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ABSTRACT

To investigate how the nonuniform fluid density distribution caused by large temperature variations affects the development of unsteady
natural convection, we perform a series of direct numerical simulations of two-dimensional compressible natural convection in an air-filled
square cavity. The cavity has a hot wall on the left and a cold wall on the right, and two horizontal walls are adiabatic. The simulations are
done using a kinetic approach based on a modeled Boltzmann equation, from which the fully compressible Navier–Stokes–Fourier equations
are recovered. No Boussinesq approximation or low Mach number approximation is made. An extra source term is introduced to adjust the
fluid Prandtl number. Simulations are performed for a range of Rayleigh numbers (107 � 109) with a fixed dimensionless temperature differ-
ence of e ¼ 0:6 to determine the critical Rayleigh number and study the development of unsteady flow. To illustrate the instability mecha-
nism, instantaneous fluctuation field, time trace of temperature, and velocity at selected monitoring points, the spectrum and other statistics
are presented and discussed. As expected, significant differences are observed between the instability of compressible natural convection and
the Boussinesq-type natural convection. With a large temperature difference, the transition to unsteady flow is asymmetric for the flows near
the hot wall and cold wall. For the Rayleigh number range we studied, the cold wall region is dominated by low-frequency impact instability
of the boundary thermal jet at the bottom corner. For the hot wall region, besides the upper corner impact instability, a boundary layer insta-
bility featuring high-frequency oscillations is observed.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0058399

I. INTRODUCTION

Natural convection in an enclosure has been investigated by
researchers from various perspectives for decades.1–4 The instability
mechanism of the flow is a crucial topic of convection flows.5 The
onset of unsteady flow can be affected by a large range of system
parameters, such as aspect ratio, Prandtl number, applied temperature
difference, etc.6–8 Based on the applied temperature difference
e ¼ ðTh � TcÞ=ðTh þ TcÞ, the buoyancy-driven natural convection
can be classified into two types: (1) When the temperature difference
is small such that the flow can be assumed to be nearly incompressible
and the buoyancy effect can be related to a linear function of local

temperature, namely, the Boussinesq approximation. Under the
Boussinesq approximation, the fluid properties such as viscosity � and
heat conductivity j are treated as constants. The work done by viscous
dissipation and compression can be neglected. (2) For a large tempera-
ture difference, the flow becomes compressible and the fluid density
variation must be considered. The momentum equation and the
energy equation are strongly coupled. The flow is now governed by
fully compressible Navier–Stokes equations. The knowledge of
Boussinesq-type natural convection is now relatively complete as it
has been studied by researchers using different numerical methods;
flow transition and structures at different Rayleigh numbers have been
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examined.9–11 However, the instability mechanism of compressible
natural convection in an enclosure is largely unexplored. In this paper,
we focus specifically on the unsteady compressible natural convection
in an air-filled (Pr¼ 0.71) square cavity with differentially heated ver-
tical walls (DHVW). Two horizontal walls are adiabatic. A summary
of previous numerical studies relevant to the instability mechanism of
this second type of natural convection in a cavity with DHVW is pre-
sented in the following.

Natural convection in an enclosure under the Boussinesq approx-
imation has been studied numerically for a wide range of Rayleigh
numbers.12–14 Beyond the critical Rayleigh number, the flow transi-
tions from the steady regime to unsteady flow regime, and the centro-
symmetric flow structure is broken. Vortices are generated in the
detached region near the cavity corners and along the isothermal walls.
The unsteady convection is affected by several controlling parameters.
Janssen and Henkes6 found that for Prandtl number between 0.25 and
2.0, the flow transition experiences periodic and quasi-periodic motion
before reaching a turbulent flow. However, for Prandtl number
between 2.5 and 7.0, there is no intermediate flow regime, and the flow
goes from steady to turbulent. Paolucci and Chenoweth7 proposed
that for cavity with aspect ratio 1

2 � A � 3 (A ¼ H=L, H is cavity
height, L is cavity length), the instability first takes place near the
departing corners; for a shorter or taller cavity, the primary instability
happens inside the boundary layer along the isothermal wall. Using
the pseudo-spectral method, Qu�er�e and Behnia8 claimed that the
critical Rayleigh number of transition to unsteadiness is Racr ¼ 1:82
60:01� 108 for an air-filled square cavity under the Boussinesq
approximation. With respect to the instability mechanism for an air-
filled square cavity, researchers reached an agreement that there are
two types of instability mechanisms.6,7 The primary instability hap-
pens in the detached region near the horizontal walls.8,15 This shear-
driven, Kelvin–Helmholtz type instability occurs in a jet-like fluid layer
where the vertical boundary layers are turned horizontal. When the
Rayleigh number is further increased, the second instability (boundary
layer instability) takes place inside the vertical boundary layer along
the isothermal wall. Although the central-symmetry is broken at high
Rayleigh number, two types of instability mentioned above are
observed for both the hot wall and cold wall region.

As the turbulent convection is essentially three-dimensional in
nature, researchers extend direct numerical simulation (DNS) to
three-dimensional enclosures.15–17 Labrosse et al.18 claimed that the
transition to unsteadiness happens at Ra ¼ 3:19� 107 using the
pseudo-spectral method. Trias et al.19 provided a comparison between
two- and three-dimensional numerical results. They claimed the flow
experiences laminar, periodic, and quasi-periodic and eventually
become turbulent in the vertical boundary layer along the isothermal
wall.

Comparing to Boussinesq-type natural convection, compressible
natural convection is more complex due to the fluid density variation
and local compressibility. Most previous studies of compressible natu-
ral convection are performed under low Mach number approxima-
tion20 or using steady Navier–Stokes equations.21,22 The laminar flow
regime of compressible natural convection is studied by researchers
using different numerical methods.23–26 Chenoweth and Paolucci pro-
vided early steady-state two-dimensional results using the finite-
difference method under the low Mach number approximation.27 The
governing equation is an approximation of the compressible

Navier–Stokes equation; the total pressure is decomposed and only
thermodynamic pressure is considered in the equation of state. Using
the steady two-dimensional Navier–Stokes equations, Vierendeels
et al.21 performed a set of numerical simulations up to Rayleigh num-
ber Ra ¼ Pr2egL3q20=l

2
0 ¼ 1:0� 107, where e ¼ ðTh � TcÞ=ð2T0Þ;

q0; l0 are density and viscosity at the average temperature
T0 � ðTh þ TcÞ=2. There are only very few results available for
unsteady compressible natural convection. Qu�er�e et al.28 investigated
the transition to unsteady non-Boussinesq natural convection in a tall
cavity using a pseudo-spectral algorithm. They showed that the tem-
perature difference parameter e has a significant effect on the critical
Rayleigh number. The flow is more unstable with a large value of e.
Recently, Lenz et al.29 reported a GKS (gas-kinetic scheme) result of
unsteady natural convection with Rayleigh number Ra ¼ 5:0� 109.
They showed that the flow field is highly asymmetric and proposed
that the heating decreases the boundary layer stability and cooling
increases the boundary layer stability. Wen et al.30 performed two-
and three-dimensional simulation of compressible natural convection
with Rayleigh number up to Ra ¼ 5:0� 109 using the discrete unified
gas-kinetic scheme (DUGKS). Table I provides a summary of studies
on compressible natural convection flows, comparing numerical meth-
ods and the setting of the flow and the range of Rayleigh numbers. In
general, the transition to the unsteady compressible natural convection
in an enclosure is still largely unexplored.

