h= At/2), and the trapezoidal rule is ap-
plied to the collision term,

Oy &.ta+h) —p(x, — &, &.1n)
= 2 [ .ty ) + 3y~ £ 6. 0)] (14)

In order to remove the implicity of Eq. (14), a second set of
auxiliary distribution functions are defined as:

- h - h
¢=¢*§va ¢+=¢+§Qm~ (15)

With these two auxiliary distribution functions ¢ and ¢+, we
apply Taylor expansion around the cell interface x;, and at time t,,
the Eq. (14) can be rewritten as:

PRy & ta+h) = d* (Rp, &, 1) — hE - V™ (%, &, ). (16)

Eq. (16) is totally explicit, ¢+ (xy. &, t;) and Vig*(x, &, t;) can
be expressed in terms of the values at the cell center by appro-
priate reconstruction method. The density and velocity at cell in-
terface at half time step can be obtained from ¢ (x,, &, t, + h), then
the equilibrium function ¢®1(xy, &, t; + h) can be evaluated. Finally,
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based on Eqgs. (15) and (16), the original distribution function at
cell interface x;, at time t, + h ca be obtained by:

2'C¢ -
Py, & tn+h) = mqb(xb,& ta +h)

¢eq(xb’ Ea tn + h) + LhFexb (17)

+
2T¢+h

2'L'¢+h

This original distribution function at half time step ¢ (x,, &, t, +
h) can be used to evaluate the net flux Fy(x, & thy12) in Eq. (13).

Then the net flux can be used in Eq. (11) to update ¢. In the
formulations above, we have one original distribution function ¢
and four auxiliary distribution functions ¢, ¢+, ¢ and ¢*. Con-
servative flow variables can be computed from any one of them,
the most convenient way is to track the evolution of qE The hy-
drodynamic variable can be obtained as p = [ fd§, pu = [ &fd +
Stpa T = [ gdé.

It is worth noting that, as pointed out by Wang et al. [34], for
DUGKS the non-uniform meshes can be easily employed without
additional effort. Non-uniform meshes allow us to use finer mesh
near the boundary to resolve the steep gradients of temperature
and velocity especially near the cavity walls. Our 3D flow code has
been parallelized using 2D domain decomposition in the y and z
directions and MPI (Message Passing Interface) [32]. In the present
study, the D3Q19 model is employed for the discretization of the
particle velocity space,

(0,0, 0)c, =0,
£, ={ (£1,0,0)c, (0,£1,0)c (0,0, £1)c. a=1-6,
(£1,41,0)c, (£1,0+1)c, 0+ 1,£1)c, o =7—18,

(18)

where ¢ = v3RT, and the corresponding weighting coefficient are
Wy =1/3,W;_g=1/18 and W;_18 = 1/36.

2.3. Boundary treatment

For a wall-bounded thermal flow, it is crucial to implement the
appropriate kinetic boundary conditions for the discrete distribu-
tion functions at the solid wall. One advantage of DUGKS is that
we can apply boundary treatment right at the wall interface nodes
which lie exactly on the solid wall. In DUGKS, the microscopic flux
is calculated at the cell interface x;, at the half time step t, + h.
We need to apply the boundary condition for the distribution func-
tion f(xw, Eth+ h), where x,, is the location of the solid wall. It
is important to point out that the boundary treatment should be
consistent with the Chapman-Enskog approximation which is the
basis for deriving the hydrodynamic equations. The incompressible
Navier-Stokes equation can be recovered with the Chapman-Enskog
expansion of the distribution function to the order of O(t,). To be
consistent with the Navier-Stokes equations, the boundary treat-
ment should also retain the terms of the order O(t, ). For the fixed
no-slip wall, we apply the bounce-back rule which assuming that
the particle just reverses its velocity after hitting the wall:

f(XW7 sav tﬂ + h) = f(xW: _soﬂ tn + h) + O(TE,MGB), SO{ -n> O’

(19)

where n is the unit vector normal to the wall pointing to the fluid
cell. The corresponding boundary condition for f (xw, Eth+ h) can
be derived through Eq. (15). The ‘bounce-back’ expression above is
widely used for the fixed no-slip wall, and it can be shown that it
is fully consistent with the Chapman-Enskog analysis, namely, all
terms of the order O(t,) disappear due to the zero velocity on the
wall.

However, the situation for the thermal boundary conditions is
somewhat more complicated. There are two types of boundary
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conditions in our problem: adiabatic walls with zero heat flux and
isothermal walls with a fixed temperature. For adiabatic walls, the
Neumann boundary condition can be achieved by:

2(%w, &y ta + 1) = g(xw, —&,. tn + h)

T] TW 3,OW ajTW aTW
+21’cWa§a.z<T2pwaxi - ﬁ - ax;

+0(2,Ma?), &, n>0. (20)

where p, T, and temperature gradients in the tangential directions
can be approximated by their respective values from the last time
step and the temperature gradient in the wall normal direction is
set to zero. The error introduced by the approximation is of the
order O(tcAt), which is typically less than O(At2) and thus is
acceptable.

While for the isothermal walls, the distribution function leaving
the wall should be constructed as:

8(®%w. &, tn + h) = —g(%w, —&,. ta +h)

ou;  &gi6q; du;
+2W, Ty | 1+ 7o oL — 2220 L
ozw|: C(an RT2 8)(]'

+0(2,Ma®), &, -n>0. (21)

where again the velocity at the last time step can be used to evalu-
ate the velocity gradient. Most previous works neglected all O(t,)
terms for the thermal boundary conditions, this could result in in-
accurate heat fluxes at the wall, especially in view of large vari-
ations of velocity and temperature near the wall and around the
corners in our problem. The above Chapman-Enskog approxima-
tions of the thermal boundary conditions are derived in detail in
Section Appendix A.

