ON SINGULAR ABREU EQUATIONS
IN HIGHER DIMENSIONS

By

Nam Q. LE*

Abstract. We study the solvability of the second boundary value problem of
a class of highly singular, fully nonlinear fourth order equations of Abreu type in
higher dimensions under either a smallness condition or radial symmetry.

1 Introduction and statements of the main results

In this paper, which is a sequel to [6], we study the solvability of the second
boundary value problem of a class of highly singular, fully nonlinear fourth order
equations of Abreu type for a uniformly convex function u:

>tz UYwi; = F(,u, Du, D*u)  in Q,

w = (det D*u)™! in Q,
(1.1)

u=q on 092,

w=y on 0Q.

Here and throughout, U = (U")|<; j<, is the cofactor matrix of the Hessian matrix

Q*u )
0x;0xj/ 1<i,j<n

D*u = (uj1<ijen = ( ;
¢ € C>1(Q), y € CH1(Q) with infag w > 0. The left-hand side of (1.1) usually
appears in Abreu’s equation [1] in the problem of finding Kihler metrics of constant
scalar curvature in complex geometry.

This type of equation arises from studying approximation of convex functionals
such as the Rochet—Choné model in product line design [9] whose Lagrangians de-
pend on the gradient variable, subject to a convexity constraint. Carlier—Radice [2]
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studied equations of the type (1.1) when F does not depend on the Hessian variable.
When the function F depends on the Hessian variable, (1.1) was studied in [6] in
two dimensions, including the case F = —Au.

Note that (1.1) consists of a Monge—Ampere equation for u# in the form of
det D’u = w~! and a linearized Monge-Ampere equation for w in the form of

n
> U'wy = F(, u, Du, D*u)
ij=1
because the coefficient matrix (UY) comes from linearization of the Monge—
Ampere operator:
yi = 0detD’u
6141']'

The solvability of second boundary problems such as (1.1) is usually established
via a priori fourth order derivative estimates and degree theory. Two of the key
ingredients for the a priori estimates are to establish (see [6]):

(i) positive lower and upper bounds for the Hessian determinant det D*u; and

(ii) global Holder continuity for w from global Holder continuity of the linearized

Monge—Ampere equation with the right-hand side having low integrability.

By Theorem 1.7 in combination with Lemma 1.5 in [8], any integrability more
than n/2 right-hand side of the linearized Monge-Ampere equation suffices for the
global Holder continuity and n/2 is the precise threshold. The reason to restrict
the analysis in [6] to two dimensions even for the simple case F = —Au is that
either Au is just a measure or it belongs to Au € L'**0(Q) where &y > 0 can be
arbitrary small. The condition n/2 < 1 + ¢y with small &y naturally leads to n = 2.

In all dimensions, once we have the global Hélder continuity of w together with
the lower and upper bounds on det D?u, we can apply the global C** estimates for
the Monge—Ampere equation in [10, 13] to conclude that u € C**(Q). We update
this information to Uijwij = F(-,u, Du, D*u) to have a second order uniformly
elliptic equation for w with global Holder continuous coefficients and bounded
right-hand side. This gives second order derivative estimates for w. Now, fourth
order derivative estimates for u easily follow.

In this paper, we consider the higher dimensional case of (1.1), focusing on
the right-hand side being of p-Laplacian type. In this case, the first two equations
of (1.1) arise as the Euler—Lagrange equation of the convex functional

DulP
(1.2) 7, (u) :=/ (' al — log det D?u ) dx.
Q p

When p = 2, that is, (1.1) with F = — Au, the a priori lower bound on det D?u in [6]
breaks down when n > 3.
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Key to this analysis in [6] is the fact that trace (U) = Au in dimensions n = 2.
With this crucial fact, one can use

) 1
U’-’(w+ —|x|2) = —Au+trace(U) > 0
2 ij

and then apply the maximum principle to conclude that w + %lxl2 attains its maxi-
mum on 0€2 from which the upper bound on w follows, which in turn implies the
desired lower bound on det Du.

If n > 3, the ratio trace (U)/Au can be in general as small as we want; in
fact, this is the case, say, when one eigenvalue of D?u is 1 while all other n — 1
eigenvalues are a small constant.

