This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

Random Sampling-and-Averaging Techniques for
Single-Photon Arrival-Time Detections in
Quantum Applications: Theoretical Analysis
and Realization Methodology

Tony Wu, Graduate Student Member, IEEE, Ruoman Yang, Graduate Student Member, IEEE,

and Tzu-Chien Hsueh

Abstract— A random sampling-and-averaging (RSA) technique
based on stochastic Monte Carlo methods is described in this
paper for enhancing the accuracy of single-photon arrival-
time measurements down to sub-picosecond ranges in emerging
quantum applications. The theoretical variances of both synchro-
nous and asynchronous RSA techniques are presented in the
mathematical formats and experimentally verified by the Monte
Carlo simulations. Meanwhile, the methodology of converting
the mathematical models into an almost all-digital low-power
integrated-circuit is elaborated by a circuit-level example with the
instruction of setting circuit parameters. Along with the superior
measurement resolution, scalable dynamic ranges, high linearity,
high noise immunity, and low power/area consumption, the
primary limitation of the RSA techniques has also been addressed
for the forthcoming conversion-rate enhancement techniques.

Index Terms— Correlated random variable, independent and
identically distributed, joint probability density function, Monte
Carlo method, quantum probability amplitude, stochastic ran-
dom sampling, time-correlated single-photon counting, time-
domain modulo operation, time-to-digital converter.

I. INTRODUCTION

ECAUSE of the high demands for time-correlated single-

photon counting (TCSPC) [1]-[4] functionality in a
variety of emerging quantum technology research and com-
mercial market segments, including quantum 2D/3D imaging/
ranging/sensing [5]-[7], quantum-bit-state probability ampli-
tude measurements [8]—[11], quantum cryptography [12]-[14],
positron emission tomography (PET) [15], [16], time-
resolved spectroscopy [17], fluorescence-lifetime imaging
(FLIM) [18], [19], diffusive optical tomography, mole-
cular imaging, live-cell/tissue microscopy [2], free-space
time-of-flight (TOF) measurements [20], and light detection-
and-ranging (LiDAR) [5], [21], the performance specifi-
cations of the time-to-digital converter (TDC), which is
one of the most essential integrated-circuit building blocks,
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are increasingly targeting at pico-seconds fine resolutions,
micro-seconds wide dynamic ranges, high linearity, and fast
conversion-rates under aggressive silicon-area, voltage, and
power constraints.

Generally, the state-of-the-art TDC designs can achieve
high standard qualities for a certain aspect but come
with trade-offs among the other performance metrics. For
instance, the pulse-shrinking delay-line [22]-[24], tapped
delay-line [25]-[27], and Vernier delay-line [28]-[30] TDC
approaches offer low sensitivities to process, voltage, and
temperature (PVT) variations but require a phase-locked loop
(PLL) [27] or delay-locked loop (DLL) [6], [22], [23], [25],
[29]-[34] to lock their voltage-controlled delay-cells to a low-
jitter reference clock. The approach of phase-interpolation
between delay-cells [6], [18], [24]-[26], [32]-[37] first-orderly
enhances the TDC resolution but increases area cost and
power consumption; the linearity of this type of TDC can
be further improved by employing the sliding-scale tech-
nique [3], [5], [32], [33], with the downsides of dou-
bling the number of phase-interpolators and converting the
non-linearity into stochastic jitter. The time-amplifier based
approach [38]-[40] improves the TDC resolution for a price
of limited linear time-amplification regions and high PVT
sensitivities. The simple pseudo-differential free-running ring-
oscillator based approach with the period and intermedi-
ate phase-edge counters [16]-[18], [20] allows one TDC to
serve an individual or multiple single-photon-avalanche-diode
(SPAD) pixels for high fill-factor imaging, but the TDC reso-
lution and linearity are dominated by the delay-cell bandwidth
and PVT variation, respectively. The two-step TDC approach
exploits time-to-amplitude (TAC) and analog-to-digital (ADC)
conversions [1], [2], [41] to achieve a pico-second resolution
with the assistance of well-developed ADC non-ideality cal-
ibration techniques [42], [43], which are suitable for high-
end TCSPC instruments [2], [44] but not for highly integrated
silicon-photonics quantum applications due to the mixed-
signal circuit area and complexity; also, both dynamic range
and accuracy of each time-interval measurement are mainly
dominated by the ADC specification.

To resolve the problems of performance trade-offs and
high-cost implementations, this paper proposes utilizing the
random sampling-and-averaging (RSA) technique to meet
the growing requirements of time-interval measurements in
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Fig. 1. The block diagram of the TCSPC system including the features

of both coarse single-photon counting (gray) and high-accuracy time-interval
measurements using the RSA-based TDC technique (black).

emerging quantum applications. The RSA technique has been
used in a variety of stationary signal detections mainly for
ultra-high accuracy measurements and ultra-low energy sens-
ing [45]-[49] associated with extremely strict power and
area constraints. To comprehensively understand the feasi-
bility of using the RSA technique in emerging quantum
applications, this paper describes the fundamental concepts
of both synchronous and asynchronous RSA techniques by
deriving the mathematical expressions of their theoretical
measurement variances, which are all experimentally verified
by the simulations. Meanwhile, the methodology of con-
verting the mathematical models into an almost all-digital
and low-power integrated-circuit is introduced by a circuit-
level example with a guideline of setting circuit parameters.
Finally, the slow conversion-rate of the RSA technique has
been properly addressed, which indicates additional enhance-
ment techniques are required to fully elevate the RSA tech-
nique being applicable to not only high-accuracy quantum
communication and cryptography applications [8]-[14] but
also high frame-rate/fill-factor quantum imaging and ranging
systems [5]-[7], [15]-[21].

The remainder of the paper is organized as follows.
The circuit-and-system level overview of an TCSPC using the
asynchronous RSA technique is introduced in Section II. The
fundamental probability principles and theoretical variances of
the RSA techniques are derived and presented in Section III.
The behavioral-model simulations and RSA performance com-
parisons are discussed in Section IV. The conclusions and
potential future work are summarized in Section V.

II. SYSTEM-LEVEL OVERVIEW

The conceptual block diagram of the proposed TCSPC
system is shown in Fig. 1, which offers both coarse single-
photon counting (gray) and high-accuracy time-interval (black)
measurements. The whole system consists of single-photon
detection pixels, time-to-amplitude conversion (TAC) circuits,
and a time-to-digital conversion mechanism with the RSA
technique. Each detection pixel includes a single-photon
avalanche diode (SPAD) with the quenching/clamping cir-
cuits [3], [5]-[7] for the optical-to-electrical power domain
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transition followed by an analog front-end (AFE) and pulse
generator to convert the received single photons to electrical
voltage pulses; the AFE circuit contains inverter-based tran-
simpedance amplifiers [4] and high-bandwidth CMOS pulse
generators. In the path of coarse single-photon counting, the
pulse combiner, i.e., the OR tree in Fig. 1, merges multiple
pulse outputs occurring at different timings into a pulse train
contributed by the entire array of the single-photon detection
pixels, and then the following pulse accumulator counts the
number of pulses within a specific time to accomplish the
feature of direct photon counting [20] and readout circuit
reduction [16]. In the path of high-accuracy time-interval
measurement, the timing of Tstart is set by the START pulse
from a specific single-photon detection pixel [2]; meanwhile,
the multiplexer for the STOP pulse can select the timing of
Tstop from either the other specific single-photon detection
pixel [2] or the system input clock, CK|n, [3]-[7]. In any con-
figuration, the time-interval, At, between TstarT and Tstop
is the primary quantity under the measurement as shown in
Fig. 1. The TAC circuit, containing a current source and
capacitor banks with low-resolution static controls for coarse
dynamic-range/conversion-gain tunability, converts the time-
interval information into a constant DC voltage buffered by
the variable-gain amplifier (VGA) offering noise-rejection and
driving capabilities with additional tunability if required.

