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Discrete unified gas-kinetic scheme (DUGKS) has been developed recently as a general 
method for simulating flows at all Knudsen numbers. In this study, we extend DUGKS to 
simulate fully compressible thermal flows. We introduce a source term to the Boltzmann 
equation with the Bhatnagar-Gross-Krook (BGK) collision model [1] to adjust heat flux and 
thus the Prandtl number. The fully compressible Navier-Stokes equations can be recovered 
by the current model. As a mesoscopic CFD approach, it requires an accurate mesoscopic 
implementation of the boundary conditions. Using the Chapman-Enskog approximation, 
we derive the “bounce-back” expressions for both temperature and velocity distribution 
functions, which reveal the need to consider coupling terms between the velocity and 
thermal fields. To validate our scheme, we first reproduce the Boussinesq flow results by 
simulating natural convection in a square cavity with a small temperature difference (ε =
0.01) and a low Mach number. Then we perform simulations of steady natural convection 
(Ra = 1.0 × 106) in a square cavity with differentially heated side walls and a large 
temperature difference (ε = 0.6), where the Boussinesq approximation becomes invalid. 
Temperature, velocity profiles, and Nusselt number distribution are obtained and compared 
with the benchmark results from the literature. Finally, the unsteady compressible natural 
convection with Ra = 5.0 × 109, ε = 0.6 is studied and the turbulent fluctuation statistics 
are computed and analyzed.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The buoyancy-driven natural convection in an enclosure, or internal natural convection, has been studied for a long 
time [2–4]. It plays an important role in both fundamental studies of thermal and velocity structures of buoyancy-driven 
flows and practical applications such as geophysics, astrophysics, solar energy collection devices, cooling of nuclear reactor or 
electronic equipment, energy storage systems, air conditioning systems, and food processing. The problem of internal natural 
convection can be roughly divided into two types. The first concerns enclosures heated from below, in which a temperature 
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Table 1
Studies of compressible natural convection.

Method Dimension & resolution A Ra

Chenoweth [11] FD 2D (121 × 121) 1− 10 103 − 107

Quéré [13,26,27] Spectral 2D (80 × 80,32 × 96) 1,8 105,106

Vierendeels [14,15] FV 2D (512 × 512) 1 102 − 107

Becker [28] FE 2D (4× 106 d.o.f) 1 106 − 107

Li [19] LBM 2D (250 × 250) 1 103 − 105

Feng [20,29] LBM 2D (100 × 100× 10) 1 103 − 105

Lenz [21] GKS 2D (376 × 376) 1 106,5× 109

gradient is parallel to the direction of gravity, such as the Rayleigh-Bérnard convection problem between two horizontal 
plates. The second type considers enclosures heated from side walls, in which the temperature gradient is orthogonal to the 
direction of gravity, like natural convection in differentially vertically heated enclosures (Pandey et al. 2019). Furthermore, 
based on the compressibility of the fluid, the buoyancy-driven natural convection can be classified into two categories: (1) 
Boussinesq flows when the temperature difference is small such that the flow can be assumed to be incompressible and the 
buoyancy effect can be represented by a linear function of the temperature; (2) non-Boussinesq flows when the temperature 
difference is large and the compressible effects must be considered and the fluid properties may also vary with temperature. 
In the latter case, the flow is governed by fully compressible Navier-Stokes-Fourier equations.

Led by the pioneering studies started in the 1970s [5,6], researchers have studied internal natural convection in both two-
and three-dimensional cavities at different Rayleigh numbers and Prandtl numbers in different geometries. For example, 
using the pseudo-spectral method, Quéré [7] provided solutions for the full range of two-dimensional steady-state flow 
in a square cavity and concluded that the critical Rayleigh number for the transition from steady to unsteady flow is 
Racr = 1.82 ±0.01 ×108 [8]. Paolucci and Chenoweth [9] used the finite-difference method to solve this problem for Rayleigh 
number up to 1010, and provided a detailed analysis of the influence of aspect ratio on the critical Rayleigh number. These 
studies were conducted under the Boussinesq approximation, where the density change is negligible except in the buoyancy 
term, and the fluid properties (viscosity, heat conductivity) are assumed to be constant.

However, for a differentially heated cavity with a large temperature difference, the Boussinesq approximation could be-
come invalid, namely, the fluid properties could vary with temperature and expansion/contraction of fluid could become 
dynamically important. For these reasons, the temperature field and the velocity field are more strongly coupled for the 
compressible convection. While the nearly incompressible natural convection has been widely explored [4,10], there are very 
few studies of compressible natural convection with large temperature differences. Chenoweth and Paolucci [11] performed 
an early study of compressible natural convection. They provided two-dimensional steady-state results from the transient 
Navier-Stokes equations under the low Mach number approximation [12]. The governing equation they used is an approx-
imation of the compressible Navier-Stokes equations, the total pressure is decomposed and only thermodynamic pressure 
is considered in the equation of state. Using a Chebyshev collocation algorithm, Quéré et al. [13] studied two-dimensional 
non-Boussinesq convection in a tall cavity with an aspect ratio (A = H/L) of 5, where H is the cavity height and L is 
the cavity length. They found that the flow become increasingly asymmetrical as the temperature difference is increased, 
and the critical Rayleigh number also decreases with larger temperature difference. Vierendeels et al. [14,15] solved two-
dimensional steady Navier-Stokes equations and provided solutions for the Rayleigh number 

(
Ra = Pr2εgH3ρ2

0/μ2
0

)
ranging 

from Ra = 102 to Ra = 107 with a normalized temperature difference ε = (Th − Tc)/2T0 at 0.6, where Pr is the Prandtl 
number, g is the gravity, ρ0 is the density and μ0 is viscosity at a reference temperature T0 = (Th + Tc)/2, respectively, Th
is the temperature of the hot wall and Tc is the temperature of the cold wall. They solved the compressible Navier-Stokes 
equations, however, as will be seen later in this paper, the steady flow assumption may not be valid for high Rayleigh 
number flows. Table 1 summarizes some representative works of compressible natural convection simulations. It is found 
that three-dimensional or unsteady compressible natural convection in an enclosure is rarely explored.

In recent years, mesoscopic methods based on model Boltzmann equations, such as the lattice Boltzmann method 
(LBM) and gas kinetic schemes, have been developed and applied to simulate both incompressible [16–18] and compress-
ible [19–21] natural convection flows (also shown in Table 1). The mesoscopic methods solve a relatively simple governing 
equation and enjoy certain advantages such as low numerical dissipation, feasibility in treating complex boundaries, and 
high parallel efficiency. Different kinetic models have been proposed to treat non-Boussinesq thermal flow studies, in which 
the work done by viscous dissipation and compression are considered [22–25]. Among these approaches, the coupling 
double-distribution function model is widely employed in thermal flow simulations. The first DDF model that takes account 
of the viscous dissipation and compression work is proposed by He et al. [23]. An additional internal energy distribution 
function is defined for the temperature field and is directly derived from the moments of the velocity distribution func-
tion. However, in this method, the calculation of temperature involves the time and spatial derivative of the hydrodynamic 
variables which may introduce some errors. Later on, Guo et al. proposed an alternative thermal DDF model in which the 
viscous dissipation and compression work are also considered [25]. They employed a distribution function for the total en-
ergy rather than the internal energy in addition to the velocity distribution function. The introduction of the total energy 
distribution function avoids the spatial and time derivatives of the hydrodynamic variables. However, the model by Guo et 
al. assumes that the temperature variation is small and the flow is nearly incompressible. In the Hermite expansion of the 
2
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Fig. 1. The geometry under consideration.

equilibrium, the thermal part and the O(Ma3) terms are neglected. Based on Guo’s DDF model, some LBM models have 
been proposed later for the compressible case. The thermal parts are retained in the Hermite expansion of the equilibrium 
distribution. For example, Li et al. [19] used two coupled distribution functions in a lattice Boltzmann model to simulate 
steady compressible natural convection flow in a square cavity. Lenz et al. [21] reported results of two-dimensional un-
steady compressible natural convection at Ra = 5 × 109 using a gas-kinetic scheme, they did not make low Mach number 
assumption in their study and the finite-volume method allowed them to use non-uniform meshes near the wall.

