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ABSTRACT

Discrete unified gas-kinetic scheme (DUGKS) has been developed as a robust and accurate approach for thermal compressible flow simula-
tions; however, designing an efficient and accurate lattice velocity model to take full advantage of DUGKS remains a challenge. In this study,
we apply DUGKS to simulate three-dimensional compressible natural convection in an enclosure with a large temperature difference, with-
out making the Boussinesq approximation. The Chapman-Enskog analysis indicates that the fourth-order moments of equilibrium is needed
for the heat flux evaluation in the energy equation, implying that the fourth-order Hermite expansion of equilibrium and thus at least an
eighth-order Gauss—Hermite quadrature are needed for accurate simulation of the Navier—Stokes—Fourier system. For this purpose, a highly
efficient lattice velocity model, D3Q77A9, is derived, which provides a Gauss—Hermite quadrature of ninth-order accuracy in three dimen-
sions. The accuracy of this D3Q77A9 model is demonstrated by simulating compressible natural convection flows in both two-dimensional
and three-dimensional cavities. An error analysis is performed to emphasize the importance of combining a quadrature with an adequate
degree of precision and a proper order of Hermite expansion of the equilibrium distribution.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0045227

I. INTRODUCTION

In recent years, a number of kinetic methods based on solving a
model Boltzmann equation have been developed as an alternative
approach in numerical simulation of thermal compressible flows.

unique challenges such as the boundary condition treatment, numeri-
cal instability, and proper design of lattice velocity model and quadra-
ture needed to efficiently and accurately evaluate the integral moments
of the particle distribution function.

Instead of solving the Navier—Stokes—Fourier system governing the
evolution of the hydrodynamic variables, kinetic methods solve
the evolution of the mesoscopic distribution function which relates the
microscopic particle dynamics with the macroscopic hydrodynamic
variables. Although the model Boltzmann equation is easier to solve
when compared to the Navier—Stokes—Fourier system, it also presents

The standard lattice Boltzmann method (LBM) was developed as
an efficient and accurate tool to treat incompressible and often isother-
mal flows at low Mach numbers. Different kinetic models have been
proposed for the thermal lattice Boltzmann method: the multispeed
approach,”” the hybrid approach,” and the double-distribution func-
tion (DDF) approach.” ” In the multispeed approach, by increasing
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the number of discrete particle velocities, the compressible
Navier—Stokes—Fourier equations can be recovered. In the hybrid
approach, the velocity field is simulated by the lattice Boltzmann
method, while the temperature field is solved by the conventional
CFD method such as a finite-difference or finite-volume method.
Solving the macroscopic energy equation with a nonlinear term com-
plicates the numerical process.

As for the DDF approach, there are two types. The first is typi-
cally based on the Boussinesq approximation, and the distribution
used for temperature is microscopically independent of the distribu-
tion used for density and velocity fields. Examples of this type can be
found in thermal flow simulations with a small temperature differ-
ence.'” '* The temperature field is treated as a passive scalar which
evolves according to the advection-diffusion equation. In the second
type, both distributions are derived from the original higher dimen-
sional particle distribution by properly integrating out the internal
degrees of freedom, where the first reduced distribution determines
density and velocity fields, and the choice for the second reduced dis-
tribution is not unique, whose integral may be related to the internal
energy,”"” total energy,””'® or partial internal energy.'”'* Owing to
the simplicity in implementation and inner coherence in physics, the
DDF model of the second type is widely employed in thermal flow
simulations. He et al.” proposed the first DDF model of the second
type which considers both the viscous dissipation and compression
work. The temperature field is fully represented by an additional inter-
nal energy distribution function, namely, the integral of this second
distribution function gives the internal energy pDRT /2. However, in
this method, the evaluation of temperature involves the time and spa-
tial derivatives of the hydrodynamic variables which may introduce
some discretization errors. Later on, an alternative thermal DDF
model was designed by Guo et al.” They employed a distribution func-
tion for the total energy p(u?/2 + DRT/2) rather than the internal
energy. The introduction of this total energy distribution function
avoids the calculation of time and spatial derivatives of the hydrody-
namic variables. It is worth pointing out that, to simulate compressible
natural convection with a large temperature difference, the Hermite
expansion of equilibrium distribution function to an appropriate order
is needed.'*"”

Besides LBM, other kinetic methods have been developed rapidly
in recent years. The gas-kinetic scheme was developed by Xu.”’ The
capability of GKS for thermal flow simulation was first demonstrated
by the natural convection flow simulation under the Boussinesq
approximation.'' Recently, Lenz et al”' performed simulations of
compressible natural convection flow, without the Boussinesq approx-
imation; they first investigated two-dimensional unsteady compress-
ible natural convection flows with the Rayleigh number up to 5 x 10°.
It is worth pointing out that the boundary conditions in GKS are
implemented at the macroscopic level. As GKS is limited to the contin-
uum flow, UGKS™ and DUGKS'"*’ have been developed to treat
flows al all Knudsen numbers. Three-dimensional simulations of
unsteady natural convection under the Boussinesq approximation
were performed by Wang et al”** using DUGKS. Non-uniform
meshes can be easily implemented in DUGKS, and results of unsteady
convection flows up to Ra = 10'* in three dimensional space were
provided in the work of Wang et al.”” Laminar to turbulent transition
of natural convection in a 3D cubical cavity was studied by Wen
et al."* using DUGKS with an improved implementation of boundary
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condition. Recently, DUGKS has been extended to two-dimensional
simulation of non-Boussinesq type natural convection with a large
temperature difference in a square cavity.® With these successful
implementations, DUGKS is shown to be a reliable simulation tool for
thermal flow simulations. Furthermore, as a finite volume method, a
non-uniform mesh can be easily employed in DUGKS which is desir-
able to resolve the sharp temperature and velocity gradients near the
walls. For continuum flows, DUGKS can be viewed as a special finite-
volume LB scheme, but it is more accurate and robust than FV-LBE.”®
The computational efficiency can be significantly improved with the
use of a non-uniform grid.””**

While two-dimensional and three-dimensional simulation results
of natural convection in a cavity under the Boussinesq approximation
have been studied by different numerical methods,”””’ compressible
natural convection in an enclosure with a large temperature difference
is, by far, less explored. Most simulations of the compressible natural
convection flows were performed under the low Mach number
approximation or solving the steady Navier—Stokes equations.”’ ™
Chenoweth and Paolucci’ performed an early simulation of com-
pressible natural convection. Solving the transient Navier—Stokes
equations under the low Mach number approximation, they obtained
results of two-dimensional, long-time (i.e., steady), compressible natu-
ral convection. Vierendeels et al.”*"” solved two-dimensional steady
Navier—Stokes equations and provided solutions for the Rayleigh
number range 10? < Ra < 107 with a temperature difference
¢=(Tp — T.)/(2To) = 0.6, where Ra = 2PregH?pZ/(u?), Pr is the
Prandtl number, g is the gravity, p, is the density at given temperature
To = (Tn + T¢)/2, uo is viscosity at given temperature, Tj, is the tem-
perature of the hot wall, and T, is the temperature of the cold wall.
However, the steady Navier—Stokes equations are not valid for high
Rayleigh number convections. For unsteady compressible natural con-
vections, Le Quéré et al.”” studied two-dimensional non-Boussinesq
convection in a tall cavity with an aspect ratio A=5 using a
Chebyshev collocation algorithm for compressible Navier—Stokes
equations under the low Mach number approximation, where
A =H/L, H is the cavity height, and L is the cavity length. They
found that the flow becomes increasingly asymmetrical as the temper-
ature difference is increased, and the critical Rayleigh number also
decreases with larger temperature difference. Lenz et al.”' performed
two-dimensional compressible natural convection simulations with
Ra = 5.0 x 10° using the gas-kinetic scheme. Table | summarizes
some representative studies of compressible natural convection in an
enclosure. The three-dimensional compressible natural convection is
rarely explored. In this work, we intend to extend DUGKS to simulate
three-dimensional compressible natural convection flows.

There are a few crucial issues we need to resolve in order for
DUGKS to simulate three-dimensional natural convection, such as the
unity Prandtl number limitation of original BGK model, the order
requirement of Gauss—Hermite quadrature in the determination of lat-
tice velocities, and accurate implementation of the boundary condi-
tion. According to the analysis of Shan et al,'” third-order Hermite
expansion of equilibrium and quadrature with sixth-degree of preci-
sion are required for isothermal flow to recover the Navier—Stokes
equations. For compressible flow, the requirements change to a
fourth-order Hermite expansion of equilibrium and quadrature at the
eighth-degree of precision. In our previous study, we find that the
Shakhov model,'”*" utilized to adjust the Prandt]l number, would raise
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TABLE I. Studies of compressible natural convection.
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Method Dimension and resolution A Ra
Chenoweth and Paolucci™ FD 2D (121 x 121) 1-10 10° — 107
Le Quéré etal.”” Spectral 2D (80 x 80,32 x 96) 1,8 10°, 10°
Vierendeels et al.’”* FV 2D (512 x 512) 1 10 — 107
Becker and Braack™ FE 2D (4 x 10° d.o.f) 1 10° — 107
Lietal” LBM 2D (250 x 250) 1 10° — 10°
Feng et al.”" LBM 3D (100 x 100 x 10) 1 10° — 10°
Lenz et al.”! GKS 2D (376 x 376) 1 10°,5 x 10°
Wen et al.'” DUGKS 2D (360 x 360) 1 10°,5 x 10°

the requirement of Hermite expansion of equilibrium and the degree
of precision of the Gauss—Hermite quadrature. Thus, instead of using
the Shakhov model or the Ellipsoidal-Statistical model, 2 we introduce
an extra source term to the original BGK model to overcome the unity
Prandlt number limitation. In this way, only fourth-order Hermite
expansion of the equilibrium and an eighth degree of precision for the
quadrature are needed.'” In our previous work,'® two-dimensional
steady and unsteady compressible natural convection simulations are
performed and the results reach an excellent agreement with the litera-
ture. For the temperature and velocity boundary condition, we pro-
posed a systematic way of deriving boundary expression based on the
Chapman—Enskog expansion, in this way all the nodes at the bound-
ary satisfy the full compressible Navier—Stokes equations.