The TDC mechanism, which is the main focus of this paper,
is illustrated at the lower-half of Fig. 1. The two identical
voltage-controlled delay lines (VCDL) are both driven by
the input clock, CKjy, so the clock periods of CK; and
CK, are identical, but the time-domain delays of CK; and
CK,, which carry the At information, are functions of the
DC voltages, Vpp and Vyga, respectively. After the rising
clock-edge combiner, the At information can be periodically
represented by the positive duty-cycle of CKrz. Meanwhile,
a free-running ring-based digital-controlled oscillator (DCO)
generates the asynchronous clock, CKpcp, to sample the
waveform of CKr through a single (i.e., 1-bit) D flip-flop.
The data and cycle accumulators count the numbers of ones at
the outputs of the D flip-flop (i.e., Y) and DCO (i.e., CKpco),
respectively. Then, the averaging result is basically the ratio
of the counter outputs. At this point, the primary process of
the random sampling-and-averaging TDC has been completed.
At first glance, the process is simple, which indeed indicates
the superior power/area efficiency, high linearity and noise
immunity of the RSA technique. However, the theory and
implementation knowhow in behind are quite complicated and
unintuitive.

III. RANDOM SAMPLING-AND-AVERAGING TECHNIQUES

The RSA measurement technique is originated from the
principle of the Monte Carlo methods which are broadly used
in the fields of applied mathematics and financial engineer-
ing [50]. Briefly speaking, the Monte Carlo methods are based
on the analogy between probability and volume. In a stochastic
or random process, the mathematics of a measure, e.g., proba-
bility density functions (PDF), formalizes the intuitive concept
of a probability defining the volume of the possible outcomes.
On the other hand, the Monte Carlo methods use this attribute
in reverse by obtaining the volume from experiments and
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then interpreting the volume as a probability. The relationship
between the theoretical probability and experimental Monte
Carlo method are summarized in (1), (2) and (3) by examining
the expectation and mean values of a random variable, Y.

E[Y]=/ y-f(y)-dy (1)
_ 1 N
Py S g
_ N
E[Y]=E[Y] ZNILIHOON-ZnZI Y, 3)

where E[Y] is the expectation of the random variable obtained
from the PDF, f(y); Y, is the n-th experimental sample of Y;
N is the total number of the samples; Y is the mean of Y,
and can be treated as the Monte Carlo estimate of the “ideal”
expectation, E[Y]. Also, when N increases toward infinity,
Y converges to E[Y], which is also the expectation of Y,
E[Y], as shown in (3). If Y|, Y2, ..., Yy is a sequence
of independent and identically distributed (I.I.D.) random
variables, theoretically the variances, Var[Y] and Var[Y], and
standard deviations, oy and o+, of Y and Y can be respectively
expressed by (4) and (5) [51].

Var[Y] = o2 = E [(Y _E [Y])Z]

T EI)P£ () -dy @)
O'éooz E[(7-E[F)*]=E[(7 - E1Y)]
= Var [% : Z:’zl Y,,i| = % - Z:/:] Var [Y,]

:m-N-Var[Y]:%-a}% (5)
Equations (4) and (5) provide two key aspects. First, since the
delta between the Monte Carlo estimate and ideal expectation,
(Y— E[Y]), represents the “error” of the experimental approx-
imation, the variance and standard deviation of Y shown in (5)
provide the quality merits of the Monte Carlo method about
the degree of accuracy in the estimate after a finite number
of the samples, N, based on the central limit theorem [51].
Second, the variance of Y, Var[ﬁ_(], or the power of the error
reduces with increasing N in a reciprocal manner, which
is a well-known probability theory: the weak law of large
numbers [51]. This law ensures that the Monte Carlo estimate
in (2) converges to the correct value as the number of samples
increases as shown in (3). This is the fundamental reason why
the RSA technique can achieve high resolution time-to-digital
conversion with a very small amount of hardware cost by
simply increasing the number of samples, but obviously the
downside is its slow conversion-rate.

To realize the Monte Carlo method in a single-photon time-
interval measurement, the RSA technique shown in Fig. 1 uti-
lizes a TAC, VCDLs and an edge combiner to convert the
one-time captured At information, which is the quantity under
measurement, into a periodic signal, CKz, carrying a scaled
version of At within each clock cycle for the RSA system
to enable a process for an unlimited number of samples. The
simplified TAC schematic shown in Fig. 2(a) first generates
a single pulse, INT, whose pulse width equals the time
difference, At, between the rising edges of the START and
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Fig. 2. (a) The simplified circuit schematics of the START/STOP pulse-edge
detection and single-pulse-width to DC voltage convertor in TAC. (b) The
signal waveforms and PDFs of the RSA time-interval measurement technique.

STOP pulses. Then, the INT pulse width enables an analog
integrator implemented by a tunable constant current source,
I;, charging the integration and parasitic capacitors, C; and
Cp, to form the DC voltage, Vrac. As the waveforms shown
in Fig. 2(b), the time-interval, At, is converted and retained
in the voltage domain as a differential DC voltage, AV =
Vob — Vtac = Krac - At, where Krac is the conversion-gain
of the TAC set by the magnitudes of I} and C;. A VGA buffers
the constant voltage information with its gain, Kyga, to one
of the following VCDLs as shown in Fig. 1. Because of the
control voltage difference between Vpp and Vyga, these two
identical VCDLs generate two clock signals, CK; and CKp,
with a common frequency of CKn (i.e., 1/T) and a constant
delay, 7 = Ktac-Kvga-KpL- At, where Kp, is the conversion-
gain of the VCDLs. After a rising-edge combiner, the CKr sig-
nal merged from CK; and CKj is a periodic pulse carrying the
scaled time-interval information, 7, as its duty-cycle in every
T as shown in Fig. 2(b). Note that the CKz signal may not
explicitly exist in the real circuit implementation, which means
the time difference between CK; and CK, can be detected in
another manner [47] without generating CKr, but illustrating
the CK7 waveform here can help the explanation. Also, during
the At-to-z conversion-process, the dynamic range of the time-
interval measurement, Atpax, is equivalently converted to the
period of CKz, T, so the dynamic ranges for different time-
interval measurements can be set by the tunability of the whole
conversion-factor, Ktac-Kvyga-KpL, for a certain T. Changing
the value of T is also possible but would affect the design
specifications of the DCO and digital logics. It is important
to note that this time-interval measurement system does not
require extra hardware to calibrate its circuit non-idealities,
including offset and non-linearity from the analog circuits and
At-to-7 conversion-process, etc., since the RSA measurement
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mechanism itself can be used for executing these calibration
tasks [48]; for example, the calibration process for TAC circuit
non-idealities is elaborated in the Appendix section.

At this point, the rest of the RSA process is realized
by exploiting an independent clock signal, CKpco, from a
free-running DCO with randomized frequency modulations to
sample CKt through a single D Flip-Flop, which is basically
a “time to 1-bit digital” conversion process per sample. Under
the assumptions of the uncorrelation [51], [52] between CKr
and CKpco and maximum one sample per T, any time instant
within the period of CKr can have an equal probability
to be sampled by the rising edges of CKpco to form a
one-dimensional geometric probability density function [51].
That is, CKpco can uniformly sample the waveform of CKr
within a T duration to generate either a Logic-1 or Logic-0
digital output, Y, based on the voltage of CKr at each sampling
instant. As shown in Fig. 2(b), the red dots on the CKr
waveform represents the sampled points in terms of their
voltages and timings along the absolute time-domain axis.
Because of the repeatability of CKr, all the sampled points
(red dots) can be treated as being sampled and recorded within
a single T, which is equivalent to a modulo-T operation of each
absolute sampling instant. After many samples, the recorded
samples are all accumulated within a single T duration as
shown at the bottom (i.e., accumulated Y,, “n” is the index
of samples) of Fig. 2(b).

