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Negative stacking fault energies (SFEs) are found in face-centered cubic high-entropy alloys with
excellent mechanical properties, especially at low temperatures. Their roles remain elusive due to
the lack of in situ observation of nanoscale deformation. Here the polymorphism of Shockley partials
is fully explored, assisted by a new method. We show negative SFEs result in novel partial pairs as
if they were in hexagonal close-packed alloys. The associated yield stresses are much higher than
other mechanisms at low temperatures. This generalizes the physical picture for all negative-SFE
alloys.

Low to negative stacking fault energies (SFEs) are
frequently found for high-entropy alloys (HEAs) in the-
ory, particularly for the alloys with excellent mechanical
properties, such as CoCrFeNiMn [1–4] and CoCrNi [5–
9]. Negative SFEs are difficult to be identified in ex-
periment, but their existence is indicated by the rich
twin and various close-packed nanostructures [10]. In
theory, Ising models connect the negative SFE with the
lower energy of hexagonal close-packed (hcp) structure
relative to face-centered cubic (fcc) [11]. For example,
the hcp Cantor alloy (CoCrFeNiMn) is indeed thermo-
dynamically more stable than the fcc one at cryogenic
temperatures [12]. Alloys are usually synthesized at high
temperatures when fcc structure is more stable than hcp,
and then quenched down to room or cryogenic tempera-
tures when the stability is probably reversed. The phase
transition from fcc to hcp can be kinetically too slow to
see. However, the hcp phases under high pressures indeed
formed and retained in CoCrFeNiMn [13, 14] and CoCr-
FeNi [15] even when the pressures were removed. It is
widely acknowledged that low to negative SFEs usually
result in wide stacking faults (SFs) and large distance
between partial dislocations. The mechanical implica-
tions of low SFE have been studied [16, 17], but those of
negative SFE are still elusive and urgently need further
experimental [18] and theoretical explorations. Partial
dislocations can shape the microstructure and mechani-
cal properties of fcc materials. The abundant Shockley
partials and their polymorphism in these HEAs request
all intrinsic geometric freedoms for a complete descrip-
tion of dislocation geometry. Here we propose a new no-
tation system that can unambiguously describe all possi-
ble dislocation geometries. Assisted by it, our theoretical
analysis shows large width of SFs is not the only effect of
negative SFEs, but one of them. The other consequences
include a novel dislocation geometry similar to a dissoci-
ated dislocation in hcp structure (Figure 1c-d, Case C),
where the two partials switch their positions in Case O.
It is similar to the Lomer-Cottrell lock but with partials

on the same slip plane. The special situation of Case C,
i.e., when the coupled partials are far away, is profuse
in fcc materials with negative SFEs including HEAs. It
is fundamentally interesting to check whether this new
mechanism plays a role in the excellent mechanical prop-
erties of HEAs. This mechanistic study is based on a
new density functional theory (DFT)-informed multiple-
equal-fraction-dislocation (MEFD) formulation [19] and
two solute solution strengthening models [16, 17]. From
the general point of view, Case C is still special in the
large possibility space when the constraints associated
with positive SFEs are removed.

Full exploration for novel dislocation geometry

by a new notation system The extremely plentiful
configurations of the partials are exemplified by CoCrNi
[20, 21], CoCrFeNiMn [20] and Al0.1CoCrFeNi [22] in
Figure 1a. Their geometries cannot be definitely de-
scribed by Burgers vector only, where the positions of
SFs relative to the partials are ignored. This text-book
notation system works well for alloys of positive SFEs,
since the relative positions of two partials and one SF
are always well defined. Problems arise when partials are
abundant and unbound when SFEs are extremely low to
negative. Two partials under observation can be sepa-
rated by the fcc matrix rather than a SF. When SFEs
are negative the two partials can even be bound together
by the fcc matrix. There are three intrinsic geometric
freedoms needed for a definite description of arbitrary

number of partials: (i) Burgers vectors ~bi; (ii) line di-
rections ~si; and (iii) the position of partials relative to
SFs. The choice of Burgers vectors is described by the
Thompson’s tetrahedron; the line direction is in princi-
ple arbitrary if symmetry permits; both can be clearly
described by the text-book notation system. However
the relative positions of the partials is not defined, which
is indispensable for alloys with negative SFEs.

A new notation system is proposed here for a complete
description of the extremely diverse dislocation geome-
tries (Figure 1b). The new symbol combines the Burgers
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