In DUGKS, particle velocity is discretized into a finite set. For a
compressible flow, fourth-order moments of the expanded equilibrium
distribution are needed for the heat flux evaluation which requires at
least an eighth degree precision of the quadrature. As there is no gen-
eral theory to construct Gauss quadratures at a given order in multiple
spatial dimensions, we use D2Q25A9 model obtained from the pro-
duction formulas of the D1Q5A9 for previous two-dimensional simu-
lations (Dn;QnyAns denotes a np-dimensional quadrature with #,
particle velocities having a n3-degree of quadrature precision). The
simply minded extension in this manner would lead to D3Q125A09,
which requires 125 discrete velocities in 3D. Shan proposed a general
solution of lattice for the LBGK model and provided a D3Q107A9
model.”"** As DUGKS does not require discrete velocities to coincide
with the mesh, D3Q107A9 model might be too redundant and a more
compact model may be designed for DUGKS. In this paper, we will
show that it is possible to design a D3Q77A9 model with only 77 dis-
crete velocities. To emphasize the importance of using quadrature
with enough degree of precision and equilibrium with adequate order
of expansion, we shall perform a series of simulations, along with an
error analysis of the simulated flows.

The rest of the paper is organized as follows. The BGK model
with a Prandtl number correction term is introduced in Sec. Il A,
and the derivation of the D3Q77A9 lattice model is shown in Sec.
11 B. The accuracy of the D3Q77A9 model is validated in Sec. I1I A
and Sec. IIIB by steady compressible natural convection simula-
tion. An error analysis is given in Sec. I1I C to show the importance
of using appropriate Hermite expansion of the equilibrium and
quadrature with enough degree of precision. A brief summary is
given in Sec. I'V.

Il. THE MESOSCOPIC CFD MODEL
A. The gas kinetic model

To recover the fully compressible Navier—Stokes equations, the
Boltzmann equation with the Bhatnagar-Gross-Krook (BGK) model is
employed in this work."” An extra source term S, is introduced to
adjust the system Prandtl number; the detailed derivations of this
model are shown in the work of Wen et al.'® and Chen et al. > The
system is described by the evolution equations of the two reduced dis-
tributions, g(x,&,t) and h(x,&,t), which depend on the particle
velocity &, space location x, and time ¢, as follows:

og o _ 8§81
E+§-ng+b~vgg797 e (1a)
h h— hea
O e Vahtb V=0, =" s )
2(1=Pr)g &
Sy = Sy 1
h w(é){ ‘L'\/R_T() \/R_T()}’ ( C)

where b = (—g,0,0) is the body force per unit mass, and the weight

function is defined as (&) = ( \/ﬁ) 5 €Xp <f %) The two equilib-

rium distributions, g and h*, are given as follows:

eq __ 14 |:_ (6 - u)2:| (2 )
=GR exp ST a
h*t = (K +3 — D)RTg", (2b)

where R is gas constant, D is the spatial dimension, and K is the inter-
nal degree of freedom. Hydrodynamic variables can be obtained from
the moments of the distribution function as

o= et pu=[eedz pE=pui/zs e

:%J(cfngrh)df. 3)

The full compressible Navier—Stokes equations can be recovered
precisely from the current model. The extra source term Sy, is designed
to adjust the Prandtl number, contributing only to the heat flux; thus,
the continuity equation and momentum equations remain the same.
Using the Chapman-Enskog expansion of distribution functions, the
heat flux can be written as follows:
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where ¢; = & — u; is the peculiar velocity. Clearly, the fourth-
order moments fﬁiéjézgeqdf are needed to evaluate the heat flux,
this requires a fourth-order expansion of the equilibrium g°,
geq"(“), a second-order expansion of the equilibrium s, hea(2) | and
at least an eighth degree of precision for the quadrature. The
Hermite expansion form of the equilibrium can be written as
follows:

2
U 1 U 2 £2
LRI 1)2—”— 0-1){>-D
RTy ' 2|(RT,) RTY RT,
s \2
1w | (Gw)” W &
o —3—430-1)|—-D-2
6RT, [(RTO)Z RT0+ 6-1 RT,
L) [Eu)?  w g 5
g —wpd ¢ =TI NCITIL g 60— 1)| o —D—4 || p+0O(Ma), (5)
24 (RTy)* |(RTy)*> RTp RTy
1 HZ uZ 62
S | +20-1)|-—+D+2
SRT, |RTo ( )< R, P
Lo —S (2D+4)—2+D2+2D
8 (RT,)? RT,
[
, H0(E) =1, (8a)
H_ﬂ 1(Gw) 1w M) &
. RTy  2(RT,)®> 2RT, Hi'(8) === (8b)
Bea(2) — oK pRT ( , ) + (fr‘(Ma3)7 : CRTO
1 < @ i)
~(0-1)|—=-D Olgy ==Y 5 8¢
+2( )<RT0 ) i (&) RT, 7 (8¢)
Ged & 3 ¢
(6) ”(3)(5) _ CiSjiSk G 5 j k_s. (8d)
_ ijk RT. 3 RT. jk /— Oik — T, 0
where K = (K +3—D) and 0 = T/T,. In DUGKS, the particle ( ) ! !
velocity space is discretized into a finite set. In the next section,  and the recurrence relation of Hermite polynomial is
we will show how to design the D3Q77A9 lattice model
from D3QI25A9, maintaining the ninth degree of quadrature & W it +Z5 kf n-1) )
i1is...iy iiyip...iy 1 [RECTNR AT IYE TN i

accuracy.

B. The D3Q77A9 model

In D dimensions, the nth order Hermite polynomial and its
weight function can be written as"’

1 2
)= ey <_ 2RT0>’ (7a)
%’(")(f) = (\/R—To)n (;(16))” V"o (). (7b)

It is important to note that the particle velocity in the weighting func-
tion w(&) is scaled by \/RT; based on a fixed reference temperature
Ty, so that the discrete velocities to be used for the Gauss—Hermite
quadratures are the same for all space locations.

The first few Hermite polynomials are

Choosing the orthogonal Hermite polynomials as the expansion
basis, the particle distribution function g(x, &, t) can be expanded as

= 1
g=g" = - (n)
2 =0@) e (o). (10)
where the rank-n expansion coefficients a'™ (x, t) are given by
) (x.1) = [ gx. 010 (1, an

where the first few expansion coefﬁcients are hydrodynamic variables.
For example, a®) = [fdé = p,aV) = [f&dE = pu;. The mutual
orthogonality of the Hermite polynomlals allows us to approximate
the distribution function up to Nth order by truncating higher-order
terms in its Hermite expansion. Namely, a distribution function g can
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be approximated by its truncated Hermite expansion ¢, up to order
N, without changing all the moments up to the Nth order. Then the
expansion coefficient can be rewritten as

ot = [ @ = [ol@pixna a2

where p(x, &, t) is a polynomial of & of a degree not greater than 2N.
In DUGKS, the particle velocity space is discretized and
Gauss—Hermite quadrature is employed for an accurate moment
evaluation

d
[ o@p(x.2.0d8 = > vt (13)
a=1

where £, and o, are abscissa and weights of a Gauss—Hermite quadra-
ture of a degree < 2N. In one dimension, the orthogonal polynomials
of the Gauss—Hermite quadrature are Hermite polynomials, and the
abscissae of the d-point Gauss-Hermite quadrature are the zeros of
'@ The corresponding weights are

d!
[ (g,)]*

(14)

In one dimension, d-point quadrature has (2d — 1) degree of
precision. Table II shows the ninth-order Gauss—Hermite quadrature
model D1Q5A9, where ¢y, = +/RT,. Three dimensional ninth-order
quadrature D3Q125A9 obtained from the production formulas, based
on D1Q5A9, is shown in Table I11.

Shan**** proposed a general procedure to design a Cartesian
LBGK lattice at a given degree of quadrature order, with abscissas the
weights solved from the following equations

d _
ZW“%M(@):{E) Z;g Vn < Q. (15)
a=1

The equation above is the necessary and sufficient condition for any
Hermite quadrature to have degree precision of Q regardless of
whether the abscissas fall on a Cartesian grid or not. In one dimension,
Q =2d — 1, as 2d independent constraints can be established for
n=0,12,..(d—1).

Now consider D3Q125A9 with Q=9. Our strategy is to use the
same discrete particle velocity components, but re-design the weight-
ing factors w,, in order to eventually reduce the actual number of parti-
cle velocities, without changing Q. First, we note that the weighting
factors are all positive and only depend on the magnitude of the parti-
cle velocity (or the particle speed), namely, one weight factor is associ-
ated with each group. All odd-n equations are automatically satisfied
due to internal symmetries within each group. Based on Eq. (15), we

TABLE II. One-dimensional Gauss—Hermite quadrature D1Q5A9.

