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Abstract. We study the solvability of the second boundary value problem of

a class of highly singular, fully nonlinear fourth order equations of Abreu type in

higher dimensions under either a smallness condition or radial symmetry.

1 Introduction and statements of the main results

In this paper, which is a sequel to [6], we study the solvability of the second

boundary value problem of a class of highly singular, fully nonlinear fourth order

equations of Abreu type for a uniformly convex function u:

(1.1)



























∑n
i,j=1 Uijwij = F(·, u,Du,D2u) in �,

w = (det D2u)−1 in �,

u = ϕ on ∂�,

w = ψ on ∂�.

Here and throughout, U = (Uij)1≤i,j≤n is the cofactor matrix of the Hessian matrix

D2u = (uij)1≤i,j≤n ≡
( ∂2u

∂xi∂xj

)

1≤i,j≤n
;

ϕ ∈ C3,1(�), ψ ∈ C1,1(�) with inf∂�ψ > 0. The left-hand side of (1.1) usually

appears in Abreu’s equation [1] in the problem of finding Kähler metrics of constant

scalar curvature in complex geometry.

This type of equation arises from studying approximation of convex functionals

such as the Rochet–Choné model in product line design [9] whose Lagrangians de-

pend on the gradient variable, subject to a convexity constraint. Carlier–Radice [2]
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studied equations of the type (1.1) when F does not depend on the Hessian variable.

When the function F depends on the Hessian variable, (1.1) was studied in [6] in

two dimensions, including the case F = −1u.

Note that (1.1) consists of a Monge–Ampère equation for u in the form of

det D2u = w−1 and a linearized Monge-Ampère equation for w in the form of

n
∑

i,j=1

Uijwij = F(·, u,Du,D2u)

because the coefficient matrix (Uij) comes from linearization of the Monge–

Ampère operator:

Uij =
∂ det D2u

∂uij

.

The solvability of second boundary problems such as (1.1) is usually established

via a priori fourth order derivative estimates and degree theory. Two of the key

ingredients for the a priori estimates are to establish (see [6]):

(i) positive lower and upper bounds for the Hessian determinant det D2u; and

(ii) global Hölder continuity forw from global Hölder continuity of the linearized

Monge–Ampère equation with the right-hand side having low integrability.

By Theorem 1.7 in combination with Lemma 1.5 in [8], any integrability more

than n/2 right-hand side of the linearized Monge-Ampère equation suffices for the

global Hölder continuity and n/2 is the precise threshold. The reason to restrict

the analysis in [6] to two dimensions even for the simple case F = −1u is that

either 1u is just a measure or it belongs to 1u ∈ L1+ε0 (�) where ε0 > 0 can be

arbitrary small. The condition n/2 < 1 + ε0 with small ε0 naturally leads to n = 2.

In all dimensions, once we have the global Hölder continuity ofw together with

the lower and upper bounds on det D2u, we can apply the global C2,α estimates for

the Monge–Ampère equation in [10, 13] to conclude that u ∈ C2,α(�). We update

this information to Uijwij = F(·, u,Du,D2u) to have a second order uniformly

elliptic equation for w with global Hölder continuous coefficients and bounded

right-hand side. This gives second order derivative estimates for w. Now, fourth

order derivative estimates for u easily follow.

In this paper, we consider the higher dimensional case of (1.1), focusing on

the right-hand side being of p-Laplacian type. In this case, the first two equations

of (1.1) arise as the Euler–Lagrange equation of the convex functional

(1.2) Jp(u) :=

∫

�

( |Du|p

p
− log det D2u

)

dx.

When p = 2, that is, (1.1) with F = −1u, the a priori lower bound on det D2u in [6]

breaks down when n ≥ 3.
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Key to this analysis in [6] is the fact that trace (U) = 1u in dimensions n = 2.

With this crucial fact, one can use

Uij
(

w +
1

2
|x|2

)

ij
= −1u + trace (U) ≥ 0

and then apply the maximum principle to conclude that w + 1
2
|x|2 attains its maxi-

mum on ∂� from which the upper bound on w follows, which in turn implies the

desired lower bound on det D2u.

If n ≥ 3, the ratio trace (U)/1u can be in general as small as we want; in

fact, this is the case, say, when one eigenvalue of D2u is 1 while all other n − 1

eigenvalues are a small constant.

Here, we use a new technique to solve (1.1) when F = −γdiv (|Du|p−2Du)

where p ≥ 2 and γ is small. More generally, our main result states as follows.