3. Results and discussions

This section will be divided into six parts. We first verify the
code and compare our results with results from the literature. In
order to elucidate the flow transition inside the vertical boundary
layer, we simulate the natural convection flow at three different
Rayleigh numbers: Ra = 1.5 x 10%, Ra = 1.0 x 101°, Ra = 1.0 x 10",
These Rayleigh numbers are beyond the critical Rayleigh number
Racr = 3.19 x 107 for the current configuration [20]. Beyond the
critical Rayleigh number, the flow becomes time-dependent and
the first instability starts to appear in the detached regions (left
upper corner and right bottom corner). The high Rayleigh num-
bers we used allow us to observe the second instability inside
the boundary layers along the isothermal walls. The time-averaged
isotherms and instantaneous fluctuation velocity contours are used
to display the overall flow structures. The time traces of velocity
and temperature inside the vertical boundary layer are used to il-
lustrate the nature of fluctuations. Then we examine the averaged
flow field at different vertical locations of the cavity. Statistics of
fluctuation fields are also presented. Finally, The heat transfer rates
at upstream and downstream in the thermal boundary layer are
analyzed.

3.1. Code verification and computational cases

Before considering high Rayleigh number cases, the three-
dimensional code is tested at Ra = 1.0 x 107 by comparing with
three-dimensional spectral results of Tric et al. [17]. We apply non-
uniform grids in all three directions to guarantee that the steep
gradient near the wall can be resolved. Table 1 summarizes the re-
sults of time-averaged overall Nusselt number Nu, at hot wall and
maximum flow velocities in three directions at Ra = 1.0 x 107, It
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Table 1
Comparison of our simulation results with the reference results for a cubical cavity 102 e b L L]
at Ra=1.0 x 107. E b
Ra = 107 Spatial resolution ~ Nu, limax Dimax Wnax 10° é ;
Present 128 x 128 x 128 16.234 0.2863 0.1428 0.0308 . %
Tric et al. [17] 81 x 81 x 81 16342 02882  0.1440  0.0313 102 E
Rel. error (%) 0.661 0.601 0.379 0.158 1 F
- =
10 ﬂ; M %
| | | I | I 3 e b
I ve
10°® - O w2 E
é 777777 Prms ;
102 - 107 3 T E
) B/E,,/E———E‘_‘E | ] —Tms [
T F
| M’—E——H [ 10710 T T T T n
NT 0 100 200 300 400 500
Nu, i
Fig. 4. Flow monitor for Ra = 1.5 x 10°.
Ra=1.0E11
| Ra=1.0E10¢ where S is the parameter used to alter the degree of non-
Ra=1.5E9 uniformity, S is set to be 3 for all simulation cases. Then the lo-
cation of the cell center can be obtained by x(i) = [x,(i) + x,(i +
10’ T ™ T T T T 1)]/2. To guarantee the resolution is fine enough to resolve the
80 120 160 200 240 280 320 steep gradient near the wall, we use two-dimensional convection
. flow to perform the convergence study. As claimed by Trias et al.
resolution

Fig. 2. Time-averaged overall Nusselt number at hot wall as a function of resolution
for three Rayleigh numbers: Ra = 1.5 x 10°, Ra = 1.0 x 10'°, Ra = 1.0 x 10",

can be observed that the present results agree well with the refer-
ence results. The largest relative error %‘;‘“‘ is less than 1%. More
code verification simulation cases are shown in Appendix A.
Regarding the numerical setup, the entire cubic cavity con-
stitutes the full computational domain, Table 2 tabulates the
stretched meshes and the non-dimensional time step size of three
cases. In order to resolve steep gradient of velocity and tempera-
ture near the wall, non-uniform meshes are introduced in three di-
rections. For a set of stretched meshes with N grid points in each
direction, the location of the cell interface x, (i) is given by:

[23], two-dimensional natural convection in a square cavity is a
good approximation of the flow at the mid-plane of the three-
dimensional cubical cavity. Fig. 2 displays the overall Nusselt num-
ber at the hot wall as a function of resolution. In each case, the
time-averaged overall Nusselt number converges to a certain value
with the increase of the resolution. As the three-dimensional sim-
ulations require large computational resources, the resolutions we
employ represent a reasonable compromise between accuracy and
computational cost. In particular, the convergence for the Ra =
1.0 x 10" case is not fully achieved. Besides, an increased spa-
tial resolution will result in a smaller time step due to the CFL
condition At = CFLAmin | this will further increase the computa-

tional cost. Even thOL[lnga)l(‘l the resolution we used is a compromise,
there are over 10 nodes insides the temperature and the velocity
boundary layers. This satisfies the requirement of grid resolution
for capturing the universal structure of the boundary layer accord-

%, (i) = 1 14 tanh[S(i/N — 0.5)] i—0.12 N (22) ing to Grétzbach [36] but not yet reaches the standard proposed
) tanh(S/2) T T T by Shishkina et al. [37], both for the Rayleigh-Bénard setting. Ac-
0.50 7 e b b e e b b b 1y - 0.30 N T R B B B
E N=320 E ] N=320
040 - : i ,
N - N=200 | ] /I ————— N=200 |
0.30 E ; 0.20 i j
g 020 - i ] I
] [ 0.10 -
0.10 B ] I
000 7 N—— i 0.00 e
-0.107‘H‘_‘H_kuu_uwuu’g - 5
0.000 0.010 0.020 0.030 0.040 0.050 0.060 0.000 0.010 0.020 0.030 0.040 0.050 0.060

Fig. 3. The temperature 6 and the vertical velocity @i profiles at the mid-plane z = 0.5h and mid height x = 0.5h at Ra = 1.0 x 10'° with the resolutions N =200 (I) and

N = 320 (II).
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cording to the scaling of laminar thermal boundary layer thickness,
we propose that the value of (Ra'/4. Axy,/1) should be less than
a given threshold. Table 2 tabulates the value Ral/4. Axp;,/I for
each case. Since the case of Ra=1.5x 10° is shown to be well
resolved, we could use the condition of Ra'/4. Ax.;,/I <0.30 as
the resolution requirement for Ra = 1.0 x 101° and Ra = 1.0 x 10"
cases. Two resolutions (N =200 and N = 320) are used to simu-
late the Ra = 1.0 x 100 case for some additional grid sensitivity
study. Fig. 3 shows the time-averaged temperature 6 and vertical
velocity i profiles for the case Ra = 1.0 x 10'® with two resolutions
N =200 and 320. The result shows that the boundary layer thick-
ness is nicely captured by both resolutions. In the following sec-
tions, the results of the case Ra = 1.0 x 10'° are obtained with the
N = 200 resolution unless otherwise mentioned. The resolution of
the highest Rayleigh number case (Ra = 1.0 x 10'!) does not meet
the requirement, and as such the accuracy of results for this case
should be taken with caution.