This whole RSA process can be described in three different
aspects. First, if the number of samples is large enough,
the PDF of the DCO sampling edge (red arrow) should be
uniformly distributed across one period of the CKr waveform,
i.e., fpco(t) = 1/T and 0 < t < T as shown in Fig. 2(b),
while the CKz waveform, y(t), behaves in Logic-1 and Logic-0
within and outside of the 7 duration, respectively, with neg-
ligible rise/fall times of CKr; therefore, the probability of
obtaining a Y, as Logic-1, Py, is exactly the ratio of 7 to T
(z/T), which is a one-dimensional geometric probability in the
time domain, i.e., a 1-bit TDC process. Second, in the voltage
domain, the probability function of Y shown in Fig. 2(b) is a
Bernoulli distribution [51] owning only two possible outcomes
and the corresponding probability values, P; (= 7/T) and Py
(= 1 — Pyp). Third, the Monte Carlo estimate, Y, can be
obtained by finding the ratio between the accumulated number
of Logic-1s, Ny, and the accumulated number of samples,
Npco, as shown in both Fig. 1 and 2(b). The mathematical
expressions of these three aspects are respectively summarized
in the 1%, 2™ and 3" lines of (6):

T T 1 T
E[Y]:/ y(f)'cho(l)'dfz/ L —dt = —
0 0 T T
o0
:/ y-f(»)-dy=1-PL+0-Py=P;
—00
Npco
_ 2rey, N
— E[¥]= lim DR R T, d
Npco—o Npco Npco—o Npco
X (6)
Var[Y] =62 = o2
7] Y~ Npco ¥
1 P 2
_ -(E[Y]—E[Y])z Py - Py
Npco Npco
(7
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In agreement with the weak law of larger numbers, the
theoretical variance, Var[ﬁ_(], i.e., the power of the estimation
error or quantization noise, reciprocally degrades with the
sampling number of Npco, and additionally it is a function
of Py and Pg as shown in (7), which matches the variance of
a Bernoulli random variable. Finally, the time-interval under
the RSA measurement can be obtained by

At = ‘

Krac - Kvga - KpL
1 Ny

Krac - Kvca-KprL Npco

%

®)

As mentioned, this RSA is basically a TDC process
by measuring the clock duty-cycle with a 1-bit ADC
(i.e., a single DFF), and its accuracy is improved with the
number of samples. Therefore, the performance merit can
be presented by the resolution and conversion-rate of each
measurement result, Y. For the resolution, the quantization
noise, Q, of this TDC process is also a random variable, which
equals the delta between the digital output Y and ideal signal
information E[Y] = 7/T. Since Y, is either Logic-1 or Logic-0,
Qp only has two possible outcomes, (1 — 7/T) and (0 — z/T),
with the same PDF profile of Y as shown in Fig. 2(b) as well.
It can be easily proven that Var[Y] = Var[Q], and Var[Y] =
Var[Q] = P;-Po/Npco as expressed in (7). When only the
quantization noise power (i.e., Var[Q]) is considered, the
effective number of binary bits (ENOB) of the RSA technique
can be expressed as

ENOB
_ SNR
- 6.02
PZ
lo 0_ & .
glo(var[y]) l()glo(P1 NDCO) 1
= 5 Pl ==
— 0,602 0.602 2
log P712_ / P
\Vartr1) o810\, Noco 1
= , P> —
~ 0.602 0.602 2
)

where the signal power is either P% or P(z) based on the
magnitude of P; compared to 0.5 due to the symmetric and
signal-dependent variance property of the Bernoulli distribu-
tion, which is further elaborated by the simulation results in
Section IV. Conceptually, Equation (9) can be examined by
considering when Npco = 1, then Var[Y] = P;-Py, which is
exactly the variance of a single sample experiment of flipping
a coin (i.e., either a single “head” or “tail”). If the coin is
fair, then the SNR = 0 dB and ENOB = 0 bits because of
the equal powers between the signal and quantization noise.
With increasing Npco, the quantization noise power, Var[Y],
degrades 3 dBW per octave of Npco. To reach 12-ENOB accu-
racy, for example, Npco has to reach at least 224 =~ 16.8 mil-
lion) samples, which is actually very low cost in hardware
since the RSA technique only needs the accumulation result
of the 1-bit samples for averaging. For the conversion-rate, it is
essentially determined by the sampling frequency from DCO
and the required number of samples. In the same example,
an average 4-GHz DCO sampling frequency with Npco = 224
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Fig. 3. The conversion-rate of the RSA technique can be linearly enhanced by
utilizing the inherent multi-phases of the DCO to simultaneously sample CKz.

requires about 4.2 ms to complete a single RSA measurement,
which is not superior in terms of the deadtime and frame-rate
requirements in quantum applications. One of the conversion-
rate enhancement approaches is done by utilizing the inherent
multi-phases of the DCO to simultaneously sample CKz and
accumulate the multiple-bit data per DCO cycle as shown in
Fig. 3 [48]. In addition to having five-stage outputs in this
example, a pseudo-differential DCO architecture overall can
linearly improve the number of sampling phases by (5-2)x
per cycle, which can moderately push the conversion-rate up
to 2.4 kHz (* 10/4.2-ms) for a 12-ENOB RSA-based TDC. For
the sake of simplicity, the theoretical analysis in the remainder
of this paper assumes only using a single phase from the
DCO. Also, note that ENOB here only considers quantization
noise because the measurement quantity ¢/T itself can be
treated as a constant DC signal. Any zero-mean noise induced
jitter on CKr can be filtered out by the averaging process
(i.e., data accumulation); any phase-noise on CKpco can help
to generate continuous (i.e., zero step size) random sampling
PDFs (discussed in Section III-B and Appendix). Therefore,
this RSA implementation can possess extremely high noise
immunity and measurement accuracy.

A. Synchronous Random Sampling-and-Averaging

To elaborate on the connection between the probability
theory and realistic implementation, this paper splits the RSA
technique into two categories, synchronous and asynchronous
RSA, based on the relationship between CKrz and CKpco.
The definition of synchronous RSA is illustrated in Fig. 4(a)
associated with multiple different values of the oversampling
ratio (OSR) defined by the number of samples per CKrz
period, T, which is not the same definition in the sampling
theorem for anti-aliasing; and note that the intent of RSA is
to extract the duty cycle of CKz, not to recover the CKz signal
or its frequency. Therefore, synchronous RSA here means the
number of samples per T across the entire sampling process
is consistently set by OSR even though each sampling PDF is
still LI.D. As shown in Fig. 4(a), when OSR = 1/2, CKrz is
always uniformly sampled by one CKpco edge (i.e., arrows)
within every 2-T; one sample per T for OSR = 1; one sample
per T/2 for OSR = 2; and so forth. Consistently, the probability
of each sampling edge occurs uniformly within the region of
T/OSR; in other words, when OSR = 4, for example, each
CKr period is sampled by four independent CKpco edges,
and the occurrence of each sampling edge has a uniform PDF
bounded within its own T/4 region. Under these criteria, CKz
can be seamlessly and uniformly sampled regardless of the
values of OSR, but OSR becomes the main factor affecting

performance under a certain value of z/T. Note that the
circuit realization of generating these well-bounded random
sampling edges is actually very expensive; and the resolution
or step size of the random sampling edges has to be always
higher than the target ENOB, which is almost impossible
for the sub-picosecond accuracy requirement. These practical
concerns can be resolved by asynchronous RSA discussed
later, but the concept of synchronous RSA is more friendly
for the purposes of initial instruction and theoretical analysis.
Therefore, the assumption here is that the resolution of each
sampling PDF for synchronous RSA is high enough to behave
like a “continuous” probability density function [51] within its
own distribution boundary.

Once synchronous RSA is well defined, the theoretical
variances with respect to different OSRs can be derived. In the
case of OSR = 1 as shown in Fig. 4(a), the probability of
obtaining a Logic-1 per sample is exactly 7/T = Py, so the
expectation and theoretical variance of each RSA measurement
are equal to the results shown in (6) and (7), respectively.
In the cases of OSR < 1 (i.e., subsampling), for example,
OSR = 1/2 as shown in Fig. 4(a), although the sampling
region is extended to 2-T for each sample, the probability
of obtaining a Logic-1 maintains the same as /T = (2-7)/
(2'T) = P; because the high-voltage level duration is also
doubled. In sum, when OSR < 1, the expectation and the-
oretical variance of synchronous RSA can be always rep-
resented by (6) and (7), and note that the OSR has to be
the reciprocal of a positive integer to maintain a constant
CKr7 duty-cycle within each uniformly distributed sampling
region.