Theorem 1.1. Assume n≥3. Let� be an open, smooth, bounded and uniformly

convex domain in R
n. Letψ ∈ C2,β(�) with inf∂�ψ > 0 and let ϕ ∈ C4,β(�) where

β ∈ (0, 1). Let F(·, z, p, r) : �× R × R
n × R

n×n be a smooth function such that:

(i) it maps compact subsets of �× R × R
n × R

n×n into compact subsets of R,

and

(ii) F(x, u(x),Du(x),D2u(x)) ≤ 0 in � for all C2 convex functions u.

If γ > 0 is a small constant depending only on β, ϕ,ψ, n,F and �, then there is

a uniformly convex solution u ∈ C4,β(�) to the following second boundary value

problem:

(1.3)



























∑n
i,j=1 Uijwij = γF(·, u,Du,D2u) in �,

w = (det D2u)−1 in �,

u = ϕ on ∂�,

w = ψ on ∂�.

The solution is unique provided that F additionally satisfies

(1.4)

∫

�

[F(·, u,Du,D2u) − F(·, v,Dv,D2v)](u − v)dx ≥ 0

for all u, v ∈ C2(�) with u = v on ∂�.

Remark 1.2. It would be very interesting to remove the smallness of γ in

Theorem 1.1.

Our next result is concerned with radial solutions for the p-Laplacian right-hand

side.
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Theorem 1.3. Assume that � = B1(0) ⊂ R
n and let ϕ and ψ be constants

with ψ > 0. Let p ∈ (1,∞). Let β = p − 1 if p < 2 and β ∈ (0, 1) if p ≥ 2. Let

f ∈ {−1, 1}. Consider the second boundary value problem:

(1.5)



























∑n
i,j=1 Uijwij = fdiv (|Du|p−2Du) in �,

w = (det D2u)−1 in �,

u = ϕ on ∂�,

w = ψ on ∂�.

(i) Let f = −1. Then there is a unique radial, uniformly convex solution

u ∈ C3,β(�) to (1.5).

(ii) Let f = 1 and let p ∈ (1, n]. In the case p = n, we assume further that ψ > 1
n
.

Then there is a unique radial, uniformly convex solution u ∈ C3,β(�) to (1.5).

(iii) Let f = 1 and let p > n. Suppose that ψ ≥ M(n, p) for some sufficiently

large constant M > 0. Then there is a radial, uniformly convex solution

u ∈ C3,β(�) to (1.5).

Remark 1.4. Regarding the p-Laplacian right-hand side, even in the two

dimensions, the analysis in [6] left open the case F = −div (|Du|p−2Du) when

p ∈ (1, 2). The missing ingredient was the lower bound for det D2u in the a priori

estimates. If this is obtained, then one can use the recent result in [7] to establish

the solvability of (1.1); see the proof of Theorem 1.3 in [7].

Remark 1.5. The size condition on ψ in Theorem 1.3 (ii) is optimal. We can

see this in two dimensions as follows. If f ≡ 1, n = p = 2 and 0 < ψ ≤ 1/2,

then there are no uniformly convex solutions u ∈ C4(�) to (1.5). Indeed, if such

a uniformly convex solution u exists, then the first and the last equation of (1.5)

imply that

w(x) = ψ +
1

2
(|x|2 − 1).

However, sinceψ ≤ 1/2, there is x ∈ � such thatw(x) ≤ 0, which is a contradiction

to the uniform convexity of u and w = (det D2u)−1.

When n = p = 2, we can remove the symmetry conditions in Theorem 1.3.

Proposition 1.6. Let � be an open, smooth, bounded and uniformly convex

domain in R
n where n=2. Assume f ≥0 and f ∈L∞(�). Assume that ϕ ∈ W4,q(�),

ψ ∈ W2,q(�) where q > n with

(1.6) inf
x∈∂�

(

ψ(x) −
‖f‖L∞(�)

2
|x|2

)

> 0.
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Then there is a uniformly convex solution u ∈ W4,q(�) to the following second

boundary value problem:

(1.7)



























∑n
i,j=1 Uijwij = f1u in �,

w = (det D2u)−1 in �,

u = ϕ on ∂�,

w = ψ on ∂�.

If f is a nonnegative constant, ϕ ∈ C∞(�), andψ ∈ C∞(�) then there is a solution

u ∈ C∞(�).