The instability mechanism of the compressible natural convec-
tion is expected to be different from the Boussinesq convection. As the
compressible natural convection in an enclosure is not symmetric in
the steady regime, namely, the fluid is thermodynamically expanded
near the hot wall and contracted near the cold wall, this density varia-
tion of the fluid introduces another unstable mechanism to the flow
evolution. To investigate the onset of unsteady compressible natural
convection, fully compressible Navier–Stokes equations are required
for the simulation. The fully compressible Navier–Stokes equations
can be properly recovered by a modeled Boltzmann equation.36–40

Among these kinetic models, the coupled double-distribution function
(DDF) model is widely used in thermal flow simulations due to its
inner coherence in physics and simplicity in implementation.30,33,39,41

The viscous dissipation and the compression work are considered in
these coupled thermal DDF models. Two reduced distributions are
derived from the original higher-dimensional particle distribution by
integrating out the internal degrees of freedom. The density and veloc-
ity fields are determined by the first reduced distribution function. The
choice for the second reduced distribution function can be flexible,
whose integral may be related to the internal energy,37,42 total
energy,33,39,43 or partial internal energy.30,44 It is worth pointing out
that not all of the above works are capable of simulating the compress-
ible natural convection with a large temperature. For a successful sim-
ulation of compressible natural convection, the Hermite expansion of
equilibrium distribution to an adequate order is required.45 The DDF
model can be a desired choice for compressible natural convection
simulation because we only need to solve a quasi-linear equation. In
this study, we perform a set of numerical simulations at different
Rayleigh numbers, beyond the critical Rayleigh number to inquire into
the instability mechanism, using the discrete unified gas-kinetic
scheme (DUGKS). As a newly developed method,44,46 DUGKS has
been applied to nearly incompressible thermal flow12,47,48 and com-
pressible flow,30,41,49,50 and proved to be an accurate and robust
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method. Due to the finite-volume formulation, non-uniform meshes
can be easily implemented by DUGKS. The numerical instability can
be largely improved by the use of nonuniform mesh.51,52 The bound-
ary condition is applied right at the cell interfaces which coincide with
the wall. Besides, for continuum flows, DUGKS can be viewed as a
special finite-volume lattice Boltzmann method (FV-LBM), but it is
more accurate and robust than FV-LBM.53

There are several important issues to be addressed when investi-
gating the transition to unsteady compressible natural convection in
an enclosure using DUGKS. The first one is to recover the fully com-
pressible Navier–Stokes equations. We choose the Boltzmann equa-
tion with the simple Bhatnagar–Gross–Krook (BGK) collision
model,44,54 instead of the BGK-Shakhov model55 or ellipsoidal-
statistical model.56 An extra source term is introduced to adjust the
Prandtl number. The second issue is the proper implementation of
the temperature and velocity boundary condition. The velocity and
the temperature field are strongly coupled in compressible thermal
flows. The boundary condition used in this study is properly derived
by the Chapman–Enskog analysis, so the consistency with the
Navier–Stokes–Fourier equations is ensured at the wall. The details of
source term design and the boundary condition derivation can be
found in our other paper.30

The primary goal of this paper is to investigate the development
of non-Boussinesq unsteady natural convection in a square cavity
using DUGKS. A detailed analysis of the unsteady flow structure and
the instability mechanism is presented and compared to the
Boussinesq-type convection. This paper is organized as follows. In Sec.
II, we describe the physical problem and the governing equations. In
Sec. IIIA, we determined the critical Rayleigh number for the transi-
tion from steady to unsteady flow. Numerical results at three moderate
Rayleigh numbers 1:83�108;3:0�108; and 5:0�108 are presented
and analyzed in Sec. III B. The natural convection with a high Rayleigh
number Ra¼ 5:0�109 is shown in Sec. IIIC. The main contributions
and conclusions of this work are summarized in Sec. IV.

II. PROBLEM DESCRIPTION AND NUMERICAL
METHOD
A. Problem description

The physical configuration under consideration here is an air-
filled (Pr¼ 0.71) square cavity with adiabatic top and bottom walls,
the left wall is heated (with temperature held at Th), and the right wall
is cooled (with temperature held at Tc), as shown in Fig. 1.

Alternatively, Th and Tc can be replaced by the average temperature
T0 � ðTh þ TcÞ=2 and dimensionless temperature difference
e � ðTh � TcÞ=ð2T0Þ, namely, Th ¼ T0ð1þ eÞ and Tc ¼ T0ð1� eÞ.
The no-slip boundary condition uw ¼ 0 is applied for all walls. When
e � 1, the convection can be studied under the Boussinesq assump-
tion; otherwise, the flow is governed by the compressible
Navier–Stokes–Fourier equations, which can be written as

@q
@t

þ @ qujð Þ
@xj

¼ 0; (1a)

@ quið Þ
@t

þ @ quiujð Þ
@xj

¼ � @p
@xi

þ qgi þ
@rij
@xj

; (1b)

@ qCVTð Þ
@t

þ @ qujCVTð Þ
@xj

¼ �p
@uj
@xj

þ @

@xj
k
@T
@xj

 !
þ rij

@uj
@xj

; (1c)

p ¼ qRT; (1d)

where the stress tensor is rij ¼ 2l Sij � 1
Dr � udij

� �þ lVr � udij, Sij is
the strain rate tensor, and l and lV are the shear viscosity and the
bulk viscosity, respectively. The fluid properties are temperature
dependent in the compressible case; the viscosity and heat conductivity
are given by Sutherland’s law,

TABLE I. Studies of compressible natural convection.