Quadrature &y Wy

D1Q5A9 0 8/15
t(\/5+\/ﬁ)co (7-2v10)/60
i( 5_\/E>CO (7 +2V/10) /60

scitation.org/journal/phf

TABLE lll. Three-dimensional Gauss—Hermite quadrature D3Q125A9. p is the num-
ber of discrete velocities in each group. Only the magnitude of the velocity compo-
nents is indicated in each group, and the combination can be arbitrarily rearranged
over the three space directions.

Group ¢, p Wy

1 (0,0,0) 1 512/3375

2 (r,0,00 6  16(7—2v10)/3375 1> = (5+/10)c3
3 (50,00 6  16(7+210)/3375 s> = (5—10)c
4 (r,r,0) 12 (89 —28+/10)/6750

5 (s,5,0) 12 (89+28y/10)/6750

6 (r,s,0) 24 1/750

7 (rrs) 24 (7 —2/10) /24000

8 (s57) 24 (7+21/10)/24000

9 (rr,r) 8 (1183 — 374y/10) /216000

10 (sss) 8 (1183 + 374/10)/216000

can obtain 11 constraints from the D3Q125A9 model, which are stated
below for the ten weighting factors. These even-n equations can be
easily constructed with the help of the non-zero polynomials listed
below, and the parameters are obtained by hand calculations.

Forn = 0,%(0) =1,

wy + 6(wy + w3) + 12(wy + ws) + 24(ws + wy + wg)

FornzZ,Jfﬁ) =x*—1,

— w4+ (2rF — 6)wy + (25% — 6)ws + (8% — 12)wy + (85* — 12)ws
+ (87 4+ 85 — 24)ws + (167 + 85> — 24)wy
+ (165% + 87 — 24)wg + 8(r* — 1)wy + 8(s* — )wyo = 0. (17)
For n =4, there are two independent Hermite polynomial configura-
tions as far as the condition for the weighting coefficients. The first is
#HY = x* — 6x> + 3, which yields
3wy 4 (2r* — 1277 +18)wy + (25" — 1257 +18)w;
+ (87" — 4877 + 36)wy + (85" — 485 + 36)ws
+ (81" — 4877 + 8s* — 485 + 72)w;

+ [16(r* — 6r) + 8(s* — 65*) + 72| w,
+ [16(s* — 65) + 8(r* — 61%) + 72] wg
+8(r* — 617 + 3)wy + 8(s* — 65> + 3)wy = 0. (18)

The second is 7}, = x*y* — (x* + y*) + 1, giving
wy 4 (=412 +6)wy + (=45 + 6)ws + 4(r* — 4r* + 3)w,y
+4(s* — 45® + 3)ws + 8[r?s* — 2(r* +5%) + 3] ws
+8[rt + 222 — 2(2r* + ) + 3] wy
+ 8[s* 4+ 2267 — 2(25* + 1) + 3wy
+8(r* —2r* + 1w + 8(s* — 25" 4+ 1)wyp = 0. (19)

At n=6, three independent Hermite polynomial configurations can
be identified. The first one, Jfﬁ}wxx = x5 — 15x* 4 45x* — 15, yields
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— 15wy + [2(r° — 15¢* +45r%) — 90| wy + [2(s° — 155" 4+ 455%) — 90] w3 + [8(r® — 15¢* + 45r%) — 180] wy + [8(s® — 155" + 455%) — 180] ws
+ [8(r® — 157* 4+ 45r%) + 8(s° — 155* 4 455%) — 360| ws + [16(r® — 157" + 45r%) + 8(s° — 155* 4 455%) — 360w,
+ [8(r® — 157* +45r%) + 16(s° — 155* + 455%) — 360wy + 8(r® — 15r* 4+ 45r% — 15)wy + 8(s® — 155* + 455> — 15)wyp = 0. (20)
The second one, #°®) = x*y> — (x* + 6x2%) + (6x> + 3y*) — 3, leads to

xxxxyy
= 3wy + [2(—7* +97%) — 18] wy + [2(—s* + 957) — 18] w3 + 4(r® — 8r* + 181 — 9)wy + 4(s® — 8s* + 185 — 9)ws
+ [4(r*s? +5*r?) — 8(r* +5* + 6r°57) + 72(r* + %) — 72| we + [8(r° + r*s? +5'r?) — 8(8r* + st + 12r%52) + 72(2r% + 5%) — 72] wy
=0.

+ [8(s° 4+ rts? + 5*r%) — 8(8s* + 1 + 12r%5%) + 72(25% + %) — 72]wg + 8(r® — 7r* 4+ 9r* — 3)wy + 8(s® — 7s* + 95> — 3)wyo (21)
The third one, #’ )(fc;,yzz =x?222 — (X} 4+ 322 4 y*22) + (2 + )P + 2%) — 1, gives
— 1wy +6(rF — V)wy +6(s* — )y + 12(—r* + 2% — V)wy + 12(—s* + 25> — D)ws + 24(—rs* + 1> + 5% — 1)ws
+24[rts* — (r* 4+ 2r%%) + (2r7 + 57) — 1wy + 24[s*7? — (s* + 2r%6%) + (28 +77) — 1] wg
+8(r% —3r* +3r% — D)wo + 8(s° — 35* + 35> — 1)wyy = 0. (22)
Finally, at n = 8, 4 independent Hermite polynomial configurations exist. The first one, #(®) = x% — 28x% 4+ 210x* — 420x* + 105, leads to

105wy + [2(r® — 287° +210r* — 420r) + 630]wy + [2(s® — 285° + 210s* — 4205%) + 630]w; + [8(r® — 287° + 210r* — 420r?) + 1260] wy
+ [8(s® — 285° + 210s* — 4205%) + 1260 w5 + [8(r® — 28r° + 2107* — 4201%) + 8(s® — 285° + 210s* — 420s%) + 2520] ws
+ [16(r® — 287 + 2107* — 4207%) + 8(s* — 28s° + 210s* — 420s%) + 2520]w; + [8(r® — 287° + 210r* — 4207%) + 16(s® — 28s°
+210s* — 4205%) + 2520]wg + 8(r® — 28r° 4 2107* — 4207* 4 105)wo + 8(s* — 285° 4+ 210s* — 4205* + 105)wyo = 0. (23)
The second one, ij(f&xxm = x5y — (x® + 15x%y?) +15(x* + 3x2y?) — (45x% + 15)%) + 15, yields

15w; + (—2r° + 307" — 120 + 90)wy + (—25° + 30s* — 1205> 4 90) w3 + [4(r® — 17/° + 75r* — 1201%) + 180w,
(r%s% + s57%) — (2% + 255 + 15¢%s% + 15r%s%)

+ [4(s® — 175% + 755 — 120s%) + 180] w5 + 4
[4( ) Jws +30(r* + s* 4 3r2s*) — 120(r* + s*) + 90

(r® 4+ 1052 + s°r%) — (17r° + s° + 15r%s% + 155%12) (% + 0% 4 s872) — (17s° + 1° 4 15r%s% + 155%r2)
+38 4 4 22 2,2 w7 +38 4 4 22 2 2 ws
+15(57* + s* 4 6r262) — 60(2r2 + §2) + 45 +15(5s* + r* 4 6r262) — 60(25* + ) + 45
+8(r® — 16r° + 60r* — 60r* 4 15)wy + 8(s* — 165° + 60s* — 60s* 4 15)w;o = 0. (24)

The third one, # (8)

A 4,2 2.4 4 4 2.2 22 :
sy = XY = 6(xy* +x%y%) 4+ (3x* 4 3y* + 36x°y%) — 18(x* + y°) + 9, provides

9wy + (12r* — 72r% + 54)wy + (125 — 7252 + 54)ws + 4[r® — 12¢° 4 487 — 7277 + 27]wy + 4ls® — 125° + 485 — 7252 4 27)w;

(r® 4-2r%s*) — 12(r° + 1*s? + 12s*)

+8[rtst —6(rts? + st + 6(rt + st + 6r56%) —36(12 +52) 4+ 27| we + 8
[ ( )+l )= 36( ) +27]ws +6(87% + st + 12282) — 36(2r% + %) + 27

w7

(s8 4+ 2r%st) — 12(s® + rts? 4 r2st)

Lo(8s" 4 4 1278) 362 4 )+ 27 | ™ +8(r® —12r% 4 42r" — 36r° 4 9)wo + 8(s® — 125° 4 425" — 365” + 9wy = 0., (25)

+8

(8)
The last one, # ;...

=x'y222 — (x*y? + x2% 4 6x7y?2%) + (x* + 6x%y% + 6x22% + 3y%2%) — (6x* + 3y* +32%) + 3, leads to
3wy 4 (2r* —24r% +18)wy + (25* — 2457 + 18) w3 + 4(—2r° + 17r* — 241 + 9wy + 4(—25° + 175* — 245> + 9)ws

8(2r0s% + rtst) — 16(r® + 10r*s? + s*r?)