Here, we use a new technique to solve (1.1) when F = —ydiv (|Dul|’~2Du)
where p > 2 and y is small. More generally, our main result states as follows.

Theorem 1.1. Assume n >3. Let Q) be an open, smooth, bounded and uniformly
convex domain inR". Let w € C>P(Q) with infaq w > 0and let p € CHP(Q) where
B e(0,1). Let F(-,z,p, 1) : Q x R x R" x R"™" be a smooth function such that:

(i) it maps compact subsets of Q x R x R" x R"™ " into compact subsets of R,
and
(ii) F(x, u(x), Du(x), D*u(x)) < 0 in Q for all C? convex functions u.
If y > 0 is a small constant depending only on B, ¢, w, n, F and Q, then there is
a uniformly convex solution u € C*#(Q) to the following second boundary value

problem:
2= UYw;; = yF(-, u, Du, D*u) in Q,
(1.3) w = (detD*w)”! in Q,
u=¢ on 0Q,
w=y on 0Q.

The solution is unique provided that F additionally satisfies

(1) / [F(-, u, Du, D*u) — F(-, v, Duo,D*v)](u — v)dx > 0
. Q

forallu,v € C*(Q) with u = v on 9Q.

Remark 1.2. It would be very interesting to remove the smallness of y in
Theorem 1.1.

Our next result is concerned with radial solutions for the p-Laplacian right-hand
side.
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Theorem 1.3. Assume that Q = B1(0) C R" and let ¢ and v be constants
with w > 0. Letp € (1,00). Let f=p—1ifp <2and f € (0,1)ifp > 2. Let
f € {—1, 1}. Consider the second boundary value problem:

Sy Ulwy = fdiv (|DulP~2Du) — in Q,

(1.5) w = (det D*u)~! inQ,
‘ u=g@ on 0Q,
w=y on 0Q.
(i) Let f = —1. Then there is a unique radial, uniformly convex solution

ue C3F(Q)to(1.5).
(i) Letf =1andletp € (1, n]. Inthe case p = n, we assume further that y > %
Then there is a unique radial, uniformly convex solution u € C3#(Q) to (1.5).
(iii) Let f = 1 and let p > n. Suppose that yv > M(n, p) for some sufficiently
large constant M > 0. Then there is a radial, uniformly convex solution
ue C*F(Q)to(1.5).

Remark 1.4. Regarding the p-Laplacian right-hand side, even in the two
dimensions, the analysis in [6] left open the case F = —div (|Dul’~2Du) when
p € (1,2). The missing ingredient was the lower bound for det D?u in the a priori
estimates. If this is obtained, then one can use the recent result in [7] to establish
the solvability of (1.1); see the proof of Theorem 1.3 in [7].

Remark 1.5. The size condition on y in Theorem 1.3 (ii) is optimal. We can
see this in two dimensions as follows. If f =1, n =p=2and 0 < v < 1/2,
then there are no uniformly convex solutions u € C*(Q) to (1.5). Indeed, if such
a uniformly convex solution u exists, then the first and the last equation of (1.5)
imply that

1
() =y + 5 (x> = 1).

However, since < 1/2, thereisx € Q suchthat w(x) < 0, whichis a contradiction
to the uniform convexity of u and w = (det D*u)~".

When n = p = 2, we can remove the symmetry conditions in Theorem 1.3.

Proposition 1.6. Let Q be an open, smooth, bounded and uniformly convex
domain in R" where n=2. Assume f >0 and f € L*(Q). Assume that 9 € W*(Q),
w € W>4(Q) where g > n with

: Wfllzew@), 2
(1.6) inf (y/(x) - ) > 0.
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Then there is a uniformly convex solution u € W*4(Q) to the following second
boundary value problem:

EZ,‘:] Uijw,;,- =fAI/l in Q,

w = (det D%u)™! in Q,
1.7)

u=g@ on 09,

w=y on 0Q.

Iff is a nonnegative constant, p € C*(Q), and y € C*(Q) then there is a solution
u e C®(Q).

The key ingredient in the proof of Theorem 1.1 is the solvability and uniform
estimates in W*?(Q) for p > n of (1.1) when

F ~ —(Au)™ (det D*u)iT,

which reduces to F ~ —Au in two dimensions. This result, and its slightly more
general version in Proposition 1.7, can be of independent interest.