Method Dimension and resolution A Ra

Chenoweth and Paolucci27 Finite difference (FD) 2D ð121� 121Þ 1–10 103 � 107

Qu�er�e et al.28,31,32 Spectral 2D 80� 80; 32� 96ð Þ 1, 8 105; 106

Vierendeels et al.21,22 FV 2D ð512� 512Þ 1 102 � 107

Becker and Braack23 Finite element (FE) 2D [4� 106 degrees of freedom (DOF)] 1 106 � 107

Li et al.26 LBM 2D ð250� 250Þ 1 103 � 105

Feng et al.33,34 LBM 2D ð100� 100� 10Þ 1 103 � 105

Lenz et al.29 GKS 2D ð376� 376Þ 1 106; 5� 109

Wang et al.35 FD 2D ð512� 512Þ 1 105 � 109

Wen et al.30 DUGKS 2D ð360� 360Þ 1 106; 5� 109

FIG. 1. The geometry under consideration.
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l Tð Þ
l	

¼ T
T	

� �3=2
T	 þ S
T þ S

; k Tð Þ ¼ l Tð ÞCp

Pr
; (2)

where T	 ¼ 273K and S ¼ 110:5K. The parameter l	 is calculated

by l	 ¼ l0½ T0
T	

� �3=2
T	þS
T0þS
�1, where l0 is the viscosity at a reference

temperature l0ðRaÞ ¼ lðT0Þ. The governing equations can be nor-
malized by the following reference quantities: a reference density scale
q0, a reference length scale L, a reference velocity scale
u0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTh � TcÞgL=T0

p
, a reference time scale L=u0, a reference tem-

perature scale T0 ¼ ðTh þ TcÞ=2, a reference viscosity l0 ¼ lðT0Þ,
and a reference conductivity k0 ¼ kðT0Þ. With these reference scales,
the dimensionless compressible Navier–Stokes−Fourier equations can
be written as

@q̂

@ t̂
þ @ qûj

� �
@x̂ j

¼ 0; (3a)

@ q̂ûið Þ
@ t̂

þ @ q̂ûiûj
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þ 1
2e
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ffiffiffiffiffiffi
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Ra

r
@r̂ij

@x̂ j
; (3b)

@ q̂T̂
� �
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þ
@ q̂ûjT̂
� �
@x̂ j

¼ K

"
� p̂

@ûj

@x̂ j
þ c

K
ffiffiffiffiffiffiffiffiffiffi
RaPr

p @

@x̂ j
k̂
@T̂
@x̂ j

 !

þ
ffiffiffiffiffiffi
Pr
Ra

r
r̂ij

@ûj

@x̂ j

#
; (3c)

where K � cðc� 1ÞMa2. The dimensionless parameters in the gov-
erning equations are the dimensionless temperature difference e,

Rayleigh number Ra ¼ Pr2egL3q20
l20

, Prandtl number Pr � l0Cp=kðT0Þ
(fixed at 0.71 here for air), Mach number Ma ¼ u0=csðT0Þ ¼

ffiffiffiffiffiffiffi
2egL
cRT0

q
,

and heat capacity ratio c ¼ Cp=CV ¼ 1:4. In our study, fully com-
pressible Navier−Stokes equations are employed for time-dependent
compressible thermal flow, and no Boussinesq approximation or low
Mach number approximation is made. By choosing different tempera-
ture differences, both the Boussinesq flow and compressible natural
convection flow can be studied.

B. The numerical method

In this study, a mesoscopic computational method based on a
model Boltzmann equation is used to simulate the natural convection
flow. To recover the fully compressible Navier–Stokes equations, we
employ the Boltzmann equation with the Bhatnagar–Gross–Krook
(BGK) model used by Guo et al.44 An extra source term Sf is intro-
duced to the kinetic model, which is capable of incorporating an arbi-
trary Prandtl number. The derivation details are shown in our other
paper;30 we do not repeat here for the sake of simplicity,

@f
@t

þ n � rxf þ b � rnf ¼ � f � f eq

s
þ Sf ; (4)

where f ðx; n; g; f; tÞ is the distribution function describing the motion
of particles at the location x ¼ ðx1;…; xDÞ and time t with micro-
scopic velocity n ¼ ðn1;…; nDÞ, where D is the spatial dimension of
the hydrodynamic velocity u. The remaining (3D) space of the micro-
scopic velocity is denoted by g. Furthermore, an internal kinetic vari-
able, f, of dimension K is introduced in order to adjust the specific

heat ratio of the model. The external force per unit mass is given by b,
and s is the relaxation time. The Maxwellian equilibrium is given as

f eq ¼ q

ð2pRTÞð3þKÞ=2 exp � c2 þ g2 þ f2

2RT

� �
; (5)

where c � n� u is the peculiar velocity. The hydrodynamic (conser-
vative) flow variables can be obtained by the moments of the distribu-
tion function,

q ¼
ð
fdndgdf; qu ¼

ð
nfdndgdf; qE ¼

ð
n2 þ g2 þ f2

2
fdndgdf;

(6)

and the Maxwellian equilibrium implies that qE ¼ qu2=2þ qcVT
with cV ¼ ð3þ KÞR=2 being the specific heat capacity at constant vol-
ume. The specific heat ratio for the model is c ¼ ð5þ KÞ=ð3þ KÞ,
yielding the specific heat ratio of the air c ¼ 1:4 when K¼ 2. From the
Chapman–Enskog analysis, the fluid properties of the model can be
derived, and they are

l ¼ ps; lV ¼ 2
D
� 2
K þ 3

� �
ps; k ¼ lCp

Pr
¼ ps

Pr
ðK þ 5ÞR

2
: (7)

In order to incorporate an arbitrary Prandtl number, we intro-
duce an extra source term Sf to the kinetic model. The source term is
designed as

Sf ¼ ~x
g2 þ f2

ðK þ 3� DÞRT0
� 1

" #
ð1� PrÞqini
sð ffiffiffiffiffiffiffiffi

RT0
p Þ4�D ; (8)

where ~xðn; g; fÞ ¼ 1
ð ffiffiffiffiffiffiffiffiffi2pRT0
p ÞKþ3 exp � n2þg2þf2

2RT0

� �
is the weighting func-

tion, and qi is the heat flux which can be calculated from the distribu-
tion function by

qi ¼ 1
2

ð
ciðc2 þ g2 þ f2Þfdndgdf: (9)

For efficient numerical implementation, it is more convenient to
first integrate out the inactive degree of freedoms ðg; fÞ by introducing
two reduced distributions gðx; n; tÞ and hðx; n; tÞ,44

gðx; n; tÞ ¼
ð
f ðx; n; g; f; tÞdgdf; (10a)

hðx; n; tÞ ¼
ð
g2 þ f2
� �

f ðx; n; g; f; tÞdgdf: (10b)

Correspondingly, the governing equation for gðx; n; tÞ and
hðx; n; tÞ can be obtained as

@g
@t

þ n � rxg þ b � rng ¼ Xg ¼ � g � geq

s
; (11a)

@h
@t

þ n � rxhþ b � rnh ¼ Xh ¼ � h� heq

s
þ Sh; (11b)

Sh ¼ xðnÞ
s

2ð1� PrÞqiffiffiffiffiffiffiffiffi
RT0

p niffiffiffiffiffiffiffiffi
RT0

p
	 


; (11c)

where xðnÞ ¼ 1
ð ffiffiffiffiffiffiffiffiffi2pRT0
p ÞD exp � n2

2RT0

� �
. In this double distribution func-

tion model, density and velocity are determined by gðx; n; tÞ and
energy is determined by gðx; n; tÞ and hðx; n; tÞ together,
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q ¼
ð
gdn; qu ¼

ð
ngdn; qE ¼ 1

2

ð
n2g þ h
� �

dn: (12)

The Maxwellian equilibrium geq and heq take the following forms:

geq ¼
ð
f eqdgdf ¼ q

ð2pRTÞD=2
exp � n� uð Þ2

2RT

� �
; (13a)

heq ¼
ð
ðg2 þ f2Þf eqdgdf ¼ K þ 3� Dð ÞRTgeq: (13b)

For a continuum flow, the forcing term F/ can be approximated by

F/ ¼ �b � rn/ � �b � rn/
eq ¼ b � ðn� uÞ

RT
/eq; (14)

FIG. 2. Time trace of temperature TðtÞ
T0

and velocity uðtÞ
u0

at location ðx; yÞ ¼ ð0:1; 0:82ÞL for: að Þ and bð ÞRa ¼ 4:05� 107; e ¼ 0:6 and cð Þ and dð ÞRa ¼ 4:25� 107;
e ¼ 0:6.

