Hidden effects of negative stacking fault energies in complex concentrated alloys
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Negative stacking fault energies (SFEs) are found in face-centered cubic high-entropy alloys with
excellent mechanical properties, especially at low temperatures. Their roles remain elusive due to
the lack of in situ observation of nanoscale deformation. Here the polymorphism of Shockley partials
is fully explored, assisted by a new method. We show negative SFEs result in novel partial pairs as
if they were in hexagonal close-packed alloys. The associated yield stresses are much higher than
other mechanisms at low temperatures. This generalizes the physical picture for all negative-SFE

alloys.

Low to negative stacking fault energies (SFEs) are
frequently found for high-entropy alloys (HEAS) in the-
ory, particularly for the alloys with excellent mechanical
properties, such as CoCrFeNiMn [1-4] and CoCrNi [5-
9]. Negative SFEs are difficult to be identified in ex-
periment, but their existence is indicated by the rich
twin and various close-packed nanostructures [10]. In
theory, Ising models connect the negative SFE with the
lower energy of hexagonal close-packed (hcp) structure
relative to face-centered cubic (fcc) [11]. For example,
the hep Cantor alloy (CoCrFeNiMn) is indeed thermo-
dynamically more stable than the fcc one at cryogenic
temperatures [12]. Alloys are usually synthesized at high
temperatures when fcc structure is more stable than hcp,
and then quenched down to room or cryogenic tempera-
tures when the stability is probably reversed. The phase
transition from fcc to hep can be kinetically too slow to
see. However, the hcp phases under high pressures indeed
formed and retained in CoCrFeNiMn [13, 14] and CoCr-
FeNi [15] even when the pressures were removed. It is
widely acknowledged that low to negative SFEs usually
result in wide stacking faults (SFs) and large distance
between partial dislocations. The mechanical implica-
tions of low SFE have been studied [16, 17], but those of
negative SFE are still elusive and urgently need further
experimental [18] and theoretical explorations. Partial
dislocations can shape the microstructure and mechani-
cal properties of fcc materials. The abundant Shockley
partials and their polymorphism in these HEAs request
all intrinsic geometric freedoms for a complete descrip-
tion of dislocation geometry. Here we propose a new no-
tation system that can unambiguously describe all possi-
ble dislocation geometries. Assisted by it, our theoretical
analysis shows large width of SF's is not the only effect of
negative SFEs, but one of them. The other consequences
include a novel dislocation geometry similar to a dissoci-
ated dislocation in hep structure (Figure le-d, Case C),
where the two partials switch their positions in Case O.
It is similar to the Lomer-Cottrell lock but with partials

on the same slip plane. The special situation of Case C,
i.e., when the coupled partials are far away, is profuse
in fcc materials with negative SFEs including HEAs. It
is fundamentally interesting to check whether this new
mechanism plays a role in the excellent mechanical prop-
erties of HEAs. This mechanistic study is based on a
new density functional theory (DFT)-informed multiple-
equal-fraction-dislocation (MEFD) formulation [19] and
two solute solution strengthening models [16, 17]. From
the general point of view, Case C is still special in the
large possibility space when the constraints associated
with positive SFEs are removed.

Full exploration for novel dislocation geometry
by a new notation system The extremely plentiful
configurations of the partials are exemplified by CoCrNi
[20, 21], CoCrFeNiMn [20] and Al0.1CoCrFeNi [22] in
Figure la. Their geometries cannot be definitely de-
scribed by Burgers vector only, where the positions of
SF's relative to the partials are ignored. This text-book
notation system works well for alloys of positive SFEs,
since the relative positions of two partials and one SF
are always well defined. Problems arise when partials are
abundant and unbound when SFEs are extremely low to
negative. Two partials under observation can be sepa-
rated by the fcc matrix rather than a SF. When SFEs
are negative the two partials can even be bound together
by the fcc matrix. There are three intrinsic geometric
freedoms needed for a definite description of arbitrary
number of partials: (i) Burgers vectors b;; (i) line di-
rections §;; and (iii) the position of partials relative to
SFs. The choice of Burgers vectors is described by the
Thompson’s tetrahedron; the line direction is in princi-
ple arbitrary if symmetry permits; both can be clearly
described by the text-book notation system. However
the relative positions of the partials is not defined, which
is indispensable for alloys with negative SFEs.