+ [=8(r*s® + ') + 8(r* + 5T+ 15r%6%) — 96(r* + 7)) + 72| we + w
[-8( )+ 8 ) =96 )+ 72]we +8(17r4 + st + 30r252) — 96(2r% + %) + 72|
8(25°r% + s*r*) — 16(s° + 10s*r? + r*s?
( ) ( ) ws + 8(r® — 8r° 4 16r* — 1217 + 3)wy
+8(17s + r* + 305%r2) — 96(2s* + r?) + 72
+8(s® — 85° + 165 — 1252 +3)wip = 0. (26)

Together, there are 11 equations, forming a linear system for the 10 parameters w,. However, they are not all independent. With the help of
the Matlab function, we determine that the rank of the above system is actually 8. This fact implies that we have an under-determined linear system
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to solve, and there are many possibilities for assigning the coefficients.
For the best computational efficiency, we decided to eliminate two vec-
tor groups with the largest degree (24) of freedom in each, namely,
groups 7 and 8 (see Table III). It is rather fortunate that the new sys-
tem with only 8 vector groups can lead to a linear system with a rank
equal to eight and as such the weighting factors can now be uniquely
determined. Table IV shows the resulting 77 abscissas and their corre-
sponding weights. To further confirm the degree precision of our
D3Q77A9 model, we substitute the newly obtained abscissas and their
corresponding weights into the general equation, Eq. (15), as shown in
Appendix A. It is shown that 11 required conditions for the 9th-order
quadrature accuracy are indeed satisfied. It is interesting to note that,
in the resulting model, w, = w; and w5 = wg, the exact reason for these
two identities is not clear to us. It is worth pointing out that the
D3Q77A9 model is only one of many possible simplifications of the
D3Q25A9 model. Other choices of eliminating vector groups lead to
different simplifications of the D3Q125A9 model. In Appendix C, we
provide a few other possible choices of simplified quadrature models.
As an additional note, we point out that the D2Q25A9 cannot be fur-
ther optimized by following the above procedure. The condition, Eq.
(15) for D2Q25A9, would involve 6 number of independent vector
groups and lead to a linear system with a rank equation to 6.

C. Implementation of the kinetic boundary conditions

For our current study, we have no-slip velocity boundary condi-
tions for all walls. The thermal boundary conditions include two adia-
batic walls of zero heat flux and two isothermal walls of a given
temperature. The velocity field is determined by the distribution
g(&,,x, t), while the temperature field is related to both g(&, x, t) and
h(&,,x,t); thus, it is more complex to perform the kinetic treatment
(i.e., in terms of g and h) of the macroscopic boundary conditions. The
kinetic treatment of boundary conditions can be derived systematically
based on the Chapman—Enskog analysis. The details of the derivation
are presented in the work of Wen et al.'® The no-slip velocity condi-
tion is accomplished by the following relation:

Caj OT
. =g(&; —tWapy
g(éa,ﬁ t) g(ga:]’ t) E Pw TO (9x]

22
Sa_p_,
RT,

&

-1 | ®ny 2PV
+(D +2)?

& &

(RT0)3 (3D+14)(RT0)2

1 2
g0 b +(D + 4)(3D + 10) s
(RTo)

&
RT,

1
2

—(D+2)*(D+4)
+ 0(<*, Ma®), (27)
where ¢,; denotes the particles bouncing back from the wall and

éaj = —Caj- 8(&a ), t) at the wall interface node are typically known at
the end of the time step. The normalized temperature is defined as

scitation.org/journal/phf

TABLE IV. Three-dimensional quadrature D3Q77A9.

Group ¢, p Wy

1 (0,0,00 1 1.21481481 x 10!

2 (r,0,0) 6 919466502 x 10°* 2= (5+/10)&
3 (5,0,0) 6 8.05620149 x 102 > = (5—+/10)d
4 (r,r,0) 12 4.22431033 x 1075

5 (s,5,0) 12 1.64392384 x 102

6 (r,5,0) 24 2.50000000 x 10>

7 (nrr) 8 422431033x10°°

8 (s,5,5) 8 1.64392384 x 1072

0 =T,/ Ty, and p,, and T,, are density and temperature at the wall
node, respectively. For the adiabatic walls, the normal temperature
gradient is zero, 9T /On = 0. Temperature gradients in the tangential
direction are approximated from the temperature values at the previ-
ous time step by finite-difference. For the two isothermal walls,
T, =T, or T,,= T, is applied, and then the temperature gradient in
tangential direction is zero; the normal temperature gradient is
approximated with values at the previous time step by finite-
difference.

For the adiabatic boundary condition, the h(&,, x, t) distribution
function is treated by

. , OT ;
h(éa.,ja t) = h(fﬁw t) - KpRTWuCa,ja { (Réja—b - D)
]

+1(9—1) & —2(D+1) & + D?
2 (RT,)* RT,
2(1—=Pr) &, -q 2 3
+2W, —ﬁRTo —ﬁRTo + O(t°,Ma’), (28)

where K = (K 4 3 — D). Zero heat flux ¢,=0 and 9T,,/0z = 0 are
enforced on the top and bottom adiabatic walls. Heat flux in the tan-
gential direction g, can be approximated by the heat flux value at pre-
vious time step qv" ) = L ex(c2g" V) + h(n=V)dé. Temperature
gradient in the tangential direction is also calculated by the values
from the last time step by finite difference.

Finally, for the two vertical isothermal walls, the following rela-
tionship is used for h(&,, x, t):

1 e
1+5(9— 1) (RTO_D)

e +f<+2
(K+3)RTy  K+3

X
1 e e K+2
+E(9_1) (RTO_D) <(7K+3)RT0+—K+3)

.V n : 2
+21ng~<péu"€a']%[9—2—1(9—1)(é“ D)]

LW Rpot
w. kY
a a.x]

h(Eaj)=—h(Ea;)+2W.Kp

(2-0)

+0(7*, Ma®), (29)
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where T,,= Tj, or T,,= T, is applied at hot and cold wall, respectively.
As the no-slip boundary condition is enforced, the velocity gradient
Ou/dz = 0 is set to zero. The velocity gradients du/0x are approxi-
mated from velocities values at previous time step by finite-difference.
It is worth pointing out that we retain all the O(t) terms to have an
accuracy up to O(t). Besides, to be consistent with the Hermite expan-
sion of equilibrium distribution, the temperature 1/T is expanded to
the order of O(Ma*). The standard ‘bounce-back’ and ‘anti-bounce-
back’ in LBM can be recovered from the above kinetic boundary con-
ditions for isothermal flows.

I1l. RESULTS AND DISCUSSION

To validate the accuracy of our newly designed D3Q77A9 model,
we perform simulations of compressible natural convection which
requires at least eighth-order accuracy in the Gauss—Hermite quadra-
ture. Although D3Q77A9 model is more compact compared to
D3Q107A9, it still requires a significant computational resource for
three-dimensional simulations. Here we primarily consider a two-
dimensional natural convection flow problem using a three-
dimensional code. Preliminary simulation results of three-dimensional
natural convection in a cubical cavity will also be reported in Sec. 11 B.

A. Steady compressible natural convection

An air-filled (Pr=0.71) square cavity is considered. It is heated
on the left by holding the temperaure at Tj, = To(1 + ¢) and cooled
on the right by fixing temperature at T, = To(1 — ¢). The top and
bottom walls are adiabatic as shown in Fig. 1. The coordinate system
used is as follows: z is the vertical direction, x is the horizontal direc-
tion perpendicular to the heated wall, and y is the spanwise direction.
The aspect ratio of the cavity is A = H/L = 1. There are only two
nodes in the y-direction and the periodic condition is applied in the y-
direction, these together imply that there is no variation in y and as
such the convection flow is two dimensional. The two dimensional set-
ting allows us here to study systematically various combinations of the
details in the mesoscopic model.

The governing equations for the current problem are the com-
pressible Navier—Stokes equations

scitation.org/journal/phf

Opw)  dpuy) _ op Doy
— P , 30b
ot + 0x; 8x,—+pg + 0x; (30b)
(‘3(pCVT) 8(puJCVT) o 81/11' 0 aT au]«
o om - Pax Tax Moy ) T ey G
p = pRT, (30d)

where the stress tensor is oj; = 2,u(S,-j — %V . u5ij) +u'V- ud;j, Sy is
the strain rate tensor, and p and " are the shear viscosity and the
bulk viscosity, respectively. When we have a large temperature differ-
ence, the fluid properties could vary as a function of the local tempera-
ture. The viscosity is given by Sutherland's law

u(T) (T)3/2T*+S
u* - T* T+S7

where T* = 273K, S = 110.5K. The viscosity at a reference tempera-
ture, Ty = (Ty + Tc)/2, g = 1(Ty), is then calculated by u*
= ,uo[(T/T*)3/2 x (T* +8)/(T + )] ". Note here that T* = 273K
is a parameter used in Sutherland's law, and T, = 600 K is the refer-
ence temperature used in our problem setup.