Proposition 1.7. Let Q be an open, smooth, bounded and uniformly convex
domain in R". Assume that 9 € W*1(Q), y € W>9(Q) with inf,q v > 0 where
qg>n. Letke{l,...,n—1}. Assume thatQ < f, g < 1. Then there is a uniformly
convex solution u € W*4(Q) to the following second boundary value problem:

1

S0 o Ul wy=—(Au)i= (det D2u) it f— [Sp(D?u) |0 (det D2u)i=t g in Q,

w = (det D*u)~! in Q,
(1.8)

u=g on 09,

w=1y on 6Q.

Iff =1and g = 1, p € C*P(Q), and y € C>P(Q), then there is a solution
u e CHF(Q).

In Proposition 1.7 and what follows, for a symmetric n x n matrix A with
eigenvalues A1, ..., 4,, let us denote its elementary symmetric functions S;(A)
where k=0,1,...,nby

SoAy=1, SA)= D> iy (k=1

I1<ij<--<ix<n

The rest of the paper is devoted to proving Theorems 1.1 and 1.3, and Propositions
1.6 and 1.7.
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2 Proofs of the main results

In this section, we prove Theorems 1.1 and 1.3, and Propositions 1.6 and 1.7. As
in [6], it suffices to prove appropriate fourth order derivative a priori estimates.

For certain fixed parameters £ (in Theorem 1.1), p (in Theorem 1.3) and £, ¢
(in Propositions 1.6 and 1.7), we call a positive constant universal if it depends
only on n, Q, v, ¢ and those fixed parameters. We use ¢, C, Cy, C», . .., to denote
universal constants and their values may change from line to line.

Proof of Proposition 1.7. For simplicity, we denote
F(x) = — (Au(x))™1 (det D2u(x)) 1 f(x)
— [Sk(D?u(x))]7-1 (det D2u(x)) 1 g(x).

We establish a priori estimates for a solution u € W*9(Q). Since U ijw,-j- < 0, by the
maximum principle, the function w attains its minimum value on the boundary 0€.
Thus

wziangfl//:Cl > 0.

On the other hand, we note that foreachk € {1,...,n — 1},
.1 Au > [SUD’ )],

and furthermore,

(2.2) trace (UY) = S, (D*u) > (Au)i (det D2u) .

Indeed, (2.2) is equivalent to (det D*u)trace(D?u™") > (Au)i-1(det D2u)i=1 , or

Au
2.3 Trace(D*u~")]"!
(2.3) [Trace( N = o
Let Ay, ..., A, be eigenvalues of D?u. Then (2.3) reduces to
(1) =523
Jj=1 )'/ - Hl 1 i=1 ji

This is obvious by the expansion of the left-hand side.
It follows from (2.1) and (2.2) and 0 < f, g < 1 that

U'(w + |x[*);; > 0.

By the maximum principle, the function w + |x|? attains its maximum value on the
boundary 6. Thus

w+|x]? < mgx(y/+ 1x]?) < C, < .
0!
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Therefore w < C,. As a consequence,
Ci sw< G

From the second equation of (1.8), we can find a universal constant C > 0O such
that

(2.4) Cl'<detD’u<C inQ.
By constructing a suitable barrier, we find that Du is universally bounded in Q:
(2.5) 1Dull=@) < C.

From ¢ € W*4(Q) with ¢ > n, we have ¢ € C3(Q) by the Sobolev embedding
theorem. By assumption, Q is bounded, smooth and uniformly convex. Fromu = ¢
on 6Q and (2.4), we can apply the global W2 !*% estimates for the Monge—Ampeére
equation, which follow from the interior W2 1*% estimates in De Philippis—Figalli—
Savin [3] and Schmidt [12] and the global estimates in Savin [11] (see also [4,
Theorem 5.3]), to conclude that

(2.6) I1D?ull 1o () < C}

for some universal constants ¢y > 0 and C} > 0.
Thus, from (2.6) and (2.1), we find that

”F”L("—U(Heo)(g) < C3
for a universal constant C3 > 0. Note that for all » > 2 and all &y > O,
(n— 1)(1 + &) > n/2.