In the cases of OSR > 1, each uniformly distributed
sampling region has been labeled by an index, k, which is
a positive integer from 1 to OSR, as shown in Fig. 4(a). Also,
one of the equally divided regions within each T is shaded
to highlight that the sampling outcomes within these regions
are possibly to be Logic-1 or 0, i.e., the CKz high-to-low
voltage transitions occur within these regions. For example,
when OSR = 2 and ¢/T < 0.5, each T is equally split into two
sampling regions, and only the first-half region (i.e., k = 1)
can possibly have a Logic-1 or 0 outcome, and the probability
of obtaining Logic-1 is 7/(T/2) = 2-P, where Py (= 7/T) is
the probability of obtaining Logic-1 when OSR < 1, and the
outcome of the second half (i.e., k = 2) is deterministically
a Logic-0. Therefore, the equivalent outcome per T should
be represented by the average of the first- and second-half
sampling outcomes. This example indicates the variance of
each RSA measurement result, Var[Y], is the function of OSR
and one of the region-index values, where the CKz high-
to-low voltage transition occurs. Intuitively, the oversampling
process improves the resolution or reduces the quantization
noise of the RSA measurement since those unshaded regions
designate the deterministic coarse information (i.e., MSBs)
of the CKrz duty-cycle; then the shaded regions offer the
fine information (LSB) determined by the high-vs-low voltage
duration ratio within them. Higher OSRs confine the uncertain
outcomes within finer shaded regions to improve the resolution
like the quantization process of an ADC. Alternatively speak-
ing, the equivalent outcome per T can be grouped by averaging
all sub-region outcomes within each T; and only one of these
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Fig. 4. (a) The relationship between CKz and CKpco random sampling PDFs of the synchronous RSA technique with different OSRs and their corresponding

equally divided sampling regions. (b) The relationship between CKz and CKpco random sampling PDFs of the asynchronous RSA technique with the nature

of the DCO phase-noise accumulation property.

sub-regions can have an uncertain Logic-1 or O outcome.
Therefore, when OSR > 1, the equivalent outcome per T,
Yosg,n, has a value between 0 and 1, which represents a higher
ENOB per T.

From the perspective of probability theory, evenly seg-
menting each T by OSR and then averaging all sub-region
results to form the equivalent outcome per T are actually
creating correlations among the samples within each T. Also,
based on the theoretical variances in (11) and simulation
results demonstrated in Section IV, the correlations due to the
oversampling are negative and effectively reduce the overall
variances. Overall, for the cases of OSR > 1, the theoretical
variance in (11) is obtained by finding the total covariance
sum associated with the joint PDFs among all samples within
each T. Thus, the expectation and theoretical variance of
the synchronous RSA measurement can be generalized as
(10) and (11), respectively, shown at the bottom of the page.
“k” in (10) simply represents the sweeping index of the
summation operator to find Yosgr,n per T, but “k” in (11) is
a specific integer number within 1 to OSR based upon the
transition of CKr as shown in Fig. 4(a). That is, for a certain
7/T under the measurement, only a certain k represents the
shaded region and can be obtained in the 1% line of (11).
Compared to the cases of OSR < 1, the weak law of large
numbers is still valid in (11), and ENOB also follows the
same definition in (9) with the variance replaced by (11). The
expectation of Y in (10) stays the same as (6) regardless of
the OSR value.

B. Asynchronous Random Sampling-and-Averaging

By definition in this paper, the asynchronous RSA technique
can equivalently perform LI.D. random sampling within a
CKrt period, T, without implementing strict sampling PDF
boundaries and frequency relationships between CKrz and
CKpco, which can be practically realized by low-cost and
power/area efficient integrated circuits. Thus, the implemen-
tation related content, like the circuit/system overview in
Section II and the beginning of Section III, is all based on
the concept of asynchronous RSA. This sub-section describes
the theory of how LLD. random sampling can be performed
in an asynchronous manner for realistic applications.

First of all, a few parameters have to be introduced: Tpco.n
is the n-th period of the free-running DCO; tsamp,n is the
n-th absolute sampling time at the n-th rising edge of the DCO;
ATprps,n is the n-th DCO period extension controlled by a
digital pseudo-random-binary-sequence generator (i.e., PRBS
Gen. in Fig. 1), which dynamically modulates the DCO period,
(Tpco,n = Tpco,mIN + ATpras,n), between (Tpco,mmv + 0)
and (Tpcomin + ATpres,max) [48]. Both Tpcomin and
ATprps,Max can be coarsely adjusted by their own static
controls.

One example of the asynchronous RSA sampling process is
shown in Fig. 4(b), where the waveforms of CKz and CKpco
are assumed to have coincident rising edges at t = 0, for the
sake of simplicity, though this is not a required condition.
One of the most important properties of a free-running ring
oscillator is the phase-noise accumulation behavior under

E[7]= i Sy 5 S, LSy (0
= 1m = m . 1m .
Npco—o0 NDCO Npco—o0 NODSCI? n=1 OSR NDCO‘NX) —]\(])DSCI(?) n=t OSRR
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Var[Y] = Var[Q] =07 =1 (osR " Po+k—0SR) OSR=k+1 _ kool an
— , —_— > —
Npco OSR 0 OSR 2

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on December 29,2021 at 03:07:15 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WU et al.: RSA TECHNIQUES FOR SINGLE-PHOTON ARRIVAL-TIME DETECTIONS IN QUANTUM APPLICATIONS

T T CKr =y(t) Mod[Tocown,T] = 0.6-T Mod([Tocomn,T] = 0.6-T Mod[Tocomn,T] = 0.6-T
min nann {ATprasmax = 0.25°T iATpresmax = T iATprasmax = 1.5-T
— T T
4T+ i ;
Span, 1T 1T 1/ATpres max
— Peak, " 1/ATprasmax -
ni2:ATpras ua ™ 0 0 0
0 : T 0 : T 0 : T
%% T % T % T
n-Tocomin . . | . . .
P N . 2T 1T 1T £
AVAVAVIVAVAVAVAVAVAVAVAYAUAVAVAVAVAVAVAVAVAVAVAY)
% T % T % T
Yolt)  e—F— .-~ . Modulo-T ) ) ) ) | : :
0 0 0
0 T 0 T 0 T
0 T % T % T
1T 1T £t
2 Mod[t,T] 0
0 T T 0 T T 0 T T
' . Degﬁltg;M:sgiEg‘:de fa(t)]Yn=1 fo(t)]Y,=0 fult)]Yo=1 fult)]Y=0 fult)]Yo=1 Fult)]Y=0
Yol —— perp CConv. CConv. CConv. CConv. CConv. CConv.
] : wi fi(t) wi fi(t) wi f4(t) wi fi(t) wi fi(t) wi fi(t)
1T ~f ® fone1 () Yn=1 fone1(t)[Yn=0 fone(t)]Yn=1 Fone1(£)]Yn=0 et (8)]Yn=1 fpmet(t)]Ya=0
T
0
T T T T
TR Mo TR M T N 0 N T N T N
Mod[t, Y,=1 Y,=0 Y,=1 Y,=0 Y,=1 Y,=0
: = Mod[t.T] fanei®y g fanei Y720 fanei®y7 Lo ety 20 fanei®]y7 Lo iy 20
(@ (b)
Fig. 5. (a) The concept of the modulo-T operation and density-magnitude convergence of a random sampling PDF in the asynchronous RSA implementation.