The key ingredient in the proof of Theorem 1.1 is the solvability and uniform

estimates in W4,p(�) for p > n of (1.1) when

F ∼ −(1u)
1

n−1 (det D2u)
n−2
n−1 ,

which reduces to F ∼ −1u in two dimensions. This result, and its slightly more

general version in Proposition 1.7, can be of independent interest.

Proposition 1.7. Let � be an open, smooth, bounded and uniformly convex

domain in R
n. Assume that ϕ ∈ W4,q(�), ψ ∈ W2,q(�) with inf∂� ψ > 0 where

q > n. Let k ∈ {1, . . . , n−1}. Assume that 0 ≤ f, g ≤ 1. Then there is a uniformly

convex solution u ∈ W4,q(�) to the following second boundary value problem:

(1.8)



























∑n
i,j=1Uijwij =−(1u)

1
n−1 (det D2u)

n−2
n−1 f−[Sk(D2u)]

1
k(n−1) (det D2u)

n−2
n−1 g in �,

w = (det D2u)−1 in �,

u = ϕ on ∂�,

w = ψ on ∂�.

If f ≡ 1 and g ≡ 1, ϕ ∈ C4,β(�), and ψ ∈ C2,β(�), then there is a solution

u ∈ C4,β(�).

In Proposition 1.7 and what follows, for a symmetric n × n matrix A with

eigenvalues λ1, . . . , λn, let us denote its elementary symmetric functions Sk(A)

where k = 0, 1, . . . , n by

S0(A) = 1, Sk(A) =
∑

1≤i1<···<ik≤n

λi1 · · ·λik (k ≥ 1).

The rest of the paper is devoted to proving Theorems 1.1 and 1.3, and Propositions

1.6 and 1.7.
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2 Proofs of the main results

In this section, we prove Theorems 1.1 and 1.3, and Propositions 1.6 and 1.7. As

in [6], it suffices to prove appropriate fourth order derivative a priori estimates.

For certain fixed parameters β (in Theorem 1.1), p (in Theorem 1.3) and k, q

(in Propositions 1.6 and 1.7), we call a positive constant universal if it depends

only on n, �, ψ, ϕ and those fixed parameters. We use c,C,C1,C2, . . . , to denote

universal constants and their values may change from line to line.

Proof of Proposition 1.7. For simplicity, we denote

F(x) = − (1u(x))
1

n−1 (det D2u(x))
n−2
n−1 f (x)

− [Sk(D2u(x))]
1

k(n−1) (det D2u(x))
n−2
n−1 g(x).

We establish a priori estimates for a solution u ∈ W4,q(�). Since Uijwij ≤ 0, by the

maximum principle, the functionw attains its minimum value on the boundary ∂�.

Thus

w ≥ inf
∂�
ψ := C1 > 0.

On the other hand, we note that for each k ∈ {1, . . . , n − 1},

(2.1) 1u ≥ [Sk(D2u)]
1
k ,

and furthermore,

(2.2) trace (Uij) = Sn−1(D2u) ≥ (1u)
1

n−1 (det D2u)
n−2
n−1 .

Indeed, (2.2) is equivalent to (det D2u)trace(D2u−1) ≥ (1u)
1

n−1 (det D2u)
n−2
n−1 , or

(2.3) [Trace(D2u−1)]n−1 ≥
1u

det D2u
.

Let λ1, . . . , λn be eigenvalues of D2u. Then (2.3) reduces to

( n
∑

j=1

1

λj

)n−1

≥

∑n
i=1 λi

∏n
i=1 λi

=

n
∑

i=1

n
∏

j 6=i

1

λj

.

This is obvious by the expansion of the left-hand side.

It follows from (2.1) and (2.2) and 0 ≤ f, g ≤ 1 that

Uij(w + |x|2)ij ≥ 0.

By the maximum principle, the function w + |x|2 attains its maximum value on the

boundary ∂�. Thus

w + |x|2 ≤ max
∂�

(ψ + |x|2) ≤ C2 < ∞.
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Therefore w ≤ C2. As a consequence,

C1 ≤ w ≤ C2.

From the second equation of (1.8), we can find a universal constant C > 0 such

that

(2.4) C−1 ≤ det D2u ≤ C in �.

By constructing a suitable barrier, we find that Du is universally bounded in�:

(2.5) ‖Du‖L∞(�) ≤ C.