3.2. Overall flow structures

Before a detailed analysis of the boundary layer, we first
present the overall structures of the flow. All statistics used in
the following analysis are obtained after the flow reaches the
quasi-steady or statistically stationary stage. The development of
the flow is tracked by a few spatially-averaged flow monitors

(2,02, W2, P, Prms, T, Trms). For example, Fig. 4 shows the spatial-
averaged flow statistics for the case Ra = 1.5 x 10%, as a function
of time. This shows that different quantities took different times

to reach the stationary stage. After f =300, all the monitoring
statistics reach the stationary stage. The statistics used for analy-
sis are averaged over 75 eddy turn-over times after f = 300. The
code was run on the National Center for Atmospheric Research’s
(NCAR-Wyoming) Supercomputer, known as Cheyenne, equipped
with 2.3-GHz Intel Xeon E5-2697V4 processors. The computational
domain are decomposed in the y and z direction, 400 processors
are employed for the case Ra = 1.5 x 10°. The wall clock time per
step is 9.56 x 10~2s, and it takes 9.5 x 10° time steps to reach
f ~ 300. For the case Ra = 1.0 x 1010 with N = 200 resolution, the
wall clock time per step is the same with the case Ra = 1.5 x 10°,
For the case Ra = 1.0 x 10", 1024 processors are used and the wall
clock time per step is 1.83 x 10~ !s, and 1.5 x 107 time steps are
needed to reach f ~ 300. Fig. 5 shows the time-averaged temper-
ature field 6 at the mid-plane (z=0.5) of the cavity, when the
flow reaches the statistically stationary stage. Generally speaking,
the time-averaged isotherms is asymmetric about the cavity center,
extremely thin boundary layers are developed along the isother-
mal wall. With the increase of the Rayleigh number, the boundary
thickness becomes smaller.

For these high Rayleigh numbers, the flow is unsteady and fluc-
tuates in time. Fig. 6 shows the instantaneous velocity fluctuation
field @t = % at three Rayleigh numbers after flow reaches the
stationary stage. The cavity center is no longer steady and now
fluctuates in time. The vortices are generated at the downstream
of the boundary layers and are shed from the upper corner on the
heated wall. The size of the vortices becomes smaller with the in-
crease of the Rayleigh numbers.
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Fig. 8. Time trace of velocity at monitoring points x = 0.1h ~ x = 0.9h at (a) Ra = 1.5 x 10%, (b) Ra = 1.0 x 10'%, (c) Ra = 1.0 x 10",

3.3. Time traces of the temperature and velocity

Driven by the buoyancy force, the flow gradually develops from
laminar to turbulent flow along the vertical boundary layer adja-
cent to two isothermal walls. The upstream part is usually lami-
nar, and up to a point after which the flow becomes turbulent. As
the velocity signals of laminar and turbulent flow are evidentially
different, we track the time traces of the temperature and veloc-
ity inside the vertical boundary layer along the hot wall. Firstly,
we need to ensure the monitoring points are located inside the
boundary layer. Based on the time-averaged temperature and ve-
locity profile at nine different vertical locations (x = 0.1h — 0.9h),
for temperature evolution, a set of monitoring points are cho-
sen at the mid-plane (z = 0.5h), as a y location where T(x,y,z =
0.5h) = w T (x,z=0.5h) is the temperature outside
the boundary layer at the given x level. Due to temperature strati-
fication in the core region, T, (x) changes with the vertical location
x. For the velocity trace, the monitoring points are at the location
where u = upax at that height. In this way, we can guarantee that
all the monitoring points are located inside the boundary layer.

The time traces of temperature and velocity at 9 monitoring
points for each of the three different Rayleigh numbers are shown
in Figs. 7 and 8. All the time traces are obtained after the flow
reaches the stationary stage. From the plots, we can observe that
the upstream region with time-independent behavior is from x = 0
to x=0.7h for the cases Ra=1.5x 10° and 1.0 x 10'%; but for
Ra = 1.0 x 10" the upstream region is reduced to the region from
x=0 to x = 0.6h, roughly speaking. For the cases Ra = 1.5 x 10°
and 1.0 x 1010 the flow is laminar and steady in the upstream
region, while for Ra = 1.0 x 10! it is laminar and unsteady. In
contrast, the temperature and velocity of the downstream fluctu-

ate over time, and the fluctuation amplitude and the frequency
range increase with Ra. Similar fluctuation behaviors of the ve-
locity and temperature in the downstream region are reported by
Xin and Quéré [38] for vertical boundary layer at the hot wall of
a two-dimensional differentially heated cavity of aspect ratio at
4. Based on the time traces of i velocity for Ra = 1.0 x 10'° and
Ra=1.0 x 10", Table 3 tabulates the partition of energy in the
mean and in the fluctuating motion. The ratio is negligible in the
upstream for both Rayleigh numbers, while in the downstream re-
gion more kinetic energy participates in fluctuation. Especially for
the Rayleigh number Ra = 1.0 x 10!, the relative partition of fluc-
tuation energy at the height x = 0.9h is more than 14%.