(b) Upper-half: the theoretical and statistical (Ngxp = 213) results of the modulo-T random sampling PDFs, fy(t), f2(t), f4(t), f16(t), fe4(t) and fy(t) under
the three ATprps,Max scenarios. Lower-half: the process of deriving the conditional joint PDFs for the theoretical covariance calculation of the adjacent

samples, Y and Y.

the presence of any noise source regardless of the artificial
noise from the PRBS generator, device thermal/flicker noise,
or power-supply noise. A strong phase-noise accumulation
tends to form a widely distributed random sampling PDF with
a minimal number of samples, so a noise-energy dominated
PRBS noise source is preferrable in the asynchronous RSA
technique. In other words, theoretically any I.I.D. noise source
or combinational effect of multiple I.I.D. noise sources are
all applicable to the following analysis; this paper focuses
on artificial PRBS noise mainly because of its controllable
noise energy and dominant noise accumulation effect for
asynchronous RSA. However, though the natural noise sources
have relatively low energy, it is very important to emphasize
that they offer arbitrarily small phase-noise accumulations to
fill the gaps of finite PRBS noise step sizes. In other words, the
accumulations of natural phase-noise help asynchronous RSA
to possess true “continuous” sampling PDFs. This concept can
be more comprehensive at the end of this sub-section.

Under the parameters and noise definitions, the n-th absolute
sampling time can be represented by (12), and a few of tsamp,n
are also labeled in Fig. 4(b).

=2
2

n
n
n-Tpcomin + Zk:l ATprpsk  (12)

ISAMP,n Tpco,k

e (TDCO,MIN + ATPRBS,k)

Each tsamp,n contains two components: the deterministic term
(i.e., n‘Tpco,miN) and stochastic term due to the phase-
noise accumulation, which describes the uncertainty of each
sampling instant and can only be represented by a PDF,
fpco,n(t). Therefore, the n-th CKpco rising edge, i.e., the red
arrows in Fig. 4(b), occurs randomly but is confined within the
distribution span and density magnitude of its own PDF, i.e.,
pink shaded areas in Fig. 4(b). More importantly, the stochastic
term of each tsamp,n is the accumulation of “n” L.I.D. random
variables (i.e., ATprps,k, k = 1 to n) created by the PRBS
generator for “n” times as shown in the second term of (12);
equivalently, fpco,n(t) is the convolution result of total “n”
uniformly distributed PDFs from the PRBS generator. When
n = 1, the stochastic term of tsamp,1 only has one random vari-
able from the PRBS generator without any accumulation, so its
PDF, fpco.1(t), is the fundamental uniform distribution with
a ATprps,Max distribution span and constant 1/ATprps,MAX
density magnitude as shown in Fig. 4(b). When n = 2, the
stochastic term of tsamp,2 is the summation of two LID.
random variables, which are independent from each other and
have an identically distributed PDF though they are sequen-
tially created by the PRBS generator. Based on the convolution
theorem [51], the PDF, fpco,2(t), of the sum of these two
LI.D. random variables is the convolution of their individual
PDFs, which becomes an isosceles triangular distribution with
a 2-ATprps,Max distribution span and 1/ATprps,Max peak
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density magnitude. With increasing “n”, the central limit
theorem guarantees that the PDF of the stochastic term of
tsamp,n converges to a Gaussian distribution regardless of the
PDF of the single random variable from the PRBS generator.
Succinctly, the mean, standard deviation, span, and peak of
fpco,n(t) are well defined in (13) and illustrated at the top of
Fig. 5(a):

n
Mean, =n-Tpco,mIN + 3 ATprBS . MAX

Span, = n - ATprps,max

n
STDy = |/ — - ATPRrBS.MAX
12
6 1
Peak, =,/ .
w-n ATprps.MAx

fpco.n (t) = Conv [ fpco.n-1(t), fpco, ()], n > 1

1 —(t — Meany,)? 1
N ——mm— exp| ———— | ,n
STDy -2 7 2 - STD?

13)

Note that the time-domain variable “t” represents absolute time
values referenced to t = 0 as shown in Fig. 4(b). Since the
deterministic term (i.e., n-Tpco,miN) of tsamp,n sets the left
distribution bound of fpco,n(t), the PDFs of adjacent samples
quickly exhibit a large amount of distribution overlaps along
with the growth of Span;, as the examples shown in Fig. 4(b).
It is very important to note that the overlaps among multiple
PDFs in the absolute time-domain do not mean the order of the
tsamp,n occurrences would change its monotonic ascending
behavior; for example, tsamp,4 always occurs before tsamp,s
even though fpco,4(t) and fpco,5(t) have a distribution overlap.
This indicates the correlation among all tsamp,n (or fpco,n(t))
because of the phase-noise accumulation since the very first
sample to the n-th sample as shown in (12).

So far, the generation of these DCO sampling PDFs for
asynchronous RSA seems to have two major violations
(i.e., not uniform and not independent) from the assumption
described in (6), (7) and Fig. 2(b): first, fpcon(t) turns
out to be a Gaussian, not a uniform distribution regardless
of the initial PDF of the noise source; second, all of the
sampling instants, tsamp,n, become correlated due to the
phase-noise accumulation property of the DCO. Actually,
these concerns have been effectively resolved by a time-
domain “modulo operation” with proper noise-energy setups
(i.e., ATprps,Max), so the Gaussian and correlated
characteristics of all fpco,n(t) can be turned into uniform and
independent sampling PDFs, f,(t).

The modulo operation is automatically accomplished by
the effort of converting At into the duty-cycle, /T, of the
periodic signal CKz as described in Section II. The concept of
this modulo-T operation is shown in Fig. 5(a): when n > 1,
the distribution span of the Gaussian PDF, fpco,n(t), covers
multiple CKz periods, and this periodicity basically slices the
entire Gaussian PDF into multiple segments in the absolute
time-domain. Thus, each PDF segment has its own density
distribution, of course, but all have the same distribution span,
T, and all see (or sample) the same one-period waveform
of CKz, yu(t). Equivalently, all segmented PDFs are strictly
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distributed within a modulo-T time-interval between 0 and T
as shown in the middle of Fig. 5(a), where the net density-
magnitude at any time instant is contributed by all segmented
PDFs. That is, the equivalent PDF of the n-th DCO sampling
instant, f;,(t), is the superposition of the all segmented PDFs
from fpco,n(t):

S = Ceil[0.5- Span,,/T]
Mean,, = Mod[Mean,, T

1
H~N —mM
fa €) STD, -2 -7
zs —(t — Mean), —k-T)2 -1
. ex )
k=5 P 2 - STD?

(14)

where the time-domain variable “t” is confined within
[0, T); (2-S 4 1) is the number of segments set by the Spany;
Mean;,’ and k-T are used to shift these (2-S + 1) segments
to the modulo-T time-interval, [0, T). When n > 1, f,(t)
converges to a constant 1/T across the single T span as shown
at the bottom of Fig. 5(a); this fact can be proven by both
mathematical calculation of (14) and statistical simulations
shown in the upper-half of Fig. 5(b), which demonstrates
f1(t), fa(t), fa(t), f16(t), and fea(t) for three representative
ATprBs,Max scenarios (i.e., <, =, and > T). The black curves
are the theoretical PDFs from the mathematical calculations
while the light-blue histograms are obtained from the statistical
simulations with 213 experiments. Clearly, the theoretical
and experimental results align pretty well across all PDFs
along with different settings of noise-energy from the PRBS
generator. More importantly, with increasing “n”, all sampling
PDFs converge to a uniformly distributed PDF with a constant
density magnitude 1/T across the [0, T) distribution span, inde-
pendent from the parameters of Tpco min, ATprBs,MAX, and
even “n” when n > 1 as illustrated at the bottom of Fig. 5(a).
In other words, for all “n” > 1, f,,(t) becomes an “identically
distributed” PDF, which satisfies the “second” criterion of the
LLD. random variable and can be implemented by the low-
cost circuitry described in Section II. This convergence of the
uniform distribution also guarantees the convergence of the
asynchronous RSA measurement result:

1 Npco
e 20

= > By, = By,

E[Y]

Npco n=1

T T TO
= t) - t)-dt = — - dt — - dt
/Oyno £ ) /OT +/1 -

T
- _ =P 15
T 1 (15)

which exactly matches to the expectation in (6).