From ϕ ∈ W4,q(�) with q > n, we have ϕ ∈ C3(�) by the Sobolev embedding

theorem. By assumption,� is bounded, smooth and uniformly convex. From u = ϕ

on ∂� and (2.4), we can apply the global W2,1+ε0 estimates for the Monge–Ampère

equation, which follow from the interior W2,1+ε0 estimates in De Philippis–Figalli–

Savin [3] and Schmidt [12] and the global estimates in Savin [11] (see also [4,

Theorem 5.3]), to conclude that

(2.6) ‖D2u‖L1+ε0 (�) ≤ C∗
1

for some universal constants ε0 > 0 and C∗
1 > 0.

Thus, from (2.6) and (2.1), we find that

‖F‖L(n−1)(1+ε0)(�) ≤ C3

for a universal constant C3 > 0. Note that for all n ≥ 2 and all ε0 > 0,

(n − 1)(1 + ε0) > n/2.

From ψ ∈ W2,q(�) with q > n, we have ψ ∈ C1(�) by the Sobolev embedding

theorem. Now, we apply the global Hölder estimates for the linearized Monge–

Ampère equation in [8, Theorem 1.7 and Lemma 1.5] to Uijwij = F in � with

boundary value w = ψ ∈ C1(∂�) on ∂� to conclude that w ∈ Cα(�) with

(2.7) ‖w‖Cα(�) ≤ C(‖ψ‖C1(∂�) + ‖F‖L(n−1)(1+ε0)(�)) ≤ C4

for universal constants α ∈ (0, 1) and C4 > 0. Now, we note that u solves the

Monge–Ampère equation

det D2u = w−1

with the right-hand side being in Cα(�) and boundary value ϕ ∈ C3(∂�) on ∂�.

Therefore, by the global C2,α estimates for the Monge–Ampère equation [13, 10],

we have u ∈ C2,α(�) with universal estimates

(2.8) ‖u‖C2,α(�) ≤ C5 and C−1
5 In ≤ D2u ≤ C5In.
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Here and throughout, we use In to denote the n × n identity matrix. As a conse-

quence, the second order operator Uij∂ij is uniformly elliptic with Hölder continu-

ous coefficients. Now, we observe from the definition of F and (2.8) that

(2.9) ‖F‖L∞(�) ≤ C6.

Thus, from the equation Uijwij = F with boundary valuew = ψwhereψ ∈ W2,q(�),

we conclude that w ∈ W2,q(�) and therefore u ∈ W4,q(�) with universal estimate

‖u‖W4,q(�) ≤ C7.

It remains to consider the case f ≡ 1 and g ≡ 1, ϕ ∈ C4,β(�), andψ ∈ C2,β(�).

In this case, we need to establish a priori estimates for u ∈ C4,β(�). As above,

instead of (2.9), we have

(2.10) ‖F‖
C

α
n−1 (�)

≤ C7.

Thus, from the equation Uijwij = F with boundary valuew = ψwhereψ ∈ C2,β(�),

we conclude that w ∈ C2,γ(�) where γ := min{ α
n−1
, β} and therefore u ∈ C4,γ(�)

with the universal estimate ‖u‖C4,γ(�) ≤ C8. With this estimate, we can improve

(2.10) to

(2.11) ‖F‖Cβ(�) ≤ C9.

As above, we find that u ∈ C4,β(�) with the universal estimate ‖u‖C4,β(�) ≤ C10.�

Proof of Theorem 1.1. Without loss of generality, we can assume that

inf∂� ψ = 1. We consider the following second boundary value problem for a

uniformly convex function u:

(2.12)



























Uijwij = −(1u)
1

n−1 (det D2u)
n−2
n−1 fγ(·, u,Du,D2u) in �,

w = (det D2u)−1 in �,

u = ϕ on ∂�,

w = ψ on ∂�.

for some γ ∈ (0, 1) to be chosen later, where

fγ(·, u,Du,D2u) = min
{ −γF(·, u,Du,D2u)

(1u)
1

n−1 (det D2u)
n−2
n−1

, 1
}

.

By our assumption (ii) on F, when u is a C2 convex function, we have 0 ≤ fγ ≤ 1.

By Proposition 1.7 (with g ≡ 0), (2.12) has a solution u ∈ W4,q(�) for all q <∞.