A new notation system is proposed here for a complete

description of the extremely diverse dislocation geome-
tries (Figure 1b). The new symbol combines the Burgers
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FIG. 1: Full exploration for novel dislocation geometry by a new notation system. a, Nanoscale close-packed stackings formed by
partial dislocation motions are exemplified by CoCrNi [20, 21], CoCrFeNiMn [20] and Alg.1 CoCrFeNi [22]. The profuse partials
are highlighted. b, The new notation system and its comparison with the text-book notion. ¢, Four possible configurations of
Shockley partials in fcc concentrated alloys. The partials have typical Burgers vectors b1 = 1/ 6[121], and by =1/ 6[211]. The
blue arrows indicate the Burgers vectors of Shockley partials. d, The configurations of Case C and Case O are illustrated with
atomic resolution. The red region consists of two hcp layers, and the green region is the fcc matrix.

vector of a partial and the SF position. For example,
when a SF is to the right of the partial 51, we denote
it by b%, bt = by +SF; when it is to the left, *b; = SF
+ 51. The properties of the new notation system and
its applications to describe cases in Figure 1lc and be-
yond are referred to the supplementary material. The
new system considers all intrinsic geometric freedoms in
a simple manner, but the impact is profound. It is useful
to describe more complex geometry, where three or more
partial dislocations are involved. The line direction § is
arbitrary in theory. A general discussion of arbitrary di-
rections is straightforward but outside the scope of this
work. Here we only consider the two partials with the
same line direction. The new notation system can help
explore novel configurations of the Shockley partials.
The new building blocks of starred Burgers vectors
(partials) double in number, which greatly increases the
possibilities of combinations of partials. We can mechan-
ically play the building blocks to find new geometry and
then check if they can be a new mechanism with physi-
cal meaning. Arguably the most easy way to find a new
geometry is to switch the positions of partials in known
configurations. For example, we can switch the two par-
tials in Case A, which results in Case C (Figure 1c). This
is similar to a dissociated dislocation in hcp structure,
which can exist in alloys with negative SFEs. As a new
type of dislocation geometry in fcc, it provides the basis
to understand deformation behavior. Its special situation
when the coupled partials are far away and behave like
independent partials in non-equilibrium state, is profuse

in fcc materials with negative SFEs including HEAs. As
examples, the geometry and mechanics of Case C are dis-
cussed as a novel mechanism for two typical HEAs, i.e.,
CoCrFeNiMn [13, 14] and CoCrFeNi [15].

The broken equilibrium: Case O In the clas-
sic Case O, three forces determine the distance between
the two Shockley partials, i.e., the interactions of edge
components F.(x), screw components Fy(x) and the at-
tractive force through SFEs F,(z). Assuming b *by
are the Burgers vectors of the two partial dlslocatlons.,
§ is the line direction of the whole dislocation, G is
the shear modulus along the Burgers vector b of the
whole dislocation,ql/ is the Poison ratio_z we hgve F, =
ﬁm(b*xs)( bax3) >0, Fs = 2(;%(b*{§’)(*b2§') <0,
and F, = —x7yy < 0. Here 7 represents the SFE. The
equilibrium distance xq is calculated by

Fe(z0) + Fs(w0) + Fy(x0) = 0. (1)

When the SFE is negative, i.e., F, = —zyy > 0, the
force associated with SFE becomes repulsive and has the
same sign as F,. The equilibrium of Eq. 1 is however bro-
ken. The only attractive force Fs from the screw com-
ponents is smaller than F,. let alone there is an extra
repulsive force term from SFE. The total force is thus

F.(z) + Fy(z) + Fy(z) > 0. 2)

Obviously there is no solution for z. We will confirm
this information again from the numerical solution of one
revised Peierls-Nabarro model.



When Shockley partials are profuse, it is also possible
that one of the partials has a pure screw character. For
example, when the right partial is purely screw with SF
to its left (*b3), F. = 0, we can find a new equilibrium dis-
tance o = —Fs/70. An equivalent case is the left partial
is a screw dislocation, which yields the same equilibrium
distance. Here we focus on a special case, i.e., when the
two partials have mixed characters but meet each other
from an opposite direction.