One more practical concern may be raised for those PDFs
which exhibit a non-uniform distribution since their values
of “n” are not large enough. For example, in the case of
ATprs,max = 0.25-T, f,(t) obviously is not a uniformly
distributed PDF until n = 64. The concern is whether these
non-uniform PDFs affect the overall RSA measurement result,
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i.e., (15). The short answer is negative: these non-uniform
PDFs can only be observed when all of the experiments
have the same absolute time reference at t = 0 (i.e., the
initial condition) as the assumption for (12) and Fig. 4(b).
In reality, the asynchronous relationship between CKr and
CKpco randomizes the initial condition of the sampling
process, especially for fpco,1(t), so all f(t) actually exhibit a
uniform distributed PDF within [0, T) even though the value of
“n” is one or close to one. This can be verified by consolidating
the randomized initial condition, tiNT, into the unit impulse,
o(t — tinT), discussed in (16) and the following paragraphs.

Similar to fpco,n(t) in (13), the exact form of f,(t) can be
expressed in the format based on the convolution theorem [51]
as well, but now it becomes a modulo-T circular convolution
process [54] due to the combined operations of the linear
convolution and modulus:

f1 (@) = CConv| fpco(t),o(t),T]
fu () = CConv [fu—1 (1), f1 (1), T], n>1 or
Jot1 @) = CConv [ fu (¢), f1 (1), T], n>1 (16)

where d(t) is the unit impulse; the “t” of f(t), f_1(t), fu(t) and
fa41(t) is the modulo-T time-domain variable within [0, T),
but the “t” of fpco,1(t) and J(t) is the absolute time-domain
variable referenced to t = 0. Based on (16), fi(t) plays as
not only the PDF of the first sampling instant but also the
fundamental PDF element to obtain any f,(t) from f;,—1(t).

Here summarizes the important attributes of fi(t). The
distribution of fi(t) always starts at the remainder of a single
Tpco,min divided by T, e.g., Mod[Tpco,min, T] = 0.6-T in
Fig. 5(b). Whenever the PDF reaches t = T, it circulates back
to t = 0 and then continues its distribution toward t = T as
shown in all PDF plots of Fig. 5(b), but the top-row plots
demonstrate this modulo-T circular behavior more obviously
since f1(t) has the minimal distribution span among all f;,(t).
In the case of ATprps,Max < T, for example ATprps MAX =
0.25-T, intuitively fi(t) has non-zero values from 0.6-T to
0.85-T. When ATprps,max = T or Mod[ATpres,Max, T] =
0, f1(t) circulates multiple integer cycles uniformly from 0.6-T
and then back to 0.6-T. In the case of ATpres,Max > T
and Mod[ATprps,Max, T] # 0, fi(t) exhibits two non-zero
density magnitudes because fpco,1(t) circulates within [0, T)
multiple times with a non-zero remainder, and the delta
between these two density magnitudes is 1/ATpres,MAX as
the example of fi(t) shown in Fig. 5(b) for ATprps,MAX =
1.5-T. This indicates f(t) itself can be directly converged
to a uniform distribution by having a ATprps,max > T to
level its density magnitude. The attributes of fy(t) discussed
so far seem unimportant because anyway f;(t) converges to a
uniform distribution as verified. However, from the perspective
of the correlations among all sampling PDFs, i.e., f(t) where
n = 1 to Npco, this fundamental PDF element, f;(t), plays a
significant role even though all f;,(t) are identical when n > 1.

To examine the correlation among all sampling PDFs,
the process can start with calculating the covariance of the
adjacent samples, Y, and Yp41:

Cov [Y,,, Y,,+1]
= /A(yn_E (YD) -n1 —ELY]) - f n>Yus1) - dyn - dynsa

T
_ /0 G (1) = P1) - Gt 6 — P1) - fomr (1) - dt

=(1—-P)-(1-P)- /0 (f”’”“ ® YnY."H::ll ) o
+(1=P1)-(0—Pp)- /,T (f"’”“ © YnYL==10 ) o
+HO— Py (1= Py)- /0 (f’“"“ Ol ) @
+O—P)-(0—P)- / T (f”’”“ ® YnYLiOO ) -

A7)

where the 2" line of (17) is based on the fundamental
covariance definition of two random variables, Y, and Y41,
on the same sample space, R, with their joint PDF, f(yn, yn+1),
and PDF variables, y, and yn41. Similar to (6) and (15), the
3" Jine of (17) uses the one-dimensional geometric probability
format to represent the covariance with the modulo-T time-
domain PDF variables, yn(t) and yn4+1(t), and joint PDEF
fn,n+1(t), for asynchronous RSA. y,(t) and yn41(t) are identical
due to the CKz periodicity as shown in Fig. 5(a), and the
possible outcomes of Y, and Y,i; are either Logic-1 or
Logic-0 both with the expectation E[Y] = 7/T = P; verified
in (15). By taking advantage of simple binary values, Cov[Yy,
Yy+1] can be expanded into the summation of four conditional
covariances based on the total four possible combinations of
Y, and Y41 with their corresponding conditional joint PDFs
as shown in the 4 to 7 lines of (17). The approach of finding
these four conditional joint PDFs is illustrated at the lower-half
of Fig. 5(b). As discussed, the generic case (i.e., n >> 1) of f;(t)
(black curves) is a uniform distribution for all ATprps,MAX
scenarios, so the conditional PDFs, f;,(t)|Y,, = 1 (blue regions)
and f,,(t)|Y, = O (orange regions), are simply set by the value
of yu(t) across the modulo-T time-interval, [0, T), and all
scenarios have the same conditional PDFs, f,,(t)|Y,. To further
obtain the conditional joint PDFs, f, n41(t)[Y, (black curves),
each f,(t)| Y, has to circularly convolute with the fundamental
PDF element, fi(t), which is a function of ATprpsMAX;
so different fi(t) generate their corresponding f; n41(t)]
Y, =1 and f;, n+1(t)| Y, = 0 as shown in Fig. 5(b) and below:

(fn,n+1 ()Y, =1) = CConv [(fn OWY,=1), i@),T]
(fn,n+1 (t) |Y, =0) = CConv [(fn (t) 1Y, =0), fi (t) , T]
(13)

It is important to note the difference between fj,4(t) in (16)
and f, n41(0)]Y, in (18): f,41(t) is obtained from fy(t), and
it turns out to be independent from fi(t); but, fj n1()|Yy
is from f,,(t)| Yy, and their correlation is determined by fj(t).
Finally, the four conditional joint PDFs of each scenario are
obtained by including the value of y,1(t) across the modulo-
T time-interval, [0, T) to fully cover all possible conditions of
Yo and Yyy1.

In the case of Mod[ATprps,max. T1 = 0, i.e., the middle
column of Fig. 5(b), the four conditional joint PDFs all
maintain constant density magnitudes within their own integral
time-intervals, [0, 7) and [z, T), so the covariance of the
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adjacent samples can be further derived for this scenario easily:

IfMod[ATpRBSJMAx, T] equals 0,

P P
Cov[Y,,,Yn+1]:PO.PO.?.T—PO.PI.?.(T—T)

PPy 2oe 4 by PO(T )=0
1 OTT 1 lT T) =
(19

Based on the result of (19), i.e., a zero covariance between any
adjacent samples, Y, and Y41, and the accumulated relation
from £ (t) to f,41(t) shown in (16), Mod[ ATprBs,Max, T]1 =0
is the necessary condition for all, not just adjacent, fy(t)
to be “independent.” By consolidating the identicality and
independency of f,(t) for all ATpres,MaX scenarios illustrated
in Fig. 5(b), Mod[ATpres,Max, T]1 = 0 is the requirement
to form an asynchronous RSA measurement with “indepen-
dent and identically distributed (I.I.D.)” random sampling
PDFs. This conclusion equivalently matches the requirement
of synchronous RSA with OSR = 1 where the PDF of the
CKpco sampling edge is uniformly distributed across one
CKr7 cycle as discussed in Section III-A; the only differ-
ence between the two is that asynchronous RSA takes more
time per sample due to the deterministic time-domain offset,
Tpco,miN. On the other hand, this constant time-offset per
sample makes asynchronous RSA more practical for the circuit
implementation.