TABLE II. Parameters for the simulation of natural convection with a large tempera-
ture difference.

Ra Pr c e Ma

1:83 � 5:0� 108 0.71 1.4 0.6 0.1

p0 ðkg=ms2Þ T0 Kð Þ R ðm2=s2 KÞ g
m
s2

� �
l0

101 325.0 600.0 287 g(Ma) l0ðRaÞ FIG. 3. The convergence study of overall Nusselt number with Ra ¼ 5:0� 108

and e ¼ 0:6.
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FIG. 4. Time-averaged isotherms and velocity vector plot for að Þ and cð ÞRa ¼ 5:0� 108; e ¼ 0:6 and bð Þ and dð ÞRa ¼ 5:0� 109; e ¼ 0:6.

TABLE III. Characteristic values, Ra ¼ 108 � 109. umax (umin) is the maximum (minimum) value of the time-averaged vertical velocity of the whole cavity; umax;mid (umin;mid ) is
the maximum (minimum) value of the time-averaged vertical velocity at the mid-height, and dumax;mid (dumin;mid ) denotes the distance between the isothermal wall and the horizontal
location of the maximum (minimum) velocity umax;mid (umin;mid ); dhot;midðdcold;midÞ represents the velocity boundary layer thickness at the mid-height (the distance between the
isothermal wall and the location of u ¼ 0:1%umax).

Ra 1:83� 108 3:0� 108 5:0� 108 1:5� 109 3:0� 109 5:0� 109

umax=u0 0.2844 0.2837 0.2825 0.2823 0.2780 0.2618
umax;mid=u0 0.2701 0.2690 0.2675 0.2674 0.2429 0.1173
dumax;mid=L 1.5221 � 10−2 1.3748 � 10−2 1.2306 � 10−2 8.4952 � 10−3 8.4952 � 10−3 7.4802 � 10−3

umin=u0 −0.2540 −0.2535 −0.2534 −0.2528 −0.2640 −0.2903
umin;mid=u0 −0.2515 −0.2509 −0.2514 −0.2509 −0.2638 −0.2595
dumin;mid=L 6.8260 � 10−3 6.8260 � 10−3 5.5260 � 10−3 4.7710 � 10−3 3.8750 � 10−3 2.8410 � 10−3
dhot;mid

dcold;mid
1.1503 1.1055 1.1259 1.1488 1.1100 2.1516
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where / represents g or h. The Prandtl number correction term Sh
in Eq. (11c) only contributes to the first order momentum of h,
which is the component of heat flux qi ¼ 1

2

Ð
ciðc2g þ hÞdn. In this

way, we overcome the unity Prandtl number limitation of the orig-
inal BGK model without changing the continuity and momentum
equations, and it is worth pointing out that the current model only
requires up to the fourth order Hermite expansion of the equilib-
rium and the Gauss quadrature with an eighth degree of precision.
In our current study, the D2Q25 model with a ninth degree of
quadrature precision is used.

For our physical problem, we have no-slip condition ðu ¼ 0Þ
for all walls. The vertical walls are at a fixed temperature, while the
top and bottom walls are insulated ð@T@x ¼ 0Þ. Appropriate bound-
ary treatment should be applied for the distribution functions. We

develop a systematic approach to derive the boundary conditions
for temperature and velocity based on the Chapman–Enskog anal-
ysis and Hermite expansion of equilibrium. The bounce-back
boundary expressions are shown in A. DUGKS developed by Guo
et al. References 44 and 46 are used for the current work. As a
finite-volume method, the nonuniform mesh can be easily imple-
mented by DUGKS, which is desired for resolving the sharp tem-
perature and velocity gradient near the walls. The implementation
of DUGKS is the same as the work of Guo et al.46 and Wang
et al.12 The time step is determined by the Courant–Friedrichs–

Lewy (CFL) condition Dt ¼ CFL Dxmin
Umaxþnmax

(Umax is the maximum

flow velocity, and nmax is the maximum discrete velocity).44 The
CFL number for all simulations is set to be 0.5. To resolve the steep

FIG. 5. Instantaneous fluctuation temperature T��T
T0

and velocity field u��u
u0

; v��vu0
for (a) Ra ¼ 1:83� 108, (b) Ra ¼ 3:0� 108, and (c) Ra ¼ 5:0� 108.
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gradients of velocity and temperature near the wall, nonuniform
meshes are employed in each direction. For a set of stretched
meshes with N grid points in each direction, the location of the cell
interface xbðiÞ is given by

xbðiÞ ¼ 1
2

1þ tanh Sði=N � 0:5Þ½ 

tanhðS=2Þ

� �
; i ¼ 0; 1; 2;…;N; (15)

where S is the parameter used to adjust the degree of nonuniformity.
Then the location of the cell center can be obtained by xðiÞ ¼ ½xbðiÞ
þ xbðiþ 1Þ
=2. The code was run on the National Center for
Atmospheric Research’s (NCAR-Wyoming) Supercomputer, known
as Cheyenne, equipped with 2.3-GHz Intel Xeon E5–2697V4 process-
ors. The computational domain are decomposed in the y, and 128 pro-
cessors are employed for the case with mesh N¼ 256. The wall clock
time per step is 1:86� 10�3 s.

III. RESULTS AND DISCUSSION
A. The critical Rayleigh number

Figure 2 presents the time trace of temperature TðtÞ=T0 and ver-
tical velocity uðtÞ=u0 at the monitoring point for Ra ¼ 4:05� 107

and Ra ¼ 4:25� 107. The time integration for both cases was started
from the steady solution at Ra ¼ 3:0� 107. A fine mesh 500� 500

under a given nonuniform grid setting, as described below in Sec. II B,
with Dxmin ¼ 6:022� 10�4 L is used to evaluate the critical Rayleigh
number to make sure that the critical Rayleigh number is properly
converged; at lower grid resolutions, it was found that the critical
Rayleigh number could be under-estimated. The location of the moni-
toring point is chosen based on the instantaneous fluctuation contours
of temperature and velocity, where the primary instability first occurs.
For the case Ra ¼ 4:05� 107, the solution first experiences damped
oscillations and then reaches a steady state. For the case Ra ¼ 4:25
�107, the periodic oscillation result is obtained, which indicates the flow
becomes unsteady. Therefore, we can claim that Racr ¼ ð4:1560:10Þ
�107, which is significantly lower than Racr ¼ ð1:8260:01Þ � 108 for
natural convection at small e. Wang et al.35 solved the low-Mach-num-
ber equations (Paolucci20) and provided results up to Ra ¼ 109. The crit-
ical Rayleigh number they predicted was Racr ¼ 2:3560:05� 107, and
it is slightly lower than what we obtained here using the fully compress-
ible Navier–Stokes equations. In Sec. III B, we will continue to investigate
the development of unsteady flow and instability mechanism.