The discrete unified gas-kinetic scheme (DUGKS) was recently developed by Guo et al. [30,31], combining the advantages 
of the unified gas kinetic scheme and LBM. DUGKS could be used to simulate different types of flows, from continuum 
to free molecular flows [32–35]. Wang et al. [18] simulated natural convection flows in a cavity under the Boussinesq 
approximation using two sets of distribution functions. Thermal flows with more complex geometries have also been studied 
by combining DUGKS with the immersed boundary method [36,37]. Due to the finite-volume formulation, non-uniform 
meshes can be easily employed in DUGKS [38], which is desired for simulating internal natural convection where thermal 
and velocity boundary layers are the essential flow features. Another advantage of DUGKS is that the boundary condition 
can be applied at the cell interface notes on the wall. The above studies considered only incompressible natural convection 
flows.

In this study, we will report first DUGKS simulations of compressible natural convection. In general, there are several 
issues in performing fully compressible natural convection simulations using DUGKS. The first is the ability to represent an 
arbitrary Prandtl number when the single-relaxation-time BGK collision model is used. This could be addressed by modifying 
the equilibrium distribution, such as in the BGK-Shakhov model [39] or ellipsoidal statistical model [40]. However, alteration 
of the equilibrium distribution could affect the order requirements of the Gauss-Hermite quadrature. Alternative approach is 
to add a properly designed source term to the energy distribution, as implied by the approach of Xu [41] who adjusted the 
macroscopic energy flux in their gas kinetic scheme. In Section 2, we re-visit the design of a source term in the evolution 
equation of the energy distribution, in order to adjust the heat flux and consequently the Prandtl number in a relatively 
simple manner.

Another important issue we wish to emphasize in this paper is the proper implementation of boundary conditions. For 
thermal flow simulations, both temperature and velocity boundary treatments are required, and the two are actually coupled 
in DUGKS of compressible convection. We will present a consistency approach to address this inherent complexity based on 
the Chapman-Enskog analysis.

The paper is organized as follows. In Sec. 2 and Appendix C, after presenting the physical problem and the kinetic 
scheme, we discuss a systematic derivation of the boundary conditions based on the Chapman-Enskog approximation. 
In Sec. 3, we first validate our revised DUGKS scheme by studying natural convection in a square cavity with a small 
temperature difference (ε = 0.01) and compare our results with benchmark Boussinesq results from the literature. Then 
we investigate the compressible natural convection with a large temperature difference (ε = 0.6) at a Rayleigh number 
Ra = 1.0 × 106, again results will be compared with benchmark results. Finally, results of an unsteady compressible natural 
convection flow at Ra = 5.0 × 109 and ε = 0.6 will be presented. The main contributions and conclusions of this work are 
summarized in Sec. 4.

2. Governing equation and numerical methods

2.1. Problem description and governing equations

We consider a natural convection flow in a two-dimensional square cavity with a hot vertical wall Th = T0(1 + ε) on the 
left and a cold vertical wall Tc = T0(1 − ε) on the right, while the top and bottom walls are adiabatic as shown in Fig. 1. 
3
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The current system is governed by the geometrical parameters (cavity height H , cavity length L), fluid properties (density 
ρ0, viscosity μ0, heat conductivity k0, heat capacity Cp , CV ), the temperature at the hot wall Th and cold wall Tc . The 
governing equations can be written as:

∂ρ

∂t
+ ∂

(
ρu j

)
∂x j

= 0, (1a)

∂ (ρui)

∂t
+ ∂

(
ρuiu j

)
∂x j

= − ∂p

∂xi
+ ρgi + ∂σi j

∂x j
, (1b)

∂ (ρCV T )

∂t
+ ∂

(
ρu jCV T

)
∂x j

= −p
∂u j

∂x j
+ ∂

∂x j

(
k

∂T

∂x j

)
+ σi j

∂u j

∂x j
, (1c)

p = ρRT , (1d)

where the stress tensor is σi j = 2μ 
(
Sij − 1

D ∇ · uδi j
) + μV ∇ · uδi j , Sij is the strain rate tensor, μ and μV are the shear 

viscosity and the bulk viscosity, respectively. In order to normalize the system governing equations, we introduce a reference 
temperature T0 = (Th + Tc)/2, a reference density ρ0, and a reference viscosity μ0 = μ(T0). The Mach number is defined 
as Ma = u0/cs , we choose buoyancy velocity u0 = √

(Th − Tc)gH/T0 as reference velocity and speed of sound is cs =√
γ RT0. When the temperature difference is large, the fluid properties are temperature dependent, the viscosity and heat 

conductivity are given by Sutherland’s law:

μ(T )

μ∗ =
(

T

T ∗

)3/2 T ∗ + S

T + S
, k (T ) = μ(T )Cp

Pr
, (2)

where T ∗ = 273 K and S = 110.5 K. The viscosity at a reference temperature T0, μ0 = μ(T0), is then calculated by μ∗ =
μ0

[(
T0
T ∗
)3/2

T ∗+S
T+S

]−1

. The continuity equation and the momentum equation are then normalized by using the density scale 

ρ0, the velocity scale u0, length scale H , and time scale H/u0; the pressure is normalized by ρ0u2
0; the viscous stress is 

normalized by μ0u0/H . The energy equation is normalized by using the temperature scale T0, density scale ρ0, and the 
same velocity and time scales; the conductivity is normalized by k0 ≡ k(T0). The dimensionless governing equations of 
compressible natural convection can be written as:

∂ρ̂

∂ t̂
+ ∂

(
ρ̂û j

)
∂ x̂ j

= 0, (3a)

∂
(
ρ̂ûi

)
∂ t̂

+ ∂
(
ρ̂ûi û j

)
∂ x̂ j

= − ∂ p̂

∂ x̂i
+ 1

2ε
ρ̂δi1 +

√
Pr

Ra

∂σ̂i j

∂ x̂ j
, (3b)

∂
(
ρ̂ T̂

)
∂ t̂

+
∂
(
ρ̂û j T̂

)
∂ x̂ j

= �

[
−p̂

∂ û j

∂ x̂ j
+ γ

�
√

RaPr

∂

∂ x̂ j

(
k

∂ T̂

∂ x̂ j

)
+
√

Pr

Ra
σ̂i j

∂ û j

∂ x̂ j

]
, (3c)

where � = γ (γ − 1)Ma2, and the x axis is assumed to be in the upward vertical direction. The above dimensionless 
governing equations indicate that there are four dimensionless governing parameters: Rayleigh number Ra, Prandtl number 
Pr = μ0Cp/k0, Mach number Ma, and heat capacity ratio γ = Cp/CV . The geometry and boundary conditions introduce 
two additional parameters: the aspect ratio A = H/L and the relative temperature difference ε . The controlling parameters 
for the current problem are the Rayleigh number Ra and the relative temperature difference ε:

Ra = Pr2εgH3ρ2
0

μ2
0

, ε = Th − Tc

2T0
. (4)

For an air-filled square cavity, the Prandtl number Pr = 0.71 and heat capacity ratio γ = 1.4 are fixed.
The above equations represent a fully compressible, time-dependent thermal flow system, no Boussinesq approximation 

or low Mach number assumption is made. This allows us to treat both Boussinesq flow and compressible natural convection. 
Transient behaviors can also be analyzed for high Rayleigh number cases.