From y € W>4(Q) with ¢ > n, we have y € C!'(Q) by the Sobolev embedding
theorem. Now, we apply the global Holder estimates for the linearized Monge—
Ampere equation in [8, Theorem 1.7 and Lemma 1.5] to U%w; = F in Q with
boundary value w = y € C'(8Q) on 4Q to conclude that w € C*(Q) with

2.7) lwllceigy < CUIVIcrea) + I1F Il po-navwo ) < Ca

for universal constants o € (0, 1) and C4 > 0. Now, we note that u solves the
Monge—Ampere equation

detD*u = w™!
with the right-hand side being in C*(Q) and boundary value ¢ € C3(Q) on Q.
Therefore, by the global C>* estimates for the Monge—Ampeére equation [13, 10],
we have u € C>*(Q) with universal estimates

(2.8) lull oo, < Cs and  C5'I, < D*u < Csl,.
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Here and throughout, we use I, to denote the n x n identity matrix. As a conse-
quence, the second order operator UY9;; is uniformly elliptic with Holder continu-
ous coefficients. Now, we observe from the definition of F' and (2.8) that

(2.9) 1Nz~ < C.

Thus, from the equation U%w;; = F with boundary value w = y where y € W>4(Q),
we conclude that w € W>4(Q) and therefore u € W*4(Q) with universal estimate

lullweay < C7.

It remains to consider the casef = land g = 1, ¢ € C*#(Q), and y € C>/(Q).
In this case, we need to establish a priori estimates for u € C*P(Q). As above,
instead of (2.9), we have

(2.10) Ll .

citi@ S
Thus, from the equation UYw;; = F with boundary value w = y where y € C>P(Q),
we conclude that w € C*7(Q) where y := min{ %5, B} and therefore u € C*7(Q)

with the universal estimate lullcsogy < Cs. With this estimate, we can improve
(2.10) to

(2.11) IF Nl sy < Co-

As above, we find that u € C*#(Q) with the universal estimate lull congy < CroJ

Proof of Theorem 1.1. Without loss of generality, we can assume that
infao w = 1. We consider the following second boundary value problem for a
uniformly convex function u:

Ulw = —(Au)ii (det D2u)s=i f, (-, u, Du, D*u)  in Q,

w = (det D*u)™! in Q,
(2.12)

Uu=¢@ on 0Q,

w=y on 0Q.

for some y € (0, 1) to be chosen later, where

—yF(-, u, Du, D*u) }

(-, u, Du, D?u) = min -
f {(Au)ﬁ(detmu)m

By our assumption (ii) on F, when u is a C? convex function, we have 0 < Sy <L
By Proposition 1.7 (with g = 0), (2.12) has a solution u € W*9(Q) for all ¢ < co.
Thus, the first equation of (2.12) holds pointwise a.e.
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As in the proof of Proposition 1.7 (see (2.8)), we have the following a priori
estimates

(2.13) lullcos, < €1 and  Cy'l, < D*u < Cy,

for some C; > 0 depending only on f, ¢, v, n and Q. Hence, using assumption (i)

on F, we find that
—yF(-, u, Du, D?u) - 1

(Auw) (det D2u)i= 2

if y > 0 is small, depending only on f, ¢, v, n, F and Q.
Thus, if y > 0 is small, depending only on £, ¢, v, n, F and Q, then

fy= min{ —7F(, u, Du, D*u) } _ —yF(,u, Du, D*u)
y (Au)r (det D2us=: (Au)1 (det D2u)i=t

in Q and hence the first equation of (2.12) becomes
Uijw,-j- = yF(-, u, Du, Dzu).

Using this equation together with (2.13) and ¢ € C*#(Q) and y € C>#(Q), we
easily conclude that u € C*#(Q). Thus, there is a uniformly convex solution
u e C+4(Q) to (1.3).

Assume now F' additionally satisfies (1.4). Then arguing as in the proof of [6,
Lemma 4.5] replacing f; there by yF, we obtain the uniqueness of the C*#(Q)
solution to (1.3). ]

Remark 2.1. Clearly, Theorem 1.1 and its proof apply to dimensions n = 2.