The new equilibrium: Case C According to clas-
sic dislocation theory [23-25], the perfect dislocation
can never be nucleated due to their large critical re-
solved shear stress (CRSS) during nucleation 7. In-
stead many twins and SFs are formed because of the
lower CRSS 7, to nucleate Shockley partial dislocations.
™ = QQ%GZ’,TP = zacbcbl + Z—‘f. Here parameter aq is
a constant for either edge or screw dislocation. When
Yo < 0, 7y is always smaller than 7p, regardless of
grain size D. The huge amount of partials may meet
each other and form new couples in the configuration of
Case C (Figure 1lc-d, Case C), which can be expressed by
By By = B

The configuration of Case C is similar to the dissoci-
ated basal (a) dislocation on the basal plane in hcp if
the principle of nearsightedness is adopted. Transform-
ing the Case C in fcc into the hep basal (a) dislocation
where the bulk hcp energy as the new zero energy ref-
erence, we again have a positive SFE and the associated
force F, = —x79 < 0. The new equilibrium distance
would be z¢ = %%% (consequence of Eq. 1). Differ-
ent from Case O, here the shear modulus G and Poisson
ratio v of hep rather than fcc are needed, assuming that
a dislocation can only feel the interactions of its nearest-
neighbor layers. This assumption has been adopted for
dislocation-solution interactions [26, 27]. Poisson ratios
of both hcp and fce structures are stably close to 0.3,
particularly for the materials with the same constitutions
and crystal structures. With the above preparation Case
C in fcc materials can be transformed into Case O in hep
ones. The great advantage of this transformation is, (i)
the minus sign of SFE can be dropped and (ii) the dis-
location geometry of Case C can be evaluated by classic
dislocation theory.

Higher yield stresses in Case C indicated by
GSFEs Generalized SFE (GSFE) is a very useful con-
cept associated with SFE that provides insights into the
mechanical properties. Accurate GSFEs are calculated
by DFT (Figure 2), which can be used to fit the five-
point v surface [28] or its simplified two-point expression,
v(z) = yosin?(7x) 4+ (Y — 70/2) sin?(27x), where 79, V4
are the stable and unstable SFEs. This expression can be
easily used to evaluate the effect of SFE on dislocation
geometry and strengthening. Also the shear modulus can
be well evaluated by the slops of GSFE curves, which are
substantially different for hep and fee [12]. For Case O,
a Shockley partial has to overcome the barrier along the
direction = 0 to 1/4; while for Case C, a larger barrier

of the reversed direction has to be overcome. The GSFE
curves of hep and fee show that the ”valley” is deeper for
hep partials than fce one (arrows in Figure 2), indicating
a larger CRSS of Case C than Case O.

The ~ surface or GSFE curve is reconstructed for Case
C. Two steps are needed: (i) drop the minus sign of SFE;
(ii) add SFE to the unstable SFEs ~,. Step (i) is based
on ANNNI models, which state the SFEs for intrinsic SF
I; in hep [29] and the intrinsic SF in fec are

Yhep ~ —4]1 —+ 4J2 — 4J3 ~ _4J1 - 4J3a (33’)
Vece = 4J) +4J3 = ~Vhep- (3b)

The extensive data of Hu et al. shows Jy is about
J1/10 to J1/3 [30]. As a reasonable approximation,
Yhep R —7Vice- This results in two coupled correspon-
dences, i.e., (i) negative SFE in hcp corresponds to a
positive one in fcc and (ii) negative SFE in fcc corre-
sponds to a positive one in hcp. The above idea allows
us to treat a fcc problem with a negative SFE as a hcp
one with a positive SFE. This finding directly attributes
the different yield stresses of Cases O and C to the dif-
ferent shear moduli of fcc and hep phases.
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FIG. 2: The minimum energy paths (MEPs) for dislocation
motions. a MEPs of GSFEs for CoCrFeNi (left) and b CoCr-
FeNiMn (right). The insets in (a) illustrate the atomic ar-
rangements before and after Shockley partial glides, the ge-
ometries of which are the same for CoCrFeNiMn albeit with
different atomic occupations. For both alloys the maximum
shear stress in Case C (right slope, dashed line in yellow) is
larger than in Case O (left slope, dashed line in black), indi-
cating a higher yield stress of Case C than the classic one.