2.2. The kinetic model

The above hydrodynamic equations can be recovered through a kinetic model based on a model Boltzmann equation. 
We follow the Boltzmann equation with the Bhatnagar-Gross-Krook (BGK) collision model [1] used in Guo [31], namely,

∂ f + ξ · ∇x f + b · ∇ξ f = − f − f eq + S f , (5)

∂t τ

4
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where f (x,ξ,η,ζ , t) is distribution function describing the motion of particles at the location x = (x1, ..., xD) and time t
with microscopic velocity ξ = (ξ1, ..., ξD), where D is the spatial dimension of the hydrodynamic velocity ui . The remaining 
(3 − D) space of the microscopic velocity is denoted by η. Furthermore, an internal kinetic variable, ζ , of dimension K is 
introduced in order to adjust the specific heat ratio of the model. The external force per unit mass is given by b, and τ is 
the relaxation time. The Maxwellian equilibrium is given as:

f eq = ρ

(2π RT )(3+K )/2
exp

(
− c2 + η2 + ζ 2

2RT

)
, (6)

where c ≡ ξ − u is the peculiar velocity. The hydrodynamic (conservative) flow variables can be obtained by the moments 
of the distribution function:

ρ =
∫

f dξdηdζ , ρu =
∫

ξ f dξdηdζ , ρE =
∫

ξ2 + η2 + ζ 2

2
f dξdηdζ , (7)

and the Maxwellian equilibrium implies that ρE = ρu2/2 + ρcV T with cV = (3 + K )R/2 being the specific heat capacity 
at constant volume. The specific heat ratio for the model is γ = (5 + K )/(3 + K ), yielding the specific heat ratio of the air 
γ = 1.4 when K = 2.

One problem with the BGK collision model is that it would lead to a unit Prandtl number if the source term S f is not 
present. There are multiple solutions for this problem. One way is to modify the equilibrium distribution, such as in the 
BGK-Shakov model [39] and the ellipsoidal statistical model [40]. However, this approach could affect the minimum order 
requirement for the Gauss-Hermite quadrature used to compute the moments of the distribution function in numerical im-
plementation of the model. For instance, based on the Chapman-Enskog approximation as discussed in Shan et al. [42], heat 
flux calculation requires an evaluation of the fourth-order moment of the Maxwellian equilibrium distribution in the origi-
nal model. If the BGK-Shakhov model is used as in Guo et al. [31], then heat flux calculation would require an evaluation of 
the six-order moment of the Maxwellian equilibrium distribution instead, due to the added prefactor in the BGK-Shakhov 
equilibrium distribution. This implies that the original requirement of a minimum eighth order Gauss-Hermite quadrature 
is transformed to a new requirement of twelfth order Gauss-Hermite quadrature. To avoid this dramatic increase in the 
quadrature order, we instead keep the equilibrium distribution untouched, but add a properly-designed source term S f

whose only purpose is to alter the resulting heat flux of the system. While, in principal, the two approaches to modify the 
Prandtl number are formally the same at the continuous Boltzmann equation level, they differ in the numerical implemen-
tations using discrete particle velocities. A higher quadrature order requires a larger number of discrete particle velocities, 
which we choose to avoid here. The source term S f is designed as:

S f = ω̃

[
η2 + ζ 2

(K + 3− D)RT0
− 1

]
(1− Pr)qiξi
τ (

√
RT0)4−D

, (8)

where ω̃(ξ , η, ζ ) = 1
(
√
2π RT0)K+3 exp

(
− ξ2+η2+ζ 2

2RT0

)
is the weighting function, and qi is the heat flux which is related to the 

distribution function by

qi = 1

2

∫
ci(c

2 + η2 + ζ 2) f dξdηdζ . (9)

Note that the source term satisfies the following design constraints∫
S f dξdηdζ = 0,

∫
ξi S f dξdηdζ = 0,

∫
ξiξ j S f dξdηdζ = 0, (10a)

∫ (
ξ2 + η2 + ζ 2

)
2

S f dξdηdζ = 0,
∫

ci(c2 + ζ 2 + η2)

2
τ S f = (1 − Pr)qi . (10b)

Since these constraints are in integral form so the design is not unique. The explicit form of S f given above is just one of 
the many possible forms. For our study here, we have D = 3 and K = 2. We note that for the very specific case of K = 0
and D = 3, the above source term is no longer suitable. For this case, there are alternative designs as explained in Chen et 
al. [43].

For efficient numerical implementation, it is more convenient to first integrate out the inactive degree of freedoms (η, ζ ), 
by introducing two reduced distributions g(x, ξ , t) and h(x, ξ , t) [31]:

g(x, ξ , t) =
∫

f (x, ξ ,η, ζ , t)dηdζ , (11a)

h(x, ξ , t) =
∫ (

η2 + ζ 2
)
f (x, ξ ,η, ζ , t)dηdζ . (11b)
5
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Correspondingly, the governing equations for g(x, ξ , t) and h(x, ξ , t) can be obtained from Eq. (5) as:

∂ g

∂t
+ ξ · ∇xg + b · ∇ξ g = �g = − g − geq

τ
, (12a)

∂h

∂t
+ ξ · ∇xh + b · ∇ξh = �h = −h − heq

τ
+ Sh, (12b)

where the reduced equilibriums geq and heq are

geq =
∫

f eqdηdζ = ρ

(2π RT )D/2
exp

[
− (ξ − u)2

2RT

]
, (13a)

heq =
∫ (

η2 + ζ 2
)
f eqdηdζ = (K + 3− D) RT geq. (13b)

It follows from Eq. (7) that the hydrodynamic variables should be computed as

ρ =
∫

gdξ , ρu =
∫

ξ gdξ , ρE = 1

2

∫ (
ξ2g + h

)
dξ . (14)

And the source term makes zero contribution to the g evolution equation and

Sh =
∫

(η2 + ζ 2)S f dηdζ = ω(ξ)
2(1 − Pr)qi

τ
√

RT0

ξi√
RT0

, (15)

where ω(ξ) = 1
(
√
2π RT0)D

exp
(
− ξ2

2RT0

)
is the weighting function. The source term Sh contributes to the first order momen-

tum of h, which affects the resulting heat flux qi = 1
2

∫
ci(c2g + h)dξ . Thus, it is sufficient to have the 1st order Hermite 

polynomial ξi√
RT0

in the Si . The detailed derivation for the design of the source term is presented in Appendix B.

It is important to point out that the two reduced distributions are not independent for compressible flow, the velocity 
field is highly coupled with the temperature field. In the current system of two reduced distributions, the temperature field 
is determined by g and h together. As the evolution equations Eq. (12a) and (12b) for g and h have the same form, we 
then use φ to represent g or h. As we do not have the explicit solution of φ, an approximation of the forcing term b · ∇ξφ

is needed. The Chapman-Enskog approximation implies that, for continuum flow, the forcing term can be approximated 
as:

Fφ = −b · ∇ξφ ≈ −b · ∇ξφ
eq = b · (ξ − u)

RT
φeq. (16)

2.3. The DUGKS algorithm

The full DUGKS can be constructed based on the reduced governing equations Eq. (12a) and (12b) with approximated 
forcing term [18], we combine the forcing term Fφ with collision term �φ , and denote it as �̄φ which no longer conserves 
momentum and energy as shown in Eq. (18):

∂φ

∂t
+ ξ · ∇xφ = �̄φ = �φ + Fφ, (17)∫

ξ�̄gdξ = ρb,

∫ (
ξ2�̄g + �̄h

)
dξ = 2ρub. (18)