Proof of Proposition 1.6. We establish a priori estimates for a solution
u € WH4(Q) to (1.7). As in the proof of Proposition 1.7, it suffices to obtain the
lower and upper bounds on det D?u.
Observe that
U'w; =fAu > 0.

By the maximum principle, the function w attains its maximum value on the
boundary 6. Thus

w < sup y < 00.
oQ

By the second equation of (1.7), this gives a bound from below for det D?u:

detD?u > C.
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On the other hand, we have

2
i Nl e~
Z Uf(u) — wulz) = (f_ |V‘||L°C(Q))AM <0.
ij

ij=1

W”L% |x|? attains its minimum value

By the maximum principle, the function w —
on the boundary 0. Thus, using (1.6), we find that

Wiz, 2 o - Ifllz=) 2
M= > 2= e
w= g el 2 k(1000 = T > 0
This gives a positive lower bound for w, that is, w > C~! > 0. Using the second
equation of (1.7), we obtain a bound from above for det D*u:

detD’u < C. .

Proof of Theorem 1.3. Recallthatf e {—1,1}and f=p—1if1 <p <2
and f € (0, ) ifp > 2.

We first observe the following reduction of smoothness without any symmetry
assumptions. Suppose that one has a uniformly convex solution u € C*(Q) to (1.5)
with positive lower and upper bounds on det D?u:

(2.14) C!'<detP’u<cC

for some C > 0 and such that w € C#(Q); then u € C>#(Q). Indeed, using (2.14)
together with the global C>* estimates [13, 10] for the Monge—Ampére equation
det D>u = w~! with boundary data ¢ € C*'(Q) and right-hand side w™' € C/(Q),
we have u € C>#(Q) with estimates

(2.15) lull s < C1 and  Cy'l, < D*u < Cil,.

As a consequence, the second order operator UY9;; is uniformly elliptic with
Holder continuous coefficients with exponent # € (0, 1). Note that |Du|"~>Du
is Holder continuous with exponent . Using the first equation of (1.5), we see
that the C"#(Q) estimate for w follows from [5, Theorem 8.33]. Hence, we have
the C3#(Q) estimates for u.

Now, we look for radial, uniformly convex solutions u € C*(Q) to (1.5). Assume
that the convex function u is of the form

u(x) = o(r)

where
v:[0,00) > R and r=|x|.
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Let us denote J
"==— and g(r):=0'(r).
dr

The requirement that u € C*(Q) forces
£(0) =0'(0) = 0.
The next reduction in the proof of our theorem is the following claim.

Claim. The existence of radial, uniformly convex solutions u € C*(Q) to (1.5)
with positive lower and upper bounds on det D*u and a Hélder continuous w is
equivalent to finding g(1) > 0 satisfying the integral equation

g » 1 e() »
(2.16) / er’ s"_lds=—(1 +f/ er’ s”_lds>.
0 ny 0

To prove the claim, we compute
/\n—1 1 n—1
detD*u = v”(v—) , w=(detD*u)~! = — (L/) = W(r).
r v” \v

Since D*u and (D*u)~! are similar to diag (v”, %, e, %) and diag (&, %, ..., 2),
we can compute
B " (v n—1 W” W’ W’ v n—17
g < VO W W W
r- )

v’ rn—l

Note that »” and v’ are all nonnegative. Therefore,
(2.17) 0<v'(r)<v'(l) forallO<r<1.

On the other hand, we have

— np—1,n—17
div (IDul’~Du) = (p = D'V 0" + = Loy 2@ 1

rn—l
The first equation of (1.5) gives

W)y [y

=1 =1

which implies that, for some constant C,
Wy =fey T+ C
Since v’(0) = 0, we find that C = 0. Thus

W=y (5) = pe oW,
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It follows that
S

fog W1 = [£y]

and hence, recalling W(1) = vy,

log W(r) =log W(1) + J:[(U'(V))” — @' ()]
(2.18) ; p
=logy + 1—7[(0/(7))” — @'())].

Therefore, in terms of g = v’, we have after exponentiation
ARG - U fieaw a1
(2.19) er [8(N]" g (r)=—er e
W
which is equivalent to

8(r)
(2.20) / e s s = L.e'lé[g(l)]pr”.
0 ny
Clearly, (2.20) leads to a solution to (1.5) in terms of g(1), n, p and y provided
g(1) > 0 satisfies the compatibility condition at r = 1:

RO .
2.21) / b —tgo_ L feor
0 ny

Because 0
£ ] 8 L _
er 8P = +f/ er’ P~ ds,
0

the compatibility condition (2.21) can be rewritten as in (2.16).