Dislocation geometry by MEFD calculations It
is not convenient to simulate the atomic structure of Case
C using atomistic simulations or DFT, since the fcc ma-
trix is less stable than hcp at zero K. We use a revised
Peierls-Nabarro model with the MEFD formulation for
this purpose. This model yields the key parameters to
describe the dislocation geometry, i.e., the distance be-
tween the partials and their half widths. The most im-
portant input for the model is the 7 surface introduced
in the preceding section. The MEFD formulation is used
to solve the equation [19], which has been successfully
used to study Mg [19], HEAs [33] and two-dimensional
materials [34]. A total of seven parameters are optimized
using the Particle Swarm Optimization (PSO) algorithm
[11, 28, 35] that have been implemented in DIST toolkit
[36].



Figure 3 shows the optimized dislocation core geome-
try using DFT-computed GSFEs and elastic constants.
The core structures in the new Case C are different from
that in the classic Case O, due to the dominant attractive
interaction between partials. In Case O, the interaction
is either negligible or repulsive. The geometric difference
is more significant in Cantor alloy than in CoCrFeNi. For
Cantor alloy, the half-width w of each partial in Case C is
slightly wider than that in Case O. The equilibrium dis-
tance between partials for both alloys in Case C is about
8.5 Burgers vector; while for Case O, the distance is the-
oretically infinite, consistent with the classic analytical
model.

There is lack of direct observations for the equilibrium
geometry of Case C in Figure 3. There are multiple rea-
sons for it. Firstly, few experimentalists notice this novel
configuration of partials, so they do not have the motiva-
tion to find it. The new notation system and our theoret-
ical treatment of the new dislocation geometry will make
a change. Secondly, Case C is not a lock but mobile.
They can only be stopped by other defects (e.g, grain
boundaries), which is either difficult to identify or sim-
ply outside the limited observation field of microscopes.
A similar the technical challenge is that it may require
a large-scale atomic observations to confirm two widely
separated partials on the same atomic plane. In addi-
tion, there are also possible reasons from viewpoints of
thermodynamics and kinetics, which we do not elabo-
rate here. Nonetheless, Case C still can provide the ba-
sis to understand the mechanical behavior of alloys with
abundant partials. Its non-equilibrium state of partial
distance d — +oo is equivalent to the experimentally
observed partials (Figure la), which will be discussed
below.
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FIG. 3: The dislocation cores computed by a revised Peierls-
Nabarro model. Both the classic (a,c) and new (b,d) con-
figurations of Shockley partials in the Cantor and CoCrFeNi
alloys are calculated. The partial distance of the classic con-
figuration (Case O) is theoretically infinite, which is reset as
10b for better visualization.

Mechanical consequences of the novel mecha-
nism and magnetic states The GSFE curves indicate
Case C has a higher CRSS than the classic Case O. Here
we directly evaluate their mobility using two widely ac-
cepted models. The influence of magnetic states, which
are sensitive to the local arrangements of the close-packed
planes, is also discussed. Okamoto et al. [17] found that
the yield stress normalized by shear modulus G for a
given alloy follows a rule ,,/G = k- MSAD'/2, where k ~
1.3 x 1073 MPa/pm for fcc HEAs, and MSAD represents
the mean square atomic displacement. For example,
MSAD'/2=4.8 pm, 0,,/G = 6.21 x 10~ for Cantor alloy;
for CoCrFeNi, MSAD'/2=5.46 pm, ¢,/G = 7.10 x 1073,
The rule can be recast into o, /(k- MSAD'/2) = G. For
different cases (O, C) and different magnetic states, G
or equivalently o, /(k- MSAD'/2) is different. Three dif-
ferent magnetic states (such as paramagnetism, antifer-
romagnetism, etc.) are simulated for fcc and hep bulk
moduli by DFT at 0K. Computational details are referred
to the supplementary material. The shear moduli G are
calculated by bulk moduli and a Poisson ratio of 0.3.
The rescaled yield stresses o,/(k- MSAD'/2) for the 6
different situations are shown in Figure 4. The magnetic
states substantially change the rescaled yield stresses in
both Cases O and C. The most significant feature is that
Case C (A2,B2,C2) offers a much higher yield stresses
than Case O (A1,B1,C1) for the Cantor alloy; while the
experimental value lies in between. In contrast, the yield
stresses for the CoCrFeNi alloy in Cases O and C are less
different and comparable to the influence of the magnetic
states. The strengthening effect of magnetism was dis-
cussed [20]. Here we directly quantified the its effect on
yield stresses.