As a finite-volume method, the first step is to decompose the computational domain into a set of control volumes. 
Eq. (17) is integrated over a cell V j located at x j from time tn to tn+1. The mid-point rule is used for the convection term 
and the trapezoidal rule is applied to the collision term, then the equation can be written as:

φ̃n+1
j = φ̃

+,n
j − �t

|V j| F
n+ 1

2 , Fn+ 1
2 =

∫
∂V j

(ξ · n)φ
(
ξ , x, tn+1/2

)
dS, (19)

where the time implicity has been removed by defining

φ̃ = φ − �t

2
�̄φ, φ̃+ = φ + �t

2
�̄φ, (20)

and they are understood as cell-averaged values, Fn+ 1
2 is microscopic flux across the cell interface and n is the outward 

unit vector normal to cell interface xb and tn+1/2 ≡ tn + 0.5�t .
6
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Table 2
Gauss-Hermite quadrature formula D2Q25.
Quadrature ξa Wa p

D2Q 25 (0,0) 64/225 1 r2 = 5+ √
10

(±r,0) 2(7− 2
√
10)/225 4 r2 = 5− √

10
(±s,0) 2(7+ 2

√
10)/225 4

(±r,±r) (89− 28
√
10)/3600 4

(±s,±s) (89+ 28
√
10)/3600 4

(±r,±s) 1/400 8

All hydrodynamic variables can be obtained from the auxiliary distribution φ̃ directly. For the evolution of Eq. (19), the 
key point is to evaluate the microscopic flux Fn+ 1

2 at the cell interface at half time step which requires the reconstruction 
of the original distribution φ

(
ξ , xb, tn+1/2

)
. In order to do that, we integrate the Boltzmann equation Eq. (17) with a half 

time step h = �t
2 along the characteristic line with end point at the cell interface xb , again trapezoidal rule is applied on 

the collision term:

φ
(
ξ , xb, tn+1/2

)− φ (ξ , xb − ξh, tn) = h

2

[
�̄φ

(
ξ , xb, tn+1/2

)+ �̄φ (ξ , xb − ξh, tn)
]
. (21)

Once again to remove time implicity, another two auxiliary distributions φ̄ = φ − h
2 �̄φ and φ̄+ = φ + h

2 �̄φ are introduced. 
And Taylor expansion around the node (ξ , xb, tn) is applied to φ̄+ (ξ , xb − ξh, tn):

φ̄
(
ξ , xb, tn+1/2

)= φ̄+ (ξ , xb − ξh, tn) = φ̄+ (ξ , xb, tn) − ξh · σ b, (22)

where σ b = ∇xφ̄
+ (ξ , xb, tn). It is obvious that the right-hand side of the Eq. (22) is explicit, φ̄+ can be obtained by in-

terpolation and the slope σ b can be estimated from the difference between the two neighboring cells for smooth flows. 
Hydrodynamic variables at time tn+1/2 can be computed from distribution function φ̄

(
ξ , xb, tn+1/2

)
. Then the equilibrium 

φeq can be obtained and the original distribution can be extracted from φ̄:

φ
(
ξ , xb, tn+1/2

)= 2τ

2τ + h
φ̄
(
ξ , xb, tn+1/2

)+ h

2τ + h
φeq (ξ , xb, tn+1/2

)+ τh

2τ + h
Fφ. (23)

With the original distribution φ
(
ξ , xb, tn+1/2

)
computed at the cell interface xb at time tn+1/2, the microscopic flux 

Fn+ 1
2 can be obtained and this complete the whole evolution process. The current scheme is valid for continuum flow due 

to our treatment of the forcing term, the compressible Navier-Stokes equation can be recovered with the following transport 
properties before normalization

μ = pτ , μV =
(

2

D
− 2

K + 3

)
pτ , k = μCp

Pr
= pτ

Pr

(K + 5)R

2
. (24)

In the numerical implementation, the equilibrium distribution is approximated by its fourth-order Hermite expansion as 
shown in Appendix A, we use D2Q25 discrete particle velocity model which has the 9th-order algebraic degree of precision 
(Table 2).

2.4. Kinetic treatment of boundary conditions

For our problem, we have no-slip velocity condition on all walls, and there are two types of temperature boundary 
conditions: adiabatic wall of zero heat flux and isothermal wall of constant temperature. The velocity field is determined 
by distribution g(ξ , x, t) while the temperature field is controlled by both g(ξ , x, t) and h(ξ , x, t) together, thus it is more 
complex to perform the kinetic treatment (i.e., in terms of g and h) of the boundary conditions. In Appendix C, we show 
how to relate a pair of distributions with opposite particle velocities, and such relations are used to perform the kinetic 
boundary-condition treatment. First, the no-slip velocity condition is accomplished by the following relation derived in 
Appendix C:
7
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g(ξa, j) = g(ξā, j) − τWaρw
ξa, j

T0

∂T

∂x j

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ξ2
a

RT0
− D − 2

)
1

2
(θ − 1)

[
ξ4
a

(RT0)2
− 2(D + 3)

ξ2
a

RT0
+ (D + 2)2

]

1

8
(θ − 1)2

⎡
⎢⎢⎢⎢⎢⎣

ξ6
a

(RT0)3
− (3D + 14)

ξ4
a

(RT0)2

+ (D + 4)(3D + 10)
ξ2
a

(RT0)

− (D + 2)2(D + 4)

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+O(τ 2,Ma5),

(25)

where ξa and Wa are the abscissas and the corresponding weights of the chosen quadrature. θ is the normalized tempera-
ture defined as θ = Tw

T0
. ρw , Tw are density, temperature at the wall, ξa, j denote the particles bouncing back from the wall 

and ξā, j = −ξa, j . The above boundary condition may be viewed as corrected or improved bounce-back rule retaining O(τ )

terms due to the velocity-temperature coupling. For an isothermal flow, this recovers the standard bounce-back implemen-
tation. For an adiabatic wall, temperature gradient in the wall normal direction is zero ∂T

∂x = 0. Temperature gradients in 
the tangential direction are approximated from the temperature values at the previous time step by finite-difference. For 
isothermal wall, Tw = Th or Tw = Tc is applied, then the temperature gradient in tangential direction is zero. Temperature 
gradients in wall normal direction are approximated with values at the previous time step by finite-difference.

Next, we consider the adiabatic thermal boundary. The bounce back relation in this case reads

h(ξa, j) =h(ξā, j) − K̃ρRτWaξa, j
∂T

∂x j

{(
ξ2
a

RT0
− D

)

+ 1

2
(θ − 1)

[
ξ4
a

(RT0)2
− 2(D + 1)

ξ2
a

RT0
+ D2

]}

+ 2Wa
2(1− Pr)√

RT0

ξa · q√
RT0

+O(τ 2,Ma3),

(26)

where K̃ ≡ (K + 3 − D). qx = 0 and ∂Tw
∂x = 0 are imposed on the top and bottom walls. Heat flux in tangential direction qy

can be approximated by the heat flux value at previous time step q(n−1)
y = 1

2

∫
cy(c2g(n−1) +h(n−1))dξ . Temperature gradient 

in the tangential direction is also calculated by the values from the last time step by finite difference.
Finally, for an isothermal wall, anti-bounce back is used for h(ξ , x, t):

h(ξa, j) = −h(ξā, j) + 2WaK̃ p

[
1+ 1

2
(θ − 1)

(
ξ2
a

RT0
− D

)]

+ 2τWaK̃ p
∂u j

∂x j

⎡
⎢⎢⎢⎣

(2− θ)
ξ2
a

(K + 3)RT0
+ K̃ + 2

K + 3

+ 1

2
(θ − 1)