One concern here is about the implementation of
Mod[ATpres,MaXx. T] = 0, which may increase the cost
of asynchronous RSA. To resolve this issue, the case of
ATpres,Max > T shown in the right column of Fig. 5(b)
could be considered though the result of (19) indicates that the
non-uniform conditional joint PDFs induce non-zero covari-
ances. These non-uniform conditional joint PDFs are mainly
caused by the non-uniform fi(t) as shown at the bottom-
right of Fig. 5(b): the hollow and bump of f; n4+1(D)|Y, = 1
and f; n4+1(0)|Yn = 0 are due to the non-uniform fj (t) circularly
convoluting with the uniform conditional PDFs, f;(t)|Y, = 1
and f,(0)|Y, = 0, respectively. Also, the locations of the
hollow and bump are functions of Mod[Tpco,min, T]. As men-
tioned, the flatness of f;(t) can actually be achieved by having
ATprs,max > T, and then all of the conditional joint
PDFs can become approximately uniform. That is, as long as
ATprBs,Mmax > T, asynchronous RSA with LLD. sampling
PDFs can be easily implemented without considering the
exact relationship between ATprpsmax and T [48], [49].
However, the downside is having an even lower conversion-
rate because Tpco,min inevitably increases with A Tprps,Mmax
to reach the requirement for ATprps,max > T. This issue
of compromising between the circuit cost and conversion-
rate further assures the necessity of additional conversion-rate
enhancement techniques for asynchronous RSA.

IV. SIMULATION RESULTS AND SUMMARY

To verify the theoretical derivations of the RSA technique,
an additional parameter, Ngxp, has to be introduced; it is the
number of Y obtained from the experiments or simulations
to statistically estimate the ideal standard deviation or the-
oretical variance. Based on the theoretical definitions of the
variances shown in (5), (7) and (11), variance is a quantity
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used to represent the power of error, but variance itself is
also an expectation. Therefore, to experimentally approach
“this expectation” (i.e., theoretical variance), it also requires a
Monte Carlo estimate:

Var[¥] = E[(F - E[7])’]

. 1 Nexp (- 7\2
lim ' Zm:l (Ym - T)

Nexp—oo Ngxp
1

2

~

Nexp — 1

Nexe ( 5 1 Nexe S 2
. E Yy - ——- E Y
m=1 Nepxp — 1 p=1

(20)

As shown in (20), the verification accuracy depends on the
number of Y, Ngxp, obtained from simulations. For a finite
but at least moderately large Ngxp, the calculation in (20) can
take the mean of Y in place of E[Y] along with the Bessel’s
correction, (Ngxp — 1), for an unbiased Var[ﬁ_{] simulation
estimate [50], [53]. Note that, the purpose of introducing Ngxp
and (20) is mainly for verification; in real RSA measurements,
under a certain ENOB requirement along with the settings of
OSR, Npco, Tpco.min, ATpres,Max and T, only a single Y
is required to represent one measurement result.

The theoretical variances and the corresponding simulation
results are demonstrated in Fig. 6. In Fig. 6(a), the blue
curves are the theoretical variances plotted as functions of /T
from (11) with a constant Npco = 2'* and four different OSR
configurations for the synchronous RSA measurements. With
higher OSR values, the variance curves show more periodic
lobes along the 7/T axis and lower peak quantization noise
powers. The red dots are the behavioral model simulation
results of the synchronous RSA system following the same
Npco, OSR, and /T range with 0.1 step size. The theo-
retical and simulation results are well aligned as shown in
Fig. 6(a), and again the simulation error can be reduced by
increasing Ngxp, which has been set as 211 for each red-dot
generation. In Fig. 6(b), the variances of asynchronous RSA
are also plotted as functions of z/T with Npco = 214 and
four different ATprps,Mmax configurations. As proven by (19),
when Mod[ ATpres,Max, T] approaches zero or ATprBs,MAX
itself increases, the variance converges to the case of the
LLD. random sampling condition, which is the blue curve
shown in Fig. 6(b) and obtained from (7). In Fig. 6(c), the
variances are plotted (on the dBW scale) as functions of Npco,
including some cases from synchronous and asynchronous
RSA measurements, where the value of 7/T for each curve is
chosen to exhibit the worst-case quantization noise in Fig. 6(a)
and 6(b). There are 28 (= Ngxp) grey dots for each Npco
to denote the experimental variances under the [.I.D. random
sampling condition for both synchronous and asynchronous
RSA, so each red dot for a certain Npco approximately on
the L.I.D. theoretical variance line is obtained from the average
of the 28 grey dots as shown in Fig. 6(c). All theoretical
(i.e., blue lines) and simulation (i.e., red dots) results are
well aligned and all follow the weak law of large number
to perform a consistent variance degradation in —3 dBW per
octave of Npco or equivalently —6 dBW per octave of ENOB
as predicted by (11) and (7). Also, the worst-case variances
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(a) The theoretical and simulated variances of synchronous RSA plotted as functions of /T under four OSR settings with Npco = 214 and
Ngxp = 211 (b) The theoretical and simulated variances of asynchronous RSA plotted as functions of z/T under four ATprps max settings with
Mod[Tpco,miN> T]1 & 0.75-T, Npco = 214 and Nexp = 211 (¢) The worst-case theoretical and simulated variances of synchronous and asynchronous RSA

TIME-INTERVAL MEASUREMENT TECHNIQUE COMPARISON & SUMMARY

Fig. 7.

Work This Work This Work [55] [56] [57] [3] [21] [4]
Sim. or Meas. Result Sim. Sim. Meas. Meas. Meas. Meas. Meas. Meas.
Application High-Res. High-Res. High-Res. | High-Res. | High-Res. TOF, 3D- TOF, TOF,
TCSPC TCSPC TDC TDC TDC Ranging LiDAR LiDAR
Technology 22 nm 22 nm 130 nm 90 nm 40 nm 350 nm 110 nm 130 nm
Technique Synchronous Asynchronous MASH Vernier & Flash Counter & Counter & Folded
RSA RSA AX GRO AX Delay Line Delay Line Flash
Central Clock PLL & PI DCO No Info. No Info. No Info. DLL & PI DLL PLL
Generator & Power 25 mW 3 mW
ENOB 10 > 14 (Scalable) 11 <14 * <8* 14 No Info. No Info.
Resolution 15 ps <1 ps (Scalable) 5.6 ps 3.2 ps 1.6 ps 10 ps 156.25 ps 71 ps
Dynamic Range 16 ns > 16 ns (Scalable) 20 ns 40 ns 320 ps 160 ns 320 ns 18.8 ns
Sampling Frequency 4 GS/s 4 GS/s 50 MS/s 25 MS/s 50 MS/s No Info. 100 MS/s 14 GS/s
Conversion-Rate 2.4 kHz 2.4 kHz 200 kHz 1.56 MHz 5 MHz 3 MHz No Info. 14 GHz
@ 12 ENOB @ 12 ENOB
Power 1.3 mW 1.3 mW 1.7 mW 3.6 mW 1.32 mW <15 mW 5 mW ** 14.1 mW
Area 0.01 mm? 0.01 mm? 0.11mm?> | 0.03mm?> | 0.08 mm?> | 0.062 mm? No Info. 0.03 mm?
Inherent Calibration RSA Mechanism RSA Mechanism No Need
Inherent Noise Filtering Averaging Averaging Interference
Process Process Suppression
Theoretical Expectation Eq. (10) Eq. (15)
Theoretical Variance Eq. (11) Eq. (7) for L1D.
Signal & Circuit 1, T, OSR, Npco T, T, Tpcomms
Parameters ATrresmaxs Noco
* Estimated based on the reported effective resolutions. ** Estimated based on the reported power of 36 channels.
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(a) Left: a simple TAC circuit with push-pull leakage paths. Right: a TAC circuit with push-pull leakage paths and Miller-hold capacitance scheme.