B. The development of unsteady convection

To investigate the transition from steady to unsteady compress-
ible natural convection in the square cavity with a large temperature

FIG. 6. Time trace of (a) temperature TðtÞ
T0

at ð0:05; 0:85ÞL and (b) velocity uðtÞ
u0

at ð0:05; 0:95ÞL. Bottom row shows the spectrum of (c) fluctuation temperature Uðf Þ and (d)
vertical velocity E(f). Ra ¼ 1:83� 108.
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difference e ¼ 0:6, we perform a set of simulations with Rayleigh
numbers beyond the critical value. As pointed out by Qu�er�e et al.,28

with a large temperature difference, the flow is more unstable than the
Boussinesq convection. Three simulations with Rayleigh number
1:83� 108; 3:0� 108; 5:0� 108 are performed to explore the transi-
tion from steady to unsteady in compressible natural convection.
Table II shows the parameter setting for these simulations. Figure 3
shows the convergence study of the overall Nusslet number at Ra
¼ 5:0� 108 with different meshes. The relative difference between
last two meshes 256� 256 and 360� 360 is less than 1%. Accurate
results can be obtained with a nonuniform resolution of 256� 256
(S ¼ 3; Dxmin ¼ 1:182� 10�3 L). The simulations in Sec. III B are
performed with the nonuniform mesh 256� 256 unless otherwise
stated. In our mesoscopic method, Nusselt number can be obtained
directly through the distribution function, most conveniently at the
cell interface at the half time steps in DUGKS, as

NuðxÞ ¼ L
k0 Th � Tcð Þ k

@T
@y






wall

¼ � L
k0 Th � Tcð Þ qy; (16)

where qy can be computed using the distribution function as
qy ¼ 1

2

Ð
cyðc2g þ hÞdn.

Figure 4 shows time-averaged temperature field and velocity
vector plot of cases Ra ¼ 5:0� 108 and Ra ¼ 5:0� 109 when the
flow becomes statistically stationary. The averaging was performed
over a duration of 30� ½4L=ðu0=3Þ
 for the former case and
75� ½4L=ðu0=3Þ
 for the latter case. Driven by buoyancy force, the
hot fluid arises along with the hot wall, and the cold fluid descends
along the cold wall and forms a recirculation in the cavity. Unlike
Boussinesq-type convection, compressible natural convection is fea-
tured by heating expansion near the hot wall and cooling compression
near the cold wall. Table III tabulates some characteristic values of the
simulated flows at different Rayleigh numbers when the flow reaches
the statistically stationary stage. For cases Ra ¼ 1:83 � 5:0� 108, the
maximum value of the time-averaged vertical velocity near the hot
wall, jumaxj, is larger than the minimum value of the time-averaged
vertical velocity near the cold wall, juminj. The boundary layer thick-
ness of the cold wall dumin;mid is significantly smaller than that for the
hot wall dumax;mid . These characteristic values further indicate that the
flow is highly asymmetric for natural convection with a large tempera-
ture difference. These flow features are distinct from the Boussinesq
cases. In Secs. III B and III C, we will show the asymmetry of the flow
instability for the hot wall region and the cold wall region.

FIG. 7. Top: time trace of temperature TðtÞ
T0

(top) and their spectrum of temperature Uðf Þ (bottom) at monitoring points with Ra ¼ 3:0� 108; að Þ and ðcÞ for point
0:85; 0:025ð ÞL; bð Þ and ðdÞ for point ð0:07; 0:85ÞL.
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To illustrate the flow structure, the instantaneous fluctuation
temperature ðT � �T Þ=T0 and velocity components ðu� �uÞ=u0; ðv
��vÞ=u0 at three Rayleigh numbers are displayed in Fig. 5. Time-
averaged fields are computed when the flow reaches stationary state;
these instantaneous contours are informative and clearly elucidate the
unstable flow structures. From Fig. 5(a), we can observe that the
temperature and velocity fluctuations concentrate at the right bottom
corner near the bottom adiabatic wall for Ra ¼ 1:83� 108. There are
two large vortex structures in the fluctuation contours. The instability
first appears near the bottom corner of cold wall. The data in Table III
suggest that the magnitude of velocity gradient on the cold wall is
larger than that on the hot wall due to the difference in the boundary
thicknesses on the two walls. This could be the reason for stronger vor-
tices at the right bottom corner.

Based on these instantaneous fluctuation contours, monitoring
points are chosen near the center of the fluctuation fields. Figures 6(a)
and 6(b) show the time trace of temperature and velocity at monitoring
points which clearly demonstrate the time-periodic behaviors. The non-

dimensional time t is defined as t ¼ ðu0=3Þ~t
4L and frequency is normalized

by 4L
ðu0=3Þ ; u0=3 is approximately the maximum velocity and 4L is the

perimeter of the cavity enclosure. The spectrum of fluctuation tempera-
tureUðfiÞ and velocity EðfiÞ are given in Figs. 6(c) and 6(d), where

1
2
hû02i ¼

X
i

E fið Þ;

hT̂ 02i ¼
X
i

U fið Þ;
(17)

where û 0 ¼ û � û and T̂ 0 ¼ T̂ � T̂ . It shows that at Ra ¼
1:83� 108 the fluctuations are characterized by several peaks at a cer-
tain frequency, and the primary frequency is around f1 � 0:5. This
shear-driven Kelvin–Helmholtz type instability is the primary instabil-
ity claimed by Janssen and Henkes,6 which takes place in a jet-like
fluid layer in the detached region and is characterized by the low fre-
quency. Different from the Boussinesq convection, in which the pri-
mary instability happens in the detached region for both top left
corner and bottom right corner simultaneously, the first instability of
the compressible natural convection appears only at the bottom right
corner near the cold wall.

The second simulation case is for Ra ¼ 3:0� 108. As shown in
Fig. 5(b), fluctuations start to appear along the hot wall in addition to
the cold wall corner. Small vortices are generated along the hot wall
boundary; they travel along the hot wall and then turn horizontal and
eject to the detached region. The instability near the cold wall still con-
centrates in the detached region. Two large eddies are generated and
break into smaller eddies. Two monitoring points are chosen for the

FIG. 8. Time trace of velocity uðtÞ
u0

(top) and their spectrum of fluctuation velocity (bottom) E(f) at monitoring points with Ra ¼ 3:0� 108. að Þ and ðcÞ for point
0:85; 0:025ð ÞL; bð Þ and ðdÞ for point ð0:07; 0:85ÞL.
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FIG. 9. Time trace of temperature TðtÞ
T0

(top) and their spectrum Uðf Þ (bottom) with Ra ¼ 5:0� 108. að Þ and ðdÞ for point 0:9; 0:025ð ÞL; bð Þ and ðeÞ for point
0:8; 0:2ð ÞL; cð Þ and ðfÞ for point ð0:05; 0:95ÞL.