(
ξ2
a

RT0
− D

)(
ξ2
a

(K + 3)RT0
+ K̃ + 2

K + 3

)
⎤
⎥⎥⎥⎦

+ 2τWaK̃ p
ξa,iξa, j

RT0

∂ui

∂x j

[
θ − 2− 1

2
(θ − 1)

(
ξ2
a

RT0
− D

)]
+O(τ 2,Ma3), (27)

where Tw = Th or Tw = Tc is applied at hot and cold wall respectively. As the no-slip boundary condition is enforced, the 
velocity gradients ∂u

∂x = 0 are zero. The velocity gradients ∂u
∂ y are approximated from velocities values at previous time step 

by finite-difference.
All the above relations are derived based on the Chapman-Enskog approximation and have an accuracy up to O(τ ), which 

is consistent with compressible Navier-Stokes and energy equations. The derivation details are presented in Appendix C. It 
is worth pointing out that the boundary condition treatments we derived above are based on the kinetic model and the 
physical boundary conditions. The methodology of deriving kinetic boundary conditions based on Chapman-Enskog analysis 
can be applied to other kinetic models, such as LBM, to improve the local accuracy of a kinetic method near the boundary.
8
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Table 3
Parameters for the simulation of natural convection with a small temperature difference.

Ra Pr γ ε Ma p0 (kg/ms2) T0 (K) R (m2/s2 K) g (m/s2) μ0

1.0× 106 0.71 1.4 0.01 4.108× 10−3 101325.0 600.0 287 g(Ra) 0.001

Fig. 2. (a). Isotherms; (b). Velocity vector plot for nearly incompressible natural convection with Ra = 1.0× 106, ε = 0.01.

3. Results and discussion

3.1. The Boussinesq case

The current scheme is capable of simulating both compressible and incompressible natural convections as the govern-
ing equations we use are fully compressible Navier-Stokes and energy equations. To validate the code, we first perform a 
simulation of natural convection in an air-filled square cavity with a small temperature difference and a low Mach number 
(ε � 1, Ma � 1), the Boussinesq results should be reproduced. Table 3 shows the parameter setting of the simulation, with 
a small temperature difference the fluid properties can be treated as constants. Non-uniform meshes 128 × 128 are used in 
both horizontal and vertical directions.

Besides small temperature difference, to reproduce the Boussinesq results with compressible Navier-Stokes equation, a 
low Mach number is also required. However, a small Mach number leads to enormous computational cost due to the CFL 
restriction, a compromise between small Mach number and computational cost is needed. Initially, the fluid is quiescent 
u = 0 and isothermal T = T0.

Fig. 2 shows the isotherms and velocity vector plot of nearly incompressible natural convection. Driven by the buoyancy 
force, the temperature boundary layer and the velocity boundary layer are developed along the isothermal walls. We can 
observe that there is temperature stratification in the core region, the flow field is symmetrical about the cavity center. All 
the characteristic flow features of Boussinesq flow are reproduced. Besides the instantaneous flow field, we also provide a 
detailed comparison of temperature and velocity profiles.

Temperature profiles and velocity profiles at mid-height and mid-width of the cavity are shown in Fig. 3, and are com-
pared to the Boussinesq results of the Wang et al. [18] using the DUGKS for Boussinesq flows, the finite-difference results 
of Fusegi et al. [44] and experimental results of Bilski et al. [45]. It is obvious that our compressible scheme can nicely 
reproduce the Boussinesq results.

In Table 4 we compare results of the maximum vertical/horizontal velocities ( umax
u0

, vmax
u0

) and their horizontal/vertical 
locations ( y

H , xH ) with the results under the Boussinesq assumption using other numerical methods. Clearly, our results 
agree well with the reference solutions. Therefore, we can claim that our compressible solver successfully reproduces the 
Boussinesq results when the temperature difference is small.

3.2. Compressible steady natural convection

After validating our scheme with nearly incompressible natural convection, we move to simulate steady compressible 
natural convection. Table 5 shows the parameter setting of natural convection with a large temperature difference at ε = 0.6
and Rayleigh number Ra = 1.0 × 106. The left wall of the cavity is fixed at a high temperature of Th = 960 K and the right 
wall is kept at a low temperature of Tc = 240 K. With this large temperature variance, the Boussinesq assumption is no 
longer valid. The density and the fluid properties vary with the temperature, the maximal density ratio is ρmax/ρmin = 4.0
9
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Fig. 3. (a) Vertical velocity u/u0 and (c) Temperature distribution at the mid-height x = 0.5H ; (b) Horizontal velocity v/u0 and (d) Temperature distribution 
at the mid-width y = 0.5H for Ra = 1.0 × 106, ε = 0.01.

Table 4
Characteristic values comparison, Ra = 1.0 × 106, ε = 0.01.

Present DUGKS [18] FD [46] Spectral [47]

umax/u0 0.2599 0.2588 0.2603 0.2617
y/H 0.0383 0.0391 0.0379 0.038
vmax/u0 0.0758 0.0757 0.0767 0.077
x/H 0.8546 0.8594 0.850 0.841
Nuo 8.83 8.679 8.80 8.82

as shown in Fig. 4(a). For this case, both the thermal boundary layer and the velocity boundary layer of the cold wall are 
expected to be thin, thus fine meshes are needed near the wall. A non-uniform grid with a resolution of 256 × 256 is used, 
where the minimum grid space near the wall is of the length �xmin = 2.683 × 10−4H . The CFL number in the current 
simulation is 0.5. The code was run on the National Center for Atmospheric Research’s (NCAR-Wyoming) Supercomputer, 
known as Cheyenne, equipped with 2.3-GHz Intel Xeon E5-2697V4 processors. The computational domain are decomposed 
in the y, 128 processors are employed for the current case. The wall clock time per step is 1.86 × 10−3s, and it takes 
1.3 × 107 time steps to obtain the steady results (u0t/H ≈ 60). Fig. 4(b) shows the local Mach number Mal =

√
u2+v2√
γ RT

contour after the flow reaches a steady state. The local Mach number for this case is very small, the maximum value is 
around 0.0126. Therefore, while the local Mach number is always small, the compressible effect as seen from the density 
change is significant due to large temperature changes. The fluid density near the left vertical wall is significantly less than 
that near the right wall.

The flow at Ra = 1.0 × 106 and ε = 0.6 can reach a steady state at long times. Fig. 5 shows the isotherms and velocity 
vector plot. We can clearly observe that the fluid near the hot wall is expanded, and the fluid near the cold wall is con-
tracted. Unlike the Boussinesq flow, the compressible natural convection is no longer symmetric about the cavity center. 
10
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Table 5
Parameters for the simulation of natural convection with a large temperature difference.

Ra Pr γ ε Ma p0 (kg/ms2) T0 (K) R (m2/s2 K) g (m/s2) μ0

1.0× 106 0.71 1.4 0.6 4.11× 10−2 101325.0 600.0 287 g(Ra) 0.01

Fig. 4. (a). Density contour; (b). local Mach number contour for compressible natural convection with Ra = 1.0× 106, ε = 0.6.

Fig. 5. (a). Isotherms; (b). Velocity vector plot for compressible natural convection with Ra = 1.0× 106, ε = 0.6.

Although the temperature is still stratified in the cavity center, the stratification slope is not constant along the vertical 
direction. As the hot fluid is expanded, it occupies more than half of the cavity domain.

Fig. 6 shows the temperature profiles and velocity profiles at the mid-height and mid-width of the cavity (Pr is added 
as in the literature u0

√
Pr is used as the reference velocity scale). We compare our results with the benchmark results of 

Vierendeels et al. [15]. Both temperature and velocity profiles are in excellent agreement with the reference solutions. From 
Fig. 6(a) and (c), we can clearly observe that the boundary layer thickness near the hot wall is large than that near the 
cold wall. It is natural to expect that for unsteady natural convection simulation at even higher Rayleigh number, the cold 
wall boundary layer will be extremely thin and requires finer resolution. Again, due to the expansion of the hot fluid, the 
temperature at the mid-height (Tmid ≈ 622 K) is no longer the same as T0, it slightly higher than T0 (600 K).