To investigate the fluctuation frequency of the velocity and tem-
perature insides boundary layer, we provide the spectra of velocity
fluctuation “/u#({)(u’ =u—1u) and temperature fluctuation 9/(f) in
the Figs. 9 and 10. The spectra are obtained from time trace signals
spanning over a time duration of approximately 70h/uq for the two
lower Rayleigh number cases, and 100h/uq for the Ra = 1.0 x 1011,
Three locations are selected to show the transition of the velocity:
x = 0.2h near the starting point of the upstream, x = 0.5h at the
mid-height, and x = 0.9h at the downstream. As the temperature
time trace is similar to the velocity time trace, we only provide
the spectra of temperature 9’(f) for the location x = 0.9h. For two
locations at the upstream, the spectral magnitudes are relatively
small and the velocity spectra are dominated by low-frequency os-
cillations. It is also noted that the magnitude of the spectra for
the location x = 0.2h is very small, especially for the cases Ra =
1.5 x 10° and Ra = 1.0 x 10', the oscillations in the upstream are
negligible. While for the upstream, energy concentrates near the
mean mode ( f = 0), the downstream velocity fluctuation spreads
out into the high-frequency region. As pointed out by Janssen and
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Fig. 9. Spectra of velocity fluctuation ﬁ’(f) at three monitoring points. From top to bottom: (a) (b) (c) for Ra = 1.5 x 10%; (d) (e) (f) for Ra = 1.0 x 10'°; (g) (h) (i) for
Ra=1.0 x 10™,

Table 2
The non-uniform meshes used for the simulations.
Ra Spatial resolution ~ 2%mn Rai . Afpn Lo oAt
1.5 x 10° 200 x 200 x 200 1.52 x 1073 0.299 5.4587 3.1623 x 10~
1.0 x 10'°[1] 200 x 200 x 200 1.52 x 1073 0.481 5.4587 3.1623 x 10~°
1.0 x 10'°[11] 320 x 320 x 320 9.44 x 104 0.299 5.4869 1.9764 x 103
1.0 x 10" 320 x 320 x 320 9.44 x10~%  0.531 54869  1.9764 x 103
Table 3 -
Relative partition of energy % in the mean and in the fluctuation (%).
15
Ra 0.1h 0.2h 0.3h 0.4h 0.5h 0.6h 0.7h 0.8h 0.9h
1.0 x 10 1.1088e-4 2.0790e-4 8.6940e-4 7.2612e-4 5.0661e-4 7.1279e-4 0.0286 0.7535 0.9667
1.0 x 10" 0.0022 0.0053 0.0087 0.0123 0.0403 0.0689 0.6112 3.9789 14.1829

Henkes [11], the time-periodic flow is characterized by the phe-
nomenon that the power spectra of the velocity show a peak at
a single frequency; and the quasi-periodic flow shows at lease
two spikes (two fundamental frequencies and the linear combina-
tion of the fundamental spike) at two frequencies in their power
spectra; while turbulent flow has a broadband power spectra. The
peak frequency at the x = 0.9h of the case Ra = 1.5 x 10° is around

f: 0.8, this agrees well with the two-dimensional results of the
Janssen and Henkes [11]. They obtain the peak frequency around
f=0.8 at Ra=7.5 x 10® from the temperature time trace at the
same height. This non-dimensional peak frequency of f = 0.8 com-
pares well with the period of about 1.21 observed in time trace of
the temperature and the velocity as shown in Figs. 7(a) and 8(a).
From the spectra at the location x = 0.9h for three Rayleigh num-

10
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Fig. 11. (a) Time-averaged temperature, (b) Vertical velocity profiles in the mid-plane z = 0.5h at x = 0.1h ~ x = 0.9h, Ra = 1.5 x 10° (black line), Ra = 1.0 x 10'° (red dash
line), Ra = 1.0 x 10" (blue dash line). The purple squares in (b) are experimental data of Salat et al. [6] at Ra = 1.5 x 10°. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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Fig. 12. (a) Temperature profiles with abscissa scaled by Ra'/4, and (b) vertical velocity profiles with abscissa scaled by Ra'/4 in the mid-plane z = 0.5h at x = 0.1h ~ x = 0.9h,
Ra = 1.5 x 10° (black line), Ra = 1.0 x 10'° (red dash line), Ra = 1.0 x 10" (blue dash line). (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

bers, we can observe that the two lower Ra cases are characterized
by spectra with spikes at two fundamental frequencies plus spikes
at linear combinations of the fundamental frequencies which in-
dicate the flow is quasi-periodic; and the case Ra = 1.0 x 10! has
broadband spectra instead of the specific peaks at a certain fre-
quency. The spectra of the location x = 0.5h for Ra= 1.0 x 10"
is characterized by a single spike at low-frequency and this phe-
nomenon shows the flow in this location is periodic. In the case
of Ra=1.0 x 10!, the frequency spectrum of the velocity fluctu-
ations Fig. 9(i) appears to decay exponentially, similar to the dis-
sipation range of high-Reynolds number turbulence, the frequency
spectrum of the temperature fluctuations Fig. 10(c) exhibits a more
complex shape implying perhaps different structures of tempera-
ture fluctuations compared to the velocity fluctuations. From the
analysis above we can observe that insides the boundary layer, the
upstream part remains laminar until when the local flow starts to

12

shed vortices to produce quasi-periodic or turbulent flow down-
stream. With the increase of the Rayleigh number, the downstream
of the boundary layer becomes turbulent eventually.