FIG. 10. Time trace of velocity uðtÞ=u0 (top) and their spectrum of fluctuation velocity E(f) with Ra ¼ 5:0� 108. að Þ and ðdÞ for point 0:9; 0:025ð ÞL; bð Þ and ðeÞ for point
0:8; 0:2ð ÞL; cð Þ and ðfÞ for point ð0:05; 0:95ÞL.
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time trace of temperature and velocity: one along the hot wall bound-
ary layer ð0:85; 0:025ÞL and one in the detached region of cold wall
corner ð0:07; 0:85ÞL. Figures 7(a) and 7(b) show the time trace of tem-
perature at these monitoring points and its spectrum, respectively; the
oscillations near the hot wall are characterized by a single peak which
implies a periodic flow. It is worth pointing out that the hot wall
boundary layer oscillation is at a much higher frequency ðf2 � 6Þ than
the primary oscillations in the cold wall detached region. It is obvious
that the instability of the hot wall boundary layer is distinct from the
primary instability; it is characterized by small vortices and higher fre-
quency. Figures 8(a) and 8(b) display the vertical velocity time trace
uðtÞ=u0 at monitoring points, the fluctuation amplitude for the hot
wall boundary layer j Duu0 j � 0:04, and the spectrum concentrates at a
single frequency f2. For the monitoring point at cold wall detached
region, the fluctuation amplitude of the velocity time trace is
j Duu0 j � 0:06, and the spectrum locates at lower frequencies. This trav-
eling wave instability taking place in the hot wall boundary layer starts
to appear at a slightly higher Rayleigh number after the first instability
in the cold wall detached region. For this Rayleigh number, the bound-
ary layer along the cold wall is still stable. The second instability does
not take place at the cold isothermal wall boundary layer. This phe-
nomenon is consistent with the previous studies that the heating
decreases the boundary layer instability, while cooling increases the
boundary layer instability.29,57

For the third case at Ra ¼ 5:0� 108, more vortices are generated
in the detached region near the cold wall as shown in Fig. 5(c).
The number of vortices along the hot wall boundary layer also
increases. After these eddies reach the top horizontal walls, they turn
into the horizontal direction and travel along the top adiabatic wall.

Three monitoring points are chosen for the time trace of temperature
and velocity: one along the hot wall boundary layer ð0:9; 0:025ÞL, one
at the detached region of the top adiabatic wall ð0:8; 0:2ÞL, and one in
the detached region of cold wall corner ð0:05; 0:95ÞL. Figures 9(a) and
9(d) show the time trace and spectrum of the monitoring point at the
hot wall boundary. Instead of a single peak at a frequency f � 4, the
oscillations also take place near this primary frequency, and there is
another smaller amplitude spike at an even higher frequency f � 7.
The time trace of the top wall detached region is shown in Figs. 9(b)
and 9(e). The temperature spectrum is characterized by a single peak
at f1 � 0:5, which indicates that the top wall detached region is domi-
nated by the primary instability. For the detached region near the cold
wall, there is no evident periodic behavior and the spectrum spread
out from the low frequency to high frequency. The time trace of verti-
cal velocity and their spectrum are shown in Fig. 10. The fluctuation
amplitude at the bottom wall detached region reaches j Duu0 j � 0:12,
which approximates three times of the velocity fluctuation amplitude
of the hot wall boundary layer.

The turbulent kinetic energy (TKE) TKE¼ 1
2ðu0u0 þv0v0 Þ=ðu20PrÞ

is computed, where velocity component u0 ¼u��u is the difference
between the instantaneous and the time-averaged velocity. Here (and
also in Fig. 12), Pr is added as in the literature and u0

ffiffiffiffiffi
Pr

p
is used as

the reference velocity scale. This statistic is averaged over approxi-
mately 20 eddy turnover times after the flow reaches statistical statio-
narity. The eddy turnover time is defined as 4L

u0=3
, where u0=3

approximates the maximum flow velocity and 4L is the maximum
flow path. The TKE contours for different Rayleigh numbers are
shown in Fig. 11. These contours clearly demonstrate the development
of the instability. At the lowest Rayleigh number Ra¼1:83�108, the

FIG. 11. Turbulent kinetic energy contours for (a) Ra ¼ 1:83� 108, (b) Ra ¼ 3:0� 108, and (c) Ra ¼ 5:0� 108.

TABLE IV. Percentage of TKE in the cold region.

Ra 1:83� 108 3:0� 108 5:0� 108ð
cold

TKEdVð
TKEdV

97.43% 81.55% 32.41%

TABLE V. Parameters for the simulation of compressible unsteady natural
convection.

Ra Pr c e Ma

1:5 � 5:0� 109 0.71 1.4 0.6 0:1 � 0:2927
p0 ðkg=ms2Þ T0 ðKÞ R ðm2=s2 KÞ g ðm=s2Þ l0
101 325.0 600.0 287 g(Ma) lðRaÞ
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TKE only concentrates at the detached region near the cold wall,
which corresponds to the primary instability characterized by large
amplitude and low-frequency oscillations. With Ra¼3:0�108, mod-
erate values of TKE appear at the downstream of the hot wall

boundary layer due to the small magnitude oscillations inside the ver-
tical boundary layer. When the Rayleigh number reaches
Ra¼5:0�108, the instability in the detached region near the top wall
becomes significant, and its magnitude is larger than the TKE in the

FIG. 13. (a) Density contour and (b) local Mach number contour for compressible natural convection with Ra ¼ 5:0� 109; e ¼ 0:6.

FIG. 12. (a) Vertical velocity and (c) temperature distribution at the mid-height x ¼ 0:5L; (b) horizontal velocity and (d) temperature distribution at the mid-width y ¼ 0:5L for
Ra ¼ 5:0� 109; e ¼ 0:6.
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hot wall boundary layer. Table IV summarizes the percentage of TKE
in cold region x¼ 0 :L½ 
;y¼ L

2 :L
� �

, at Ra¼1:83�108 almost all TKE
concentrates in the cold region, which comes from the primary insta-
bility in the detached region. At Ra¼3:0�108, the instability in the
hot wall boundary layer starts to contribute to the TKE, but due to its
small magnitude oscillation, the majority of TKE still comes from the
primary instability. At Ra¼5:0�108, with the help of instability in
the detached region near the top wall, TKE of the hot wall region
exceeds TKE of the cold region.