To normalize the governing equation, we introduce the following
reference scales: the density scale p, the velocity scale
uy = +/(Ty — Tc)gH /Ty, the length scale H, the timescale H/u, and
the temperature scale T,. the viscosity is normalized by p, = u(Tj),
and the reference heat conductivity is kg = k(Ty). The dimensionless
governing equations of compressible natural convection can be written
as

T)C
K(T) :“(Pz 4 31)

op  O(piy)
o 0% o (322)
Api)  O(puily)  9p 1 [Pr 96
o(p7) , O(pT)
ot Ox;
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. NS kaT N [Pr_ 0i, (320)
j =N Pt —F—7s | 5T 5057 | C
_p ( J) =0, (30a) P 6}6] A\/Rapraxj 8x] Ra Jaxj
ot Ox;
where A = 7(y — 1)Ma?, and the z axis is assumed to be in the
upward vertical direction. Since the Prandtl number (Pr = 1,C,/ko
z =0.71) and heat capacity ratio (y = C,/Cy = 1.4) are fixed, the
‘;_T =0,u=0 governing parameters for the current problem are Rayleigh number
Z N
Ra = % and the normalized temperature difference ¢ = TZ;TUTf
0
-« — Parameters of the simulation are shown in Table V. For a set of
L
Tp =To(1+€) H T, =To(1—€) TABLE V. Parameters for the simulation of natural convection with a large tempera-
Uu=0 g =0 ture difference.
Ra Pr Y e Ma
Voo > 6 -2
y BT_0—>_0 X 1.0 x 10 , 0.71 1.42 0.62 4.11 x 10
2z Ou= po(kg/ms*)  To(K)  R(m*/s’K)  g(m/s*) o
101 325.0 600.0 287 g(Ra) 0.01
FIG. 1. The geometry under consideration.
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FIG. 2. The mesh layout for the case of N=50 and S= 3, as an illustration.

stretched meshes with N grid points in each direction, the location of
the cell interfaces x; (i) is given by

L1 tanh([S(i/N — 0.5)]
xp(i) ==

—_— i=0,1,2,....,.N 33
2 tanh(S/Z) y 1 ) Ly Sy ) ) ( )

where S is the parameter used to alter the degree of non-uniformity.
Then the location of the cell centers can be obtained by x(i) = [x; (i)
+x,(i +1)]/2. The schematic illustration of mesh distribution is
shown in Fig. 2. The mesh of the domain is 256 x 256 x 2(S = 3) for
all simulation cases with Ra = 1.0 x 10% non-uniform grids are
employed in the vertical (z) and the horizontal (x) direction with the
minimum grid space Ax,,;, = 1.182 x 107> H. The time step is deter-
mined by the Courant-Friedrichs-Lewy (CFL) condition

At = CFL#% (Upax is the maximum flow velocity, and &,,,,, is

0.8000
0.8000
0.6000
T o 0.6000
T .4000 uo
0.4000
0.2000
0.2000

ARTICLE scitation.org/journal/phf

the maximum discrete velocity). The CFL number in the current simu-
lation is set to 0.5. The code was run on the National Center for
Atmospheric Research's (NCAR-Wyoming) Supercomputer, known
as Cheyenne, equipped with 2.3-GHz Intel Xeon E5-2697V4 process-
ors. The computational domain are decomposed in the x-direction,
128 processors are employed for the current case. The wall clock time
per step is 4.82 x 10725, and it takes 1.35 x 107 time steps to obtain
the steady results (uyt/H =~ 60).

The flow at Ra = 1.0 x 10°, ¢ = 0.6 is steady. Figure 3 shows
isothermal and velocity vector plot (the results of two layers in the y-
direction are identical). We can observe that the basic flow feature of
compressible natural convection is nicely recovered, thin velocity/
thermal boundary layers are developed along the isothermal walls, the
temperature is stratified in the cavity center, and the fluid near the hot
wall is expanded, while the cold fluid is contracted near the cooled
wall.

Figure 4 shows the temperature and velocity profiles at mid-
height and mid-width of the cuboid cavity (Pr is added as in the litera-
ture uo\/Pr is used as the reference velocity scale). We compare our
D3Q77A9 results with the benchmark results of Vierendeels et al.”
using the gas kinetic scheme and also our DUGKS results based on
D2Q25A9 results. The D3Q77A9 results reach an excellent agreement
with the reference results; this further indicates that the D3Q77A9
model has a ninth degree of precision. The reason for the excellent
agreement between the D3Q77A9 model and the D2Q25A9 model
will be further explained in Appendix A where we show that the
D2Q25A9 model can be viewed as the projection of D3Q77A9 in the
2D space.

Figure 5 shows the Nusselt distribution along the isothermal
walls. Non-symmetric distributions are displayed for the hot and cold
wall. The Nusselt number is calculated as

H oT H

Nu(z) = ko(Ty — Te) o ko(Th — T,) T
where heat flux is defined as g, =1 [ cx(c?g 4 h)d€. Our D3Q77A9
results agree well with our D2Q25A9 results and other reference
results using the conventional CFD methods;*** heat flux is accu-
rately evaluated at the boundary. As we pointed out before that the
heat flux evaluation requires fourth-order moments of the equilibrium,

(34)

wall

FIG. 3. (a) Isothermal; (b) velocity vector
plot for compressible natural convection
with Ra = 1.0 x 10°%, ¢ = 0.6.

0.2000 0.4000 0.6000 0.8000

[CONTOUR FROM 4 TO 1.6 BY .01

m

040506070809 1 111213141516

(@)

0.2000 0.4000

& 3
0.6000

()

0.8000

Phys. Fluids 33, 046101 (2021); doi: 10.1063/5.0045227
Published under license by AIP Publishing

33, 046101-9


https://scitation.org/journal/phf

Physics of Fluids

0.40

0.20

w
uoVPr 0.00

-0.20

-0.40

0.60

0.30

-0.30

-0.60

| |
g /\ DUGKS_D3Q77A9
q " DUGKS_D2Q25A9
b [ il ———-Vierendeels (2003) —
1 1
7' L
1 s
| (@ \l
— T T — T T
0.0 0.2 0.4 0.6 0.8 1.0
| | 1 . |
DUGKS_D3Q77A9
DUGKS_D2Q25A9
- ———-Vierendeels (2003) [~
|
_ i
i
C al
(©) |
T T T T — T T —
0.0 0.2 0.4 0.6 0.8 1.0

T

T[=

Sy

=

ARTICLE scitation.org/journal/phf

10— g
i DUGKS_D3Q77A9 i
0.8 DUGKS_D2Q25A9 L
1 ———-Vierendeels (2003) r
0.6 L
0.4 =
0.2 -
j (b) |
1 | u
0.0 +—— . | T
-0.20 -0.10 0.00 0.10 0.20
1.0 1 L L I‘ | L
i DUGKS_D3Q77A9 i I
0.8 - DUGKS_D2Q25A9 L
1 —-—-—-Vierendeels (2003) | r
] 1 I
0.6 - i -
| | :
0.4 } L
B | L
: 3 i
0.2 H | -
4 ! -
_ | C;
4 ! L
0.0 T T . . . T;OT()
-0.60 -0.30 0.00 0.30 0.60
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FIG. 5. Nusselt number distribution along the hot and cold walls.

eq.N:4,

with the fourth-order Hermite expansion of the equilibrium g at

least eighth-order quadrature is needed.

B. Three-dimensional natural convection in a cubical
cavity

In addition to the above two-dimensional natural convection
problem, we next perform three-dimensional simulations of natural
convection in a cubical cavity at Rayleigh number Ra = 1.0 x 10, for
the purpose of validating our 3D compressible DUGKS scheme. We
consider an air-filled cubical cavity of height H, with a hot wall at tem-
perature T;, = To(1 + ¢) on the left, and a cold wall at temperature
T. = To(1 — &) on the right. The other four walls (i.e., two other verti-
cal walls and two horizontal walls) are adiabatic. No-slip velocity
boundary conditions are imposed on all walls. The mesh of the
domain is 50 x 50 x 50, and non-uniform grids with S= 3 are intro-
duced in all three directions. Table VI tabulates parameters of the
three-dimensional simulations. First, consider the case of Ra = 1.0
% 10% and a small temperature difference ¢ = 0.01. This represents the
Boussinesq limit and the flow is steady and symmetric about the cavity
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TABLE VI. Parameters for the three-dimensional simulation of natural convection. Parameters in the brackets are for the case with ¢ = 0.6.

Ra Pr Y e Ma

1.0 x 10 0.71 1.4 0.01(0.6) 1.299 x 1073(1.299 x 1072)
po(kg/ms?) To(K) R(m?/s*K) g (m/s?) Ho

101325.0 600.0 287 g(Ra) 0.01(0.1)

center. Figure 6 shows the temperature field and the velocity field for
natural convection at the mid-plane y = 0.5H. The detailed compari-
sons of the velocity and temperature distribution between the current
scheme with a small temperature difference ¢ =0.01 and the
Boussinesq results are shown in Fig. 7. The Boussinesq flow results are
accurately reproduced by the current D3Q77A9 model. Furthermore,
the mean Nusselt number distribution Nu,,(y) along the y-direction is
shown in Fig. 8. The mean Nusselt number is defined as

1! H oT
Num(y) :EJ NM(y7Z)dZ, NM()/,Z) :mka

0 wall

(35)

Our results agree well with the convectional CFD results of
Wang et al,”’ LBM results of Peng et al.,” and DUGKS results of Wen
et al."" Tt is worth pointing out that the Nusselt number distribution is
sensitive to the boundary treatment. Peng et al. used the bounce-back
rule of the non-equilibrium distribution function proposed by Zou
and He.’' For the adiabatic wall, they transferred the Neumann
boundary condition into the Dirichlet boundary condition by using
the finite-difference approximation to obtain the temperature distribu-
tion on the wall. Wen et al."* proposed an improved kinetic boundary
condition based on a consistency consideration with the
Chapman—Enskog approximation; the Nusselt number distribution is
accurately predicted by this boundary treatment. The kinetic boundary
condition used in the current study has an accuracy up to O(t), con-
sistent with the derivation of the Navier—Stokes—Fourier equations.