Thus, the first equation of (2.12) holds pointwise a.e.
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As in the proof of Proposition 1.7 (see (2.8)), we have the following a priori

estimates

(2.13) ‖u‖C2,β(�) ≤ C1 and C−1
1 In ≤ D2u ≤ C1In

for some C1 > 0 depending only on β, ϕ,ψ, n and�. Hence, using assumption (i)

on F, we find that

−γF(·, u,Du,D2u)

(1u)
1

n−1 (det D2u)
n−2
n−1

<
1

2

if γ > 0 is small, depending only on β, ϕ,ψ, n,F and �.

Thus, if γ > 0 is small, depending only on β, ϕ,ψ, n,F and �, then

fγ = min
{ −γF(·, u,Du,D2u)

(1u)
1

n−1 (det D2u)
n−2
n−1

, 1
}

=
−γF(·, u,Du,D2u)

(1u)
1

n−1 (det D2u)
n−2
n−1

in � and hence the first equation of (2.12) becomes

Uijwij = γF(·, u,Du,D2u).

Using this equation together with (2.13) and ϕ ∈ C4,β(�) and ψ ∈ C2,β(�), we

easily conclude that u ∈ C4,β(�). Thus, there is a uniformly convex solution

u ∈ C4,β(�) to (1.3).

Assume now F additionally satisfies (1.4). Then arguing as in the proof of [6,

Lemma 4.5] replacing fδ there by γF, we obtain the uniqueness of the C4,β(�)

solution to (1.3). �

Remark 2.1. Clearly, Theorem 1.1 and its proof apply to dimensions n = 2.

Proof of Proposition 1.6. We establish a priori estimates for a solution

u ∈ W4,q(�) to (1.7). As in the proof of Proposition 1.7, it suffices to obtain the

lower and upper bounds on det D2u.

Observe that

Uijwij = f1u ≥ 0.

By the maximum principle, the function w attains its maximum value on the

boundary ∂�. Thus

w ≤ sup
∂�

ψ <∞.

By the second equation of (1.7), this gives a bound from below for det D2u:

det D2u ≥ C−1.
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On the other hand, we have

2
∑

i,j=1

Uij
(

w−
‖f‖L∞(�)

2
|x|2

)

ij
= (f − ‖f‖L∞(�))1u ≤ 0.

By the maximum principle, the functionw−
‖f‖L∞(�)

2
|x|2 attains its minimum value

on the boundary ∂�. Thus, using (1.6), we find that

w−
‖f‖L∞(�)

2
|x|2 ≥ inf

x∈∂�

(

w(x) −
‖f‖L∞(�)

2
|x|2

)

> 0.

This gives a positive lower bound for w, that is, w ≥ C−1 > 0. Using the second

equation of (1.7), we obtain a bound from above for det D2u:

det D2u ≤ C.
�

Proof of Theorem 1.3. Recall that f ∈ {−1, 1} and β = p − 1 if 1 < p < 2

and β ∈ (0, 1) if p ≥ 2.

We first observe the following reduction of smoothness without any symmetry

assumptions. Suppose that one has a uniformly convex solution u ∈ C2(�) to (1.5)

with positive lower and upper bounds on det D2u:

(2.14) C−1 ≤ det D2u ≤ C

for some C > 0 and such that w ∈ Cβ(�); then u ∈ C3,β(�). Indeed, using (2.14)

together with the global C2,α estimates [13, 10] for the Monge–Ampère equation

det D2u = w−1 with boundary data ϕ ∈ C3,1(�) and right-hand side w−1 ∈ Cβ(�),

we have u ∈ C2,β(�) with estimates

(2.15) ‖u‖C2,β(�) ≤ C1 and C−1
1 In ≤ D2u ≤ C1In.

As a consequence, the second order operator Uij∂ij is uniformly elliptic with

Hölder continuous coefficients with exponent β ∈ (0, 1). Note that |Du|p−2Du

is Hölder continuous with exponent β. Using the first equation of (1.5), we see

that the C1,β(�) estimate for w follows from [5, Theorem 8.33]. Hence, we have

the C3,β(�) estimates for u.

Now, we look for radial, uniformly convex solutions u∈C2(�) to (1.5). Assume

that the convex function u is of the form

u(x) = v(r)

where

v : [0,∞) → R and r = |x|.
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Let us denote
′

=
d

dr
and g(r) := v ′(r).

The requirement that u ∈ C2(�) forces

g(0) = v ′(0) = 0.

The next reduction in the proof of our theorem is the following claim.