Besides the velocity and temperature profiles, we also provide the local Nusselt number distribution along the hot and 
cold walls. The Nusselt number is calculated as:

Nu(x) = H

k T − T
k
∂T

∂ y

∣∣∣∣ = − H

k T − T
qy, (28)
0 ( h c) wall 0 ( h c)

11
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Fig. 6. (a). Vertical velocity u/u0 and (c). Temperature distribution at the mid-height x = 0.5H ; (b). Horizontal velocity v/u0 and (d). Temperature distri-
bution at the mid-width y = 0.5H for Ra = 1.0 × 106, ε = 0.6.

where qy can be computed using the distribution function as qy = 1
2

∫
cy(c2g + h)dξ . Fig. 7 shows the Nusselt number 

profiles from Darbandi et al. [48] using a Finite-Volume approach, and those from Heuveline [49] using a Finite-Element 
method, and current DUGKS simulation. Our results agree well with the solution of Darbandi et al. with 300 × 300 uniform 
meshes. Different from the symmetric Nusselt number distribution of the Boussinesq flow, for compressible natural convec-
tion the Nusselt number distribution along the hot and cold wall show different distributions. The averaged Nusselt number 
for two isothermal walls are Nuh = 8.6874 and Nuc = 8.6767.

3.3. Compressible unsteady natural convection

As the Rayleigh number exceeds a critical value, the flow becomes unsteady, this is the case for fire safety simula-
tions [50]. In this study, we also investigate the unsteady natural convection with Ra = 5.0 × 109 and ε = 0.6. While for 
steady compressible natural convection there are several studies available in the literature and the flow features are clear, 
for unsteady compressible natural convection, the flow statistics and the instability of the boundary layer are not completely 
clear. To the authors’ knowledge, there is only one numerical result reported recently by Lenz et al. [21] using the gas ki-
netic scheme (GKS) [41]. With the high Rayleigh numbers and a large temperature difference, the flow is unsteady and 
the flow near the isothermal boundary becomes turbulent. Table 6 shows the parameters for the simulation of unsteady 
natural convection. We employ the same dimensionless parameters setting as in Lenz et al. [21] The grid resolution used is 
360 × 360, and the minimal grid spacing near the wall is �xmin = 4.11 × 10−4H .

Fig. 8 shows the instantaneous temperature field and time-averaged temperature field. The flow field is averaged over 
approximately 75 eddy turnover times after the flow reaches statistical stationarity. The eddy turnover time is defined as 
4H
u0/3

, where u0/3 approximates the maximum flow velocity and 4H is the maximum flow path. Interesting flow features 
can be observed from these temperature contours: the instantaneous temperature contour shows that vortices are generated 
along the isothermal walls which disturb the flow in the hot wall boundary layer; the flow near the cold wall is more 
quiescent, vortices are only observed near the bottom corner of the cold wall. These observations are consistent with those 
reported in Lenz et al., showing that the heating decreases the stability and the cooling increases the stability.
12
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Fig. 7. Nusselt number distribution along the hot and cold walls.

Table 6
Parameters for the simulation of compressible unsteady natural convection.

Ra Pr γ ε Ma p0 (kg/ms2) T0 (K) R (m2/s2 K) g (m/s2) μ0

5.0× 109 0.71 1.4 0.01 0.2927 101325.0 600.0 287 g(Ma) μ(Ra)

Fig. 8. (a). Instantaneous temperature field; (b). Time-averaged temperature field for natural convection with Ra = 5.0× 109, ε = 0.6.

Next, we provide the temperature and velocity profiles at the mid-height and mid-width of the cavity in Fig. 9. Our 
DUGKS results are in excellent agreement with GKS results of Lenz et al., both methods predict similar velocity and temper-
ature distributions. The profiles show that the velocity and the temperature boundary layer is extremely thin along the cold 
wall as expected, there are more than 20 cells insides the cold velocity/thermal boundary layer to resolve the steep velocity 
and temperature gradient. Comparing to vertical velocity profile, the horizontal velocity profile Fig. 9(b) shows relatively 
complex distributions, the velocity distribution is no longer symmetric about the mid-height and locations corresponding to 
the peak velocities are intriguing, the maximum horizontal velocity reaches its peak near the upper wall for the hot fluid re-
gion, while the maximum velocity of the cold fluid region is near the cavity center. The temperature stratification is altered 
by the thermal expansion of the fluid, the hot fluid occupies more than 35 region of the cavity, the temperature stratification 
slopes for the hot fluid region and the cold fluid region are also different. The mean temperature is slightly increased to 
T ≈ 1.045T0 in the initial flow developing stage and becomes steady after the flow reaches statistical stationarity.

Turbulent kinetic energy T K E = 1
2 (u′u′ + v ′v ′) are also computed. For unsteady Boussinesq natural convection, the 

boundary layer along the isothermal wall experiences laminar, periodic, and eventually a turbulent flow state at the down-
13
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Fig. 9. (a). Vertical velocity and (c). Temperature distribution at the mid-height x = 0.5H ; (b). Horizontal velocity and (d). Temperature distribution at the 
mid-width y = 0.5H for Ra = 5.0 × 109, ε = 0.6.

stream region of the thermal boundary layer. Trias et al. [51] performed simulations of two-dimensional turbulent natural 
convection in a tall cavity under the Boussinesq approximation, and for Rayleigh number at ∼ 109 order, all the turbulent 
fluctuations concentrate at the downstream corner. On the other hand, the unsteady compressible natural convection is 
characterized by different turbulent flow structures. From Fig. 10, we note that the KTE reaches their maximum near the 
height x = 0.4H for the fluid motion of hot wall. The velocity fluctuations only concentrates at the bottom right corner near 
the cold wall. This implies that the thermal expansion changes the instability mechanism, the heating of the hot wall desta-
bilizing the hot fluid, while the transition location between steady to unsteady flow moves upstream. The flow structures of 
the compressible natural convection are highly asymmetric.

4. Conclusion

In this study, we investigate the compressible natural convection using a modified discrete unified gas-kinetic scheme 
(DUGKS). A source term is introduced to adjust the Prandtl number without increasing the requirement of Gauss-Quadrature 
quadrature order. A systematic approach of deriving the “bounce-back” boundary condition for the distribution function is 
suggested, based on the Chapman-Enskog approximation. The current boundary treatment is fully consistent with the com-
pressible Navier-Stokes and energy equations. We show that our scheme can reproduce the Boussinesq results accurately, 
and is able to simulate fully compressible convection flows.

Two compressible natural convection simulations are performed, steady compressible natural convection at Ra = 1.0 ×
106 and ε = 0.6, and the unsteady natural convection with Ra = 5.0 × 109 and ε = 0.6. For the former case, we compared 
the velocity, temperature, and Nusselt number distribution with results from the literature, and show that the solution of 
our scheme is accurate. And the current scheme is capable of simulating unsteady compressible natural convection, our 
results agree well with the GKS results of Lenz et al. [21]. Interesting turbulent fluctuation statistics are observed along the 
hot wall and at the right bottom corner of the cold wall.