Next, we consider 3D thermal convection with a large tempera-
ture difference, namely, (Ra =1.0 x 10°, ¢ = 0.6, Ma = 1.299
x1072). Figure 9 shows isotherms and velocity vector plot at the mid-
plane y = 0.5H. With this large temperature difference, the flow is no

longer symmetric about the cavity center. The fluid near the hot wall is
expanded and that near the cold wall is contracted due to the thermo-
dynamic effect. The center of the flow recirculation moves toward the
cold isothermal wall, and the center of the recirculation is shifted to
(x,z) = (0.7050H, 0.4505H). The velocity and the temperature pro-
files at the mid-plane are shown in Fig. 10 and are compared to the
profiles in the Boussinesq limit. Clearly, the profiles deviate signifi-
cantly from the symmetric profiles in the Boussinesq limit. To our
knowledge, currently there are no literature data for compressible ther-
mal convection in a 3D cavity, and full discussions of 3D compressible
thermal convection flows are beyond the scope of the current paper.
Further applications of our DUGKS schemes based on the D3Q77A9
lattice are reported in the work of Chen et al."”*® for 3D decaying
compressible turbulence in a periodic domain for which literature data
are widely available.

C. Error analysis

As pointed out by Shan et al," the fourth-order Hermite expan-
sion of the equilibrium distribution function is needed for the heat
flux and the energy dynamics to be accurate up to the
Navier—Stokes—Fourier level. With the discrete particle velocity space,
the requirement translates to fourth-order Hermite expansion of equi-
librium and at least eighth-order Gauss—Hermite quadrature. In this
study, we shall make a detailed error analysis of inadequate quadrature
and Hermite expansion of equilibrium without enough order of
expansion. It is worth pointing out that, boundary treatment will
enlarge the error, for the thermal flow in an enclosure it is crucial to
use appropriate quadrature and equilibrium. A series of simulations
with two- and three-dimensional quadrature and third- and fourth-
order Hermite expansion of equilibrium g*? are performed to indicate

40.0 | L 400 40
7—1, 80.0 - L4 300
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100 4 | L 10.0

Tt VAN N <
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SRR §
B

FIG. 6. (a) Isothermal lines and (b) veloc-
ity vector plot at the mid-plane y = 0.5H
for 3D natural convection at Ra = 1.0
%10 and & = 0.01. Here the horizontal
axis is x and the vertical axis is z.
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FIG. 8. The distribution of mean Nusselt number Nun(y) (averaged over any x-z
plane) as a function of the spanwise (y) coordinate.

the magnitude of the error. Table VII shows the quadrature used for
simulations, D2Q16A7 and D2Q25A9, are used for two-dimensional
simulations, and D3Q27A7 and D3Q77A9 are implemented in the
three-dimensional code.

To investigate the influence of inadequate Hermite expansion of
equilibrium, the third-order equilibrium g®N=3(¢,, x,t) is also used
in some cases

g5q~(3)
2
. . 1 i aUj 2 z2
1+€]=auf - (5,77 ])2 _M_+(0_ 1) *d__ D
RT, 2| (RT,)® RTy RT,
P ¢ (V )2 2 2

1Gjath | (Sjathi u ¢

= A 3 43(0-1)| =% —-D-2

6 RT, [ /e T, POV <RT0 )

+O(Ma*). (36)

The equilibrium distribution 7%+ is expanded to the second
order for all simulations. The kinetic boundary treatment is adjusted
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TABLE VII. Two- and three-dimensional quadrature. D2Q16A7 and D2Q25A9 are the “production” formulas of D1Q4A7 and D1Q5A9, respectively. D3Q27A7 is derived by

Stroud.””
Quadrature g, p Wy
D2QL6A7 (r, ) 4 (5—2v6)/48 = (3+6)c
(s, 5) 4 (5+21/6)/48 2 =0(3-16)c
(r, ) 8 1/48
D2Q25A9 (0, 0) 1 64/225
(r,0) 4 2(7 - 2v/10) /225 P = (5+10)&
(s,0) 4 2(7 +2v/10) /225 &= (5-v10)a
(r,7) 4 (89 — 281/10) /3600
(s, 5) 4 (89 +281/10) /3600
(r, ) 8 1/400
D3Q27A7 (0, 0,0) 1 (720 + 8v/15) /2205
(r,0,0) 6 (270 — 461/15) /15435 = ((15+ V15) /2)c
(s,5,0) 12 (162 +411/15) /6174 2 =(6—15)&
0 8 (783 — 2021/15) /24 696 = (9+2V15)&

with the expansion order of the equilibrium distribution g"%. For all

simulations with the third-order expansion of g°®), the following
kinetic boundary condition is used
§or
E) = ai) — TWap
g(gﬂJ) g é T TO axj
& p
RT),
L & & 2
—(0-1 - —-2(D+3)=2+ (D+2
50D | ot =20+ 3) g+ (D+2)
+ O(<*, Ma*). (37)

All higher-order terms O(Ma*) are neglected and the boundary
treatment for h(&,) distribution remains the same. Table VIII shows
the various combinations of lattice velocity model and expansion order
of the equilibrium distribution g*! as well as the resulting mean tem-
perature of the entire cavity for different cases. Only with ninth-order
quadrature and fourth-order Hermite expansion of equilibrium
g%N=4, the correct results can be obtained. With the expansion of the
hot fluid, the mean temperature of the cavity is slightly higher than the
reference temperature T, While for other cases with the seventh
degree of precision in the quadrature or third-order Hermite expan-
sion of equilibrium, a large decrease in the mean temperature is

TABLE VIIIl. Mean temperature of the cavity for different cases. DnyQnyAnsHny indi-
cates the simulation is performed with a n-dimensional quadrature with n, discrete
particle velocities and has a ns degree of quadrature precision. The equilibrium g°7 is
expanded to the ns-order.

2D D2Q25A9H4 D2Q25A9H3 D2Q16A7H4 D2Ql6A7H3

T/T, 1.0149 0.8421 0.8774 0.8418
3D D3Q77A9H4 D3Q77A9H3 D3Q27A7H4 D3Q27A7H3
T/T, 1.0192 0.8153 0.8395 0.8152

observed. The error caused by reduced Hermite expansion order of
the equilibrium is more significant than the error caused by the
reduced quadrature order.

Figure 11 displays a detailed comparison of temperature and
velocity profiles for two-dimensional simulations with different set-
tings. In these two-dimensional simulations, the basic flow features
thin boundary layers are developed along the isothermal walls.
However, as the heat flux is not evaluated accurately in some cases, the
temperature distribution deviates from the benchmark case
D2Q25A9H4. As expected, the two cases, D2Q25A9H3 and
D2Q16A7H3, with the third-order Hermite expansion of the equilib-
rium ¢“Y=3 have similar results. When the ¢ equilibrium is
expanded to the third order, only seventh-order quadrature is required
to evaluate the heat flux, then the two cases D2Q25A9H3 and
D2Q16A7H3 should have similar results.

Temperature and velocity profiles from the three-dimensional
code are displayed in Fig. 12. Again, only with the ninth degree of pre-
cision in the quadrature combined with the fourth-order Hermite
expansion of the equilibrium g®-~=%, the correct results can be recov-
ered for the case D3Q77A9H4. Different degree of temperature devia-
tions are observed for other cases, this indicates error appears in the
heat flux evaluation. Two cases with the third-order Hermite expan-
sion of equilibrium distribution D3Q77A9H3 and D3Q27A7H3 show
similar results.

As shown in Eq. (4), fourth-order moment féiéjfzgeqdﬁ is
needed to evaluate the heat flux. For instance, with the unexpanded
E—u)’

mexp[ Sx7-)> the moments

J¢ &L g°d¢ can be evaluated as

equilibrium distribution g¢*

ché E¢9dE = p[(D+2)(RT)? + (D + 4)u,u,RT
+ 1 (RT + uuy ). (38)

In the current scheme, the equilibrium distribution is approxi-
mated by its Hermite expansion. With the discrete particle velocity
space, Gauss-Hermite quadrature is employed for the moments
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FIG. 11. (a) Vertical velocity w/ (uyv/Pr) and (c) temperature distribution at the mid-height z = 0.5H; (b) horizontal velocity u/ (upv/Pr) and (d) temperature distribution at
the mid-width x = 0.5H for different two-dimensional cases with Ra = 1.0 x 108, & = 0.6.

evaluation. For the evaluation of the above fourth-order moment,
| fxfxézgeqdf, the fourth-order Hermite expansion of equilibrium
g%N=* and at least eighth-order quadrature is required to obtain the
correct results. Otherwise, errors will be introduced to the heat flux
evaluation. Table IX shows the relative error in the fourth-order
moment evaluation fﬁx Ee ¢%d¢ for each simulation case, the
moments are calculated mesoscopically >, & ,&,,E2g°(E,) and
compared with the macroscopic results [right-hand side of Eq. (38)].
For both two- and three-dimensional ninth order quadrature bench-
mark cases D2Q25A9H4 and D3Q77A9H4, the fourth-order moment
can be evaluated exactly. For other cases, errors of different magnitude
start to appear between the moment by mesoscopic calculation and
the target value. Furthermore, the boundary treatment will enlarge the
error and cause unbalanced heat flux through the isothermal wall
which leads to the under-prediction of the mean temperature in the
cavity.