3.4. Averaged flow field

The time-averaged temperature and vertical velocity profiles at
the mid-plane are displayed in Fig. 11. As shown in Fig. 11(a) and
(b), both the thicknesses of velocity and thermal boundary in-
crease with increasing distance from the starting location of the
boundary layer. At the same height, with the increase of Ra, the
thickness of boundary layer becomes smaller and the vertical ve-
locity peak moves towards the wall. And at mid-height x = 0.5h,
our results agree well with the experimental results of Salat et al.
[6]. Corresponding to the thinner boundary layer, the temperature
gradient near the boundary becomes larger at higher Ra. Fig. 12(a)
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Fig. 13. Averaged turbulent fluctuation statistics from top to bottom: fiyms, Prms, —0'D’ x 104, Left: Ra = 1.5 x 10°, middle: Ra = 1.0 x 101, right: Ra = 1.0 x 1011,

and (b) show the time averaged temperature and velocity profiles
with the abscissa scaled by the laminar scaling factor Ral/4 [1]. For
the upstream part (x = 0 to x = 0.7h), almost identical temperature
and velocity profiles are obtained after the scaling. Similar results
are reported by Trias et al. [23]. Discrepancies occur only in down-
stream part, and the differences start to appear at the point where
temperature and velocity start to fluctuate and reach its maximum
around x = 0.8h. This observation again confirms that for the Ra
range being studied, the major part (x =0 — 0.7h) of the vertical
boundary layer is still laminar, and the transition from the lami-
nar to time-dependent turbulent flow happens around the height
x =0.7h.

3.5. Turbulent fluctuation statistics

Turbulent fluctuation statistics (firms, Dpms, —'7) of the mid-
plane z = 0.5h are displayed in Fig. 13. As the flow is dominated
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by vertical velocity @I and horizontal velocity 7, we measure the
Reynolds stress —i’?’. It should be noted that the velocity W in the
lateral direction is almost one order of magnitude lower than i, 7.
For Ra = 1.5 x 10° and 1.0 x 1019, the active turbulence is located
at left top and bottom right corners indicating regions for the first
occurrence of turbulence. For these two Rayleigh numbers, the tur-
bulent fluctuation statistics start to be significant at the height x =
0.7h. Outside the boundary layer, all turbulent statistics are almost
zero. For Ra = 1.0 x 10', the distribution of turbulent fluctuation
statistics are more complex than the lower Ra cases. Small fluctu-
ations exist in the core region, the high value region of turbulent
fluctuation statistics still concentrates in the downstream corners.
And the transition point moves upstream, the significant turbulent
fluctuations appear around the height x = 0.65h. From this local
distribution of the turbulence statistics, we can clearly observe that
for the lower two Ra cases, the core region and upstream of the
vertical boundary are still laminar, the turbulent fluctuations are
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Table 4

Time-averaged mean Nusselt number and Nu — Ra correlations.
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Nu,

Ntgoy

Nugown

Ra Nu, Rﬁ% Ra13 Nuyp R(;u/ﬁ Nttgown Ral/4 Ral’
1.5 x 10° 58.08 02953 0.0508 7330 0.3725 2265  0.1151 0.0198
Fusegi et al. [18] 63.07 03205 0.0551
Wang et al. [22] (1.0x 10%)  52.08  0.2929  0.0521
1.0 x 1010[1] 89.29 02824 0.0414 1121 03545 3605  0.1140 0.0167
1.0 x 101°[11] 9421 02979 0.0437 1341 04240 3591 0.1135  0.0167
Fusegi et al. [18] 107.7 03406  0.0500
Wang et al. [22] 89.2 02821  0.0414
1.0 x 10 1546 02750 0.0333 2176 03870 6259  0.1113  0.0135
only significant in the downstream corners. It is suggested that for N T T T N T
Ra =1.5 x 10° and 1.0 x 10'°, the flow is only weakly turbulent as
pointed out by Salat et al. [6]. For Ra = 1.0 x 1011, the fluctuations 10° . B
exist in the whole domain, but the high value of turbulent statis- 1 s 3
. . 7/
tics concentrate in the downstream corners, and the flow becomes ] . i
turbulent. To the authors’ knowledge, Ra = 1.0 x 10! is the highest 1 P -
Ra reported for three dimensional natural convection in a differen-
tially heated cubical cavity with adiabatic horizontal walls. _ 1 7 r
Nuo ///
10" 7 -
3.6. Heat transfer A 7 i
i y I
o Present
From the averaged flow field we can clearly observe that the | Wang |
thickness of the boundary layer becomes smaller with the increasse | Fusegi
of Ra, and thinner boundary layer leads to larger temperature gra- 1 /7 |
dient near the boundary. Steep temperature gradient intensifies the 0 ¥
heat transfer near the boundary. Mean Nusselt number Nu, at hot 10 L L
wall is defined as: 10° 10 10° 10° 107 10® 10° 10" 10"
X Ra
8T(x Z) ~in
Nu, = h AT dxdz = A dxdz Fig. 14. Time averaged overall Nusselt number for the Rayleigh number range:
y=0 Y*O 103 < Ra < 10". The two data points at Ra = 1.0 x 10'° case represent results from
(23) two resolutions, as shown in Table 2, with the higher resolution giving a higher Nu

Table 4 shows time-averaged mean Nusselt number Nu, at the
hot wall for three different Rayleigh numbers. Our results are in
excellent agreement with Wang et al. [22]. It should be noted
that the Nu— Ra correlation reported by Wang et al. [22] was
given in two Ra ranges respectively (Nu, = 0.127Ra%3%%2 for 103 <
Ra < 107; Nu, = 0.3408Ra%2*! for 107 < Ra < 10'0), while Fusegi
et al. [18] proposed Rayleigh-Nusselt dependence in one correla-
tion (Nu, = 0.163Ra%282 for 103 < Ra < 101%). And the resolution
used by Wang et al. [22] is relatively finer than Fusegi et al. [18].
In the current study, we evaluate the time-averaged overall Nus-
selt number for the Rayleigh range 103 < Ra < 10! as shown in
Fig. 14. In the steady regime, our results agree well with both ref-
erence fitting. In the unsteady flow regime, the thermal bound-
ary layer becomes thinner with the increase of the Rayleigh num-
ber. The maximum number of grid points used by Fusegi et al.
[18] is 122 x 62 x 62. Wang et al. [22] employed 2003 non-uniform
meshes for Ra = 1019, In the current study, the resolution we used
for the highest Rayleigh number (Ra = 1.0 x 101) may not be ad-
equate, as such the average Nu number for this case is not shown
in the figure.