Based on the analysis above, we can reach a conclusion that there
are two types of instability. The primary instability first appears in the
detached region near the cold wall which is characterized by large-
magnitude and low-frequency oscillations. The second instability
inside the hot wall boundary layer appears at a slightly higher Rayleigh

number and has the feature of small-magnitude and high-frequency
oscillations. The instability in the detached region near the top adia-
batic wall takes place when more eddies turn horizontal due to the top
wall. One major characteristic of the instability for the compressible
natural convection is that it is highly asymmetric. Two types of insta-
bility do not take place simultaneously for the hot wall and cold wall
region. For the Rayleigh number range Ra ¼ 1:83 � 5:0� 108, the
second instability is not observed in the cold wall boundary layer.

C. Compressible convection at higher Rayleigh
number

To investigate the flow feature of compressible natural convection
at high Rayleigh numbers and the transition to turbulence, a set of

FIG. 14. Instantaneous fluctuation temperature T��T
T0

and velocity field u��u
u0

for (a) Ra ¼ 1:5� 109, (b) Ra ¼ 3:0� 109, and (c) Ra ¼ 5:0� 109.
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simulations up to Ra ¼ 5:0� 109 are performed and analyzed. Fine
resolution of 360� 360 with Dxmin ¼ 4:1154� 10�4L is used to
resolve the steep temperature and velocity gradient near the boundary.
Table V shows the parameter setting for these simulations. Figure 12
shows the time-averaged temperature and velocity profiles for the case
Ra ¼ 5:0� 109. Our results reach an excellent agreement with GKS
results of Lenz et al.29 The statistics are averaged over approximately
75 eddy turnover times, namely, a duration of 75� 4L

u0=3
. We can

observe that the flow is highly asymmetric at this Rayleigh number;
the cold wall boundary layer is extremely thin, while the fluid near the
hot wall is expanded. The horizontal velocity profile at the mid-width
is relatively complex. The maximum velocity near the top wall is adja-
cent to the wall, while the maximum velocity for the bottom part is
near the cavity center. The temperature stratification in the cavity cen-
ter can be distinguished into two parts with a different slope. Another
feature of the compressible natural convection at high Rayleigh num-
ber is that the spatially averaged mean temperature �T is higher than
the reference temperature T0 due to the expansion of the hot fluid.
Figure 13 shows the instantaneous density contour and local Mach

number Mal ¼
ffiffiffiffiffiffiffiffiffi
u2þv2

p ffiffiffiffiffiffi
cRT

p contour. The maximum value of the local

Mach number for this case remains small, Mal;max � 0:1. Thus, the
compressible effect as seen from the density change is due to the large
temperature change.

Figure 14 shows the instantaneous temperature and velocity
magnitude contours. We can observe that at Ra ¼ 1:5� 109, small
vortices are generated along the downstream of the hot wall and cold
wall boundary layer, and large vortices appear at the top wall detached
region. At Ra ¼ 3:0� 109, vortices at the hot wall start to appear at
x ¼ 0:4L and travel along the isothermal wall. Fluctuations in the top
wall detached region seem to be depressed. With the highest Rayleigh
number 5:0� 109, the vortices start to appear at x � 0:2L, which is
distinct from small Rayleigh number case or Boussinesq-type convec-
tion. While for the cold wall, fluctuations occur at the cold wall corner.
Figure 15 shows the maximum/minimum vertical velocity as a func-
tion of the height on the hot/cold wall for three Rayleigh numbers.
Together with Table III, we can observe that with the increase in the
Rayleigh number, the magnitude of the minimum vertical velocity
along the cold wall becomes larger than that of the cold wall.
Furthermore, the location of the maximum vertical velocity along
the hot wall moves downwards. For cases Ra ¼ 1:5� 109 and

FIG. 15. The variation of maximum/minimum vertical velocity with the height on the hot/cold wall at að ÞRa ¼ 1:5� 109, bð ÞRa ¼ 3:0� 109, and cð ÞRa ¼ 5:0� 109.

FIG. 16. Turbulent kinetic energy contours for (a) Ra ¼ 1:5� 109, (b) Ra ¼ 3:0� 109, and (c) Ra ¼ 5:0� 109.
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Ra ¼ 3:0� 109, the vertical velocity reaches its maximum value near
the height x ¼ 0:4L. For the case Ra ¼ 5:0� 109, the location moves
down to x � 0:2L. The vertical velocity reaches its maximum value
before the vortices start to be generated. It is worth pointing out that
the upward vertical velocity reaches its maximum at the upstream in
the hot wall thermal boundary layer and then decreases as the bound-
ary layer expands, while for the cold wall, the downward vertical veloc-
ity reaches its maximum at the downstream of the cold wall thermal
boundary layer. Therefore, the fluid jet hitting the bottom corner
region of the cold wall tends to have a larger speed than that of the hot
wall fluid jet. This may explain why the cold wall detached region is
dominated by the primary instability, while for the hot wall detached
region, the primary instability is depressed with the increase in the
Rayleigh number.

Turbulent kinetic energy contours are shown in Fig. 16; these
contours clearly demonstrate the development of the fluctuations at
different Ra numbers. At the smallest Rayleigh number, the maximum
fluctuation locates at the top wall detached region. With the increase
in the Rayleigh number, the instability in the detached region is
depressed, the center of the TKE moves toward the upstream of the
isothermal wall. At Ra ¼ 5:0� 109, the TKE distributes along the hot
wall, and center on x � 0:4L, there is no obvious TKE on the top wall

detached region, while for the cold wall region, TKE still concentrates
on the cold wall corner. The TKE of the cold wall region is 36.82% of
the overall TKE. It is worth noticing that the values of TKE along the
hot wall and the cold wall are on the same magnitude for this high
Rayleigh number case.

Two monitoring points are chosen at the hot wall ð0:4; 0:025ÞL
and cold wall ð0:1; 0:95ÞL based on the TKE contour of
Ra ¼ 5:0� 109. Figure 17 shows the temperature trace at the moni-
toring points. There is no obvious periodic behavior of the signal at
this high Rayleigh number. The temperature variation is significant
j DTT0

j � 0:3 for both hot wall and cold wall. The spectrum spreads out
from low frequency to high frequency, which indicates the flow
reaches the turbulent flow regime. Figure 18 shows the vertical velocity
time trace. The spectrum of fluctuation velocity E(f) of the hot wall
monitoring point peaks at frequency f � 3, while the spectrum of the
cold wall monitoring points peak near the f � 0. The velocity signal
near the hot wall still oscillates at a higher frequency than the signal of
the cold wall. From the statistics and analysis above, we show that with
the increase in the Rayleigh number, the instability in the detached
region is depressed. The traveling wave instability inside the boundary
layer gradually becomes turbulent; the oscillations spread to all
frequencies.