It is worth pointing out that the compressibility for the current
natural convection problem is due to thermal expansion. The thermal
expansion is quantified by the relative temperature difference ¢. Due
to the low flow speed, the Mach number remains small for the natural

convection problem. For the case Ra = 1.0 X 10°, ¢ = 0.6, the maxi-
mum local Mach number is Maj . = 0.0126, where
Ma; = /u? +v?/\/yRT. Therefore, Mach number is very small.
Thus, the error introduced by inaccurate fourth-order moments evalu-
ation is not due to the Mach number but by the large temperature dif-
ference. To verify this hypothesis, we performed another set of two-
dimensional simulations with a small temperature difference ¢ = 0.01
and Ra = 1.0 x 10°. The parameters for simulations are shown in
Table X. Figure 13 shows velocity and temperature profiles for differ-
ent cases. Unlike the compressible cases, with a small temperature dif-
ference ¢ = 0.01, the reduced Hermite expansion order of equilibrium
and the reduced quadrature order do not show any significant effect
on the simulation results. All cases reach a good agreement with the
Boussinesq benchmark results.

IV. SUMMARY AND CONCLUSIONS

In this paper, we have performed both two-dimensional and
three-dimensional simulations of natural convection in a cavity with
the discrete unified gas-kinetic scheme. In DUGKS, the Hermite
expansion of equilibrium distribution function and Gauss—Hermite
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FIG. 12. (a) Vertical velocity w/ (up\/Pr) and (c) temperature distribution at the mid-height z = 0.5H; (b) horizontal velocity u/ (up\/Pr) and (d) temperature distribution at
the mid-width x = 0.5H for different three-dimensional cases with Ra = 1.0 x 108, & = 0.6.

|Meso—Macro|
[Macro|

TABLE IX. The relative error of the fourth-order moment evaluation

D2Q25A9H4 D2Q25A9H3 D2Q16A7H4 D2Q16A7H3
Center (%,%) 0.00% 5.06% 2.06% 5.35%
Boundary O,%) 0.00% 13.89% 10.55% 14.06%

D3Q77A9H4 D3Q77A9H3 D3Q27A7H4 D3Q27A7H3
Center (%,”72) 0.00% 6.32% 3.46% 6.47%
Boundary (O,”{) 0.00% 14.16% 11.38% 14.06%

TABLE X. Parameters for the simulation of natural convection with a small tempera-

ture difference. quadrature are employed as the particle velocity space is discretized.

Based on the Chapman—Enskog analysis, fourth-order moments of
Ra Pr 7 e Ma equilibrium distribution are needed to recover the full Navier—Stokes—

Fourier equations. For an accurate compressible thermal flow simula-
1.0 x 10° 0.71 14 0.01 4.108 x 107 tion with the DUGKS, Hermite expansion of the equilibrium to the
po(kg/ms?)  To(K) R(m?/s?K)  g(m/s?) Lo fourth-order and at least eighth-order Gauss—Hermite quadrature are
101 325.0 600.0 287 g(Ra) 0.001 required. The quadrature D3Q125A9 obtained from the production

formula is shown to be redundant for the three-dimensional

Phys. Fluids 33, 046101 (2021); doi: 10.1063/5.0045227 33, 046101-16
Published under license by AIP Publishing


https://scitation.org/journal/phf

Physics of Fluids

L P
0.40 -
B DUGKS_D2Q16A7H3
1 DUGKS_D2Q16A7H4
1N == DUGKS_D2Q25A9H3
0.20 DUGKS_D2Q25A9H4
4 Boussinesq
w g L
ugy 0.00 =
-0.20
] a L
-0.40 ( ) -
— T T T — T
0.0 0.2 0.4 0.6 0.8 1.0
PRI RN S ST N S S PR L
0.40 -
q DUGKS_D2Q16A7H3
1 DUGKS_D2Q16A7H4
1y === DUGKS_D2Q25A9H3
0.20 DUGKS_D2Q25A9H4 [~
B Boussinesq
T-Ty E
o 0.00 -\ orm—————————————\ - -
-0.20 -
1 ()
-0.40 L
T T
0.0 0.2 0.4 0.6 0.8 1.0

x|

[

e

T

ARTICLE

scitation.org/journal/phf

1.0 Lo oo |
4 ; -
DUGKS_D2Q16A7H3 |
0.8 DUGKS_D2Q16A7H4 | -
1-———= DUGKS_D2Q25A9H3 | r
1 DUGKS_D2Q25A9H4 |
b Boussinesq | r
0.6 | L
| ! L
N ; -
0.4 ! L
) i
0.2 i L
] | ) |
] | i
0.0 T T L
uo
-0.20 -0.10 0.00 0.10 0.20
1.0 : ! '
4 | L
1 i
— DUGKS_D2Q16A7H3 |
0.8 DUGKS_D2Q16A7H4 | -
1————= DUGKS_D2Q25A9H3 | r
1 DUGKS_D2Q25A9H4 |
7 Boussinesq ! r
0.6 | L
] ! I
0.4 ! L
0.2 - 3 L
1 | d) |
I
0.0 S } | L
-0.60 0.30 0.00 0.30 0.60 0

FIG. 13. (a) Vertical velocity w/uy and (c) temperature distribution at the mid-height z = 0.5H; (b) horizontal velocity u/uy and (d) temperature distribution at the mid-width

x = 0.5H for Ra = 1.0 x 10°%,& = 0.01.

simulations. As DUGKS does not require the particle velocity lattice to
coincide with the Cartesian grid, we are able to simplify the ninth-
order quadrature D3Q125A9 to design a new lattice velocity model
D3Q77A9, without losing the degree of precision in the
Gauss—Hermite quature. This significantly cuts down the computa-
tional cost.

To confirm the accuracy of the D3Q77A9 model, simulations of
two-dimensional and three-dimensional compressible natural convec-
tion with the D3Q77A9 model are performed. In 2D, the results agree
well with our D2Q25A9 results and the literature results. An error
analysis is performed to demonstrate the importance of using a quad-
rature with an adequate degree of precision and the Hermite expan-
sion of equilibrium distribution to an adequate order. A series of
simulations with reduced Hermite expansion of equilibrium distribu-
tion and reduced quadrature order is performed. The results show that
only with ninth-order quadrature and fourth-order Hermite expan-
sion of the equilibrium, the correct results can be obtained for com-
pressible natural convection with a large temperature difference.
Errors are introduced by inaccurate evaluation of the fourth-order

moments of equilibrium distribution, and this arises when the temper-
ature difference is large. In general, the Mach number of the natural
convection flow is small as the compressibility is induced by the tem-
perature difference not by the flow speed. However, our current model
is capable of simulating flow with a relatively large Mach number.
Chen et al.*® performed simulation of 3D compressible decaying iso-
tropic turbulence using DUGKS with the D3Q77A9 model. They
showed that the local maximum Mach number can reach values as
high as 1.5.
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cision in the Gauss—Hermite quadrature, we plug the resulting ®) . . Y . ),
abscissas and weights into the required conditions, Eq. (15). Using n=8 4 xoxoyy — XV T (67 +15x7y%) +15(x" + 3x7y")

the eight reduced velocity groups, we have — (45x% 4+ 15y%) + 15
n=0, #=1 15w; + (—2r° + 30r* — 1207% 4 90)w, + (—25° + 30s*
Wi + 6(wy + w3) + 12(wy + ws) + 24we + 8(ws +ws) =1, (Al) — 1205 + 90) w3 + [4(r® — 17r° 4+ 757" — 1207%) + 180w,
n=2,#% =21 + [4(s® — 175° + 755" — 1205%) + 180 w5
—wy + (217 — 6)wy + (28 — 6)w; (8% + $87%) — (2% + 25 + 15¢%s* + 15¢2%s%)
+ (87 — 12)wy + (85 — 12)ws + (81 + 85> — 24)ws 30(r* + st + 3r2%) — 120(r2 + 52) + 90 ¢
+8(r* = Dwy +8(s* — L)wg =0, (A2) +8(r® — 167° 4 60r* — 60r* + 15)w; + 8(s® — 16s°
n=4,4%Y =x'—6x*+3 + 60s* — 60s* + 15)ws = 0, (A9)
i+ (4~ 12+ 1)+ (251~ 128+ 19w 8,8 8y = X9 = o ) 4 (36 391+ 365

+ (8r* — 48r* 4 36)wy + (85" — 485> + 36)ws

—18(x* +32)+9
+ (8r* — 48r% 4 8s* — 485% + 72)w; b+ 7)

9wy + (12r* — 721 4 54)wy + (125 — 725 + 54)w;3

+8(r* — 617 + 3)wy + 8(s* — 65 +3)wg = 0, (A3) . . . .
(4) 2.2 2 bl +4[1’ — 12r° 4+ 481" — 72r +27]w4

=4, My, = —(+y)+1
’ sy =5V =0 4) 4 4[s® — 125° + 485* — 728 + 27]ws

wi 4 (=412 + 6)w, + (—4s* + 6)w;
+4(r* — 4 £ 3wy +4A(s* — 4587+ 3)ws
+ 8[r?s* — 2(r* 4 5%) + 3] ws