From Table 4, we can observe that the Nu — Ra correlation for
mean Nusselt number at the hot wall is much closer to laminar
scaling factor Ra'/4 than turbulent scaling Ra!/3 expected from nat-
ural convection over an unbounded flat plate [1]. When the con-
vection flow reaches the stationary stage, due to temperature strat-
ification, the cold fluid is distributed in the bottom while hot fluid
in the top, thus the temperature gradient in the upstream of the
vertical boundary would be larger than in the downstream. The
reason for Nu — Ra correlation closer to laminar scaling factor is
that most heat transfer happens in the upstream of the vertical
boundary layer where it is almost a laminar flow.
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value.

As pointed out in the previous sections, the flow insides the
vertical boundary layer transitions from steady to time-dependent
flows at the height x = 0.7h for Ra = 1.5 x 10° and Ra = 1.0 x 1010,
For Ra=1.0 x 101! the transition point is moved to x = 0.65h.
To distinguish the heat transfer behavior of upstream and down-
stream, we compute the mean Nusselt number for upstream and
downstream respectively. Table 4 shows Nusselt number for up-
stream Wup which is integrate from x =0 to x = 0.7h for two
lower Rayleigh numbers, and integrate from x = 0 to x = 0.65h for
Ra=1.0 x 10", Even with this domain separation, both Nuy, and
Nugoun are close to classical laminar scaling of Ra'/4. This implies
that the local transition to turbulent flow here has a negligible ef-
fect on the heat transfer rate, due to a very limited domain and
the constraint of the top and bottom walls.

4. Conclusion

A set of direct numerical simulations for natural convection
flow in a differentially heated cubical cavity are performed, with
the goal to improve our understanding of flow transition insides
the vertical boundary layer adjacent to isothermal walls and its
influence on heat transfer rate. The Rayleigh number range con-
sidered (Ra=1.5x 10° to Ra= 1.0 x 10!1) extends these studied
in the literature. A three dimensional DUGKS code using domain
decomposition and MPI is created and verified by comparing re-
sults with reference works at Ra = 107. Specifically, an improved
treatment of temperature and velocity boundary conditions is pro-
posed, based on a consistency consideration with the Chapman-
Enskog approximation.
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To specify the transition location, several statistics are mea-
sured. Discernible different behaviors of the upstream flow and
the downstream flow are observed in the time traces of temper-
ature and velocity. While the temperature and velocity remain es-
sentially constant in the upstream, fluctuations are observed in the
downstream region. The spectra of velocity time traces also show
that the velocity fluctuations spread out to high frequencies in the
downstream region. The upstream insides the boundary layer re-
mains laminar until a transition location, and the vortices start to
eject in the downstream yielding quasi-periodic or turbulent flows.
With the increase of the Rayleigh number, the downstream of the
thermal boundary layer becomes turbulent eventually.

Time-averaged velocity and temperature profiles are obtained.
When scaled by laminar thermal boundary thickness scaling, al-
most identical profiles are obtained for the upstream region, and
the discrepancies appear downstream of the transition location
(x =0.65h to 0.7h depending on Ra). The turbulent fluctuation
statistics in the mid-plane also confirm that the transition loca-
tion for two lower Rayleigh numbers is at x = 0.7h, while for
Ra = 1.0 x 10" the transition location is approximately x = 0.65h.
The scalings of heat transfer rate in the upstream and the down-
stream are also different. As the main part of the vertical boundary
layer is laminar, the time-average mean Nusselt number for the hot
wall is closer to laminar scaling Ra'/4. The local transition to tur-
bulent flow observed at high Ra numbers observed in the simula-
tion was found to have a negligible effect on the heat transfer rate,
perhaps due to a very limited domain and the constraint of the top
and bottom walls.

Despite the efforts we made here for simulating natural convec-
tion flows at high Rayleigh numbers in the three-dimensional cav-
ity, three-dimensional flow structures are far from fully explored.
Especially for turbulent natural convection flow in a cavity, it re-
quires the significant computational resources to obtain accurate
statistics. Further research is thus needed in this direction.
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Appendix A. Chapman-Enskog analysis of boundary condition

For the mesoscopic method used here, it is crucial to apply ap-
propriate boundary condition to the unknown distribution func-
tions near a wall. For the current double distribution function
model, velocity and temperature boundary condition should be ap-
plied to f(xw, &,.t) and g(xw, &,. t), respectively. It is important to
point out that the boundary condition should be fully consistent
with the Chapman-Enskog approximation. Based on the Chapman-
Enskog expansion, the distribution functions can be written ap-
proximately as:

rerr-n U g | n S o),
(Ala)
g=g- [aagf (s,g%] roa). (A1b)

Based on the Chapman-Enskog analysis we realize that the
third-order moments of equilibrium [ &8, f*1d§ is needed for
momentum flux evaluation, which requires third-order Hermite
expansion of f¢N=3 and Gauss-Hermite quadrature with sixth-
degree of precision. For energy equation, the second-order mo-
ments of equilibrium [ &;£;g°7d€ is needed for the evaluation of
energy flux. As the Mach number is very small in the current work,
the third-order terms can be neglected. The equilibrium distribu-
tion is expanded to the second-order as:

eq.N=2 _ ga'u (ga'u)z u?
fea a,o[ kot 2(RTHT ~ 2RT, ] +O(Mad?),
(A.2a)
gfq.N:Z —W.T S(x : (Ea u)? u? +O(Md3).
o e RT, 2(RT2)2 " 2R%,
(A.2b)

For temperature and velocity boundary conditions, we can de-
rive the following equations:

F(6) ~ F&) = (1= n D0 = £9°) — t g (00 = £00)
g () R ), (A3
g(6,) - g(sw = (g )~ T (- 1)
T g € ) (A3b)
86, + g(f;&) = ) T ()
e g € ) (A30)

For simplicity, we use superscript + to represent the particles &,
bouncing back from the wall, while the superscript - represents the
particles moving in the opposite direction to &,. gé9+ + g®—, géd+ —
g4, hed+ 4 h9~ and h®I* — h®?~ can be derived from the equilib-
rium distributions:

u?
~ 2RTy ]

(ga ) u)Z

2 (RT;)? (A4a)

for 4 e = 2Wap[1 *
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feat — fea- — 2Wa,0|:§a ) i| (A4b)
+ - _ (Ea 3 u)2 u?

geq +g8q —2WD¢T|:1+2(RT2)2—2RT21|, (A4C)

g g = ZWQT[%'}. (A4d)

u

at
reduce the Mach order by one order. To keep the error term to
O(r2,Ma?), the equilibriums need to be expanded to one-order
higher, namely, to the fourth-order for f¢ and the third-order
for g¢9. However, all the high order terms contain u3 and u4,
which can be canceled under the no-slip boundary condition due
to derivative by parts. Thus, we did not explicitly write out the
high order terms.