In summary, we validate that the discrete unified gas-kinetic scheme is a robust and accurate tool for compressible flow 
simulations. We develop a modified model which solves the unit Prandtl number limitation of the standard BGK model and 
provide a systematic approach of deriving better boundary condition treatment. In general, compressible convection flows 
14
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Fig. 10. Turbulent kinetic energy K T E/(u2
0 Pr).

at high Rayleigh numbers are more complex than the Boussinesq convection flows. Kinetic methods such as DUGKS would 
be a reliable approach for studying the dynamics of compressible convection in the future.
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Appendix A. Hermite expansion of equilibrium

Based on the Chapman-Enskog analysis, the fourth-order moment of the geq(ξ , x, t) and second-order moment of 
heq(ξ , x, t) are needed to obtain the correct heat flux expression in compressible flows. The fourth-order Hermite expansion 
of geq,N=4(ξ , x, t) and second-order Hermite expansion of heq,N=2(ξ , x, t) can be derived and the results are
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where subscript a represents the index of discrete particle velocities. The following relations can be derived for the use of 
the boundary condition derivation.

geq+ + geq− = 2Waρ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1+ 1

2

[(
ξa, ju j

)2
(RT0)

2
− u2

RT0
+ (θ − 1)

(
ξ2
a

RT0
− D

)]

+ 1

24

(ξa, ju j)
2

(RT0)2

⎡
⎢⎢⎢⎣

(ξa, ju j)
2

(RT0)2
− 6

u2

RT0

+ 6 (θ − 1)

(
ξ2
a

RT0
− D − 4

)
⎤
⎥⎥⎥⎦

+ 1

8

u2

RT0

[
u2

RT0
+ 2 (θ − 1)

(
− ξ2

a

RT0
+ D + 2

)]

+ 1

8
(θ − 1)2

[
ξ4
a

(RT0)2
− (2D + 4)

ξ2
a

RT0
+ D2 + 2D

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (A.3a)

geq+ − geq− = 2Waρ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξa, ju j

RT0
+ 1

6

ξa, ju j

RT0

⎡
⎢⎢⎢⎣
(
ξa, ju j

)2
(RT0)

2
− 3

u2

RT0

+ 3 (θ − 1)

(
ξ2
a

RT0
− D − 2

)
⎤
⎥⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (A.3b)

heq+ + heq− = 2WaK̃ρRT

{
1+ 1

2

[(
ξa, ju j

)2
(RT0)

2
− u2

RT0
+ (θ − 1)

(
ξ2
a

RT0
− D

)]}
, (A.3c)

heq+ − heq− = 2WaK̃ρRT

{
ξa, ju j

RT0

}
. (A.3d)

where ξa, j and Wa are the abscissa and the corresponding weights of the chosen quadrature. For simplicity, we use super-
script + to represent the particles ξa bounce back from the wall, while the superscript − represents the particles ξā moving 
towards the wall.
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Appendix B. Heat flux and Prandtl number correction

The heat flux qi can be computed from two reduced distribution functions as:

qi = 1

2

∫
ci
(
c2g + h

)
dξ

= 1

2

∫
cic

2
{
geq − τ

[
∂ geq

∂t
+ ξ j

∂ geq

∂x j
+ b j

∂ geq

∂ξ j

]}
dξ

+ 1

2

∫
ci

{
heq + τ Sh − τ

[
∂heq

∂t
+ ξ j

∂heq

∂x j
+ b j

∂heq

∂ξ j

]}
dξ

= −1

2
τ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
cic

2
[

∂ geq

∂t
+ ξ j

∂ geq

∂x j
+ b j

∂ geq

∂ξ j

]
dξ

+
∫

ci

[
∂heq

∂t
+ ξ j

∂heq

∂x j
+ b j

∂heq

∂ξ j

]
dξ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+ 1

2

∫
ciτ Shdξ .

(B.1)

The first part of integration results in a value of −pτCp
∂T
∂xi

, the second part yields 1
2

∫
ciτ Shdξ = (1 − Pr)qi . The actual 

thermal conductivity becomes k = pτCp
Pr , the Prandtl number can be altered through this relatively simple approach without 

increase the Gauss quadrature requirement of the scheme.

Appendix C. The Chapman Enskog analysis of boundary condition

To derive the boundary condition, we employ the Chapman-Enskog expansion to the order of τ , the distribution function 
g(ξ , x, t) and h(ξ , x, t) can be obtained from Eq. (12) as:

g = geq − τ

[
∂ geq

∂t
+ ξ j

∂ geq

∂x j
+ b j

∂ geq

∂ξ j

]
+O(τ 2), (C.1a)

h = heq + τ Sh − τ

[
∂heq

∂t
+ ξ j

∂heq

∂x j
+ b j

∂heq

∂ξ j

]
+O(τ 2). (C.1b)

The derivatives ∂ geq

∂t , ∂ g
eq

∂x j
, ∂ g

eq

∂ξ j
, ∂h

eq

∂t , ∂h
eq

∂x j
, ∂h

eq

∂ξ j
can be evaluated directly using the expression of equilibriums Eq. (13).

∂ geq

∂t
= geq

{
∂ lnρ

∂t
+
(

c2

2RT
− D

2

)
∂ ln T

∂t
+ ck

RT

∂uk

∂t

}
, (C.2a)

∂ geq

∂x j
= geq

{
∂ lnρ

∂x j
+
(

c2

2RT
− D

2

)
∂ ln T

∂x j
+ ck

RT

∂uk

∂x j

}
, (C.2b)

∂ geq

∂ξ j
= − c j

RT
geq, (C.2c)

∂heq

∂t
= K̃ RT geq

{
1

T

∂T

∂t
+
[

∂ lnρ

∂t
+
(

c2

2RT
− D

2

)
∂ ln T

∂t
+ ck

RT

∂uk

∂t

]}
, (C.3a)

∂heq

∂x j
= K̃ RT geq

{
1

T

∂T

∂x j
+
[

∂ lnρ

∂x j
+
(

c2

2RT
− D

2

)
∂ ln T

∂x j
+ ck

RT

∂uk

∂x j

]}
, (C.3b)

∂heq

∂ξ j
= − c j

RT
heq. (C.3c)

To remove all the time derivatives, the leading-order Euler equations are used here:

∂ρ

∂t
= −∂ρu j

∂x j
+O(τ ), (C.4a)

ρ
∂ui

∂t
= −ρu j

∂ui

∂x j
− ∂ρRT

∂xi
+ ρbi +O(τ ), (C.4b)

ρCV
∂T

∂t
= −ρCV u j

∂T

∂x j
− p

∂uk

∂xk
+O(τ ). (C.4c)
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Then we can obtain the structure of the distribution functions of g and h as:

g = geq

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1− τ cic j

RT

∂ui

∂x j
+ τ

[
c2

(K + 3)RT
+ K̃

K + 3

]
∂u j

∂x j

− τ c j
∂T

∂x j

(
c2

2RT 2
− D + 2

2T

)
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+O(τ 2), (C.5a)

h = heq

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1− τ cic j

RT

∂ui

∂x j
+ τ

[
c2

(K + 3)RT
+ K̃ + 2

K + 3

]
∂u j

∂x j

− τ c j
∂T

∂x j

(
c2

2RT 2
− D

2T

)
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+ τ Sh +O(τ 2). (C.5b)

The above distributions are fully consistent with the Chapman-Enskog expansion. The non-equilibrium part of distribution 
function contains contributions associated with the strain rate and heat flux. Based on the above results, we can derive the 
kinetic treatment of the boundary conditions.

First, for no-slip velocity boundary condition we can write:

g(ξa, j) − g(ξā, j) =

(geq+ − geq−)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1− τ (ξa,iξa, j + uiu j)

RT

∂ui

∂x j
+ τ

[
ξ2
a + u2

(K + 3)RT
+ K̃

K + 3

]
∂u j

∂x j

+ τ
∂T

∂x j

[
ξ2
a u j + 2ξa,iξa, jui + u ju2

2RT 2
− u j(D + 2)

2T

]
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+ (geq+ + geq−)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ (ξa,iu j + ξa, jui)

RT

∂ui

∂x j
− τ2ξa,iui

(K + 3)RT

∂u j

∂x j

− τ
∂T

∂x j

[
ξ2
a ξa, j + 2ξa,iuiu j + ξa, ju2

2RT 2
− ξa, j(D + 2)

2T

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+O(τ 2).