Claim. The existence of radial, uniformly convex solutions u ∈ C2(�) to (1.5)

with positive lower and upper bounds on det D2u and a Hölder continuous w is

equivalent to finding g(1) > 0 satisfying the integral equation

(2.16)

∫ g(1)

0

e
f

p
sp

sn−1ds =
1

nψ

(

1 + f

∫ g(1)

0

e
f

p
sp

sp−1ds

)

.

To prove the claim, we compute

det D2u = v ′′
(v ′

r

)n−1

, w = (det D2u)−1 =
1

v ′′

( r

v ′

)n−1

≡ W(r).

Since D2u and (D2u)−1 are similar to diag (v ′′, v
′

r
, . . . , v

′

r
) and diag ( 1

v′′ ,
r
v′ , . . . ,

r
v′ ),

we can compute

Uijwij =
v ′′(v ′)n−1

rn−1

(W
′′

v ′′
+ (n − 1)

W
′

v ′

)

=
[W

′

(v ′)n−1]
′

rn−1
.

Note that v ′′ and v ′ are all nonnegative. Therefore,

(2.17) 0 ≤ v ′(r) ≤ v ′(1) for all 0 ≤ r ≤ 1.

On the other hand, we have

div (|Du|p−2Du) = (p − 1)(v ′)p−2v ′′ +
n − 1

r
(v ′)p−1 =

[(v ′)p−1rn−1]
′

rn−1
.

The first equation of (1.5) gives

[W
′

(v ′)n−1]
′

rn−1
= f

[(v ′)p−1rn−1]
′

rn−1

which implies that, for some constant C,

W
′

(v ′)n−1 = f (v ′)p−1rn−1 + C.

Since v ′(0) = 0, we find that C = 0. Thus

W
′

= f (v ′)p−1
( r

v ′

)n−1

= f (v ′)p−1v ′′W.
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It follows that

[log W]
′

=
[ f

p
(v ′)p

]′

and hence, recalling W(1) = ψ,

(2.18)

log W(r) = log W(1) +
f

p
[(v ′(r))p − (v ′(1))p]

= logψ +
f

p
[(v ′(r))p − (v ′(1))p].

Therefore, in terms of g = v ′, we have after exponentiation

(2.19) e
f

p
[g(r)]p

[g(r)]n−1g′(r) =
1

ψ
e

f

p
[g(1)]p

rn−1,

which is equivalent to

(2.20)

∫ g(r)

0

e
f

p
sp

sn−1ds =
1

nψ
e

f

p
[g(1)]p

rn.

Clearly, (2.20) leads to a solution to (1.5) in terms of g(1), n, p and ψ provided

g(1) > 0 satisfies the compatibility condition at r = 1:

(2.21)

∫ g(1)

0

e
f

p
sp

sn−1ds =
1

nψ
e

f

p
[g(1)]p

.

Because

e
f

p
[g(1)]p

= 1 + f

∫ g(1)

0

e
f

p
sp

sp−1ds,

the compatibility condition (2.21) can be rewritten as in (2.16).

Assume that g(1) = v ′(1) > 0 has already been found, in terms of n, p and ψ.

We now establish positive lower and upper bounds on det D2u and thatw ∈ Cβ(�).

Indeed, from 0 ≤ g(r) ≤ g(1), we can easily estimate

e
−1
p

[g(1)]p [g(r)]n

n
≤

∫ g(r)

0

e
f

p
sp

sn−1ds ≤ e
1
p

[g(1)]p [g(r)]n

n
.

Hence (2.20) gives

C−1r ≤ g(r) ≤ Cr

for some C that depends only on g(1) > 0, n, p and ψ. Thus, from (2.19), we

find that v ′′ and v′(r)
r

are bounded from below and above by positive constants.

Therefore, we have positive lower and upper bounds on det D2u = v ′′( v
′

r
)n−1.

Moreover, v ′(r) = |Du(x)| ∈ Cα(�) for all α ∈ (0, 1). Using (2.18), we also find

that W, and hence w, is in Cα(�). In particular, w ∈ Cβ(�).
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We have reduced our theorem to the existence and uniqueness of g(1) > 0

solving (2.16) which we now address.

(i) Recall that f = −1. Note that (2.16) becomes

∫ g(1)

0

e
−1
p

sp

sn−1ds =
1

nψ

(

1 −

∫ g(1)

0

e
−1
p

sp

sp−1ds

)

.

Clearly, there is a unique g(1) > 0 solving the above integral equation. Hence,

there is a unique radial, uniformly convex solution u ∈ C3,β(�) to (1.5).