(b) Top-left: VTac waveforms under different At inputs in the integration- and hold-phases. Right: Vac waveforms in the hold-phase without and with the
leakage time-constant enhancement by Miller-hold capacitance. Bottom-left: the analog-circuit (TAC only) conversion gain (input-to-output transfer function)
calibration process by measuring the RSA outcomes with respect to injected known At inputs. (¢c) The conceptual illustration of low-pass filtering non-zero

of synchronous RSA exhibit —3 dBW per octave of OSR for

frequency noise and crosstalk in the RSA measurement.

a certain Npco in both Fig. 6(a) and 6(c).

The comparison between synchronous and asynchronous

RSA is summarized in Table I based on the circuit simulations
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along with the silicon measurement results of multiple state-
of-the-art TDC implementations in both high-speed and high-
resolution TCSPC applications. Although asynchronous RSA
has superior power/area efficiency, scalable dynamic ranges,
high noise immunity, and almost unlimited measurement accu-
racy, its slow conversion-rate is the primary downside limiting
the broadness of RSA in quantum applications. Meanwhile,
synchronous RSA can improve its conversion-rate by increas-
ing its OSR, but this brute-force approach would quickly hit
a brick wall due to the limitations of clock bandwidth and
resolutions of phase-interpolators (PI) and PRBS generators.
However, the analysis and simulation results demonstrated
in this paper indicates that there is a possibility to generate
variances lower than that of the LIL.D. random sampling
condition, so the conversion-rate could be enhanced by trading
in the reduced variance for a shorter measurement time, which
is called the variance reduction technique.

V. CONCLUSION

This paper evaluates the feasibility of using the RSA tech-
nique for high-resolution and low-power TCSPC systems in
emerging quantum applications. The theoretical analysis and
circuit realization assessment conclude that variance reduction
techniques are required to fully boost the value and benefit
of the RSA technique. In addition, the theoretical findings
verified and demonstrated in this paper will be the foundations
of realizing practical variance reduction techniques with a min-
imum amount of circuit/power overhead in the forthcoming
research.

APPENDIX

This section addresses the non-idealities in the TAC cir-
cuit and the methodology of its practical low-power imple-
mentation with the calibration process offered by the RSA
technique itself. Here lists the circuit/device parameters and
simulation conditions in a 22-nm digital CMOS process tech-
nology: supply voltage = 0.9 V; temperature = 100 °C;
regular-Vtg switch OFF-resistance, Ropp = 3 MQ with
600 kQ standard deviation; tunable TAC integration current,
Ii = 10 wA; TAC integration capacitance, C; = Cy; +
Cp = 1 pF (including the parasitic capacitance, Cp)
mainly implemented by a 7-layer metal-finger capacitor with
a 12 um x 12 um silicon area; time-interval dynamic range,
Atyax = 50 ns; TAC voltage dynamic range, Vrac = 0.4 to
0.9 V; RSA measurement time = 1 ms.

First of all, a simple TAC circuit shown at the left of
Fig. 7(a) is considered by assuming the top switch was
on to set the initial Vtac to 0.9 V during the reset-phase.
In the integration-phase, I discharges Vrac with a slew-rate
of —I1/C1 = —10 V/us during the time-interval, At, as the
waveforms shown at the top-left of Fig. 7(b). In the hold-
phase, the switches are all off, and the TAC relies on the
floating hold-capacitance, Cy = Cj, to maintain Vtac for the
1-ms long RSA measurement, which is the major performance
concern of this TAC circuit. As shown at the bottom-left
of Fig. 7(a), the primary leakage paths contain both pull-up
and push-down currents, Iy k1(t) and Iy x»(t), due to the OFF-
resistances of the switches, Ropr; and Ropra, respectively.
Though Ropr; and Ropra are roughly time invariant, Iy x1(t)
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and I ko(t) are functions of Vrac(t) along the time in the
hold-phase. More importantly, the equivalent leakage current,
I Lk (1), is actually the delta between the push and pull currents,
T k()] = TLk1(t) — ILk2(t)], but its direction depends on the
Vrac voltage at the end of the integration-phase (determined
by At) and the Vtac destination voltage when Iy k(t) vanishes
to zero, i.e., I g1 (t) = I go(t) at t — o0. This Vac destination
voltage is determined by Rorr2/(Rorri+ Rorr2)-0.9 V and
is highly sensitive to PVT variations. The only requirement
here is to roughly skew the OFF-resistance ratio so Vrtac
can eventually settle to somewhere within the dynamic range,
ie., 0.4 to 0.9 V. As the example shown at the top-right of
Fig. 7(b), all different Vtac voltages from the integration-
phase eventually settle to 0.7 V only based on the values
of Rorri, Rorr, and the supply. Also, the DC voltage at
the other terminal of C; (= Cy) does not affect the charge
leaking process as long as it is a low-impedance AC ground,
which is the supply in this case (the supply noise coupling is
discussed at the end of this section). The key point here is that
the first-order current cancellation between the push and pull
leakage paths increases total leakage resistance, Rpx, up to
10 MQ. However, the equivalent RC time-constant, 10 us,
is still far from enough to maintain Vrac as shown at the
top-right of Fig. 7(b).

The technique of Miller-hold capacitance [58] as shown at
the right of Fig. 7(a) offers a low-power solution especially for
maintaining a DC voltage. In the integration-phase, Cy stays
the same as 1 pF, so the power consumption of Ij can also
stay the same. The extra power cost is from the unity-gain
amplifier to maintain the low-impedance AC ground, which
is 0.6-V DC in this example, for the —10 V/us integration
slew-rate. More importantly, in the hold-phase, the equivalent
hold-capacitance now has been effectively enhanced by the DC
gain of the amplifier, Ay, during the hold-phase to achieve
Cy’ ~ Ap-Cpp = 500 pF, and therefore the equivalent RC
time-constant is improved up to 5 ms as shown at the bottom-
right of Fig. 7(b). Also, since the hold-phase occupies the
majority of RSA measurement time, the amplifier can be
switched to a sub-threshold operation mode [59] to main a
high DC gain and low-power consumption for the Miller-hold
capacitance scheme.

Overall, the non-idealities of the TAC circuit at least
include non-constant integration slew-rate due to device
channel-length modulations, glitches and offsets due to
switch charge-injections and control-feedthroughs, and finite
RC time-constants due to leaky switch OFF-resistances.
Fortunately, all non-idealities from the entire analog front-
ends and circuits (though here only TAC is considered) can
be pre-calibrated by the RSA technique itself in terms of
a combinational and average effect without extra hardware.
As shown in Fig. 7(b), by injecting known At pulses into the
RSA system, the averages of the TAC non-idealities (red dots)
in the bottom-right figure can be reflected by the corresponding
RSA measurement results, Ny/Npco, with respect to these
known At inputs as shown in the bottom-left figure. After
this calibration process, the new transfer curve (red curve)
can be obtained and readily used for the corrections of the
realistic measurements [48]. Note that the calibrated transfer
function could be a high-order monotonic curve due to the
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non-linearities of the analog circuits; for example, VCDL can
induce a certain amount of non-linearity from converting its
control voltage to its time-domain delay.

The noise immunity of the RSA system is relatively
high [48] even though it uses simple analog circuitry and
floating capacitance to hold the TAC output voltage, Vtac,
for a long measurement time as well as in a digital-circuit
dominated silicon environment. As illustrated in Fig. 7(c), the
reason is that the averaging process of RSA is an integrator-
based low-pass filter, so it basically can filter out all sam-
pled jitters, J,,, converted from the zero-mean high-frequency
uncorrelated noise and low-frequency correlated crosstalk
(e.g., supply noise) on Vtac, so only the DC components
from the signal under the measurement, systematic offset,
and circuit non-linearity can be preserved, i.e., tavg = 7 +
TOFF + TNON; the offset and non-linearity can be removed by
the calibration process as discussed.
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