Substituting these expressions into Eq. (A.3a), as all walls are
assumed to be no-slip in velocity, we can set u =0 to terms not
related to time- or spatial- derivatives. The u? and u? terms are
also eliminated due to derivative by parts, then the following re-
sults can be obtained:

It is important to point out that the and ax,. operation will
J

_ §ai PU; ap
f(Ea) - f(E&) = _vawaﬁ 3 ZTVWaéa,]ain
+27,W,p -2 S‘”. (A.5)

The Euler equatlons can be used to replace the time derivative

paalil - —pu]% _dr + a;p + O(t), therefore
f(E) ~ FE) = 2t W st (R 02 4 pa
o @ "TURT a '

Jéa}

2 3
RT, + O(z), Ma’).

0
- ZTvWaga.jTﬁ +2t,Wep
]
(A.6)

Finally, we have the mesoscopic representation of the no-slip
boundary condition as

f&) = f(&z) = 0+0O(z}. Ma*). (A7)

Substituting the g® equilibrium into Eq. (A.3b) with uy,, = 0, the
adiabatic boundary condition can be written as:

a ga )
g, —g&y) =— (2WaT R

+0(t2, Ma?). (A.8)

Again the Euler equations are used to replace the time deriva-

d
) -1k, jaTj(ZWaT)

tive ,oa8 —pu 13;'1 - Bx P | q;p +O(T), to obtain
_ ga_,'T 1 8,0RT1 )
8(&,) —8(;) = -2t Wa G\ o oy
oT

ZTCWaéaja + 012, Ma®). (A.9)

The final result of mesoscopic representation of the adiabatic
boundary condition becomes

g(&,) —g&s) = Zrcwasa,<TlTap_ _al

+(’)(‘L’C ,Ma®). (A.10)
For isothermal boundary condition, we can derive the following
expression from Eq. (A.3c):

aT

g(E )+g(§a) = ZW(){T ZWQTC 8 Sa’iéa‘j %

RTZ BXJ‘ '

—2W, T T (A11)
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Fig. A.15. The comparison of mean Nusselt number Nuj(2) distribution among

present DUGKS results and reference results Peng et al. [27]; Wang et al. [39]; Wang
[21]).

Leading order energy equation is used to replace the time

derivatives % = dTuJ + O(t). Then, the final result for isother-
mal wall is
8u] Tcga,iéa,j ou;
8(€,) + 8(Es) = 2war<1 Frt Ty b
+0(t2 Mad®). (A12)

In summary, for no-slip boundary condition, the standard
“bounce-back” is consistent with the Chapman-Enskog analysis.
However, for temperature boundary conditions, most literature
works only keep the O(1) term. In fact, the O(z;) terms have in-
fluence on the heat flux at the boundary. In actual implementation,
the derivatives of hydrodynamic variables can be evaluated approx-
imately using the values from last time step. To show that the
temperature boundary condition can be accurately implemented
by the current kinetic boundary condition, we performed a sim-
ulation of natural convection in an air-filled cubical cavity with
Ra = 1.0 x 103, Fig. A.15 shows the mean Nusselt number distribu-
tion along the z-direction, where Nuy, (2) is defined as:

‘1 A A
Num(2)=/0 00 (X,2)

ay

We compared the mean Nusselt distribution of the current
DUGKS results and those from the literature [21,27,39]. Our re-
sults agree well with the conventional CFD results of Wang et al.
[39] and LBM results of Peng et al. [27]. The results provided by
Wang [21] is obtained using the DUGKS scheme with only O(1)
boundary condition implementation. It is obvious that the bound-
ary condition is improved using our current kinetic boundary con-
dition including the O(t.) terms.

To further confirm the convergence order of the DUGKS, we
performed a series of two-dimensional simulations of natural con-
vection in a square cavity at Ra = 1.0 x 103 with different meshes.
Simulations are conducted with meshes 20 x 20,40 x 40, 80 x
80, 160 x 160, 320 x 320 and the CFL numbers are adjusted to keep
the time step constant accordingly. The L, erros in temperature
and velocity field are measured in Table A.5, where the L, error
is defined as:

\/Zx_y |¢(va?t) - ¢€(X’y’ t)|2
vV Zx,y |¢E(Xryv t)|2

dx.
$=0

(A13)

E(¢) = (A14)
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Fig. A.16. Time trace of temperature € at location (8, y) = (0.88,0.15) for: (a) Ra = 1.6 x 10%;(b) Ra = 1.8 x 10%; (c) Ra = 1.82 x 10%; (d) Ra = 1.84 x 108; (e) Ra = 2.0 x 108.

where ¢ =6 or 4, and ¢, is the benchmark value with the mesh
320 x 320. At least second-order convergence of the DUGKS is con-
firmed.