(C.6)

With the condition uw = 0, the equation above can be simplified to:

g(ξa, j) − g(ξā, j) = (geq+ − geq−)

{
1− τ (ξa,iξa, j)

RT

∂ui

∂x j
+ τ

[
ξ2
a

(K + 3)RT
+ K̃

K + 3

]
∂u j

∂x j

}

+ (geq+ + geq−)

{
−τ

∂T

∂x j

[
ξ2
a ξa, j

2RT 2
− ξa, j(D + 2)

2T

]}
+O(τ 2)

(C.7)

Substituting the relations Eq. (A.3) into the equation above, the term (geq+ − geq−) equals zero with the condition 
uw = 0. Then the equation becomes:

g(ξa, j) − g(ξā, j) =2Waρ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1+ 1

2

[
(θ − 1)

(
ξ2
a

RT0
− D

)]

+ 1

8
(θ − 1)2

[
ξ4
a

(RT0)2
− (2D + 4)

ξ2
a

RT0
+ D2 + 2D

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

×
{

−τ
∂T

∂x j

[
ξ2
a ξa, j

2RT 2
− ξa, j(D + 2)

2T

]}
+O(τ 2).

(C.8)

Besides, to be consistent with the Hermite expansion of equilibrium, we expand 1/T to the order of Ma4:

1

T
= 1

T0

1

1+ T−T0
T0

≈ 1

T0

[
1− (θ − 1) + (θ − 1)2

]
+O(Ma5), (C.9a)

1

T 2
≈ 1

T 2
0

[
1− 2(θ − 1) + 3(θ − 1)2

]
+O(Ma5). (C.9b)
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Submitting the expanded temperature terms into the Eq. (C.8), we have:

g(ξa, j) − g(ξā, j) =2Waρ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1+ 1

2

[
(θ − 1)

(
ξ2
a

RT0
− D

)]

+ 1

8
(θ − 1)2

[
ξ4
a

(RT0)2
− (2D + 4)

ξ2
a

RT0
+ D2 + 2D

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−τξ j
∂T

∂x j

⎡
⎢⎢⎢⎣

ξ2

2RT 2
0

[1 − 2(θ − 1) + 3(θ − 1)2]

− (D + 2)

2T0
[1 − (θ − 1) + (θ − 1)2]

⎤
⎥⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

(C.10)

All the terms with order higher than O(Ma5) can be neglected. Finally, we can obtain the no-slip boundary as:

g(ξa, j) = g(ξā, j) − τWaρ
ξa, j

T0

∂T

∂x j

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ξ2
a

RT0
− D − 2

)
1

2
(θ − 1)

[
ξ4
a

(RT0)2
− 2(D + 3)

ξ2
a

RT0
+ (D + 2)2

]

1

8
(θ − 1)2

⎡
⎢⎢⎢⎢⎢⎣

ξ6
a

(RT0)3
− (3D + 14)

ξ4
a

(RT0)2

+ (D + 4)(3D + 10)
ξ2
a

(RT0)

− (D + 2)2(D + 4)

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+O(τ 2,Ma5) (C.11)

For adiabatic thermal boundary condition, we have uw = 0 and ∂T
∂n = 0. From Eq. (C.5b), we can obtain

h(ξa, j) − h(ξā, j) = (heq+ − heq−)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− τ (ξa,iξa, j + uiu j)

RT

∂ui

∂x j

+ τ

[
ξ2
a + u2

(K + 3)RT
+ K̃ + 2

K + 3

]
∂u j

∂x j

+ τ
∂T

∂x j

[
ξ2
a u j + 2ξa,iξa, jui + u ju2

2RT 2
− u jD

2T

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+ (heq+ + heq−)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ (ξa,iu j + ξa, jui)

RT

∂ui

∂x j
− τ2ξa,iui

(K + 3)RT

∂u j

∂x j

− τ
∂T

∂x j

[
ξ2
a ξa, j + 2ξa,iuiu j + ξa, ju2

2RT 2
− ξa, j D

2T

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+ 2τ Sh,a +O(τ 2).

(C.12)

Similar process as before, but the 1/T only needs to be expanded to the Ma2 for the h distribution as:

1

T
= 1

T0

1

1+ T−T0
T0

≈ 1

T0
[1− (θ − 1)]+O(Ma3). (C.13)

After substituting the equilibrium and neglecting high order terms, the adiabatic boundary condition can be written as:

h(ξa, j) =h(ξā, j) − K̃ρRτWaξa, j
∂T

∂x j

{(
ξ2
a

RT0
− D

)

+ 1

2
(θ − 1)

[
ξ4
a

(RT0)2
− 2(D + 1)

ξ2
a

RT0
+ D2

]}

+ 2Wa
2(1− Pr)√ ξa · q√ +O(τ 2,Ma3),

(C.14)
RT0 RT0
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For the isothermal boundary condition, the wall temperature is fixed T = Tw . From Eq. (C.5b) we have:

h(ξa, j) + h(ξā, j) = (heq+ + heq−)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− τ (ξa,iξa, j + uiu j)

RT

∂ui

∂x j

+ τ

[
ξ2
a + u2

(K + 3)RT
+ K̃ + 2

K + 3

]
∂u j

∂xa, j

+ τ
∂T

∂x j

[
ξ2
a u j + 2ξa,iξa, jui + u ju2

2RT 2
− u jD

2T

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+ (heq+ − heq−)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ (ξa,iu j + ξa, jui)

RT

∂ui

∂x j
− τ2ξa,iui

(K + 3)RT

∂u j

∂x j

− τ
∂T

∂x j

[
ξ2
a ξa, j + 2ξa,iuiu j + ξa, ju2

2RT 2
− ξa, j D

2T

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+ 2τ Sh,a +O(τ 2).

(C.15)

Substituting the equilibrium and apply the condition uw = 0, we can get:

h(ξa, j) + h(ξā, j) = 2Wa (K + 3− D)ρRT

[
1 + 1

2

(
T

T0
− 1

)(
ξ2
a

RT0
− D

)]

×
{
1− τξa,iξa, j

RT

∂ui

∂x j
+ τ

[
ξ2
a

(K + 3)RT
+ K + 5− D

K + 3

]
∂u j

∂x j

}
+O(τ 2),

(C.16)

where 1/T needs to be expanded to Ma2, and finally we can obtain the isothermal boundary condition as:

h(ξa, j) = −h(ξā, j) + 2WaK̃ p

[
1+ 1

2
(θ − 1)

(
ξ2
a

RT0
− D

)]

+ 2τWaK̃ p
∂u j

∂x j

⎡
⎢⎢⎢⎢⎣

(2− θ)
ξ2
a

(K + 3)RT0
+ K̃ + 2

K + 3

+ 1

2
(θ − 1)

(
ξ2
a

RT0
− D

)(
ξ2
a

(K + 3)RT0
+ K̃ + 2

K + 3

)
⎤
⎥⎥⎥⎥⎦

+ 2τWaK̃ p
ξa,iξa, j

RT0

∂ui

∂x j

[
θ − 2− 1

2
(θ − 1)

(
ξ2
a

RT0
− D

)]
+O(τ 2,Ma3).

(C.17)

It is important to point out that we did not make any assumption in the derivation. Therefore, these boundary treatments 
are valid for all compressible continuum flows.
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