(ii) Recall that f = 1 and p ∈ (1, n]. Note that (2.16) becomes

(2.22) H(g(1) = I(g(1))

where

(2.23) H(t) :=

∫ t

0

e
1
p
sp

sn−1ds and I(t) :=
1

nψ

(

1 +

∫ t

0

e
1
p

sp

sp−1ds

)

≡
1

nψ
e

tp

p .

Consider first the case p = n. Then

H(t) = e
tn

n − 1 and I(t) =
1

nψ
e

tn

n .

Therefore, from (2.22) we find an explicit formula for g(1) from the equation

e
1
n

[g(1)]n

=
nψ

nψ− 1
,

showing existence and uniqueness of a solution g(1) > 0 to (2.16) when ψ > 1
n
.

As a result, there is a unique radial, uniformly convex solution u ∈ C3,β(�) to

(1.5). Moreover, ψ > 1
n

is also the optimal condition for the existence of a radial

solution to (1.5).

Now we consider the case p ∈ (1, n) and ψ > 0. We show that (2.22) has

a unique solution g(1) > 0 and hence there is a unique radial, uniformly convex

solution u ∈ C3,β(�) to (1.5). Indeed, since 1 < p < n, the integrand of H(t)

grows faster than that of I(t). Since H(0) = 0 < I(0) = 1
nψ

, the function H(t) will

cross I(t) for the first time from below at some point t0 > 0. Thus g(1) = t0 > 0 is

a solution of (2.22). To show the uniqueness of g(1), we show that if t > t0 then

H(t) > I(t). Indeed, using the definition of t0, we find that H′(t0) ≥ I ′(t0). This

means that

e
1
p
t
p

0 tn−1
0 ≥

1

nψ
e

1
p
t
p

0 t
p−1
0 ,

or, equivalently,

t
n−p
0 ≥

1

nψ
.
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Thus, if s > t0 then sn−p > 1
nψ

, that is,

e
1
p

sp

sn−1 >
1

nψ
e

1
p

sp

sp−1,

and hence, for any t > t0, we have

H(t) = H(t0) +

∫ t

t0

e
1
p

sp

sn−1ds > I(t0) +
1

nψ

∫ t

t0

e
1
p
sp

sp−1ds = I(t).

(iii) Recall that f = 1 and p > n. Assume that

ψ ≥ M(n, p) := 1 +
e1/p

n

(
∫ 1

0

e
1
p

sp

sn−1ds

)−1

.

Then, there is a solution g(1) > 0 to (2.22) where H and I are defined as in (2.23).

Indeed, in this case, we have 1 > e1/p

nψ
[H(1)]−1 = I(1)

H(1)
. Therefore I(1) < H(1)

while I(0) > H(0). Thus, (2.22) has a solution g(1) ∈ (0, 1). Consequently, there

is a radial, uniformly convex solution u ∈ C3,β(�) to (1.5). �

Remark 2.2. When p > n, radial solutions in Theorem 1.3 (iii) are not unique

in general. This corresponds to multiple crossings of H and I defined in (2.23). For

example, this is in fact the case of n = 2, p = 4 and ψ = 1. We can plot the graphs

of H and I using Maple to find that, on [0, 2], they cross twice at t1 ∈ (1, 6/5) and

t2 ∈ (3/2, 2).
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[9] J.-C. Rochet and P. Choné, Ironing, sweeping and multidimensional screening, Econometrica 66

(1998), 783–826.

[10] O. Savin, Pointwise C2,α estimates at the boundary for the Monge–Ampère equation, J. Amer.

Math. Soc. 26 (2013), 63–99.

[11] O. Savin, Global W2,p estimates for the Monge–Ampère equation, Proc. Amer. Math. Soc. 141

(2013), 3573–3578.

[12] T. Schmidt, W2,1+ε estimates for the Monge–Ampère equation, Adv. Math. 240 (2013), 672–689.

[13] N. S. Trudinger and X. J. Wang, Boundary regularity for the Monge–Ampère and affine maximal

surface equations, Ann. of Math. (2) 167 (2008), 993–1028.

Nam Q. Le

DEPARTMENT OF MATHEMATICS

INDIANA UNIVERSITY

831 E 3RD ST

BLOOMINGTON, IN 47405, USA

email: nqle@indiana.edu

(Received May 22, 2019 and in revised form September 15, 2019)