Besides the steady natural convection simulation, we also vali-
date our code by calculating the critical Rayleigh number of tran-
sition to unsteady flow regime for two-dimensional natural con-
vection in a square cavity. A set of simulations of two-dimensional
natural convection with non-uniform 500 x 500 meshes are per-
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formed. The non-uniformity parameter is set to be S =3, and the
minimum grid spacing is Axpi, = 6.0219 x 10~“L. Fig. A.16 shows
time trace of temperature at monitoring point for the simulation
with five different Rayleigh numbers. The red line represents the
time integration was started from the steady flow of the case
Ra=1.8 x 10® and the blue dash line represents the simulation
was started from the unsteady solution of the case Ra = 2.0 x 108.
Steady results are obtained for the cases Ra = 1.6 x 108 and Ra =
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Table A.5

Error and convergence order in velocity and temperature.
N 20 40 80 160
E6) 53583 x 103 92810 x 10~%  1.5528 x 104  2.3295 x 103
order - 2.5294 2.5794 2.7368
E(i1) 43024 x 1072 7.2083 x 1073 1.2445x 1073  2.1210 x 104
order - 2.5774 2.5341 2.5527

1.8 x 108, for both initial conditions. For the cases Ra = 1.82 x 108
and Ra = 1.84 x 108, it shows that the solution first experiences
damped oscillations and then reaches periodic oscillations. With
these high resolution results, the critical Rayleigh number would
be between 1.80 x 108 and 1.82 x 103, which is consistent with
the the Le Quéré and Behnia result for Rac, Ra. = (1.82+0.01) x
108. We also note that the amplitude of oscillations increases with
Ra for Ra > 1.82 x 108,

Appendix B. Order of accuracy test

To validate the second-order accuracy of our scheme in both
space and time, we simulated the unsteady 2D Taylor-Green vor-
tex flow in a square domain. The Taylor-Green vortex flow is an
exact solution of the Navier-Stokes equation in a two-dimensional
periodic domain, representing the viscous decay process of a vorti-
cal flow. The velocity and pressure fields of this unsteady flow are

given as:
2nx\ . [(27my -l
u(x, y,t)_—Uocos( I )sm( I ) , (B.1a)
v(x,y.t) = Uy cos (?) sin (27th)e*8%m, (B.1b)
p(x,y.t) = —1UO cos [zTn(x—y)] cos[ (x+y)] i
(B.1c)

where v is the shear viscosity. In order to use the analytical solu-
tion as the rigorous benchmark, we must initialize the distribution
functions carefully to be fully consistent with the hydrodynamic
velocity and pressure fields. In the DUGKS simulation, the initial
distributions are generated by iteration as follows:

1. Begin with the initial distribution function defined as

f(x.&,.0) = fl[p(x,0), u(x,0)], where p(x,0) = p(x.0)/c2.
eq,N=2 ga -u (ga ) u)Z u2
fa “p{ RT, ' 2(RT,)>  2RTy +0(Ma’)
(B.2)

2. Evolve the distribution function for one time step with DUGKS.
Update the hydrodynamic variable and denote them as p(x, At)
and u(x, At).

3. Based on the Chapman-Enskog expansion, the distribution
function can be written as follows:

oSy
fa— Ot - |: 8t

+(§1f‘$q>i|+tva]($] T J) eq+0(r )

(B.3)

With the unexpanded form of the equilibrium distribution and
the Euler equation, the distribution function can be written
as:

ou;  GCj oy 2
fo = f& |: +TU<3X,~RT]3Xj)i|+O(TV)

= fo 4+ 1, fV + 0(z2). (B.4)
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Table B.6
L, Errors and convergence order in velocity and pressure with different
mesh sizes (dt = 1.0 x 1072).

N 20 40 80 160
Yode 2x10°* 4x107* 8 x 10~ 1.6x 103
ot 2x 1073 4x1073 8 x 1073 1.6 x 1072
E(w)  9343971E-3  2.187037E-3  5718380E-4  1.371459E-4
order - 2.0951 1.9353 2.0599
E(p)  2.562765E-2  7.614341E-3  1.927406E-3  4.033651E-4
order - 17509 1.9821 2.2565

Table B.7

L, Errors and convergence order in velocity and pressure with different time
step sizes (fixed CFL number).

dt 2.0 x 1073 1.0 x 1073 5.0 x 10 2.5x 107
N 20 40 80 160
Yot 0.04 0.04 0.04 0.04
s
ot 04 04 04 04
E(w)  5798385E-1  1.059667E-1  1.384611E-2  1.317480E-3
order - 2.4520 2.9361 3.3936
E(p)  8.176620E-1  1.914017E-1  2.716178E-2  2.573582E-3
order - 2.0949 2.8170 3.3997

CiC;
where f{1) = ftq(% - R g;“) Then we can construct a new

set of the initial distribution as:

< (x,0) ~ fu (x AL — [ p(x, AL), u(x, AD)]+ O(T2),
(B.5a)

fa(®.0) = 7, f{V (. 0) + f[ p(x, A), u(x,0)].

4. Repeat step 2 and 3 until the pressure and stress fields at the
initial time converge.

(B.5b)

The parameters used in the simulations are: Re = 1000, v =
0.001, L=1.0, Uy = 1.0, RT = 100. We compare the velocity pro-
files and pressure profiles at two dimensionless times (not shown)
with the analytical solution, and find that the numerical solution
agrees well with the theoretical solution. To confirm the conver-
gence order of DUGKS, a set of simulations with different resolu-
tions and time steps are performed. The L, errors

VX WG D = Ve )2

N2
where V represents velocity or pressure. The L, errors are shown
in Tables B.6 and B.7, along with the resulting order of accuracy.
In Table B.6, time step size (as viewed by the conventional CFL
number and the kinetic CFL number csdt/dx) is kept very small
so the L, errors represent mainly the space discretization errors,
the order of accuracy is around 2. In Table B.7, we fixed the ki-
netic CFL number to 0.4 so both the time discretization error and
space discretization error are present, the realized order of accu-
racy is between 2 to 3. Since the requirement that csdt/dx <1
implies that we cannot isolate space discretization error from the
time discretization error in DUGKS. Overall, Tables B.6 and B.7 to-
gether demonstrate the second-order accuracy in both space and
time.

L, = (B.6)
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