We consider a special situation of Case C when the
two partials are far away, which is profuse in experiment
(Figure 1a). The Varvenne model is derived for exactly
this situation [16] and can be adopted to calculate yield
stresses above OK. The model is a revised version of the
solute solution strengthening model proposed by Leyson
[26] and were demonstrated to have quantitative pre-
dictability [9, 37]. The model and its connection with
the Okamoto model was discussed by Nohring et al. [38]
We do not describe the full details available in the refer-

ences and just show the formula to calculate 7 at 0K, i.e.,
2

3
oy = 0.051Ma_%KTfT[Zn anVT?] . Here M is the

Taylor factor of 3.06, the line tension constant o = 0.123
and the geometric constant for wide-core dislocation
fr = 0.35 and elasatic constant K, = G(%)‘V?’b—‘l.
The key parameter is the total volume misfit }, ¢, AV;?
with all elements considered at the same footing. To-
gether with another energy term, the finite-temperature
7 is determined through an Arrhenius-type function.

The temperature-dependent yield stresses are calcu-
lated for the new mechanism (Case C) in two HEAs
(Figure 4). The new mechanism indeed provides a much
larger yield stress than the classic mechanism (Case O)



for CoCrFeNiMn. At cryogenic temperatures, a 50%
higher yield stress is predicted for Case C (paramagnetic
state), which better agrees with the experimental mea-
surement for the alloy. This gives another effect induced
by the negative SFEs in the HEA, which is intrinsic to
the new Shockley pairs. The yield stress is more affected
by the different mechanisms but also substantially tuned
by the magnetic states. For example, the yield stress of
paramagnetic state is larger than the other two states in
Case C. In contrast, the variance of yield stress due to the
new mechanism is comparable to the magnetic states for
CoCrFeNi. Further experimental investigations on the
probability or density of the new configuration (Case C)
are still needed.
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FIG. 4: The mechanical consequences of the new mechanism.
The magnetic-state dependent yield stresses for the new and
classic configurations of dislocations, i.e., yield stresses at zero
K (a-b) and at finite temperatures (c-d). The letters rep-
resent magnetic states and numbers are for different cases
(O/C). A: Ferrimagnetic, B: Antiferromagnetic, C: Paramag-
netic; 1-Case O; 2-Case C. Both measured yield stresses (dots)
and calculated ones using experimental elastic constants (yel-
low line, exp.) are presented.

In addition to alloy yielding, the new mechanism can
also affect the strain hardening through screw disloca-
tions, another important topic in HEAs [39-42]. When
the Shockley partials form a new pair, the recombination
of the original partials into a whole dislocation with a ge-
ometry of Case O is prohibitively difficult. Each partial
has to overcome the energy barriers to break with the
partners in the configuration C to recover Case O. This

can reduce the number of available screw dislocations
that cross slip and eventually affect the strain hardening
rate. The classic Taylor model connects the strain hard-
ening directly with the available dislocation density [43],
Ao = pGb,/p, where 3 is a constant depending on the
interactions of dislocations, p is the dislocation density.
Case C helps increase p as well as the ultimate strength.
Another closely related topic is to investigate how Case
C affects the serration phenomena at cryogenic temper-
ature in HEAs, which is well-known for the Cantor alloy
[44].

In summary, we fully explore the geometric and me-
chanical implications of negative SFEs in high-entropy
alloys and add fundamentally new ingredients to under-
stand their excellent mechanical properties. We identify
a new dislocation geometry assisted by a notation sys-
tem invented here. The new configuration of Shockley
partials and its special case are expected to be found
for all alloys with negative SFEs, which are systemati-
cally studied using state-of-the-art DFT simulations and
multi-scale models, and compared with available exper-
imental measurements. The new dislocation geometry
results in a higher yield stress at cryogenic temperatures
than the traditional mechanisms for CoCrFeNiMn and
agrees better with the experiment, which can be acti-
vated below the cross-over temperature of the fcc and hep
free energies. The interplay between the new mechanism
and various magnetic states of atoms is directly eval-
uated, showing that magnetism can substantially tune
the magnitudes of yield stresses. In addition to yielding,
other mechanical consequences are also discussed. Our
study demonstrates negative SFEs provide a new group
of mechanisms, in addition to the known effects, such as
wide SFs. This generalizes the physical picture and lays
the foundation for the design of all novel negative-SFE
alloys.
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