+8 [r4s4 —6(r's* + 17s*) + 6(r* + 5t + 6r%5?)
—36(r* + 5%) + 27]we + 8(r® — 12r° 4 42r* — 361 + 9)w;,

+8(s% — 1265 + 425 — 3657 + 9)ws = 0, (A10)
+8(rt — 2r% + 1wy + 8(s* — 25> + 1)wg = 0, (A4) ( Jws
n=6,#) _=x5—15x*+45x¢—15 N=8,H Qoyyee = %'V’ — (') + 22 + 6x°)°2)
— 15wy + [2(r5 — 15+ 45¢%) —90] wy + [2(s° — 155" +4557) —90] w; + (x* +6x%y? + 6x°2% + 3y°2%) — (617 + 3y* +32°) +3

3wy + (2r* — 2417 + 18)wy + (25 — 245% + 18)w;

+ [8(r® —15r* +45r%) — 180] wy + [8(s° — 155" +455*) — 180 w5
4 4(=2r% 177 — 2417 + 9)wy 4+ 4(—25° + 175" — 2457 + 9)ws

+ [8(r8 — 15¢* +45¢7) +8(s° — 155* +455%) — 360] we

42 42 4, 4 22 2, 2
8(r° — 15r* +45r — 15)wy +8(s° — 155 +458 — 15)ws =0 (AS5) + 280" +5'r) + 8(r" + 5"+ 15r%5) = 96(r +57) +72] ws
8 _ o6 41,2
n=6,48,, =x'y - (x* + 6537 + (6x +3?) -3 +8(T =816 — 12+ 3wy
4 an PR +8(s® — 85° + 165" — 125% + 3)wg = 0. (A11)
— 3wy 4 [2(—r" +9r%) —18]w, + [2(—s* +957) — 18] w3
+ 4(1’6 — 8 + 181 — 9wy + 4(56 — 8t + 1857 — 9)ws All the required conditions, obtained based on the 11 indepen-
+ 42 + $2) — 8(rt + s+ 6r75) + 72(r% + ) — 72]we dent Hermite polynomial configurations, for the 9th-order quadra-

. . ) . . 5 ture accuracy are indeed satisfied by the abscissas and weights given
+8(r° = 7r" + 9r° — 3)w; + 8(s° — 7s" 4+ 9s* — 3)wg = 0, (A6) in the D3Q77A9 model.
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As we know, the D3Q125A9 model is obtained from the pro-
duction formula of the D1Q5A9 model. When we project the
D3Q125A9 model onto the 2D plane, we will obtain the D2Q25A9
model. Here, we point out that the project of our D3Q77A9 model
also leads to the D2Q25A9 model, namely, the following identities
are observed:

(0,0,0) T 20(1,0,0) + 20(5.0,0) = ©(0,0); (Al2a)
O(r0,0) T 20(r,r.0) T 20(1.50) = D(r,0) (A12b)
0(50,0) T 20(550) T 20(r5.0) = D(50)> (A12¢)
D(r,r,0) + zw(r,r.r) = O(rr)s (A12d)
c0(5,5,0) + 2(/0(5,5,5) = w(&s)? (A12e)
O(r,50) = O(r.s) (A12f)

where the weights on the left indicate the weights of the three-
dimensional reduced model (D3Q77A9), and the weights on the right
are for the two-dimensional model (D2Q25A9). Each of the above
identities can be verified using the results from Tables Il and V.

APPENDIX B: THE CHAPMANENSKOG ANALYSIS

In this section, a Chapman-Enskog analysis is performed to
show the requirements of the modified BGK model to recover the
Navier—Stokes—Fourier equations. Starting from the modified dou-
ble distribution BGK models,

dg — g
2 e Vgtb V=0 =55

o . (Bla)
— hed
%+§~Vxh+b-vgh:9h:—h h + S, (B1b)
2(1 — Pr)ql- 51'
S, = —_— = . B1
' w(f){ «/RT, \/RTO} (B19

Integrating Eq. (Bla), we can obtain the continuity equation

J{(a‘)t +&-Vig+b- Vgg} dé = Jdiﬁ, (B2a)
o) ofie)
En + o =0, (B2b)
Jp  Opy;
e o =0. (B2c¢)

The continuity equation does not need any closure; therefore, no
Chapman-Enskog expansion is needed to recover the continuity
equation. For the momentum equation, we integrate Eq. (Bla) with &;

J ag 8 g} b a g de = [f,ﬁgdé‘, (B3a)
9 (J @gd:) (J éié,-gdc)
BN + 8xj = J bjgdf, (B3b)
dpu; 0
Pl (jf f,gdé‘) — pb. (B30)

scitation.org/journal/phf

To close Eq. (B3c), Chapman-Enskog expansion of g distribu-
tion up to O(t) is needed for the Navier—Stokes level. In this way,
third order moments of equilibrium are needed for the viscous term
which requires third order Hermite expansion of equilibrium and
quadrature with the sixth degree of precision. It is worth pointing
out that numerous incompressible LBM simulations use D2Q9A5,
D3Q19A5 lattice models which only have a fifth degree of precision
which is inadequate in a rigorous sense, unless the model Mach
number is kept small (typically the maximum local Mach number
should be less than 0.3). A detailed error analysis is needed to exam-
ine the error brought by inadequate accuracy order of the
quadrature.

For the energy equation, we integrate Eq. (Bla) with &* and
combine with integration of Eq. (Blc)

< %
Jz 2ok +b]aé]}d§

1|0h 8h
+J +@a 0

O] .

at[ [ +h>d¢}

OpE 0
o 3 [+ mae] = pb,

= J(c’zﬂg +Qu)dé,  (Bda)
dg

oM,
= ngj(gngrh)dé} :Jb]-éjgdf, (B4b)
(B4c)

With the Chapman-Enskog expansion of ¢ and h up to O(1), the
fourth-order moments of ¢ and second-order moments of h? are
needed to realize the energy equation. Thus, based on the analysis
above, geq’N =4 and h®N=2 are used in the current study, and at least
an eighth-order quadrature is needed correspondingly.

APPENDIX C: A FEW OTHER POSSIBLE
SIMPLIFICATIONS OF D3Q125A9

As shown in Sec. II B, the D3Q125A9 model gives an under-
determined linear system. There are many possible solutions for
reducing the linear system. In this section, we make a few other pos-
sible choices of eliminating groups: (a) 2 and 3, (b) 4 and 5, (c) 9
and 10, (d) 1 and 6 in Table III. All these other choices lead to a
unique system but with some of the weights being negative, and the
resulting quadrature models are shown in Tables XI-XIV, respec-
tively. We also confirm that all these models satisfy the general

TABLE XI. Three-dimensional ~Gauss-Hermite quadrature D3Q113A9, by
eliminating groups 2 and 3 in Table Il

Group g, p Wy

1 (0,0,0) 1  2.84444444 x 107!

2 (r,r,0) 12 —3.66469031 x 107> > = (5+/10)c2
3 (5,50) 12 525535792x 1072 &> = (5-+/10)c
4 (r,5,0) 24 6.66666667 x 1073

5 (r,r,s) 24 291118041 x 1073

6 (s,57) 24 —4.99451374x 1073

7 (nrnr 8 —1.01547060 x 10>

8 (s,55) 8  3.37658171 x 1073
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TABLE XII. Three-dimensional Gauss—Hermite quadrature D3Q101A9 by eliminat-
ing groups 4 and 5 in Table Il

Group ¢, p [on

1 0,0,0) 1  7.11111111 x 1072

2 (r,0,0) 6 —2.88493618x107° 1> = (5++/10)&
3 (50,00 6 1.09551603 x 107" s> = (5—/10)c
4 (r,5,0) 24 444444444 x 1073

5 (r,r,s) 24 —4.69058805 % 10~°

6 (s,5,7) 24 —9.25316342 x 10~*

7 (r,r,r) 8  1.10270535 x 10~*

8 (s,55) 8  2.55841739 x 1072

TABLE XIll. Three-dimensional Gauss—Hermite quadrature D3Q109A9, by eliminat-
ing groups 9 and 10 in Table IIl.

Group g, p Wy

1 (0,0,0) 1  2.04444444 x 107!

2 (r,0,0) 6 8.28786052x 107 2= (54/10)c
3 (50,00 6 317121395 x 102 s = (5—/10)c
4 (r,r,0) 12 4.32120169 x 10°*

5 (s,5,0) 12 4.49382502 x 1072

6 (r,5,0) 24 —1.57407407 x 1073

7 (r,1,5) 24 —1.52695429 x 10~*

8 (s,57) 24 218973247 x 1073

TABLE XIV. Three-dimensional Gauss—Hermite quadrature D3Q100A9 by eliminat-
ing groups 1 and 6 in Table [lI.

Growp &, p Wy

1 (r,0,0) 8.38274218 x 107* 2 = (5+/10)c
2 (50,00 6 1.41383948 x 107! = (5—/10)c
3 (r,r,0) 12 2.58283924 x 107

4 (5,5,0) 12 —1.14717281 x 1072

5 (r,r,s) 24 —2.01023138 x 107

6 (s,s,7) 24 3.26023138 x 1073

7 (r,r,r) 8  7.82176416 x 107*

8 (s,5,) 8 2.71344903 x 1072

solution, Eq. (15). The appearance of negative weights and larges
velocity numbers render these other choices to be undesirable, rela-
tive to D3Q77A09.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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