Assume that g(1) = »’(1) > 0 has already been found, in terms of n, p and .
We now establish positive lower and upper bounds on det D?u and that w € C#(Q).
Indeed, from 0 < g(7) < g(1), we can easily estimate

Pt [e(M]" < / &) 51 < eplEO [g(r)]"'
n 0 n
Hence (2.20) gives
C'r< g(r) < Cr

for some C that depends only on g(1) > 0, n,p and y. Thus, from (2.19), we
find that »” and @ are bounded from below and above by positive constants.
Therefore, we have positive lower and upper bounds on detD*u = v”(%)"".
Moreover, v'(r) = |Du(x)| € C*(Q) for all a € (0, 1). Using (2.18), we also find
that W, and hence w, is in C*(Q). In particular, w € C#(Q).
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We have reduced our theorem to the existence and uniqueness of g(1) > 0
solving (2.16) which we now address.
(1) Recall that f = —1. Note that (2.16) becomes

O 1 s
/ e? Vs ds = — <1 —/ eTSps”_lds).
0 ny 0

Clearly, there is a unique g(1) > 0 solving the above integral equation. Hence,
there is a unique radial, uniformly convex solution u € C*#(Q) to (1.5).
(i1) Recall that f = 1 and p € (1, n]. Note that (2.16) becomes

(2.22) H(g(1) =1(g(1))
where
! 1p 1 ! 1.p 1 4
(2.23) H(p) :=/ er” s"'ds and I(t) = —<1 +/ er’ s”_'ds) =—evr.
0 ny 0 ny

Consider first the case p = n. Then

i 1 i
Hit)y=er —1 andI(t)=—e~.
ny

Therefore, from (2.22) we find an explicit formula for g(1) from the equation

enlsr _ MV
ny—1’

showing existence and uniqueness of a solution g(1) > 0 to (2.16) when y > %
As a result, there is a unique radial, uniformly convex solution u € C>#(Q) to
(1.5). Moreover, ¥ > % is also the optimal condition for the existence of a radial
solution to (1.5).

Now we consider the case p € (1,n) and v > 0. We show that (2.22) has
a unique solution g(1) > 0 and hence there is a unique radial, uniformly convex
solution u € C*#(Q) to (1.5). Indeed, since 1 < p < n, the integrand of H(¢)
grows faster than that of /(). Since H(0) =0 < I(0) = ﬁ, the function H(r) will
cross I(¢) for the first time from below at some point 7o > 0. Thus g(1) =) > O is
a solution of (2.22). To show the uniqueness of g(1), we show that if # > 7 then
H(t) > I(t). Indeed, using the definition of 7y, we find that H'(tp) > I'(tp). This
means that

or, equivalently,
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Thus, if s > £y then s"77 > ﬁ, that is,

Lop 1 Lop
er’ s > —m//er’s sP1,

and hence, for any ¢ > £y, we have

H() = Hto) + /

to

: L[y
er” 5" ds > 1(tp) + _/ er” P~ ds = 1(®).
ny

to

(iii) Recall that f = 1 and p > n. Assume that

el/r Loy, -1
w > M(n, p) :=1+—</ er’ s"_lds> .
n 0

Then, there is a solution g(1) > 0 to (2.22) where H and [ are defined as in (2.23).
Indeed, in this case, we have 1 > %[H(l)]_l = % Therefore I(1) < H(1)
while 7(0) > H(0). Thus, (2.22) has a solution g(1) € (0, 1). Consequently, there

is a radial, uniformly convex solution u € C3A(Q) to (1.5). U

Remark 2.2. When p > n, radial solutions in Theorem 1.3 (iii) are not unique
in general. This corresponds to multiple crossings of H and / defined in (2.23). For
example, this is in fact the case of n =2, p =4 and y = 1. We can plot the graphs
of H and I using Maple to find that, on [0, 2], they cross twice at #; € (1, 6/5) and
1 €(3/2,2).
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