FIG. 17. Time trace of temperature T
T0

and its spectrum Uðf Þ at monitoring points with Ra ¼ 5:0� 109. að Þ and ðcÞ for point 0:4; 0:025ð ÞL; bð Þ and ðdÞ for point
ð0:1; 0:95ÞL.
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Figure 19 shows the Nusselt–Rayleigh dependence of the
Rayleigh number range we studied. Compared to the Boussinesq
cases, the Nusselt number of the compressible natural convection
is slightly lower. Our results agree well with finite-difference
results of Wang et al.35 They solved the low-Mach-number equa-
tions and provided Ra–Nu correlation for the Rayleigh number
range 1:0� 105 � Ra � 1:0� 109. The reasons for smaller Nusselt
numbers for the non-Boussinesq cases are perhaps due to (1)
smaller local effective Rayleigh number as a result of the increased
viscosity and increased conductivity with temperature, and (2)
compressibility which tends to expand the thermal boundary layer
near the hot wall. The Nu–Ra dependence for the case e ¼ 0:6 can
be fitted by an empirical relation,

Nu ¼ ð0:271460:0092ÞRa0:2542 ð1:83� 108 � Ra � 5:0� 109Þ;
(18)

where the relative error between the time-averaged mean Nusselt
number and the Nu–Ra fitting is shown in Table VI, and the maxi-
mum relative error is around 3.3%.

FIG. 18. Time trace of velocity uðtÞ=u0 (top) and their frequency spectrum (bottom) E(f) of velocity at monitoring points with Ra ¼ 5:0� 109. að Þ and ðcÞ for point
0:4; 0:025ð ÞL; bð Þ and ðdÞ for point ð0:1; 0:95ÞL.

FIG. 19. Nusselt–Rayleigh dependence.
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IV. SUMMARY AND CONCLUSIONS

In this study, we investigated the development of unsteady natu-
ral convection in an air-filled square cavity using an improved discrete
unified-gas kinetic scheme (DUGKS). The coupled double-
distribution function model with the BGK collision operator is
employed. An extra source term is introduced to adjust the Prandtl
number. This source term only contributes to the heat flux term with-
out changing the continuity and momentum equations. The fully
compressible Navier–Stokes equations are recovered by the current
scheme.

We have performed a series of two-dimensional simulations of
compressible natural convection in an air-filled differentially heated
square cavity for the Rayleigh number in the range of 107 � 109. We
first showed that the critical Rayleigh number for the transition from
steady to unsteady flow is between 4:05� 107 < Racr < 4:25� 107.
To investigate the instability mechanism, we provide instantaneous
fluctuation contours, temperature and velocity signals at monitoring
points, turbulent kinetic energy contours, and energy spectra of fluctu-
ations. We have shown that there are two major types of instability;
the first instability appears in a jet-like fluid layer in the detached
region near the cold wall. This shear-driven, Kelvin–Helmholtz type
instability is characterized by low-frequency oscillations with a non-
dimensional frequency of about f1 � 0:5. The second instability is
the boundary layer instability which takes place inside the hot wall
boundary layer along the vertical isothermal wall at a slightly higher
Rayleigh number. This instability is featured by high-frequency oscilla-
tion with a dimensionless frequency of about 6.0 and small vortices.
The crucial difference between the instability of compressible natural
convection and Boussinesq-type convection is that the instability is
highly asymmetric about the cavity center and asynchronous appear-
ance of the instabilities for the compressible case: (1) The primary
instability first appears at the detached region of the cold wall at a
lower Rayleigh number. When the Rayleigh number further increases,
the primary instability starts to take place in the detached region of the
hot wall. (2) For the Rayleigh number range we studied, the boundary-
layer instability is only observed along the hot wall. (3) When the
Rayleigh number further increases, the first instability in the detached
region is depressed, and the traveling wave instability inside the
boundary layer starts to appear at a lower height. The oscillations
eventually become nonperiodic and the flow becomes weakly
turbulent.

Despite the effort we make here, there is still much work to be
done. The instability of compressible natural convection can be
affected by a large range of system parameters such as the cavity aspect
ratio, Prandtl number, temperature difference, etc. Systematic studies
are needed to investigate the dependence of instability on these differ-
ent controlling parameters. As the turbulence is essentially three-

dimensional, three-dimensional high Rayleigh number convection
simulation is needed for the future work.
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APPENDIX: BOUNDARY CONDITION

In our current configuration, we have two distribution func-
tions gðna; x; tÞ and hðna; x; tÞ; subscript a represents the discrete
velocity. No-slip boundary condition ðu ¼ 0Þ is applied for all walls;
two vertical walls are at a fixed temperature ðTwÞ and horizontal

walls are adiabatic @T
@x ¼ 0
� �

. A systematic approach of deriving

boundary condition is developed; details of derivation are shown in
our other paper.30 In general, the distribution functions g and h can
be expanded to the order of OðsÞ by Chapman–Enskog expansion.
Then the time and spatial derivatives of equilibrium distributions
@geq

@t ;
@geq

@xj
; @g

eq

@nj
can be written out with the help of the Maxwellian dis-

tributions in Eq. (5). Using the Euler equations to remove all the
time derivatives of hydrodynamic variables @q

@t ;
@ui
@t ;

@T
@t , we can

obtain the final form for the structure of the distribution function
as follows:

g ¼ geq
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h ¼ heq
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where equilibrium distribution functions geq, heq can be expanded
using Hermite expansion. Then, we can derive the following kinetic
boundary conditions based on the physical boundary conditions.

TABLE VI. Time-averaged mean Nusselt number and Nu–Ra fitting. The relative
error between Nuhot and Nufitting is defined as Err ¼ ðNuhot � NufittingÞ=Nuhot .

Ra 1:83� 108 3:0� 108 5:0� 108 1:5� 109 3:0� 109 5:0� 109

Nuhot 34.2718 38.8017 44.0626 58.0636 69.7355 81.9505
Nufitting 34.1920 38.7698 44.1457 58.3677 69.6136 79.2622
Errð%Þ 0.2328 0.0822 −0.1886 −0.5237 0.1748 3.2804
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The bounce-back expression of distribution function can be
expressed as

gðna;jÞ ¼ gðn�a;jÞ � sWaqw
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where h ¼ Tw
T0
; qw;Tw are the density and temperature on the wall,

na;j denotes the particles bouncing back from the wall, and

n�a;j ¼ �na;j. The temperature gradient @T
@xj

is approximated with val-

ues at previous time step by finite-difference. The above boundary
condition can be viewed as the improved bounce-back retaining the
OðsÞ terms. For adiabatic walls, we apply the following expression
to the distribution function:
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where ~K � ðK þ 3� DÞ, and q is the heat flux at the wall. For the
top and bottom adiabatic walls, qx ¼ 0 is imposed. Heat flux in tan-
gential direction qy can be approximated by the heat flux value at
previous time step qðn�1Þ

y ¼ 1
2

Ð
cyðc2gðn�1Þ þ hðn�1ÞÞdn. For isother-

mal walls, we have
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where Tw ¼ Th or Tw ¼ Tc is applied at hot and cold wall respec-
tively. The velocity gradient @ui

@xi
; @ui
@xj

is calculated by finite-difference
using the values from last time step. It is worth pointing out that
the expressions for the boundary condition implementations above
are derived based on the Chapman–Enskog analysis, which implies
that the boundary treatment is consistent with the
Navier–Stokes–Fourier equations.
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